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Abstract

The idea of materials discovery has excited and perplexed research sci-
entists for centuries. Several different methods have been employed to
find new types of materials, ranging from the arbitrary replacement
of atoms in a crystal structure to advanced machine learning methods
for predicting entirely new crystal structures. In this work, we pursue
three primary objectives. I) Introduce CrysTens, a crystal encoding that
can be used in a wide variety of deep learning generative models. II)
Investigate and analyze the relative performance of Generative Adver-
sarial Networks (GANs) and Diffusion Models to find an innovative and
effective way of generating theoretical crystal structures that are syn-
thesizable and stable. III) Show that the models that have a better
“understanding” of the structure of CrysTens produce more symmetrical
and realistic crystals and exhibit a better apprehension of the dataset as
a whole. We accomplish these objectives using over fifty thousand Crys-
tallographic Information Files (CIFs) from Pearson’s Crystal Database.
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1 Introduction

Materials discovery is an enormous open
problem in the field of materials infor-
matics and a wide variety of techniques
have been used to address it. Some
methods include large-scale combinato-
rial synthesis simulations [1, 2] to create
crystals that are synthesizable and sta-
ble. However, in order for combinatorial
synthesis methods to be successful, thou-
sands or millions of compounds must be
generated in order to identify useful can-
didates. Furthermore, known materials
may only account for a minuscule frac-
tion of the possible number of synthesiz-
able and stable crystals [3]. Discovering
new structures in an efficient and effec-
tive way requires a method of processing
enormous amounts of data, quickly iden-
tifying patterns that are present within
the dataset, and extrapolating those pat-
terns outside of the dataset so that new
materials can be discovered. Generative
models have been implemented for a
variety of topics, including composition
[4, 5, 6, 7, 8, 9], molecules [10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],
and crystal structures [24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41]. In this work, we focus on crystal
structure generative models.

Crystal generative models typically
use variational auto-encoders (VAEs)
[27, 31, 36, 42, 38|, generative adver-
sarial networks (GANs) [30, 32, 38, 43,
41], genetic algorithms [28], or substi-
tution [29]. One example of a crystal
generative model based on VAE is the
Fourier-Transformed Crystal Properties
(FTCP) representation [42]. The FTCP
representation is a crystal representation
that not only incorporated both chemi-
cal and structural crystal properties but
was invertible as well (property — chem-
istry + structure). When combined with
a jointly trained VAE model, a proba-
bilistic property-structured latent space
was obtained that allowed for the gener-
ation of novel crystals with user-defined

properties. Another important work in
this area of study is the Crystal Diffu-
sion Variational Autoencoder (CDVAE)
[40]. By leveraging a diffusion process
that pushes atomic coordinates to lower
energy states and iterates atom types
to satisfy bonding preferences, CDVAE
significantly outperforms past attempts
to perform material generation. Fur-
thermore, CDVAE was capable of opti-
mizing crystals for a given property
and reconstructing a material from its
latent space representation. Many exam-
ples exist for GANs as well. Constrained
crystals deep convolutional generative
adversarial network (CCDCGAN) [32]
uses a post-processing filtering criteria
to remove compounds with large forma-
tion energies based on a cutoff threshold.
In another example, crystal structure
is represented in a lean fashion by a
set of atomic coordinates and unit cell
parameters, with significantly reduced
memory requirements compared to a
voxel-based generative model, iMatGen
[36]. Physics Guided Crystal Genera-
tive Model (PGCGM) [41] expands on
CubicGAN [43] while using base site
atoms with physics-guided loss func-
tions. For example, structures with
atoms that are too crowded or too far
apart are penalized via two terms in the
loss function. We also note that normal-
izing flows, another promising direction,
have been used in some crystal structure
contexts [39, 44] including an application
to molecular crystals [44].

In this work, we compare the use
of Generative Adversarial Networks and
Diffusion Models in unstructured crystal
generation. We illustrate the shortcom-
ings of GANs in this space and show
that Diffusion Models may offer a very
promising alternative to previous meth-
ods. Furthermore, we introduce a stan-
dardized crystal embedding representa-
tion (CrysTens) that can be used in a
wide array of different models.
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2 Background

Creating an effective method of materi-
als discovery is an extraordinarily impor-
tant issue to address in the realm of
materials science. Efficient materials dis-
covery could revolutionize material sci-
ence by not only yielding new materials,
but also by providing new insights into
the different ways that crystal structures
can form. Perhaps the most impact-
ful outcome would be in the area of
inverse design wherein materials are tai-
lor designed to meet specific property
criteria. Generating new stable crystal
structures has proven a stubbornly dif-
ficult task, let alone to do so with tar-
geted properties. An outstanding chal-
lenge in this area has been the peri-
odic nature of crystal structures. Only
recently were representation approaches
developed that encode both the sym-
metry and composition information con-
tained within the Crystallographic Infor-
mation File (CIF) [45, 46, 47, 48].

