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ABSTRACT

The 2017-2027 National Academies’ Decadal Survey, Thriving on Our Changing Planet, recommended Surface
Biology and Geology (SBG) as a “Designated Targeted Observable” (DO). The SBG DO is based on the need for
capabilities to acquire global, high spatial resolution, visible to shortwave infrared (VSWIR; 380-2500 nm; ~30
m pixel resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and thermal infrared
(MWIR: 3-5 pm; TIR: 8-12 pm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over
terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algo-
rithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms
applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic
ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR
and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities
identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland
and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation,
melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks);
(v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing
agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the
following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the
community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists.

1. Introduction

The 2017-2027 Decadal Survey, Thriving on our Changing Planet, was
released in January 2018 by the committee on the Decadal Survey for
Earth Science and Applications from Space (ESAS) of the National
Academy of Sciences, Engineering and Medicine (NASEM) Space Studies
Board (NASEM, 2018). The report provides a vision and strategy for
Earth observation that informs federal agencies responsible for the
planning and execution of civilian space-based Earth-system programs
in the coming decade, including the National Aeronautics and Space
Administration (NASA), the National Oceanic and Atmospheric
Administration (NOAA), and the U.S. Geological Survey (USGS). High-
priority emphasis areas and targeted observables include global-scale
Earth science questions related to hydrology, ecosystems, weather,
climate, and solid earth. Notably, the Decadal Survey identified Surface
Biology and Geology (SBG) as a Designated Observable (DO) to acquire
concurrent global spectroscopic (hyperspectral) visible to shortwave
infrared (VSWIR; 380-2500 nm) and multispectral midwave and ther-
mal infrared (MWIR: 3-5 pm; TIR: 8-12 pm) imagery at high spatial
resolution (~30 m in the VSWIR and ~ 60 m in the TIR) and sub-
monthly temporal resolution globally. An introduction to the mission
and summary of the first community workshop is provided by Schneider
et al. (2019). The final sensor characteristics will be determined during
the mission formulation phase, but the Decadal Survey provides guid-
ance for a VSWIR instrument with 30-45 m pixel resolution, <16 day
global revisit, SNR > 400 in the VNIR, SNR > 250 in the SWIR, and 10
nm sampling in the range 380-2500 nm. It also recommends a TIR in-
strument with more than five channels in 8-12 pm, and at least one
channel at 4 pm, <60 m pixel resolution, <3 day global revisit, and noise
equivalent delta temperature (NEdT) <0.2 K (NASEM, 2018; Schimel
et al., 2020). Alone, SBG will provide a comprehensive monitoring
approach globally. Complemented with systems like Landsat and
Sentinel-2, global change processes with faster than 16-day global
change rates can be mapped—at lower spectral resolution—but high

temporal revisit. Synergistic approaches to coexisting Earth observation
missions are assumed to deliver additional science beyond the SBG
promise (cf. Malenovsky et al., 2012).

This unique combination of high spatial resolution VSWIR and TIR
spectral imagery is intended to capture the hydrological, ecological,
weather, climate, and solid earth dynamic states of the Earth’s surface
and quantify uncertainties. The results will address a range of
outstanding global Earth science questions and facilitate new applica-
tions that target pressing societal priorities.

Spectral imaging has been employed since the earliest days of Earth
remote sensing, originating with black and white, then color photog-
raphy from balloons, pigeons, and airplanes (Chuvieco, 2020). The first
satellite imagery of the Earth was returned by NASA’s TIROS Program
(Television Infrared Observation Satellite) in the early 1960s (Stroud,
1960; Bandeen et al., 1961), demonstrating the power of space-based
observations to improve global weather forecasts. Since then, space-
based TIR and reflected solar spectral imagery has been acquired more
or less continuously (Manna, 1985).

Passive remote sensing techniques have expanded to span the elec-
tromagnetic spectrum from the ultraviolet to microwave, and active
remote sensing such as radar and lidar has been used to provide addi-
tional information on forest structure, topography, oceanography,
clouds, and many other areas, with applications in biomass estimation,
earthquake monitoring, weather predictions, sea level rise, among many
others (Thenkabail et al., 2018). Active and passive imaging in the mi-
crowave is often used in the monitoring of sea ice, snow and water
content of soils and vegetation, alongside other applications (Thenkabail
et al., 2018). All of these measurements are vital to understand the
whole Earth surface and are covered in part by existing and other rec-
ommended missions in the Decadal Survey (NASEM, 2018). Here we
focus on passive imaging in the visible to thermal wavelengths. We
define panchromatic imagery as a single image acquired over a single
(potentially broad) spectral channel; multispectral imagery as the
simultaneous acquisition of tens of channels; and hyperspectral imagery
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as the simultaneous acquisition of hundreds of channels.

Multispectral instruments such as Landsat 8 Operational Land
Imager, Sentinel-2 MultiSpectral Instrument, Terra and Aqua MODIS,
Suomi National Polar-Orbiting Partnership VIIRS, and others are
commonly used for applications such as landcover classification, wild-
fire detection, urban growth, volcanology, detection of harmful algal
blooms and oil spills, estimation of chlorophyll concentration, primary
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production, water transparency, resuspended particles, among others
(Chuvieco, 2020). However, additional information is to be gained by
measuring contiguous swaths of the spectrum at high spectral resolution
(usually 10 nm or less) (Schimel et al., 2020). We label this spectroscopy
(Schaepman et al., 2009), which, alongside thermal multispectral ob-
servations, forms the key measurement of SBG. We anticipate that these
data will be complementary to the existing suite of remote sensing

SR
Temperate

ux

Grasslands

Snow

Agriculture

Fig. 1. Examples of spectroscopic imagery for terrestrial applications. Top and third rows: true color composites acquired by airborne AVIRIS-Classic (VSWIR),
AVIRIS-NG (VSWIR), PRISM (visible to near-infrared; VNIR, 350-1050 nm) and HyTES (TIR) instruments over different biomes. Second and fourth rows: A minimum-
noise fraction (MNF; Green et al., 1988) transformation is applied to each spectroscopic image to illustrate the additional information that can be derived from the
spectral content (MNF bands 2,3,4 as red, green, blue, respectively). Each image covers approximately 4 km?. The desert image was acquired by HyTES over Cuprite,
Nevada, USA on 3 May 2015 (https://hytes.jpl.nasa.gov/order); the boreal forest image was acquired by AVIRIS-NG in the Northwest Territories, Canada on 11
August 2018 (https://avirisng.jpl.nasa.gov/dataportal/); the mangrove scene was acquired by AVIRIS-NG in Louisiana, USA on 9 May 2015; the Great Barrier Reef,
Australia was acquired by PRISM on 17 September 2016 (https://prism.jpl.nasa.gov/prism_data.html); the agricultural image was acquired by AVIRIS-NG in Zurich,
Switzerland on 9 July 2018; the grasslands image was acquired by AVIRIS-NG in Oklahoma, USA on 14 June 2017; the temperate forest was acquired by AVIRIS-NG
in Wisconsin, USA on 4 September 2015; and the snow image was acquired by AVIRIS-Classic over Senator Beck Basin, Colorado on 15 June 2011. For AVIRIS-
Classic, AVIRIS-NG and PRISM, color images are shown using the channels closest to 640 nm, 550 nm, and 470 nm for red, green and blue, respectively. For
HyTES, a false-color composite is shown using 11.04 pm, 9.35 pm, and 8.56 pm as red, green, and blue, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)


http://hytes.jpl.nasa.gov/order
https://avirisng.jpl.nasa.gov/dataportal/
https://prism.jpl.nasa.gov/prism_data.html
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instruments planned and currently in orbit. In many applications, such
as the identification and quantification of the biochemical components
of plant canopies, the Decadal Survey states that spectroscopic imagery
is the “only” sufficient technology (NASEM, 2018; Schimel et al., 2020).

Spectroscopic imagery contains far more information than can be
seen by the human eye, as illustrated in Fig. 1, where a depiction of a
small subset of the spectroscopic data reveals mineral types, vegetation
species and health, water quality, and more. The VSWIR spectrum
covers wavelengths that provide information about vegetation pig-
ments, structure, water content, and non-pigment biochemistry; mineral
composition; snow grain size and dust; water quality; and other appli-
cations (Fig. 2). SBG observations in this range will also be critical to
derive complementary and high spatial resolution (compared to heritage
ocean color sensors) Essential Ocean Variables (EOVs) and Essential
Biodiversity Variables (EBVs) that are the basis for new aquatic science
and applications (Muller-Karger et al., 2018; O’Connor et al., 2020). The
TIR measures wavelengths that enable identification of minerals that do
not have absorption or reflectance features in the VSWIR and provides
information about vegetation water content (Fig. 3). In addition to
emissivity changes, the midwave infrared (MWIR, 3-5 pm) and TIR
radiance can also be used to compute land surface temperature. This is
important for monitoring fires and lava flows, as well as drought and
vegetation stress (Fig. 4).

The information content of each acquired scene is a function of the
spatial and spectral resolution as well as the signal-to-noise ratio (SNR).
Within hyperspectral imagery, there is often a tradeoff between noise
and resolution, as finer division of pixels or channels results in fewer
available photons per pixel per channel, whereas broad channels may
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Fig. 2. Example spectra of reflected light to illustrate processes at different
wavelengths. For instance, vegetation pigments (e.g., chlorophyll) can be
evaluated in groups of narrow channels in the range 400-700 nm, with
different pigments expressing absorption features at a range of wavelengths,
whereas structure (e.g., size and arrangement of leaves within a canopy or
cellular structure within leaves) impacts the range 0.8-1.2 pm, and lignin,
cellulose, proteins, and other non-pigment plant components impact the
shortwave infrared wavelengths. Many diagnostic mineral features are found
beyond 2 pm, and these can be small and require fine spectral resolution (<10
nm) to distinguish. The boxes encompass the features of interest, and several
spectral channels are required within each box to determine the feature shape.
Snow grain size and dust impact the amplitude (denoted by arrows) of snow
reflectance around 1 and 0.5 pm, respectively. Floating algae causes an increase
in reflectance in a water spectrum between 0.7 and 1 pm (note that when algae
do not aggregate at the surface, reflectance in this wavelength range is typically
much lower than in the visible, and both reflectance shapes and magnitudes can
vary substantially). In all applications, multiple absorption features throughout
the visible to shortwave infrared shed light on important physical characteris-
tics and processes on the ground.
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Fig. 3. Silicates and feldspar minerals are difficult to detect using the VSWIR
spectral range but can be identified by features in the TIR. Water content in
vegetation also impacts the energy emitted in the thermal part of the spectrum,
and thermal indicators of vegetation stress are used as an input into evapo-
transpiration models. A combination of VSWIR and TIR wavelength ranges
yields complementary spectral information.
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Fig. 4. The Planck curve shows the radiation of a blackbody at different tem-
peratures across the electromagnetic spectrum. The radiation peaks at different
wavelengths depending on temperature: extreme heat such as fires and lava are
best detected in the midwave infrared (~4 pm), whereas typical Earth surface
temperatures are best detected in the range 7-12 pm. Small changes in surface
temperature can be used to detect the beginnings of plant stress, before the
vegetation turns brown. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

return more photons but miss key identifying features. The intrinsic
dimension (ID) of an image is the number of unique detectable classes
within an image or the observable degrees of freedom within a partic-
ular electromagnetic range. A survey of dimensionality across space,
time, and land cover types is shown for airborne hyperspectral imaging
in Thompson et al. (2017a), and the fusion of VSWIR and TIR ranges has
been shown to yield significantly more degrees of freedom than a single
modality alone (Cawse-Nicholson et al., 2019).

The Decadal Survey calls for specific products, including Earth sur-
face temperature and emissivity; VSWIR reflectance; vegetation traits;
evapotranspiration; substrate composition; volcanic gases and plumes;
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high temperature features; water biogeochemistry; water biogeophysics;
aquatic and terrestrial classification; and snow albedo. Here, we focus on
the state-of-the-practice algorithms used to derive the products identi-
fied by the Decadal Survey. All of the overarching science and societal
questions/goals assigned to the SBG DO were considered when selecting
products. Decadal Survey questions are divided into the focus areas of
the hydrological cycle (H), weather (W), terrestrial and aquatic eco-
systems and natural resource management (E), climate variability and
change (C), and Earth surface and interior (S). These labels are used in
tables henceforth, with the exact question codes provided in the Decadal
Survey (NASEM, 2018).

This paper is organized as follows: in Section 2, we survey the state-
of-practice algorithms for SBG core products; in Section 3, we address
caveats and other algorithm/product considerations; Sections 4 and 5
follow with a discussion and conclusion, respectively.

2. The diversity of surface imaging algorithms

The SBG Algorithms Working Group surveyed more than 130 im-
aging spectroscopy researchers spanning the hydrology, ecosystems,
weather, climate, and solid earth communities. This year-long inter-
disciplinary collaboration gathered information on algorithms and data
products that address the SBG science questions. Section 2 summarizes
22 potential product suites and nearly 100 subproducts contained
therein, per the survey results. In section 2.1, we cover universal prod-
ucts, and in section 2.2, we detail products within each science and
application domain. This work serves as a record of the state-of-the-
practice as it represents a community of scientists interested in the
SBG Designated Observable. We do not present the list of algorithms that
will be implemented for SBG, but rather document the breadth of po-
tential algorithms suitable for SBG, with a focus on those that require
measurements such as are proposed for SBG.

2.1. Universal algorithms

Several universal preprocessing steps are required to produce many
of the products listed in Section 2.2, including atmospheric correction in
the VSWIR and TIR, spectral unmixing and sometimes land cover
classification.

2.1.1. Atmospheric correction

Most products described in this manuscript start from a foundation of
atmospheric correction, which estimates atmospheric properties related
to aerosols, trace gases, and water vapor as a basis to remove atmo-
spheric interference and convert data to surface reflectance or emissiv-
ity. The atmosphere varies at fine spatiotemporal scales, with the time
scales of variation decreasing in duration at increasingly finer spatial
resolutions. Thus, while climatological or model-based estimates may
provide background constraints, it is important to estimate the atmo-
spheric contribution to the spectral and thermal signals directly from the
targets being measured. Historically, different communities have
applied algorithms developed for their specific domains and in-
struments. In the terrestrial domain, VSWIR and TIR retrievals have
been treated separately due to the underlying differences in radiative
transfer and physics between the two wavelength regions.

2.1.1.1. Visible shortwave infrared (VSWIR). The SBG concept involves
collection of imaging spectroscopy data with global coverage and pro-
vision of surface reflectance maps with per-spectral channel and per-
pixel uncertainty estimates. Those uncertainties are of special signifi-
cance for global observations, as different biomes, atmospheric condi-
tions, observation geometries, and illumination geometries yield
spatially and temporally varied retrieval accuracies (Thompson et al.,
2019a, 2019c). The primary objective of VSWIR atmospheric correction
is the accurate retrieval of surface reflectance, removing effects of light

Remote Sensing of Environment 257 (2021) 112349

absorption and scattering by aerosols, water vapor, ozone, and other
gases, particularly in visible wavelengths and with variation in elevation
and solar illumination. In addition to surface reflectance, atmospheric
correction algorithms also yield useful maps of atmospheric column
vapor content.

In the VSWIR, recent algorithm surveys include Frouin et al. (2019)
for ocean environments, and Thompson et al. (2019b) and Ientilucci and
Adler-Golden (2019) for terrestrial environments. In aquatic and near-
coastal environments, only a small fraction of sensor-reaching radi-
ance constitutes relevant information about water-column or benthic
properties, requiring a more rigorous accounting of atmospheric signal
than is necessary for terrestrial applications (Gordon and Wang, 1994;
Gordon, 1997; Wang, 2007; Palacios et al., 2015). Generally, this ne-
cessitates high-performance instrumentation and calibration (Meister
et al.,, 2011). Traditionally, aquatic algorithms are based on the as-
sumptions that reflectance at longer wavelengths—usually red, near-
infrared (NIR), and shortwave infrared (SWIR) —is either negligible (i.
e., below sensor noise) or well correlated to enable iterations. Such as-
sumptions are mostly applicable, with exceptions due to oil spills (Clark
et al.,, 2010; Lu et al., 2019) or other types of floating matters on the
water surface (Hu, 2009; Qi et al., 2016; Wang and Hu, 2016; Qi et al.,
2020). While hyperspectral algorithms developed for atmospheric
correction in ocean environments have shown promise for coastal and
inland waters (Ibrahim et al., 2018), other alternative methods have also
been developed, such as curve-fitting algorithms (POLYMER; Steinmetz
et al., 2011) and neural network models (OCSMART; Fan et al., 2017). In
developed coastal areas, in addition to aerosols, highly variable
absorbing trace gases such as NO; introduce additional uncertainties in
estimates of surface reflectance at wavelengths traditionally used for
retrievals of phytoplankton pigments and dissolved organic carbon dy-
namics (Ahmad et al., 2007; Tzortziou et al., 2014). Regional/empirical
algorithms (e.g., line height methods) have proven practical for the
retrieval of some water quality parameters (e.g., chlorophyll-a) directly
from top-of-atmosphere (TOA) radiance/reflectance, taking advantage
of strong reflectance features that are prominent even in the presence of
atmospheric effects (Stumpf et al., 2016; Binding et al., 2018).

In general, atmospheric correction approaches fall into three cate-
gories: (1) empirical or scene-based approaches, which are not discussed
here because they do not scale to global implementation, (2) sequential
methods, which estimate atmospheric content from radiance data prior
to inverting for surface reflectance, and (3) simultaneous approaches that
fit atmospheric and surface properties simultaneously. Sequential
methods are generally faster because they use fast algebraic solutions or
pre-formulated lookup tables (LUTs) from cached sets of common op-
tical atmospheric conditions. The atmospheric state is estimated using
features in the radiance spectrum, with reflectance then inverted from
radiance as an algebraic function of atmospheric transmission and path
radiance from the LUT (Thompson et al., 2019a). Examples include
ATREM (Gao et al., 2009), ATCOR (Richter and Schlapfer, 2017), and
FLAASH (Perkins et al., 2012) for the land, and different, long-standing
algorithms for the ocean (Gordon and Wang, 1994; Gordon, 1997;
Montes et al.,, 2001; Wang, 2007). Complex landscapes confound
sequential methods (Thompson et al., 2019a). While some simultaneous
methods are slower due to iterative computations (i.e., optimization),
they fit the entire spectrum by concurrently solving for the atmosphere
and surface; that is, they do not make assumptions about the atmosphere
as sequential methods do. This provides the accuracy and flexibility to
measure subtle atmospheric parameters lacking obvious visible cues.
Statistical versions may incorporate background information for
improved accuracy, and enable rigorous uncertainty accounting (e.g.,
Optimal Estimation in Thompson et al., 2018, 2019a, 2019b, 2019¢; and
Chomko et al., 2003; Steinmetz et al., 2011; Bayesian Methods in Frouin
and Pelletier, 2015; Frouin and Gross-Colzy, 2016). This class of algo-
rithm has the flexibility to use diverse ancillary surface and atmosphere
information where available, including multiple observations of the
same location that can serve as a prior reflectance base map enabling
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improved accuracy. However, these methods often constrain the
retrieved surface reflectance to known sets of spectra and may not
accurately retrieve new spectral information, particularly because
global hyperspectral data are lacking, especially in aquatic environ-
ments (Dierssen et al., 2020). Finally, atmospheric correction algorithms
designed for terrestrial and aquatic applications often have fundamental
differences in defining the atmospheric path radiance: terrestrial algo-
rithms typically do not include the surface reflected light, but aquatic
algorithms include the light due to Fresnel reflection, a function of not
only water’s refraction index and observing geometry, but also winds
(for surface roughness calculations).

2.1.1.2. Thermal infrared (TIR). Maximum radiometric emission for the
typical range of Earth surface temperatures occurs in two infrared
spectral “window” regions that have minimal interference from atmo-
spheric absorption and scattering—the 3-5 pm MWIR and the 8-12 pm
TIR. The radiance measured in these windows includes emission, ab-
sorption and scattering by atmospheric constituents. As with VSWIR, the
purpose of the atmospheric correction for TIR data is to remove the
atmospheric effects and isolate those features of the observation that are
intrinsic to the surface. Only after accurate atmospheric correction can
reliable surface temperatures and spectral emissivity be retrieved.

For TIR, a sequential approach is generally used by first estimating
atmospheric profiles, then inputting these into a radiative transfer
model such as MODTRAN (Berk et al., 1999) or Radiative Transfer for
TOVS (RTTOV; where TOVS is the TIROS Operational Vertical Sounder,
and TIROS is the Television Infrared Observation Satellite) (Matricardi
etal., 2001) to estimate the necessary atmospheric parameters, and then
inverting to obtain surface radiance. Even with perfect knowledge of the
atmospheric properties, the problem of separating surface temperature
and emissivity from multispectral TIR measurements is a non-
deterministic problem. This is because the total number of measure-
ments available (N channels) is always less than the number of variables
to be solved for (emissivity in N channels, and one surface temperature
= N + 1). If the emissivity is assumed a priori from a land-cover classi-
fication or over water, then the problem becomes deterministic with
only the surface temperature being the unknown variable, and various
split-window formulations can be used (Price, 1984; Prata, 1994; Wan
and Dozier, 1996; Coll and Caselles, 1997; Yu et al., 2008; Minnett et al.,
2019). Non-deterministic approaches can be applied to multispectral
sensors with three or more channels in the TIR (e.g., ASTER, ECO-
STRESS, MODIS) so that spectral variations in the retrieved emissivity
can be related to surface composition and cover, in addition to retrieving
surface temperatures. In non-deterministic approaches, the temperature
and spectral emissivity are solved using an additional constraint or extra
degree of freedom that is independent of the data source. These types of
solutions are able to account for dynamic land surface changes such as
those due to wildfires or surface soil moisture since the emissivity
retrieval is based on spectral variance in the observed radiances.
Example non-deterministic approaches include the MODIS day/night
algorithm (Wan and Li, 1997), the temperature-independent spectral
indices (TISI) algorithm (Becker and Li, 1990), Kalman filter (KF)
(Masiello et al., 2013), and the Temperature Emissivity Separation (TES)
algorithm (Gillespie et al., 1998; Kealy and Hook, 1993). Of these, the
TES algorithm is currently used operationally for a number of NASA TIR
sensors in low-Earth orbit, including VIIRS (VNP21) in Version 1,
MODIS land surface temperature (LST) (MOD21/MYD21) products in
Collection 6 (Hulley et al., 2012; Islam et al., 2017; Malakar and Hulley,
2016), and the ECOSTRESS Level-2 standard products (Hulley and
Hook, 2018).