New representations that capture
chemistry (composition) and structure
(periodicity) are important because they
then allow us to utilize machine learn-
ing algorithms to identify and exploit
patterns in data. Even the most experi-
enced materials scientist domain expert
would be unable to fully comprehend
and leverage all the patterns in high-
dimensional materials data for hundreds
of thousands of crystal structures, and
then use the discovered patterns to gen-
erate novel materials. Instead, scientists
have relied on very low-order approxima-
tions and simplifications for generating
new materials. Or, alternatively, they
have relied on screening down lists of
already discovered materials to identify
those candidates that most closely match
the desired properties using empirical
relationships or computational materi-
als science techniques such as molecu-
lar dynamics, Density Functional Theory
(DFT), etc. However, given the immense
size of the chemical space that is believed

to exist (10%° materials) and our current
microscopic subset of known materials
(105 - 105 materials) [3], it is unlikely
that screening efforts alone are suffi-
cient to find the new materials neces-
sary to answer society’s most pressing
technological needs. Therefore it is abun-
dantly clear that an intuitive and effi-
cient method is needed to scan over the
vast regions of untapped chemical space
and select the groupings of materials it
deems as stable and synthesizable.
Fortunately, machine learning (ML)
and more specifically deep learning (DL)
methods, have emerged as powerful com-
plements to the human capacity for
materials design [49, 50]. Within the
field of material discovery, generative
ML models are currently being inves-
tigated by a wide variety of research
teams [51, 52, 45, 53]. Previously, the
two most common types of generative
ML models were the VAE and GANs.
VAEs attempt to encode a sample of
data into a lower dimensional latent
space. The encoded samples are then
decoded from latent space into poten-
tial new samples. However, VAEs differ
from traditional auto-encoders because
they are simultaneously attempting to
structure the latent space according to a
predefined probability distribution. This
makes VAEs an exciting candidate for
efficient inverse design because materi-
als that exhibit ideal properties may
be located at the intersection of each
property within latent space [54, 55].
The other common generative ML
model for material discovery is GANs.
GANs differ from VAEs in several key
ways. First, GANs are composed of two
separate neural network architectures:
the generator and the discriminator. The
generator’s task is to create realistic
samples of whatever data distribution
it is trying to model. In the case of
this work, the generator is attempt-
ing to create realistic crystal structures.
The discriminator’s job is to differenti-
ate between samples that are real (taken
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from the original dataset) or fake (cre-
ated by the generator). The discrimi-
nator and generator train against each
other, continually improving until train-
ing is finished and the generator can
be separated and used to create real-
istic samples. By using an adversarial
approach, the generator can construct
its own probability distribution of the
data instead of requiring a pre-defined
probability distribution like those used
within VAEs. Although the training of
GANSs is game-theoretic in nature, they
are not guaranteed to converge to a Nash
Equilibrium [56] which can lead to per-
formance issues. A more advanced vari-
ation of the traditional GAN is included
in this work known as the Wasser-
stein GAN or WGAN. The differences
between WGANs and GANs are dis-
cussed later [57, 58].

Recently, however, with the suc-
cess of OpenAl's DallE-2 [59] and
Google’s Imagen [60], Diffusion Models
have quickly risen to achieve state-of-
the-art performance for many types of
generative modeling. Diffusion Models
are inspired by non-equilibrium ther-
modynamics and operate by gradually
destroying input training data by adding
Gaussian noise (forward process) only
to learn the transformations necessary
to reconstruct each sample (backward
process). By continually repeating this
process, and incrementally adding more
noise in each iteration, fully trained Dif-
fusion Models are able to completely
reconstruct a data sample from nothing
more than noise. Diffusion Models take
longer to train than GANs but do not
suffer from many of the same deficiencies
that GANs do such as mode collapse and
extreme instability.

3 Methods

3.1 CrysTens
Representation

We chose to use Pearson’s Crystal Data
(PCD) as the primary dataset of CIFs
for this work. PCD contains over 140,000
unique CIFs, however with the con-
straints of CrysTens, the crystal embed-
ding representation explained below (See
Fig. 3 and Fig. 4), we were left with
53,856 CIFs. Each CIF is used to create
a CrysTens and these tensors are con-
catenated together to form our training
set.

CIFs contain a simple body of text
that entirely capture the fundamental
chemistry and structure of a crystal
structure. Software such as VESTA takes
CIFs as input and outputs useful and
aesthetically pleasing crystal visualiza-
tions that can aid in crystal chem-
istry research and education. In order
for VESTA to create such visualizations,
there are several key attributes that are
needed within CIFs [61]. First, the lat-
tice parameters and their angles with
respect to one another are needed to
establish the periodicity inherent in crys-
talline lattices. These lattice parame-
ters also create the three-dimensional
“bounding box” for the repeating unit
cell and are generally represented with
the variables a, b, and ¢ with lattice
angles «a, (3, and . Following the lattice
information, the space group number is
used to indicate which space group a
particular crystal structure belongs to.
The space group essentially encapsulates
the symmetry properties of a given crys-
tal structure or put more formally the
space groups summarize the total num-
ber of three-dimensional patterns that
are found in crystal structures [62]. The
final information is the basis describ-
ing the arrangement of atoms associ-
ated with each lattice point. The basis
allows us to distinguish different crystal
structures having unique chemistries and
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atomic positions while retaining identi-
cal symmetry. The basis and the symme-
try operations are combined to generate
the exact atomic positions for all atoms
within the unit cell.