2.1.2. Spectral Unmixing and surface cover

Precursor steps are necessary for some algorithms in all application
areas, such as partitioning pixels into cover fractions (Roberts et al.,
1998; Asner and Heidebrecht, 2002; Painter et al., 2003; Asner et al.,
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2009; Jones et al., 2018) or pre-classification of surface cover necessary
for implementation of surface-type dependent algorithms (e.g., view-
angle dependent corrections where surface vertical structure affects
model parameterization; Jensen et al., 2018). Likewise, some down-
stream algorithms may require fractional cover to correct for non-
vegetation proportions of pixels (Serbin et al., 2015). Here, we do not
exhaustively review the range of classification approaches available for
generation of categorical maps from SBG data, but we note that (1) basic
cover type classifications will likely be necessary for some algorithms for
every scene that is acquired to reduce issues with geometric misalign-
ment or change that would result from using stock classification layers,
and (2) a range of methods are available for classifying imagery based on
reference (training) data (e.g., random forests, support vector ma-
chines), and that VSWIR and TIR data offer opportunities for improved
detail and accuracy in surface cover classification compared to multi-
spectral imagery (Pande and Tiwari, 2013; Loncan et al., 2015).

Fractional cover algorithms allow for mapping of subpixel surface
composition by finding the best-fit combination and fraction of pure
“endmembers” that represent a pixel spectrum. Spectral features caused
by chemical and/or particle size differences between different surfaces
are essential for distinguishing endmembers and modeling their frac-
tional contributions to mixed pixels. The fine resolution and contiguous
spectra provided by VSWIR instruments are able to resolve the spectral
features needed to “unmix” pixel spectra using spectral mixing models.
Example applications include fractional snow cover and grain size
(Painter et al., 2003), fractional cover of substrate and photosynthetic
and non-photosynthetic vegetation (Dennison et al., 2019), forest cover,
deforestation, and disturbance (e.g., Asner et al., 2005), burn proportion
and recovery (Tane et al., 2018), fractional cover of impervious surfaces
and vegetation in urban environments (Roberts et al., 2015), fire frac-
tional area (Dennison et al., 2006), fractional cover of coral, algae, and
sand (Hochberg and Atkinson, 2003), and fractional coverage of floating
materials like vegetation (Wang et al., 2019) and plastic debris (Bier-
mann et al., 2020). In the aquatic community, spectroscopic methods
have been demonstrated for numerous retrievals related to water surface
and column composition (Roesler et al., 2003; Bracher et al., 2009) and
were recommended for spaceborne spectrometers (Devred et al., 2013),
but approaches have not been widely tested across diverse aquatic re-
gimes (Muller-Karger et al., 2018). Various methods have been proposed
to unmix phytoplankton groups from hyperspectral reflectance with the
majority focused on decomposing reflectance and/or absorption fea-
tures related to pigments (Palacios et al., 2015; Wang et al., 2016; Chase
et al., 2017; Mouw et al., 2017), with others focused on statistical
methods using eigenvalue-eigenvector decomposition (Ortiz et al.,
2019) or neural networks (Hieronymi et al., 2017). Fractional cover of
various floating algae on the water surface has been explored by Hu
et al. (2009), Qi et al. (2016), and Wang and Hu (2016).

2.2. Focused products and algorithms

Once the reflectance and emissivity are estimated from radiance
data, a large number of specific algorithms exist to answer the science
questions laid out in the Decadal Survey. In this section, we cover the
algorithms used in snow/ice, aquatic environment, geology, and
terrestrial vegetation applications. For all of the algorithms reported, we
also note dependencies, which are intermediate algorithms or products
necessary for implementation of an algorithm. An example is BRDF
(bidirectional reflectance distribution function) and topographic
correction for sun-sensor-target geometry that is sometimes needed for
vegetation studies (Ma et al., 2020; Vogtli et al., 2021). In fact, these
intermediate algorithms may result in products for distribution them-
selves, but an exhaustive list of potential intermediate algorithms is
beyond the scope of this paper; such information can be found in indi-
vidual references associated with specific products.
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2.2.1. Snow

Monitoring of snow is important because large populations rely on
snowmelt for water availability. In addition, snow has associated im-
plications for water resources, weather, climate, flooding, and drought.
The melt rate of snow is affected by snow grain size, presence of algae
and particulates, surface temperature, and albedo. In addition, it can be
difficult to separate snow from clouds in optical imagery, presenting
challenges to the determination of the fractional area occupied by snow.
Historically, MODIS data have been used to provide global maps of snow
cover (Rittger et al., 2013). However, MODIS is a discontinuous multi-
band radiometer with isolated 50-100 nm wide spectral bands,
whereas the SBG VSWIR instrument is envisioned to provide continuous
spectral coverage from 400 to 2500 nm with ~10 nm spectral resolution.
The combination of improved spectral resolution and continuous spec-
tral coverage provides dramatically increased information content/
spectral dimensionality (Thompson et al., 2018). Hyperspectral data
leverage the entire spectrum to more accurately determine snow albedo,
grain size, cloud cover over snow, and unmix pixels containing both
vegetation and snow (Painter et al., 2013). A model developed by
Painter et al. (2013) compares the observed snow reflectance (scaled by
a hemispherical-directional reflectance factor; HDRF) to a library
spectrum. The absorption feature at 1.03-1.06 pm can be used to derive
snow grain size, and the difference between the observed snow spectrum
and a library spectrum of the same grain size can be used to determine
light absorbing impurities (Painter et al., 2013). Table 1 lists the snow
subproducts with their dependencies and heritage, while Table 2 lists
the algorithms typically used to derive these subproducts.

2.2.2. Aquatic environment

The aquatic environment comprises inland seas, lakes and rivers;
nearshore coastal, estuarine and oceanic waters; and the margins of
water bodies near shorelines or the edges of ice. Study areas include
emergent wetland and submerged benthic habitats; floating biotic and
abiotic materials; water column ecology, water quality and biochemistry
properties; and coastline mass flux and dynamics (Turpie et al., 2015a).
The nature of the aquatic environment inherently presents additional
challenges to retrieving information from the recorded signal. Besides
atmospheric effects mentioned in 2.1.1.1, the recorded signal is also
affected by glint (Wang and Bailey, 2001; Hochberg et al., 2003; Hedley
et al., 2005; Goodman et al., 2008; Kay et al., 2009; Hu, 2011), and
bubbles and whitecaps (Frouin et al., 1996; Dierssen, 2019). The ne-
cessity to correct for these effects depends on the particular algorithm
used to retrieve a data product (Hochberg et al., 2011). Moreover, the
added optical complexity of the water column itself often requires the
generation of subproducts such as inherent optical properties (Lee et al.,
2009) and bathymetry (Lee et al., 1998; Lee et al., 1999; Goodman and
Ustin, 2007; Dekker et al., 2011; Thompson et al., 2017b; Barnes et al.,
2018; Garcia et al., 2020) as intermediate outputs for retrieval of water
column and benthic properties. Spectral techniques can provide
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Table 2
Examples of algorithms used to produce snow products.
Subproduct Citations
Light absorbing Painter et al. (2013); Painter et al. (2016); Khan et al. (2017)
particles

Snow albedo Stamnes et al. (2007); Painter et al. (2013); Painter et al.

(2016)

Snow algae Painter et al. (2001)
abundance
Snow algae Khan et al. (2020)
composition
Grain size Painter et al. (2013); Painter et al. (2016)

Snow cover fraction Hall et al. (2002); Painter et al. (2003); Metsamaki et al.

(2005); Q. Zhang et al. (2020a, 2020b)

characterization of various types of floating algae and other floating
matter (Qi et al., 2020), carbon:chlorophyll ratios for kelp (e.g., Bell
et al., 2015) or changes in fluorescence yielding satellite-derived esti-
mates of phytoplankton physiology (e.g., Behrenfeld et al., 2009). Im-
aging spectroscopy, combined with thermal imagery, was recommended
for estimating ecological conditions in the water column (Devred et al.,
2013). The combination of imaging spectroscopy and thermal imagery
can also offer new insight to aquatic processes along the margins of the
sea, including the effects of freshwater discharge to benthic ecosystem
distribution and composition (Jo et al., 2019). Imaging spectroscopy is
also expected to provide useful data for assessment of inland water
quality (Dekker and Hestir, 2012), provided the instrument can suffi-
ciently resolve water bodies from surrounding terrain (Hestir et al.,
2015), and with reduced uncertainty of targeted spectral data support-
ing algorithms utilizing in-water and near-surface validation (Guild
et al., 2020). Table 3 lists the aquatic subproduct suites with their de-
pendencies and heritage, while Tables 4-10 list the algorithms typically
used to derive these subproducts.

2.2.2.1. Water biogeochemistry. Water biogeochemistry (Table 4) and
water quality (section 2.2.2.2, Table 5) comprise overlapping areas of
application for which differences in visible to near infrared (VNIR) ab-
sorption, scattering, and reflectance of water column constituents
enable their retrieval. Water biogeochemistry also overlaps with entries
under the water column environment (section 2.2.2.5, Table 8). Over-
lapping spectral features can confound explicit discrimination among
some constituents in both categories, necessitating grouping of re-
trievals of some products (e.g., sediments and organic particulate mat-
ter). Note that entries on Tables 4 and 5 are not necessarily mutually
exclusive; an important need for the imaging spectroscopy community
moving forward is for an agreed upon terminology and set of definitions
and an understanding of the overlaps among retrieved parameters.

2.2.2.2. Water quality. In our survey, the term “water quality” refers to

Table 1
Snow products possible from SBG, including their dependencies, requirements for solar zenith angle (SZA; degrees), view zenith angle (VZA; degrees), and heritage.
Products Dependencies External Max Max VSWIR MWIR TIR  Mission/ Spatial Areas
SZA VZA Instrument
Heritage
Snow fraction Cloud Filter, Reflectance 75 45 X X ASO, AVIRIS-C, Terrestrial
AVIRIS-NG, cryosphere
Snow albedo Cloud filter, HDRF reflectance, TOA Snow/sea ice 75 45 X ASO, AVIRIS-C, Terrestrial
radiance, surface temp, snow algae discriminator AVIRIS-NG, cryosphere
Snow/ice surface Cloud filter, thermal radiance X ECOSTRESS Terrestrial
temperature cryosphere
Snow - light Cloud filter, HDRF corr. Reflectance 75 45 X ASO, AVIRIS-C, Terrestrial
absorbing particles AVIRIS-NG cryosphere
Snow algae Cloud filter, HDRF corr. Reflectance 75 45 X ASO, AVIRIS-C, Terrestrial
concentration AVIRIS-NG cryosphere
Snow grain size Cloud filter, HDRF corr. Reflectance 75 45 X ASO, AVIRIS-C, Terrestrial
AVIRIS-NG cryosphere
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Table 3
Aquatic products possible from SBG, including their dependencies, requirements for solar zenith angle (SZA; degrees), view zenith angle (VZA; degrees), and heritage.
Product Suites Dependencies External Data Max Max VSWIR MWIR TIR  Mission/Instrument Heritage Spatial Areas
SZA VZA
Water Water Spectral Stratification/species 70 60 X AVIRIS-C, AVIRIS-NG, SeaWIFS, Global open
biogeochemistry Reflectance composition/nutrient/ MERIS, (Hyperion) and coastal
CDOM/salinity/depth MODIS, PRISM, HICO, HSL,LOLCI,  oceans, inland
Landsat 8/0LI lakes, rivers
Water quality Water Spectral Stratification/species 70 60 X X AVIRIS-C, AVIRIS-NG, SeaWiFS, Global open
Reflectance composition/nutrient/ HICO, MERIS, MODIS, OLCI, and coastal
CDOM/salinity/depth PRISM, HSI, Landsat 8/0LIL oceans, inland
lakes, rivers
Benthic Water Spectral Spectral libraries 70 60 X HICO, Landsat, PRISM, AVIRIS- Coastal ocean
environment Reflectance, water C, Sentinel-2, WorldView
column environment
Water surface Water Spectral Wind, water depth, 70 60 X AVIRIS-NG, CASI, DMSC, HICO, Global open
environment and Reflectance, Rayleigh- surface feature spectral HSLHJ-1 A/B, Landsat, SeaWiFS, and coastal
hazards corrected spectral libraries MERIS, MODIS, PRISM, oceans, inland
reflectance QuickBird, Sentinel-2-3, SPOT, lakes
WorldView
Water column TIR radiance, LST, X X HICO, MERIS, MODIS,
environment Water Spectral OLCI, ECOSTRESS
Reflectance
Water-volcanic TIR radiance, LST, Stratification, species, 70 60 X X AVIRIS-C, AVIRIS-NG, PRISM, Inland lakes
Water Spectral composition, turbidity, HSI, Landsat, MASTER, HyTES, and ocean
Reflectance, emissivity ~ nutrient, salinity, depth ASTER island lakes
Wetlands Terrestrial Spectral 70 60 X AVIRIS-C, Landsat, Sentinel-2,
Reflectance WorldView
Table 4 Table 5
Water biogeochemistry subproducts. Water quality subproducts.
Subproduct Citations (including, but not limited to) Subproduct Citations (including, but not limited
Dissolved Organic Carbon (DOC) Mannino et al. (2008); Fichot et al. (2015); to)
Cao et al. (2018); Li et al. (2018) Water column constituents (simultaneous Lee et al. (2002); Maritorena et al.
Particulate Organic Carbon (POC) Stramski et al. (2008); Mouw et al. (2016); Le retrieval of algal and cyanobacterial (2002); Ortiz et al. (2013); Ali et al.
et al. (2018) pigments, suspended minerals, and (2014); Lekki et al. (2017); Ortiz et al.
Particulate Inorganic Carbon (PIC) Sadeghi et al. (2012); Mitchell et al. (2017) pigment degradation products) (2017); Avouris and Ortiz (2019);
Suspended particulate matter Nechad et al. (2010); Han et al. (2016); Novoa Ortiz et al. (2019)
(SPM) et al. (2017); Balasubramanian et al. (2020) Chlorophyll-a concentration Gilerson et al. (2010); Gurlin et al.
Dissolved Organic Matter (DOM) Dong et al. (2013) (2011); Matthews (2011); Moses et al.
Absorption for SPM and DOM Dong et al. (2013) (2012); Odermatt et al. (2012a,
Chromophoric (or colored) 2012b); Pahlevan et al. (2020)
Dissolved Organic Matter Phytoplankton accessory pigment Chase et al. (2017); Bracher et al.
(CDOM): concentration (2015); Devred et al. (2013); Qi et al.
- Spectral CDOM absorption Mannino et al. (2008); Zhu et al. (2011); Zhu (2014); Wang et al. (2016)
and Yu (2013); Li et al. (2017); Cao et al. Algal bloom indicators (general), and Stumpf (2001); Frolov et al. (2013);
(2018); Hooker et al. (2020); Housekeeper specifically: Dierssen et al. (2015b); Kudela et al.
et al. (2021) (2015); Smith and Bernard (2020)

- CDOM spectral slope Aurin et al. (2018); Cao et al. (2018) — Noctiluca Qi et al. (2019a, 2019b); Qi et al.

Phytoplankton net primary Behrenfeld et al. (2005); Westberry and (2020)

production (NPP) Behrenfeld (2014); Silsbe et al. (2016); Kahru — Trichodesmium Hu et al. (2010); Dupouy et al. (2011);

(2017) McKinna (2015)

Partial pressure of carbon dioxide Lohrenz and Cai (2006); Friedrich and — Karenia sp. Harmful Algal Blooms (red Hu et al. (2005); Wynne et al. (2005);

(pCO2) Oschlies (2009); Chen et al. (2019) tides) Craig et al. (2006); Soto et al. (2016)

— High biomass event detection Klemas (2012); Ryan et al. (2014)
(indicator of eutrophication)
constituents of the water column that are detectable using imaging — Pseudo-nitzschia Anderson et al. (2016)
spectroscopy and for which some level of value could be assessed (e.g., - 22;:‘55' algae and other floating See Table 8
sediment concentrations due to erosion and runoff or chlorophyll con- — Red tide - Cochlodinium polykrikoides Ahn and Shanmugam (2006); Kim
centrations as a result of eutrophication). Some of the water quality et al. (2016)
subproducts are reformulations of biogeochemistry (Table 4) or water Algal bloom indicator (common methods):
surface environment (Table 7) subproducts, and can be utilized inde- — Red Band difference g{ﬂin et 1(12 (5123;)9% Freitas and
. . . o ierssen
pendent of value j gdgment as .measures. of biological coml?051t10n of the — Adaptive reflectance peak height Ryan et al. (2014); Smith and Bernard
water column habitat (e.g., different pigment concentrations represen- (2020)
tative of different taxa present). Phytoplankton spectral classifiers Bracher et al. (2009); Odermatt et al.

(2012a, 2012b); Palacios et al. (2015);

. . . . . . Xi et al. (2015)
2.2.2.3. Benthic environment. Benthic habitats include optically shallow Spectral CDOM absorption See Table 4

ecosystems that reside on the seafloor, such as coral reefs and seagrass. Dissolved Organic Carbon (DOC) See Table 4
In this domain, the signal at the water surface includes a combination of
reflectance from both the benthic surface and the water column (e.g.,
Maritorena et al., 1994), so algorithms typically resolve this intercon-
nectedness by either simultaneously or sequentially deriving the three
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Table 6
Benthic habitat subproducts.

Subproduct Citations (including, but not limited to)

Benthic visible/NIR
spectral reflectance

Lee et al. (1998, 1999); Mobley et al. (2005);
Goodman and Ustin (2007); Dekker et al. (2011);
Torres-Pérez et al. (2012); Torres-Perez et al. (2015);
Thompson et al. (2017b); Barnes et al. (2018); Garcia
et al. (2018, 2020)

Lee et al. (1998, 1999); Hochberg and Atkinson
(2003); Mobley et al. (2005); Goodman and Ustin
(2007); Dekker et al. (2011); Torres-Perez et al.
(2015); Asner et al. (2017a, 2017b); Thompson et al.
(2017b); Barnes et al. (2018); Garcia et al. (2018,
2020); Li et al. (2019a, 2019b)

Benthic cover classification

Table 7
Water surface environment subproducts.

Subproduct Citations (including, but not limited to)

Hu et al. (2009); Dierssen et al. (2015a);
Gao and Li (2018)

FAI (floating algal index) or FVI (floating
vegetation index) to identify water
surface anomalies

Floating biota classification

1N (% cover) of floating macroalgae

o (biomass density, g m-2) of floating

Hu et al. (2015); Qi et al. (2020)
Qi et al. (2016); Wang et al. (2016)
Hu et al. (2017); Wang et al. (2018)

macroalgae
Flotsam, including micro- and Garaba and Dierssen (2018); Garaba
macroplastics et al. (2018); Biermann et al. (2020);

Kikaki et al. (2020)

Jutzeler et al. (2014); Qi et al. (2020)
Clark et al. (2010); Sun and Hu (2019);
Lu et al. (2019, 2020)

(see Section 2.1.1.2); Minnett et al.
(2019)

Floating pumice rafts
Oil type and thickness

Water surface skin temperature

Table 8
Subproducts for water column environments.

Subproduct Citations (including, but not limited to)

Lee et al. (1999, 2002, 2009); Loisel

et al. (2018); Twardowski and Tonizzo
(2018); Grunert et al. (2019); Pahlevan
et al. (2021)

Inherent and Apparent Optical
Properties (IOPs and AOPs such as
absorption and scattering coefficients,
diffuse attenuation coefficients)

Bathymetry Lee et al. (1999, 2010); Dekker et al.
(2011); Thompson et al. (2017b)
Salinity Palacios et al. (2009); Urquhart et al.
(2012); Chen and Hu et al. (2017)
Turbidity Dogliotti et al. (2015); Knaeps et al.
(2015)
Table 9

Volcanic and glacier lakes are represented by the following subproducts.

Subproduct Citations (including, but not limited to)

Volcanic lake color Oppenheimer (1997)
composition

Volcanic and glacier lake Oppenheimer (1996); Oppenheimer (1997); Trunk
temperature and Bernard (2008); Ramsey and Harris (2013);

Zhang et al. (2020a)

basic unknowns: water depth, water optical properties, and bottom
reflectance. Algorithms typically generate either an indication of pro-
portional benthic composition (e.g., percent coral, sand, algae) or a
measure of benthic reflectance to which standard classification methods
can be applied.

2.2.2.4. Water surface environment and hazards. Various types of mac-
roalgae can float on the water surface, and some microalgae can also
form surface scums (Qi et al., 2020). These include cyanobacterium
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Microcystis, Trichodesmium, green Noctiluca scintillans, red Noctiluca
scintillans, Sargassum fluitans, Sargassum natans, Sargassum horneri, Ulva
prolifera, dead seagrass, and other aquatic plants, which includes several
subproducts also listed in Table 5. Surface algae can be detected by VNIR
reflectance but can be confounded by surrounding absorbing water
optical properties and reflecting water column constituents. Other
floating materials such as oil slicks, pumice rafts and water hazards such
as flotsam have also been observed from spectral imagery (Hu et al.,
2009; Clark et al., 2010; Jutzeler et al., 2014; Lu et al., 2020; Qi et al.,
2020). Of particular importance are marine microplastics, macro-
plastics, and other forms of marine debris, yet due to their small size
(relative to an image pixel), remote sensing detection is still at its in-
fancy (Garaba et al., 2018; Biermann et al., 2020; Kikaki et al., 2020).

2.2.2.5. Water column environment. Water column environment refers
to physical parameters affecting retrievals from the water column, with
turbidity constituting a reformulation of entries in Tables 4 and 5.

2.2.2.6. Water — Volcanic and Glacier Lakes. Volcanic lakes (water
lakes) often form in craters even in arid environments and can mask
measurement of volcanic gas and ash emissions. Retrievals of turbidity,
lake surface temperature, surface composition, albedo, stratification,
biotic changes including algal blooms, and other changes of surface
compositional characteristics, facilitate inference of volcanic emissions
that are otherwise hidden from direct observation.

Glacier lakes are particularly sensitive to climate change and are
useful indicators since many are spatially distant from direct anthro-
pogenic influences. The changes in glacier lake surface area and tem-
perature have been linked to regional climate changes and can be used
to better understand glacial melting (Zhang et al., 2020a). In addition,
surface algae biomass and biodiversity can also be an indicator of
environmental and biochemical change (Ghunowa et al., 2019).