With all of the crystal information
organized within a CIF text file, VESTA
is able to create visualizations as seen in
Fig. 1 that assist materials scientists in
determining the structural components
of a given crystal. Since the process of
experimentally solving atomic positions
is more challenging than solving the lat-
tice parameters and space group, not
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all CIF entries include the basis. As a
result, from the 140,000 CIF entries, only
approximately 50,000 CIFs contain all
the required information needed for our
CrysTens representation and satisfy the
representations’ constraints. Pymatgen,
a materials informatics Python library,
was used to extract relevant information
from each CIF during CrysTens con-
struction using a Python programming
interface and the Pymatgen Structure
object (See Fig. 2) [63].

Fig. 1: (left) A VESTA visualization of NaCl
(right) A VESTA visualization of WsSs(PC1sH15)6(CsHe) [61].
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Fig. 2: A CIF represented as a Pymatgen Structure object.
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Finding a concise, efficient, and
structurally informative representation
for each CIF was an important step in
the process of crystal structure gener-
ative modeling. After many iterations,
including just simply listing the crys-
tal structure parameters in a list, we
eventually decided upon a representation
that captured both the intricate param-
eters of each crystal as well as their
interatomic components. The represen-
tation is a tensor of shape 64x64x4 and
can be visualized in Fig. 3 and Fig. 4.
The top twelve rows and leftmost twelve
columns are symmetrical and list out
all of the CIF-extracted information of
a given crystal. The top (or leftmost)
list is the atomic number of each of the
atoms present in the crystal. They are
listed from left to right (or top to bot-
tom) until either fifty-two spots have
been filled or the crystal has run out
of atoms to place. If there is leftover
space in the representation, zeros will
be filled in for the remainder. Structures
with more than 52 atoms in the basis are
excluded. The same process is repeated
for the three fractional coordinates (x,
y, and z), the three lattice parameters
(a, b, and c), the three lattice angles (a,
B, and «v), and the space group num-
ber. Finally, a padding layer is inserted
to separate the CIF-extracted informa-
tion from the interatomic portion of the
representation. For the first layer of the
representation, the bottom-right 52x52
matrix is used to encode a pairwise dis-
tance matrix that relates each of the
atoms together by their Euclidean dis-
tance. Within the latter three layers of
the representation, a distance graph for
each of the dimensions is represented to
show the uni-dimensional relative dis-
tance between each atom.

The motivation behind the struc-
ture of this representation is to high-
light the major components of crystal
structures. There is a structural compo-
nent that encodes symmetry, basis, and
lattice information and an interatomic

component that encodes the relative dis-
tances between atoms into the represen-
tation itself. With only the interatomic
distances of a given crystal, it would
be impossible to reconstruct the atomic
numbers, space group, and various lat-
tice parameters. Likewise, with only the
structural components, it may be chal-
lenging for a convolution-based genera-
tive modeling algorithm to encode the
relationships between various compo-
nents which may lead to generated struc-
tures with unreasonable interatomic dis-
tances.

There are questions that naturally
arise when one is first introduced to
this representation. One of which is,
“Why is each layer 64x647” The reason
that we selected 64 as the length and
width of each of our layers is because
of the commonly used deep learning
heuristic of selecting powers of two. It
could easily have been another value,
however, the focus of this work is to
show the structure of the CrysTens rep-
resentation rather than the numerical
intricacies or optimization of the rep-
resentation. Furthermore, since 64 was
selected and there are eleven different
parameters plus a padding layer, only
crystal structures with 52 atoms or less
were selected for training and analysis.
Another question that may arise is “Why
use four layers?” In this work, our goal
was to fully capture all of the differ-
ent structural aspects of a given crystal
which is why we redundantly included
both the pairwise distance matrix and
the three-dimensional graphs, however,
the representation can be changed to
fit given constraints. We anticipate that
future work could add layers to encode
aspects related to chemistry such as the
Oliynyk, magpie, mat2vec vector con-
stituents in order to ensure realistic atom
assignment.
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3.2 Crystal Reconstruction

Once we have trained a model with
the CrysTens representation, it would be
desirable to transform the output of each
model at inference time back into a CIF
for visualization and analysis purposes.
The process of transforming back from
the CrysTens representation can also
provide insights into the level of “under-
standing” of the representation itself
that each model displays. CrysTens rep-
resentations generated from CIF files are
by definition symmetric, but CrysTens’
that are output from generative mod-
els are not necessarily symmetric due
to the stochastic nature of deep learn-
ing algorithms. Instead, we found that
even our most symmetrical generated
CrysTens’ had a small amount of noise
that was mitigated by the redundancy of
our representation.