2.2.2.7. Wetlands. Remote sensing has been used to map wetland
covers and differentiate wetland types for several decades (e.g., Town-
send and Walsh, 2001; Simard et al., 2006; Han et al., 2018). Of these,
statistical classification approaches are widely used and, as well,
spectra-based pixel unmixing has been shown effective in quantifying
wetland cover types at sub-pixel scale (Han et al., 2018). Many imaging
spectroscopy and thermal imaging techniques used for terrestrial vege-
tation can be applied to emergent wetlands (Turpie et al., 2015b);
however, the presence of water can complicate some methods, including
nonlinear spectral mixing with an aquatic substrate affecting red-edge
position (Turpie, 2013), the mixing between open water and emergent
vegetation spectra suggesting finer spatial resolution, and the combined
effect of specular reflectance (glint) and the emergent canopy BRDF
(Turpie et al., 2015b). Approaches based on the use of the first or second
order derivative of surface reflectance can effectively remove the effect
of mild glint in wetlands. In forested wetlands, synergisms with syn-
thetic aperture radar (SAR) can also aid with identification and
correction for sub-canopy inundation (Lang et al., 2008; Lamb et al.,
2019).

2.2.3. Geology

Over the past four decades, VSWIR imaging spectroscopy has been
successfully applied to geologic and mineral deposit studies in well-
exposed, mid-latitude areas at local scale (Coulter et al., 2007; Goetz,
2009; van der Meer et al., 2012; Swayze et al., 2014; Cudahy, 2016).
VSWIR spectroscopy is key to identifying iron-rich minerals (e.g.,
goethite, hematite, and jarosite) and hydrous minerals (e.g., micas and
clays) and defining mineral distribution patterns that are often products
of hydrothermal alteration and which may be indicative of geologic
processes and potential for mineral resources (Clark, 1999; Clark et al.,
2003). Mineral maps can also be used to assess surface pH and metal
leachability of mine waste and the potential of these materials to
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Table 10
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The geology products possible from SBG, including their dependencies, view zenith angle (VZA) requirements, and heritage (values are not shown where no studies

were reported to quantitatively define said limits).

Products Dependencies External Data Max SZA Max VSWIR MWIR TIR  Mission/ Spatial
VZA Instrument Areas
Heritage
Mineralogy Terrestrial Spectral Digital Elevation, X X X AVIRIS, ASTER, Global
(including Reflectance, Fractional Spectral libraries Hyperion,
mixtures) cover, emissivity Landsat, HyTES
AHS
Naturally occurring Terrestrial Spectral Lithologic and vegetation X AVIRIS-C Global
asbestos Reflectance, Fractional cover maps AVIRIS-NG
cover
Acid mine drainage Terrestrial Spectral Digital X AVIRIS-C Global
Reflectance Elevation, spectral AVIRIS-NG
libraries Hyperion
Soils Terrestrial Spectral Elevation, veg X X X AVIRIS, ASTER, Global
(texture, organic Reflectance, communities Hyperion,
carbon, water Fractional cover, Spectral libraries MODIS,
content, clay emissivity Landsat, HyTES
mineralogy, AHS
degradation)
Soil erosion Terrestrial Spectral Elevation, veg X X X AVIRIS, ASTER, Global
Reflectance, communities Hyperion,
Fractional cover, Spectral libraries Landsat.
emissivity
High-temperature VSWIR and MWIR (~ 4 Historical reflectance/ Night-time X X X AVIRIS, Global
volcanic and pm) for high temps, TIR emissivity, spectral observations MASTER, HyTES,
wildfire phenomena  radiance for ambient libraries beneficial for ASTER, MODIS,
(thermal anomaly temps, Terrestrial Spectral VSWIR-based VIIRS,
detection, fire and Reflectance, emissivity temperature Hyperion
lava temperature estimation PRISMA
and area)
Volcanic SO, and Ash TIR radiance (7-12 mm) to  Surface elevation and X X MASTER, HyTES, Global
Emissions measure SO, and ash emissivity, Plume ASTER, MODIS,
(volcanic plumes absorption/emission, thickness and altitude, VIIRS, AIRS,
and clouds, SO and -SWIR to measure aerosol Profiles of atmospheric SEVIRI, IASI
ash content, CO, scattering temperature and water
plumes) vapor
Post-Event Terrestrial Spectral Historical baseline X X X
Monitoring Reflectance, emissivity,

surface temperature

contribute to acid mine drainage (Swayze et al., 2000). While VSWIR
data are not effective in identifying rock forming minerals such as
quartz, feldspars, and pyroxenes, multispectral TIR data are effective for
making discriminations between these minerals (Hubbard et al., 2018).
Airborne VSWIR imaging spectrometer and TIR multispectral data have
been collected in diverse geologic terranes across the globe and appli-
cations have been expanding (Tukiainen and Thomassen, 2010; Bedini,
2012; Kokaly et al., 2013, 2018; Rogge et al., 2014; Black et al., 2016;
Laakso et al., 2016; Graham et al., 2018).

2.2.3.1. Mineral mapping. Spectral feature comparison methods, such
as Tetracorder (Clark et al., 2003; Swayze et al., 2003) and MICA (Ma-
terial Identification and Characterization Algorithm; Kokaly, 2011)
identify the spectrally dominant mineral(s) in each pixel of a data cube
by comparing spectral features in its reflectance spectrum to absorption
features in a reference spectral library of minerals. Continuum removal
is the technique used to isolate diagnostic absorption features from
background spectral variations (Clark and Roush, 1984; Clark, 1999) in
both the pixel and reference spectra. Following continuum removal, the
coefficient of determination (r?) of a linear regression of these
continuum-removed values is used as the metric to judge the degree of
match (or fit) between the two spectra. In addition to identifying min-
eral components, estimation of mineral fractional abundance using im-
aging spectroscopy can be made using the spectral feature comparison
methods outlined above. These methods produce a relative measure of
absorption feature depth that has been interpreted as a proxy for mineral
abundance or aerial fraction in a pixel (Clark, 1999; Clark et al., 2003).
The EnGeoMAP 2.0 methodology (Mielke et al., 2016) extends the
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Tetracorder approach and the Processing Routines in IDL for Spectro-
scopic Measurements (PRISM) approach with the calculation of spatio-
spectral gradients and the automated extraction of mineral anomalies
according to geologic expert knowledge (Mielke et al., 2016).

Linear mixture analysis has been applied to estimate intimate (e.g.,
fine scale mixtures including multiple scattering) mixtures of minerals
and rocks in lunar samples (Johnson et al., 1985). Multiple scattering
and particle size effects result in nonlinear mineral mixtures, but can be
linearized by conversion to single scattering albedo using the Hapke
(1981) as shown by Johnson et al. (1992) for a series of minerals mixed
in the laboratory and particle size mixtures from desert alluvial fans
(Shipman and Adams, 1987), where the grain size is known. In valida-
tion of spectral unmixing techniques for minerals identification and
abundance estimation, Kerekes et al. (2003) demonstrate the effective-
ness of unconstrained linear demixing methods in comparison to an end-
to-end radiometric transfer model, FASSP.

Rock formations are assemblages of minerals, whose small features
may be lost in combination. In cases where small features are suspected,
it may be better to compare rock spectra before continuum removal,
using standard target detection techniques such as a foreground/back-
ground analysis (Smith et al., 1994), spectral matched filter (Stocker,
1990), constrained energy minimization (Farrand and Harsanyi, 1997),
or an adaptive cosine estimator (Truslow et al., 2013).

2.2.3.2. Soil characterization. Soil erosion and degradation significantly
impact food production and vegetation health (Ben-Dor et al., 2009).
These, as well as soil texture, soil organic carbon, soil water content,
nutrient content, and a range of other soil applications have strong
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potential with imaging spectroscopy (Ben-Dor et al., 2009; Gupta,
2017). While the VSWIR is important for detecting organic components
in soil as well as clay mineralogy, the TIR and MWIR range is also sen-
sitive to soil organics (Hbirkou et al., 2012; Kopackova et al., 2017). Soil
degradation such as wildfire-induced hydrophobicity (water repellent
soils) has been mapped with imaging spectroscopy and spectral
unmixing (Finley and Glenn, 2010). Numerous other studies have
mapped bare soil properties (e.g., Lagacherie et al., 2008) relevant for
agriculture and erosion monitoring. In some cases, strong narrow ab-
sorption features of minerals may be detected through significant
vegetation cover, for example, Swayze et al. (2009) were able to detect
serpentine mineral absorptions despite 80% vegetation cover. However,
separating the soil signal from imaging spectrometers can often be
complicated by the presence of vegetation or litter cover (including crop
residue), soil moisture, or soil surface roughness. Thus, to estimate soil
organic carbon, residual spectral unmixing has been used to separate
vegetation from soil (Bartholomeus et al., 2011), and a shadow correc-
tion factor has been employed to minimize effects of surface roughness
(Denis et al., 2014). Likewise, soil texture mapping with imaging spec-
troscopy was improved using spectral indices for soil moisture correc-
tions (Diek et al., 2019). Multi-temporal approaches (e.g., Diek et al.,
2016) may also provide better area-wide soil mapping and are promising
in the context of global imaging spectroscopy missions. The effective-
ness of multi-temporal radiometric approaches using both VSWIR and
TIR data in conjunction with DEM data was demonstrated by Dobos
(1998) and Dobos et al. (2000). The Dobos work used AVHRR multi-
spectral data over large regions, but the methods are readily extensible
to imaging spectroscopy data. In addition to spectral unmixing ap-
proaches, empirical techniques such as partial least squares regression
(PLSR, e.g., Bartholomeus et al., 2011) or geostatistical techniques for
regional calibration (e.g., Hbirkou et al., 2012) are typically employed
in soil characterization studies.

2.2.3.3. High-temperature phenomena. This suite includes algorithms
targeting both wildfires and high-temperature volcanic phenomena,
such as active/recent lava and pyroclastic flows. High temperature
phenomena are characterized by high emitted radiance across the full
range of wavelengths (VSWIR, MWIR, and TIR) covered by SBG. High
temperature phenomena can be characterized by modeled temperatures,
or through the modeled emittance quantity known as Fire Radiative
Power (FRP; Wooster et al., 2003) or Volcanic Radiative Power (VRP;
Coppola et al., 2013). FRP is essential for understanding biomass
burning, combustion efficiency, and emissions (Roberts et al., 2005;
Vermote et al., 2009; Kaiser et al., 2012), while lava temperature and
VRP are linked to lava effusion and cooling rates (Wright et al., 2010;
Coppola et al., 2013). Temperature has been typically retrieved from
coarser (kilometer-scale) spatial resolution data using two-source mix-
ing models, which include a hot component representing fire or lava
(assumed to be a blackbody emitting at a single temperature) and a
background component (Dozier, 1981). Giglio and Kendall (2001) and
Lombardo et al. (2012) examined the sensitivity of two-source temper-
ature retrievals to a variety of assumptions for fire and lava,
respectively.

An alternative approach for estimating fire or lava temperature is to
rely on the magnitude and spectral shape of emitted radiance measured
using imaging spectrometer data covering the VSWIR. Each measured
pixel spectrum can be fit by a temperature dependent function or by a
library of spectra modeled from a range of temperatures (Dennison et al.,
2006; Wright et al., 2011). Scaling of this approach from AVIRIS data to
SBG spatial resolution has been examined for fire (Matheson and Den-
nison, 2012), and spectral temperature modeling approaches are
extensible to MWIR and TIR channels (Dennison and Matheson, 2011).