Given a generated CrysTens, there
will be a number of atoms that it will
have predicted to be present in a crys-
tal. We will refer to this value as A, and
0 < A < 52 due to the nature of the
current CrysTens representation. If the
generative model was able to understand
the symmetrical relationship within the
CrysTens representation, then it will
have A non-empty columns from left to
right, and A non-empty rows from top to
bottom for each of the four layers. Simi-
larly, the single-valued structure param-
eters such as the lattice parameters (a,
b, ¢), the lattice angles (o, 3, 7), and the
space group number will be repeated 2A
times for each layer, a total of 8 A occur-
rences. These values can be averaged to
find the value that will ultimately be
used when generating the output CIF.
The variance among these repeated val-
ues is a good indicator of whether a
given model “understands” the structure
of the representation. If almost all 84
space group numbers are between 219
and 221, then there is a good chance that
the model intended on a space group
number of 220 and knew where to place

these values. Generated CrysTens repre-
sentations with small variances between
values that are meant to be the same
tended to produce more symmetrical
and better-looking crystals, shown in
Results. However, if there is a space
group number spread between 110 and
220 there is a very good chance that
the model is not able to pick up on the
relationship between the different space
group rows and columns, and the quality
of the finalized crystal is likely to reflect
that. Values that do not represent a sin-
gle value throughout the entire CrysTens
such as atomic number or fractional
coordinates are instead only repeated a
total of 8 times (two times for each layer)
because each one corresponds to a sin-
gle atom. The same variance check can
be performed on each of these values as
well.

However, the single best indicator
of model performance comes from the
use of the directional graphs (Layers
2 - 4). Each spot in the directional
graphs represents the relative difference
between two atoms in all three dimen-
sions. Therefore, with the knowledge of
one atom and its relationship to another
atom with the direction graph, the sec-
ond atom’s location can be deduced.
Therefore, if we have 10 atoms predicted
in a CrysTens representation, each with
their respective fractional coordinates
and a directional graph relating each of
them, we can have 10 “guesses” as to
where a given atom is supposed to be in
the crystal (one guess from its own x,
y, z coordinates and nine guesses from
the relative distances of other atoms).
This process is highlighted in two dimen-
sions in Fig. 5. If there is a high degree
of consistency between all of the coordi-
nate predictions, the crystal that is pro-
duced tends to be more symmetrical and
realistic. The average of the coordinate
predictions for each atom is ultimately
chosen as the point where a given atom
is placed during the CIF reconstruction.
Furthermore, with these reconstructed
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coordinates, a pairwise distance matrix
can be created and compared to the
generated pairwise distance matrix in
Layer 1 as an additional metric for model
performance.

We are now left with an averaged
value for the lattice parameters, lattice
angles, and the space group number. We
also have an average value for each of the
coordinates of a given atom. In order to
produce clean crystals that do not reflect
the noise of the generative model, we
added a few more post-processing steps.

As far as the atomic numbers are
concerned, we found that even when
there was low variance within the pre-
dicted atomic numbers we could still
observe lists of atomic numbers such
as (12.2,12.6,12.4,12.5,7.7,7.4,8.4,8.5).
When rounded to the nearest atomic
number, this list would reflect
(12,13,12,13,8,7,8,9) — (Mg, Al, Mg,
Al, O, N, O, F) instead of the list
that would correspond to rule of par-
simony: (12,12,12,12,8,8,8,8) — (Mg,
Mg, Mg, Mg, O, O, O, O). In order to
rectify this inconsistency, we elected to
use K-Means Clustering with K = 3.
For similar reasons, we chose to use K-
Means Clustering with K = 6 - 12 for the
coordinate values of x, y, and z across
the different atoms. Now we could cre-
ate a list of elements in the CIF as well
as another list corresponding to their
atomic positions. Using the averaged
values from above, a Pymatgen Lattice
object can be constructed which is then
used in conjunction with the element
and coordinate lists to create a Pymatgen
Structure object. The Structure object
can be used to create a CIF.

Lattice Parameters (a, b, c) (3 x 52
Space Group Number (1 x 52

Pairwise Distance Matrix (52 x 52)

Fig. 3: Layer 1 of the crystal repre-
sentation containing symmetrical rows
and columns for structural information
and a pairwise distance matrix with rel-
ative distances between all atoms in the
basis.

Lattice Parameters (a, b, c) (3 x 52
Space Group Number (1 x 52

Unidimensional Distance Matrix (52 x 52)

Fig. 4: Layers 2 - 4 of the crystal repre-
sentation containing the same symmet-
rical rows and columns for structural
information, but also having a direc-
tional graph for each dimension: x, y,
and z.
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Fig. 5: (a) The location of Atom 1 is chosen based on its predicted fractional
coordinates (z1, y1, and z1). The location of Atom 2 is chosen by taking Atom
1’s location and adding the relative distance between Atom 1 and Atom 2,
found in Layers 2 - 4 of the CrysTens representation (z1 + Az 4, y1 + Agy and
z1 + Az ;) The locations of Atoms 3 and 4 are found the same way. (b) The
location of Atom 2 is chosen based on its predicted fractional coordinates (x2,
y2, and z3) and predictions for Atoms 1, 3, and 4 are found using Layers 2 -
4 of the CrysTens representation. (¢) The same method is applied. (d) The
same method is applied. (e) Finally, each of the positions are averaged and the
final fractional coordinates are used in the construction of each CIF.
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3.3 Model Overviews

3.3.1 Vanilla Generative
Adversarial Networks

Generative Adversarial Networks
depend on an adversarial approach to
generate new data. The two neural net-
works that GANs are composed of],
the generator and the discriminator,
work against each other. The generator
attempts to generate realistic data and
the discriminator attempts to differen-
tiate between generated and real data.
In order for the discriminator to predict
whether a given sample is real or fake,
a sigmoid activation function is used.
When a prediction is above or equal to
0.5 on the sigmoid function, the sample
is labeled as real, and if the prediction is
below 0.5, the sample is labeled as fake
or generated. The more sure the discrim-
inator is of its prediction, the more it
will tend to predict closer to 1 or O as
opposed to around 0.5.

The major shortcoming associated
with the sigmoid activation function
directly corresponds to the difficulty of
the tasks assigned to the two neural net-
works. It is far easier to classify if a
given sample is real or fake than it is to
generate an entirely new sample. Dur-
ing the initial training epochs, before the
generator has had any time to calcu-
late the weights necessary for accurate
sample generation, it will produce sam-
ples that are very obviously fake. When
the discriminator has to decide between
something that is clearly real and some-
thing that is obviously fake, it will start
performing very well and will begin pre-
dicting with higher confidence (a value
closer to either 1 or 0).

When plotted on a sigmoid activa-
tion function, low confidence predictions
correspond to a large gradient (closer
to 0.5) while high confidence predictions
correspond to a progressively diminish-
ing gradient (closer to 1 or 0). A pre-
diction plotted within the large gradient

zone of a sigmoid activation function cor-
responds with more-useful information
being given back to the generator about
how to improve its weights. Inversely,
a prediction plotted within the dimin-
ishing gradient zone will provide the
generator with less-useful information.
The more confident the discriminator
becomes with its predictions, the more
the gradient and the usability of the
information coming from the discrimina-
tor will be decreased (vanishing gradi-
ent problem). This leads to a repeating
cycle where the discriminator continu-
ally improves and the performance of the
generator ultimately stagnates.

3.3.2 Wasserstein Generative
Adversarial Networks

To rectify the issue mentioned in the
previous section, researchers have imple-
mented a technique that takes advantage
of the Earth Mover’s Distance (EMD).
EMD is a method of understanding
the dissimilarity between two multidi-
mensional sets of data samples. In our
case, the two data sets are the real
CrysTens’ constructed from PCD and
the samples produced by the genera-
tor. The theoretical “distance” between
the two sets of data samples can be
used to construct a loss function called
the Wasserstein Loss, and the GANs
that take advantage of this are known
as Wasserstein GANs (WGANS). Using
Wasserstein Loss, WGANs no longer
need to predict if a sample is real or fake
based on a probability between 0 and
1. Rather, the mathematics of the EMD
equation allows WGANS to instead pre-
dict the “realness” of a sample. The
discriminator is replaced with a critic
function by changing the last layer from
a sigmoid activation function to a linear
activation function. This adjustment to
the training scheme of the GAN rectifies
the problem discussed earlier because
the linear activation function has the

10
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same slope no matter what x-value is
used.

Since the slope of the line is constant
with respect to the relative performance
between the critic and the generator
(there is no low-gradient zone), the critic
will never cease to grant the genera-
tor with useful data in terms of how to
adjust its weights in order to produce
more realistic samples.

3.3.3 Diffusion Models

Unlike GANs, Diffusion Models do not
depend on adversarial processes to gen-
erate outputs. Diffusion Models generate
data based on non-equilibrium thermo-
dynamics. Diffusion Models are com-
posed of two separate stages: the forward
and reverse diffusion processes. The for-
ward diffusion process is responsible for
the addition of Gaussian noise to a given
sample while the backward diffusion pro-
cess is the reconstruction of a sample
from a noisier sample. Diffusion Models
operate on a series of time steps, from 1
to t, where an increased time step indi-
cates another addition of Gaussian noise.
This process is treated as a Markov
Chain, where the sample at time step ¢
only depends on the sample from time
step t - 1. The forward process is fixed,
however, the model attempts to learn
the necessary operations to perform on
a given sample at time step ¢ to recon-
struct the sample at ¢ - 1. Once training
is complete, the model should be able to
generate a sample similar to those within
the original distribution from complete
Gaussian noise. While GANs may suf-
fer from mode collapse and instability
during training, Diffusion Models allow
for stable training of large models on
diverse data [64]. While sampling from
Diffusion Models requires many more
forward passes when compared to GANs
single-pass during inference, this allows
for refinement of outputs and is not a
major drawback for this particular use
[65, 66].