FRP and VRP, in contrast, are approximations of emittance inte-
grated over all wavelengths based on the relationship between emit-
tance and radiance for a channel near 4 pm (Wooster et al., 2003). FRP is

11

Remote Sensing of Environment 257 (2021) 112349

a standard product for MODIS, VIIRS, Sentinel-3, and even geostationary
satellites (Wooster et al., 2012; Wooster et al., 2015; Giglio et al., 2016).
SBG 4 pm and TIR channels would allow calculation of FRP/VRP with
more spatial detail and facilitate scaling with more frequently available
products from coarser resolution sensors. Due to SBG’s relatively fine
spatial resolution, saturation is a significant concern for measuring fires
or lava flows that may compose most of a pixel (Realmuto et al., 2015).
Saturation thresholds for 4 pm and TIR channels will have to be carefully
considered to enable creation of radiative power products.

2.2.3.4. Volcanic SOz and ash emissions. The TIR spectra of sulfur di-
oxide (SO2) gas and volcanic ash (pulverized silicate rock) exhibit
characteristic features that have long been used to map volcanic plumes
and clouds (e.g., Prata, 1989a, 1989b; Realmuto et al., 1994, 1997; Wen
and Rose, 1994; Prata and Bernardo, 2007; Prata and Prata, 2012;
Realmuto and Berk, 2016; Prata and Lynch, 2019). In most situations,
the plumes are detected in transmission, based on the attenuation of
radiance passing through the plumes en route to the sensor. The origins
of this radiance are the surface and atmosphere beneath the plume and,
consequently, our estimations of gas and ash content require knowledge
of the surface emissivity, topography, and profiles of atmospheric tem-
perature and water vapor. These parameters initialize models of atmo-
spheric emission and transmission radiative transfer models, which are
then employed to estimate surface temperature and plume composition.

2.2.3.5. Atmospheric CH4 and CO; emissions. SWIR channels proposed
for SBG are particularly promising for detecting and retrieving con-
centrations for CH4 and CO, and point source plumes. Individual CHy4
(Thorpe et al., 2014; Frankenberg et al., 2016; Duren et al., 2019) and
CO4 (Dennison et al., 2013; Thorpe et al., 2017) point source plumes
have been mapped using airborne spectral imaging with moderate
(5-10 nm) spectral resolution and high (1-16 m) spatial resolution.
Thompson et al. (2016) mapped plumes from a natural gas well blowout
using 10 nm spectral resolution and 30 m spatial resolution Hyperion
data. Recent work has explored the potential for extending CH4 and CO4
point source imaging and concentration retrieval to the upcoming suite
of space-based sensors: PRISMA, EnMAP, EMIT, SBG, and CHIME
(Ayasse et al., 2019; Cusworth et al., 2019). Preliminary results from
PRISMA observations of strong CO2 and CH4 emissions plumes are
consistent with the performance estimated by Cusworth et al. (2019).

The OCO-2 atmospheric sounder measures fine spectral channels
near 0.765 pm, 1.61 pm, and 2.06 pm. These data have been used to
determine CO; emitted by active volcanoes (Schwandner et al., 2017;
Johnson et al., 2020; QueiBer et al., 2019), fires (Heymann et al., 2017),
and industrial emissions (Nassar et al., 2017).

CO, absorption features in the MWIR region have been less thor-
oughly investigated, but recent studies have been developed to under-
stand the capability to use the absorption band at 4.8 pm to detect and
measure the CO, emissions from different point sources at high tem-
perature as degassing from thermal active volcanoes (Romaniello et al.,
2020).

2.2.4. Terrestrial vegetation

Imaging spectroscopy (although limited in spatial and temporal ex-
tents) has long been promoted for its potential to characterize vegetation
with greater detail than multispectral broadband imagery, starting with
studies that showed the sensitivity to foliage biochemicals such as lignin
and nitrogen (Wessman et al., 1988) and capacity to classify detailed
species composition (Martin et al., 1998; Roberts et al., 1998). The po-
tential application of spectroscopic imagery for vegetation character-
ization grew out of a long and rich literature dating to the 1970s of using
near-infrared spectroscopy (NIRS) to measure nutritional status of plant
materials (Cotrozzi et al., 2018) and comprehensive reviews of features
in plant spectra related to foliar biochemistry by Curran (1989) and
Elvidge (1990). Imaging spectroscopy throughout the VSWIR and TIR



K. Cawse-Nicholson et al.

has extensive utility for characterizing and monitoring natural (Asner
et al., 2017a), agricultural (Berger et al., 2020b) and managed (e.g.,
grazing lands) ecosystems (Knox et al., 2011), as well as in experimental
studies (Z. Wang et al., 2019).

Three main categories of algorithms for optical remote sensing of
vegetation are (1) empirical methods that are based on the statistical
relationship between full spectrum or a feature derived from spectrum
(e.g., vegetation indices, derivatives), and include both parametric and
nonparametric methods (often called “data-driven” methods) including
machine learning, (2) physical methods based on the concept of radia-
tive transfer models (RTMs), and (3) hybrid methods that combine
RTMs, empirical methods, and external models of biological functions
(e.g., Penman-Monteith) to take advantage of the fidelity in physical
models and flexibility of statistical approaches. Verrelst et al. (2019)
provide a comprehensive taxonomy of retrieval methods for vegetation
properties from imaging spectroscopy data.

2.2.4.1. Preprocessing and intermediate transformations. Regardless of
category, most vegetation retrieval algorithms require corrections for
topography and BRDF, which varies with plant canopy architecture and
light environment (Painter et al., 2013, 2016; Ustin, 2013; Gatebe and
King, 2016; Wang et al., 2017). In particular, the retrieval of nadir
BRDF-adjusted reflectance (or NBAR; Schaepman-Strub et al., 2006) is a
necessary intermediate step for many vegetation algorithms. For
example, models that utilize biophysical properties derived from im-
aging spectroscopy, such as vegetation albedo, need to minimize angular
effects for accurate vegetation parameter estimation (Laurent et al.,
2014; Weyermann et al., 2014, 2015). There is a vast literature on
methods for BRDF (Wanner et al., 1995; Collings et al., 2010; Colgan
etal., 2012; Schlapfer et al., 2015; Weyermann et al., 2015; Jensen et al.,
2018) and topographic (Soenen et al., 2005) correction and their prac-
tical implementation (Singh et al., 2015). These corrections are neces-
sary to allow for broad application of the algorithms across different
plant types, topographic features, and acquisition dates; a full descrip-
tion of preprocessing steps may be found in Serbin and Townsend
(2020).

Empirical methods for spectral quantification of vegetation attri-
butes range from physiologically based indices of vegetation function (e.
g., NDVI, NIRv, PRI, CCL; Gamon et al., 1992, 2016; Campbell et al.,
2013) to statistical classifiers of plant distributions (Ustin and Gamon,
2010; Fassnacht et al., 2016; Meerdink et al., 2019) and predictive
models of continuous properties (Asner and Martin, 2015; Serbin et al.,
2015; Singh et al., 2015; R. Wang et al., 2019). Continuously measured
spectra allow for descriptions of spectral shape which can be related to
leaf or canopy characteristics. Of note, these approaches often involve
the use of intermediate data transformations to either discriminate fine-
detail spectral features (e.g., absorption features associated with a
particular biochemical substance at a particular wavelength) or to
describe spectral shape. Methods include first and second derivative
reflectance (Blackburn, 1998; Campbell et al., 2013), pseudo-absorption
(calculated as log(1/(R)), vector normalization (Feilhauer et al., 2010),
and continuum removal (normalization of reflectance to local maxima
across a spectral segment). For example, spectral feature analysis (SFA)
uses continuum removal techniques to quantify characteristics of ab-
sorption features in the spectrum (Kokaly, 2011; Campbell et al., 2013;
Huemmrich et al., 2017).

The characteristics of vegetation canopy reflectance observed in
imaging spectroscopy data are also influenced by internal canopy
structural properties, including leaf shape, angle and distribution, larger
canopy structure (e.g., crown size, shape, clumping), and background
reflectance (e.g., soil, litter layer). These effects can obscure or confound
the signal of leaf properties of interest. For empirical methods in
particular, the same set of intermediate transformations also can
dampen the effect of brightness variations in the data associated with
structural differences in the canopy or background reflectance that may
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be a source of noise (Hall et al., 1990; Elvidge and Chen, 1995; Feilhauer
etal., 2010; Singh et al., 2015). Likewise, the directional area scattering
factor (DASF) correction of Knyazikhin et al. (2013) uses the concept of
recollision probability to reduce canopy-structure effects in imaging
spectroscopy data. However, in either case, development of models that
capture the larger range of trait and structural complexity can also help
to overcome these issues by accounting, empirically, for the various
possible drivers of spectral variation (Schweiger, 2020) and allow the
algorithm to separate influences on spectral albedo driven by structure
from the changes related to the leaf functional trait of interest.

2.2.4.2. Plant functional traits. Plant functional traits, such as pigment
and nutrient concentrations, metabolic capacity, and leaf/canopy
morphology, may be retrieved from spectral observations at various
scales (Serbin and Townsend, 2020). Imaging spectroscopy has been
proposed for detecting many traits, and Table 12 provides a subset of
traits that have been suggested for SBG, grouped by their functional
roles. At the leaf scale, a narrow set of biochemical and morphological
traits (especially pigments and water content) can be estimated by
inversion of semi-mechanistic, physically based leaf radiative transfer
models (RTMs; Di Vittorio, 2009; Shiklomanov et al., 2016; Féret et al.,
2017). These approaches are computationally intensive and, at present,
not readily implementable for spectroscopic imagery collected at the
volumes generated for global-scale mapping such as SBG. Many traits of
interest are not in current formulations of RTMs due to, among other
considerations, lack of distinctive spectral features, inclusion could
dramatically increase model complexity, or simply because the dimen-
sionality of the data is poorly understood before the model run. Finally,
RTMs can be limiting due to the ancillary information needed but not
available to the models (such as estimates of leaf area index or soil
background reflectance). However, the use of RTM emulators (Verrelst
et al., 2017) or hybrid machine-learning methods (Berger et al., 2020a)
may eventually reduce the computational limitation.

Regression against vegetation indices is commonly used, especially
for pigments and other traits with unique spectral absorption features
(Gitelson and Solovchenko, 2018), but least squares regression is not
normally recommended for traits that are expressed throughout the
spectrum due to the potential for spurious correlations (Grossman et al.,
1996). More typically, partial least squares regression (PLSR, Wold
et al., 2001), a chemometric method that utilizes the original spectral
measurements (or transformed spectra), is designed for robust imple-
mentation where the number of predictors (spectral channels) relative to
observations is high. PLSR methods derive model coefficients, or chan-
nel weights, based on a partial least squares regression between spec-
troscopic measurements and laboratory measurements of various
chemical and constitutional traits of the same sample (Serbin et al.,
2014). The derived trait estimates can then be linked to imaging spec-
troscopy datasets for prediction and mapping (Singh et al., 2015).
Additional methods gaining traction include Gaussian process regres-
sion (Verrelst et al., 2013; Z. Wang et al., 2019), which in comparison to
PLSR has the benefit of directly estimating uncertainties, at the cost of
higher computational needs and lower direct interpretability.