4 Results

Several models from each -category
(Vanilla GANs, WGANSs, and Diffusion
Models) were trained using the CrysTens
representations in an attempt to under-
stand which deep learning method
should be explored further for mate-
rial discovery. The models were eval-
uated on several different metrics and
we found a strong correlation between
a general “understanding” of our repre-
sentation and the output CIFs that were
received. The GAN and WGAN used
were custom convolution-based mod-
els. The Diffusion Model is the model
found at https://github.com/lucidrains/
imagen-pytorch. The details and hyper-
parameters of each model can be found
in Appendix A.

Table 1 is used to show the abil-
ity of each model to capture the sym-
metrical characteristics of the CrysTens’
structure. The average variance among
each repeated parameter, angle, space
group number, and fractional coordi-
nates in the CrysTens representation
for one thousand generated CIFs was
calculated. Table 2 shows the average
agreement between absolute and relative
coordinates in a given CrysTens as to
where to place each atom, as well as
the average difference between the recon-
structed pairwise distance matrix and
the generated pairwise distance matrix
for one thousand generated CIFs.

Furthermore, we wanted to inves-
tigate how well each model modeled
the PCD dataset as a whole. To do
this, the distribution proportions of the
parameters, angles, space group number,
and atomic numbers were found for the
53,856 CIFs in our dataset. The same
distribution proportions were calculated
for the set of one thousand generated
CIF's generated by each model and a sim-
ilarity score was calculated for each one
(Fig. 6, Fig. 7, and Fig. 8).

11
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Finally, to investigate whether the
correlation between CrysTens symme-
try and CIF quality was reflected on
an external metric, we used the Crystal
Graph Convolutional Neural Network
(CGCNN) to calculate the distribu-
tion of predicted formation energy,
final energy, band gap, bulk moduli,
shear moduli, Fermi Energy, and Pois-
son Ratio for the real CIFs as well
as the generated CIFs for each model
(Fig. 9) [67]. We also used CGCNN to
calculate decomposition energy using

the model found at https://github.
com/sparks-baird /mat_discover/tree/

cgenn-decomposition-energy /models/

CGCNN. Finally, several generated CIFs
from each model are shown to showcase
the visual differences in the generated
crystal quality (Fig. 10, Fig. 11, and
Fig. 12). The produced CrysTens rep-
resentations of the crystals shown, used
3-Means Clustering for the atomic num-
bers and 6-Means Clustering for the
potential distinct x, y, and z coordinates.

Table 1: Comparison between GANs, WGANs, and Diffusion Models on
CrysTens Lattice Parameters, Lattice Angles, Space Group, and Fractional
Coordinate Variance

2 2 2
Model 9Parameter UAngle USpaceGTOU.p 9 FractionalCoordinates
GAN 582.23 1338.11 6322.1 5.57e-2
WGAN 31.18 695.03 3024.27 5.9e-2
Diffusion 3.5e-1 8.46e-1 4.56 4.36e-4

Note: One-thousand CrysTens representations were generated and the variance was averaged
over all of them.

Table 2: Comparison between GANs, WGANs, and Diffusion Models on
CrysTens Coordinate Agreement and Pairwise Distance Matrix Difference

Model ACoordinate/Atoml E(Apairwise)/AtomQ
GAN 9.62e-2 3.84

WGAN 1.37e-2 2.49

Diffusion 5.51e-4 4.73e-1

1The difference between the “absolute” x, y, and z values predicted and the “relative” position
predicted by the direction graph.

2The sum of the difference between the reconstructed pairwise distance matrix (by the final
coordinates) and the generated pairwise distance matrix in Layer 1 of CrysTens.

Note: One-thousand CrysTens representations were generated and the values was averaged over
all of them.
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Fig. 10: CIFs generated from the Vanilla Generative Adversarial Network
Model. The CIFs had a predicted decomposition energy (in eV /atom) as
follows, from left to right then top to bottom: 1.03, 1.49, 1.35, 1.7, 2.43, 1.49
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Fig. 11: CIFs generated from the Wasserstein Generative Adversarial Net-
work Model. The CIFs had a predicted decomposition energy (in eV/atom) as
follows, from left to right then top to bottom: 1.7, 1.2, 1.26, 0.98, 0.28, 1.42
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Fig. 12: CIFs generated from the Diffusion Model. The CIFs had a predicted
decomposition energy (in eV /atom) as follows, from left to right then top to
bottom: 0.09, 0.03, 0.02, 0.42, 1.67, 0.59
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5 Discussion

The Diffusion Model outperformed
Vanilla. GAN and WGAN by several
orders of magnitude in minimizing vari-
ance across lattice parameters, lattice
angles, space group number, and frac-
tional coordinate variances as well as
the agreement between absolute and
relative fractional coordinates and pair-
wise distance matrix difference. The
Vanilla GAN was orders of magnitude
worse than both the WGAN and Dif-
fusion Models. We hypothesized that
low variances across parameters, angles,
space group number, and fractional
coordinates and low differences between
relative and absolute fractional coor-
dinates would correspond to better
performance in other metrics as well.
With this hypothesis, we were expecting
to see the Diffusion Models create CIFs
that shared a higher degree of similar-
ity with the real PCD distribution than
the WGAN and GAN as well as produce
higher quality CIFs.

When the distribution of lattice
parameters, lattice angles, space group
numbers, and atomic numbers of each
model was checked against the values in
the real distribution, we found that once
again, our Diffusion Model performed
best. In all areas, Diffusion Models per-
formed exceedingly well, even capturing
the peaks in the distribution of space
group and atomic numbers (See Fig 8),
WGANs were not able to do this and
Vanilla GAN distributions were even
worse with indications of severe mode
collapse.

Using pre-trained CGCNN models,
several material properties were pre-
dicted for each CIF. The distribution of
each predicted property for each model
was compared against the distribution of
that property across real CIFs. Both Dif-
fusion Models and WGANSs were capable
of approximating the real distribution
of each predicted property to an ade-
quate degree, while GANs struggled,

once again showing the mode collapse
that occurred.

Finally, a set of CIFs was shown
for each model. The CIFs generated by
the Vanilla GAN represented exactly
what was exhibited in the parameter
and CGCNN prediction distributions.
All of the CIFs found had very similar
parameters and space group numbers.
There was an extremely low degree of
symmetry and general realness. Further-
more, the bounding boxes outlined by
the lattice parameters were enormous in
every CIF that we observed. Each of
the CIF's had a predicted decomposition
energy (eV/atom) of above 1. The lack
of “understanding” of CrysTens that the
Vanilla GAN showed reflected in the
CIFs it was capable of producing.

The CIFs produced by our WGAN
were a positive shift in the correct direc-
tion. There was far more variability in
the lattice parameters, lattice angles,
space groups, and elements present when
CIF's were generated. There are echoes of
symmetrical components visible within
the CIF's, however, symmetry would not
be a word used to describe these CIF's.
Although four of the CIFs shown still
had decomposition energy (eV/atom)
above 1, two of them did not. There
is clearly room for improvement for the
CIFs generated from our WGAN.

The CIFs generated by our Diffusion
Models not only have a diverse set of
lattice parameters, lattice angles, space
group numbers, and elements present,
but they are symmetrical and realistic
looking. Although the CIF's produced are
not perfect, there is a clear distinction
between the CIFs produced by our Dif-
fusion Model and our WGAN. Of the
decomposition energies of the six CIFs
listed, five of them had decomposition
energies (eV/atom) below 1, and three
of them even had decomposition ener-
gies below 0.1, once again reinforcing
the realistic characteristics of the CIFs
produced by the Diffusion Models.
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6 Further Validation

Given the success of our Diffusion Model
on our metrics, we attempted to validate
some of the CIF's generated by our Diffu-
sion Model. M3GNet is a materials graph
neural network that incorporates three-
body interactions. M3GNet can be used
as an additional predictor of formation
energy for all of the CIFs generated by
the Diffusion Model [68].

Diffusion Model CIFs
M3GNet Predicted Formation Energy [eV/atom]

Fig. 13: The distribution of forma-
tion energy, as predicted by M3GNet
for the CIFs generated by the Diffu-
sion Model.

Among the top 35 CIFs with the low-
est M3GNet-predicted formation energy,
we selected 6 of them to be rigorously
analyzed using Vienna Ab Initio Sim-
ulation Package (VASP). To prepare
the 6 CIFs, slight manual tuning was
applied after post-processing to maxi-
mize the likelihood that the structure
would be realistic and stable. The man-
ual tuning consisted of rounding frac-
tional coordinates to more probable loca-
tions such as (0.011,0.502,0.009) —
(0.0,0.5,0.0), and correcting potentially
erroneous atomic number assignments as
a result of the post-processing (36:Kr —
37:Rb). We calculated the free energy of
the 6 selected CIF's, and then performed
4 consecutive structure relaxations to
allow the atomic positions to be slightly
adjusted each time. The resulting free

energy and external pressure values after
each relaxation are used to evaluate their
stability. The calculated free energy for
the pre-relaxed structures (Ep) , after
the 4th relaxation (E4) and the exter-
nal pressure on the unit cell in kb after
the 1st (P1) and 4th (Py) relaxation are
shown below:

A

(a) NaF
Eo = -16.6 eV, P; = 0 kb
Ey = -17.3 eV, Py = -0.51 kb

(b) CsSrF3
Eg =-59.9¢eV, P =185 kb
E4 =-1014 eV, Py =-4.95 kb

(c) TiRbF3
Eo = -162.0 eV, P, = 2.45 kb
By = -227.1 eV, Py = -0.04 kb
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(d) CaCoF3
Eo =-103.5 eV, P; =-9.66 kb
Ey = -108.2 ¢V, Py = -1.40 kb

;oo ¢

-
(e) SnYF3

Ep = -29.0 eV, P; = -0.30 kb
Ey =-29.9 eV Py = 0.30 kb

o—9

(f) SiF3
FEy =-124.6 eV, P; = -11 kb
FEy =-131.1eV, Py = -4.90 kb

Fig. 14: VASP calculated free energy
and external pressure for 6 CIF's pro-
duced by the Diffusion Model

As expected, all the free energy are
lower and the external pressure values
are closer to zero for the 4th relaxation,
which indicates the VASP optmized the
CIFs into even more stable structures.
However, it is observed that the 6 CIF's
exhibited low free energy and exter-
nal pressure on the unit cell even from
the pre-relaxation and 1st optimization.
This is especially apparent for the NaF
and SnYF3 structures, which Eg and Ey4
are very close and the external pressure

values after the 1st optimization are very
close to Okb. These are strong indications
of the stability of the produced CIF's.