A very large number of traits are commonly estimated through sta-
tistical techniques such as PLSR, most notably leaf mass per area (LMA)
and nitrogen concentration (indicators of plant tradeoffs between in-
vestment in photosynthesis/growth vs. leaf structure), chlorophyll and
other pigments, water and lignin (a structural compound) (Coops et al.,
2003; Townsend et al., 2003; Martin et al., 2018; Asner and Martin,
2015; Singh et al., 2015; Wang et al., 2019; 2020). A wider range of
plant compounds have also been mapped from imaging spectroscopy,
including phenolics (Kokaly et al., 2003) and other plant defensive
compounds (Madritch et al., 2014), macronutrients (e.g., Ca, Mg, K),
nonstructural carbohydrates (Asner and Martin, 2015) and structural
carbohydrates associated with plant growth and defense (Asner et al.,
2015; Singh et al., 2015), including in forests (Asner et al., 2015),
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grasslands (Z. Wang et al., 2019) and across multiple physiognomic
vegetation types (Wang et al., 2020). In addition, recent work has also
illustrated the utility of combining passive optical imaging spectroscopy
and active lidar for mapping total canopy estimates of nitrogen and LMA
(e.g., Chlus et al., 2020; Kamoske et al., 2020).

Imaging spectroscopy has also been used to map physiological traits
that are not specific chemical or morphological characteristics of vege-
tation, but rather can be inferred from the spectra due to correlation
with the traits hypothesized to control them. These include light use
efficiency (Huemmrich et al., 2019), photosynthetic carboxylation ca-
pacity and its temperature sensitivity (Vcmax and Ev; Serbin et al.,
2015), and ecosystem production (Campbell et al., 2013; Huemmrich
et al., 2017; Dubois et al., 2018). Imaging spectroscopy has been shown
to be sensitive to §'3C and 5'°N, measures of isotopic fractionation that
are indicators of water and nitrogen availability, respectively (Singh
et al., 2015; Wang et al., 2020).

The range of traits and conditions of measurement that have been
estimated using leaf level spectral data is much greater than what has
been estimated from imaging data (e.g., Serbin et al., 2012, 2019;
Couture et al., 2016; Wu et al., 2019), suggesting the need for additional
data and research at the image scale to assess the full range of vegetation
traits that can be reliably retrieved from SBG-like imagery. Note that
traits can be estimated both at the top-of-canopy leaf level or the canopy
level and can be measured on an area or mass basis. Different retrievals
may have different assumptions about knowledge of canopy biomass or
leaf area for accurate retrieval.

While not strictly a trait, we have listed the fraction of Absorbed
Photosynthetically Active Radiation (fAPAR) alongside them since this
describes the photosynthetic processes by describing the light absorp-
tion over an integrated plant canopy, which is directly related to pri-
mary productivity (Q. Zhang et al., 2012).

2.2.4.3. Plant species. With sufficient spatial resolution, certain plant
species or genera can be mapped directly from the spectral features of
grasses (Pottier et al., 2014), herbs, and tree canopies (Baldeck et al.,
2015; Fassnacht et al., 2016; Kattenborn et al., 2019). Species mapping
has been extended to characterizing communities of mixes of species in a
variety of ecosystems including grasslands (Feilhauer et al., 2011; Rossi
etal., 2020), bogs/fens (Schmidtlein et al., 2007), temperate (Foster and
Townsend, 2004; Gu et al., 2015) and tropical forests (Asner et al.,
2017a). Because of the rich spectral information in imaging spectros-
copy datasets, endmember analysis is widely used to map both species
and communities (Roberts et al., 1998). Other methods use statistical
methods such as conditional random forests (Pottier et al., 2014), and
biased support vector machines (Baldeck et al., 2015) to map vegetation
species. Approaches combining remote sensing and species distribution
models are continuously emerging (Randin et al., 2020). While much of
the fine spatial resolution airborne vegetation remote sensing has
focused on species mapping, at larger spatial extents mapping plant
functional types (PFTs; groups of species that are physiologically
similar) becomes more feasible, for example, discrimination of C3 and
C4 dominated grasslands (Huemmrich et al., 2018) or lianas within
tropical forests (Foster et al., 2008; Marvin et al., 2016). Uncertainty in
PFT distributions is also a critical source of uncertainty in Earth system
models (ESMs) (Wullschleger et al., 2014; Poulter et al., 2015). As Earth
system model representations of plant functional groups become more
complex (Fisher et al., 2017), more nuanced mapping of PFTs will be
essential (Wullschleger et al., 2014). With global coverage of imaging
spectroscopy data, SBG will provide input for significant improvements
in these models.

2.2.4.4. Diversity. Indicators of spectral diversity derived from airborne
and ground-based imaging spectrometers have proven useful in
modeling multi-scale taxonomic, phylogenetic, and functional diversity
of vegetation (Rocchini et al., 2010; Wang and Gamon, 2019; Cavender-
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Bares et al., 2020; Thonicke et al., 2020). Measures of diversity derived
from imagery provide indirect metrics of diversity, and as such most
approaches involve linkage of image-derived metrics to ground-based
measures of diversity from field surveys via statistical methods. This
points to the necessity of ground metrics to interpret image-derived
diversity. There are two basic approaches to diversity mapping using
spectroscopic data: (1) diversity metrics based on derived products, such
as foliar traits (see 2.4.2.2) (e.g., Schneider et al., 2017; Zheng et al.,
2021) or (2) methods based on spectral dissimilarity (e.g., Féret and de
Boissieu, 2020). The mapping of taxonomic diversity, which includes
species richness and abundance-based diversity measures such as the
Shannon index (H’), has been conducted across tropical forested land-
scapes (Féret and Asner, 2014), North American prairie landscapes
(Wang et al., 2016), and regional environmental gradients (Somers
et al., 2015). Given the large number of vascular plant species on Earth,
there is increasing interest in characterizing functional diversity (e.g.,
evenness, divergence, richness) as a metric relevant to the prediction of
ecosystem processes and taxonomic diversity (Schneider et al., 2017;
Duran et al., 2019; Zheng et al., 2021), and as a basis for conservation
planning (Asner et al., 2017b). Recent studies have also extended
taxonomic diversity mapping to assess genetic and phylogenetic di-
versity in a variety of experimental settings, including aspen forests
(Madritch et al., 2014), temperate forests (Czyz et al., 2020), temperate
grasslands (Schweiger et al., 2018), tropical oak forests (Cavender-Bares
et al., 2016), and at large scales across several biomes (Meireles et al.,
2020).

While the inherent high dimensionality of imaging spectroscopy data
enables characterization of multiple metrics of diversity, both species
and diversity mapping are sensitive to the size of the organism of in-
terest, and hence the pixel size of imaging. There is an extensive liter-
ature examining the sensitivity of spectral diversity to spatial scales and
species composition (Wang et al., 2018), sensor characteristics and
multi-scale diversity mapping (Hakkenberg et al., 2018), and to validate
spectral diversity hypotheses (Dahlin, 2016; Gholizadeh et al., 2019).

2.2.4.5. Evapotranspiration. Evapotranspiration (ET) is a key biocli-
matic variable, linking water, energy, and carbon cycles (Fisher et al.,
2017). ET is controlled by water (soil moisture, atmospheric moisture),
energy (net radiation, temperature), and plants (stomatal conductance,
leaf area index, plant habit). As such, ET can be retrieved from space
through the combination of observables related to water, energy, and
plant canopies. Algorithms to retrieve ET synthesize thermal data to
capture energy dynamics and infer water, and spectral data to charac-
terize crown characteristics. Tradeoffs among various models balance
spatial and temporal scale of interests, which is particularly important
because ET exhibits high diurnal variability. Existing remote sensing
models of ET include: Priestley-Taylor Jet Propulsion Laboratory (PT-
JPL) (Fisher et al., 2008); Global Land Evaporation Amsterdam Model
(GLEAM) (Miralles et al., 2011); Disaggregated Atmosphere Land-
Exchange model (DisALEXI) (Anderson et al.,, 2007); Penman-
Monteith Mu (PM-Mu) (Mu et al., 2011); Mapping ET with high Reso-
lution and Internalized Calibration (METRIC) (Allen et al., 2007); Sur-
face Energy Balance System (SEBS) (Su, 2002); and Surface Energy
Balance Algorithm over Land (SEBAL) (Bastiaanssen et al., 1998).

For high accuracy, remote sensing algorithms for ET require ancil-
lary datasets to characterize interrelated drivers associated with
weather, climate, and especially light availability. Remote sensing al-
gorithms to map ET at large scales are especially sensitive to estimates of
net radiation, which is typically derived from radiative, atmospheric and
surface data (Fisher et al., 2008, 2009; Jiménez et al., 2011; Polhamus
et al., 2013; Badgley et al., 2015). Meteorological data are needed to
define microclimates at medium scales (< 5 km) and are essential at high
temporal resolution to capture rapidly changing weather (Anderson
et al., 1997; Allen et al., 2007; Fisher et al., 2008; Allen et al., 2011). At
the field scale (e.g., <100 m), land surface temperature captures fine
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spatial dynamics over heterogenous land cover, which is important in
the partitioning of energy. At all scales, vegetation dynamics are
required and are especially important during rapid vegetation change,
such as during green-up, crop harvest and senescence (Anderson et al.,
1997; Allen et al., 2007; Fisher et al., 2008; Allen et al., 2011; Polhamus
et al., 2013).

ECOSTRESS serves as a precursor to the SBG TIR instrument,
acquiring imagery in five channels in the range 8-12 pm from the In-
ternational Space Station from 2018 to 2021. In combination with
ancillary VNIR and meteorological data, it produces standard ET prod-
ucts, and studies have shown that high quality land surface temperature
(<1 K) is required for an ET accuracy <10% (Cawse-Nicholson et al.,
2020; Fisher et al., 2020).

2.2.4.6. Photo- and non-photosynthetic vegetation characterization (frac-
tional cover). Photosynthetic (green) vegetation can be discriminated
from non-photosynthetic vegetation (i.e., senesced foliage as well as
wood) primarily through detection of pronounced ligno-cellulose ab-
sorption features in the SWIR that are absent from soils (Roberts et al.,
1998; Nagler et al., 2000; Daughtry et al., 2006; Guerschman et al.,
2009; Dennison et al., 2019). Spectral fitting, mixture models, and
spectral vegetation indices (for a review see Dennison et al., 2019) have
been developed that facilitate accurate discrimination between crop
residues and bare soil surfaces, better capturing differing agricultural
practices, and carbon balance in agricultural landscapes (Daughtry
et al., 2006). The ratio of non-photosynthetic vegetation to soil is also an
important indicator of pasture quality in grazed landscapes in the tropics
(Numata et al., 2008).

2.2.4.7. Temporal unmixing. Different vegetation types display distinct
temporal patterns as a function of photoperiod, season length, land-
scape, and spatiotemporal characterization (Sousa and Davis, 2020).
The dense time series of multispectral instruments such as MODIS,
Landsat, and Sentinel have enabled the characterization and subpixel
unmixing of vegetation types using temporal signatures (Lobell and
Asner, 2004; Ozdogan, 2010; Sousa and Davis, 2020; Garonna et al.,
2016). With the advances of SBG, a regular time series of spectroscopic
information will enable similar analysis in both the spectral and tem-
poral domain, as well as combining simultaneous effects of the Earth
system (e.g., snow and vegetation; Xie et al., 2018), previously treated
separately. Chlus et al. (2019) have demonstrated relationships between
environmental variables and spatiotemporal patterns in foliar traits
derived from airborne spectroscopic data.

3. Caveats and considerations

A global suite of imaging spectroscopy and thermal imagery is
needed to fully understand the composition, functioning, and health of
ecosystems, including snow, volcanoes, aquatic environments, and
terrestrial vegetation. In combination with active instruments, such as
lidar and synthetic aperture radar, as well as passive radar and a range of
multispectral data with high temporal or spatial resolution and long
measurement legacies, the SBG mission will be an essential component
of a multi-sensor system to fully characterize composition and structure
of the Earth’s surface as well as the processes driving changes at the
Earth’s surface. Future work is needed to optimally combine structural
data from anticipated concurrent active sensors—such as NISAR, ROSE-
L, BIOMASS, and the Surface Deformation and Change (SDC) Designated
Observable—with SBG products such as vegetation chemistry, compo-
sition, and functional traits. The combination of products capturing
coincident structure, function, and composition will enable an improved
understanding of global ecosystems but will require algorithms that use
both active and passive observations.

In addition, other spectrometers and thermal radiometers may
overlap with the SBG mission lifetime, including the European Space
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Agency’s (ESA) Copernicus Hyperspectral Imaging Mission (CHIME;
Nieke and Rast, 2019) and Land Surface Temperature Monitoring
(LSTM; Koetz et al., 2019), and the joint French and Indian Space
Agencies’ Thermal InfraRed Imaging Satellite for High-resolution Nat-
ural resource Assessment (TRISHNA; Lagouarde et al., 2019), as well as
multispectral instruments such as Landsat and Sentinel-2. The global
Harmonized Landsat Sentinel-2 (HLS) dataset (Claverie et al., 2018)
provides a significant improvement in revisit time—2-3 days for HLS
compared to 16 days for Landsat—which will be significant for hazard
monitoring and agricultural applications, and illustrates the benefit of
harmonized datasets. Similarly, harmonization of CHIME and SBG-
VSWIR could reduce the revisit period from 16 to 21 days to ~8 days
while harmonization of LSTM, TRISHNA, and SBG-TIR could result in
daily or sub-daily global revisits. The HLS workflow has to account for
differences in solar and view geometry, as well as small differences in
spectral bands, and the harmonization has to be done at radiance level.
Coordination between missions during development will enable the
implementation of complementary atmospheric, BRDF, solar zenith
angle, and other corrections, and thus rapid harmonization of higher-
level products such as a subset of products drawn from Tables 1-12. A
proposed 16-day revisit for the SBG VSWIR could realistically return
only one cloud-free observation per month, or significantly fewer in
cloudy regions (Schimel et al., 2020), and harmonization with other
instruments will enable increased revisit and improved science return.

Scientists requiring hyperspectral spectroscopic data have typically
relied on airborne data, and as a result we have large gaps in spatial
coverage and limited capability to monitor changes over time (Schimel
et al., 2020). A global mission such as SBG will produce large data
volumes, and higher-level products encompassed by some of the algo-
rithms presented here will be needed to disseminate relevant informa-
tion to users. To that end, existing research code will need to be
transferred to a robust processing workflow that will require algorithms
that are many orders of magnitude faster than the current state of the
art. This will likely require emulators or other forms of machine
learning, and the accuracy and uncertainty of these compared to the
physical or other foundational models need to be well quantified. While
the community requires low-latency data processing, the data process-
ing pipelines will also need to plan for simultaneous reprocessing to
account for algorithm improvements and updates.

Despite the large overall data volumes, a 30 m pixel in the VSWIR
and 60 m pixel in the TIR is several times larger than some of the features
of importance to this mission. For example, individual tree crowns are
generally much smaller than 30 m in breadth, and, as such, algorithms
designed for high-resolution airborne data may no longer be applicable
(Schimel et al., 2020). The algorithms that are to be developed and
applied to SBG data will certainly start from the legacies of existing al-
gorithms but will likely need to be adapted to accommodate differences
that arise from spaceborne acquisitions that are global in scope. A
globally applicable algorithm must be free from geographic or lat-
itudinal bias and provide rigorous uncertainty quantification. This will
require global calibration and validation. Certain region-specific algo-
rithms may be more accurate than a globally optimized product, but a
global product will enable information to be transferred to community
members without the technical ability to implement specialized algo-
rithms. SBG should provide a flexible processing system that (1) allows
users to interact with the workflow at any stage, (2) allows researchers
to test alternative approaches, and (3) accommodates users from all
levels of technical expertise.

Users in various communities need to become accustomed to SBG-
scale data products and develop the tools to manipulate and analyze
them efficiently. Early distribution of SBG-like products will accelerate
community readiness to enable early exploitation of SBG data for science
and applications as well as to provide critical feedback to the Algorithms
Working Group on limitations of the products. Existing instruments such
as DESIS, HISUI, EnMAP, EMIT, PACE, GLIMMR, and ECOSTRESS
should be used as pathfinders and to establish the time series that will
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Table 11

Categories of algorithms for SBG measurements of vegetation.

Remote Sensing of Environment 257 (2021) 112349

Products Dependencies External Data Max Max VSWIR MWIR TIR  Mission/ Spatial Areas
SZA VZA Instrument
Heritage
Vegetation Albedo BRDF-corrected reflectance X AVIRIS/NEON/ Global
EO-1 Hyperion
Evapotranspiration LST, emissivity, NDVI, LAI, Meteorological X X ECOSTRESS Global
Landcover, Albedo
Plant functional traits BRDF-corrected reflectance, PLSR coefficients, spectral X AVIRIS/NEON/ Temperate US,
topographic correction libraries for RTMs, GAO, Europe, Arctic,
vegetation indices EO-1 Hyperion Tropics
Vegetation species and BRDF-corrected reflectance, Biome stratification, X EO-1 Hyperion, Globally
communities, fractional topographic correction, spectral libraries AVIRIS/GAO distributed
cover plant functional traits PRISMA localized studies
Diversity [as above] X AVIRIS/GAO/ [as above]
Apex
fAPAR Terrestrial Spectral RTM, spectral libraries X AVIRIS Global
Reflectance [HyspIRI]
Table 12 HRDF or BRDF corrections) that have implicit assumptions and involve
able

Categories of plant functional traits potentially detectable from imaging spec-
troscopy (see text for references and methods).

Category Example Traits

Photosynthetic processes and
carbon uptake

Pigments (chlorophyll a and b, carotenoids,
anthocyanins), nitrogen, phosphorus, leaf mass per
area (LMA), water (equivalent water thickness and
concentration), carbon, nonstructural
carbohydrates (sugars, starches), fAPAR

Cellulose, fiber, lignin, hemicellulose

Phenols, condensed tannins

Ca, B, Fe, K, Mg, S

Leaf structural compounds
Defensive compounds
Macronutrients (multiple

functions)
Metabolic traits (typically 513C, 815N (isotopic ratios, measures of water (13C)
inferred) and nitrogen (*°N) availability, Vemax, Ev, Jmax
(measures of photosynthetic capacity), light use
efficiency
Productivity Gross primary and/or ecosystem production (GPP)

allow SBG to address issues of decadal scale change.
Despite these constraints, SBG will offer an unprecedented dataset
for the understanding of the Earth’s surface, biology, and geology.

4. Discussion

We have compiled a list of algorithms developed by researchers
specializing in VSWIR hyperspectral and multispectral thermal IR im-
agery that address the SBG core product needs. These algorithms vary in
their maturity, including the geographic scope, the range of viewing
conditions and sensor characteristics under which they work well.
Following a survey of the maturity of the algorithms and their respon-
siveness to science questions listed as “most” and “very” important in the
Decadal Survey, the SBG Algorithm team will recommend a subset of
algorithms to operationalize. This will be subject to technical review and
done in consultation with the community experts as the SBG mission
develops. Given the number of potential algorithms for SBG—including
the Level 1B (orthorectified radiance), Level 2 (reflectance, emissivity,
and surface temperature), Level 2+ (L2 products corrected for view and
solar geometry and other effects), Levels 3 and 4 (many of which are
discussed in this manuscript), applications-specific products, and the
range of potential higher-level algorithms identified by the communi-
ty—SBG will likely have to consider on-demand processing in order to
generate products of interest to the user community. This will be
necessitated by the large data volume of SBG, and additional consider-
ations, such as the availability of multiple plausible algorithms for many
of the desired specific products.

In addition, almost all of the proposed algorithms depend on atmo-
spheric corrections, and many require additional processing (such as

15

model fitting. SBG will require an adequate characterization of correc-
tion uncertainties to characterize derived and higher-level product un-
certainties (via error propagation), a practice that is currently not
common, but which will be vital for downstream users of the data.

Prior to the anticipated launch of SBG, there will be an intensive
effort by the SBG Algorithm Team to further mature and operationalize
several of the algorithms outlined in this review and their supporting
workflows. A full description of the operational concept for SBG prod-
ucts is premature and beyond the scope of this paper, but a full end-to-
end data system is envisioned, with accompanying calibration and
validation in addition to the proposed product generation and uncer-
tainty quantification.

5. Conclusions

We have summarized the state-of-the-practice algorithms for a range
of products that will answer the very important and most important
science questions assigned to SBG in the Decadal Survey (NASEM,
2018):

— “How is the water cycle changing? Are changes in evapotranspira-
tion and precipitation accelerating, with greater rates of evapo-
transpiration and thereby precipitation, and how are these changes
expressed in the space-time distribution of rainfall, snowfall,
evapotranspiration, and the frequency and magnitude of extremes
such as droughts and floods?”;

— “How do anthropogenic changes in climate, land use, water use, and
water storage, interact and modify the water and energy cycles
locally, regionally and globally and what are the short- and long-
term consequences?”;

— “How does the water cycle interact with other Earth system processes
to change the predictability and impacts of hazardous events and
hazard chains (e.g., floods, wildfires, landslides, coastal loss, subsi-
dence, droughts, human health, and ecosystem health), and how do
we improve preparedness and mitigation of water-related extreme
events?”;

— “How do spatial variations in surface characteristics (influencing
ocean and atmospheric dynamics, thermal inertia, and water) modify
transfer between domains (air, ocean, land, cryosphere) and thereby
influence weather and air quality?”;

— “What are the structure, function, and biodiversity of Earth’s eco-
systems, and how and why are they changing in time and space?”;

— “What are the fluxes (of carbon, water, nutrients, and energy) be-
tween ecosystems and the atmosphere, the ocean, and the solid
Earth, and how and why are they changing?”;
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— “What are the fluxes (of carbon, water, nutrients, and energy) within
ecosystems, and how and why are they changing?”;

— “How large are the variations in the global carbon cycle and what are
the associated climate and ecosystem impacts in the context of past
and projected anthropogenic carbon emissions?”;

— “How can large-scale geological hazards be accurately forecast in a
socially relevant time frame?”; and

— “How do geological disasters directly impact the earth system and
society following an event?”.

This effort has involved the synthesis of the findings of more than
130 scientists. While the list is comprehensive, it is not complete.
However, it provides a framework for additional algorithm development
and maturation activities in the lead up to the SBG and other planned
global missions such as ESA’s CHIME and LSTM and the French-Indian
multispectral and multi-band thermal mission, TRISHNA.
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