7 Conclusion

In order to perform efficient material dis-
covery via deep learning, it is important
to find a representation that is capa-
ble of capturing all aspects of a given
crystal structure. CrysTens encodes all
of the pertinent values of a structure
such as lattice parameters, lattice angles,
and space group numbers as well as
an interatomic component that is com-
posed of a pairwise distance matrix as
well as a dimensional graph for each
dimension. The redundant aspects of
CrysTens not only allow generative mod-
els many opportunities to mitigate noise
when generating a crystal but it can also
provide a way for measuring the perfor-
mance of a given model. The variance
of generated lattice parameters, lattice
angles, space groups, and fractional coor-
dinates is correlated with a model’s abil-
ity to produce realistic and symmetrical
crystals that have parameters similar
to those found in the real distribution
and even match the real distribution of
CGCNN predicted values. We found that
Vanilla GANs struggled in this space,
often falling victim to training instability
and mode collapse that ultimately lead
to poor generated CIF quality. Many of
these problems were rectified with the
implementation of EMD and Wasser-
stein Loss, creating a WGAN. However,
although WGANSs did not struggle with
the same training instability and mode
collapse that Vanilla GANs did, they
failed to consistently produce symmet-
rical crystals. We found that Diffusion
Models performed the best in this space.
They performed the best in all of our
metrics and consistently produced the
most realistic-looking and symmetrical
CIFs. The enhanced performance of Dif-
fusion Models over GANs holds true
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in the image synthesis domain as well
[64]. The use of Diffusion Models is
extremely promising in the field of mate-
rials informatics and the improvement of
such models could not only provide an
efficient method of materials discovery
but could revolutionize inverse design as
well.

8 Future Works

The performance of Diffusion Models in
the materials discovery space creates a
lot of opportunity for future works. The
method of Diffusion Model generation
we used in our work is known as uncon-
ditional generation. Conditional genera-
tion is the method that was responsi-
ble for all of the text-to-image break-
throughs that underpin powerful tools
such as DallE-2 [59] and Imagen [60]. It
is possible to apply conditional genera-
tion to our work, as chemical formula-
to-crystal generation. This could work
by taking any chemical formula from
PCD such as CazAlB2[OH];5[H20]11
and transforming it into a natural lan-
guage analog such as “three calcium
atoms, one aluminum atom, two boron
atoms, fifteen hydroxide (one oxygen
atom, one hydrogen atom) molecules,
eleven water (one oxygen atom, two
hydrogen atoms) molecules.” This, along
with increasing the complexity of our
Diffusion Models and adding chemi-
cal descriptors as additional layers to

CrysTens will be our next step in this
space.
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Appendix A Model Details

All of the code used for training the models can be found at https://github.com/
michaeldalverson/CrysTens

A.1 Vanilla GAN

The Vanilla GAN was created using TensorFlow. It was trained for 100 epochs with
a learning rate of le — 5 for both the discriminator and the generator. The latent
dimension of the generator was 128. The loss function for the discriminator was
binary cross-entropy. Both the discriminator and the generator contained a mixture
of three-dimensional convolutional (transposed in the case of the generator) and
dense layers. ReLLU was used as the intermediate activation function in the generator
and Leaky ReLU was used in the discriminator. Both neural networks used batch
normalization.

A.2 Wasserstein GAN

The Wasserstein GAN was created using TensorFlow. It was trained for 100 epochs
with a learning rate of 1e —4 for both the critic and the generator. The loss function
used was the Wasserstein Loss. Gradient penalty was also used (to stabilize training)
with a coefficient of A = 10. Both the critic and the generator contained a mixture of
three-dimensional convolutional (transposed in the case of the generator) and dense
layers. The critic was trained 5 times as much as the generator. Leaky ReLU is used
for both the critic and the discriminator and a mixture of layer normalization and
batch normalization was used.

A.3 Diffusion Model

The Diffusion model was created using Imagen-Pytorch. The model was comprised
of two Unets, which form the basis for the denoising diffusion probabilistic models.
Each Unet has 256 base channels. The first Unet created a ”low-resolution” version
of the CrysTens that was size 32x32x4. The second Unet, took the output of the
first Unet and created the actual CrysTens of size 64x64x4. Each Unet was trained
separately for 250,000 optimization steps with batch size 4. The original code is found
at https://github.com/lucidrains/imagen-pytorch.
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