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Abstract
This review proposes the concept of a “frugal twin,” similar to a digital twin, but for physical ex-

periments. Frugal twins range from simple toy examples to low-cost surrogates of high-cost research
systems. For example, a color-mixing self-driving laboratory (SDL) can serve as a low-cost version of a
costly multi-step chemical discovery SDL. Frugal twins already provide hands-on experience for SDLs
with low costs and low risks. They can also offer as test beds for software prototyping (e.g., optimiza-
tion, data infrastructure), and a low barrier to entry for democratizing SDLs. However, there is room
for improvement. The true value of frugal twins
can be realized in three core areas. Firstly, hard-
ware and software modularity; secondly, purpose-
built design (human-inspired vs. hardware-centric
vs. human-in-the-loop); and thirdly state-of-the-art
(SOTA) software (e.g., multi-fidelity optimization).
We also describe the ethical benefits and risks that
come with the democratization of science through
frugal twins. For future work, we suggest ideas for
new frugal twins, SDL educational course outcomes,
and a classification scheme for autonomy levels.
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1. Introduction

Self-driving laboratories (SDLs) are autonomous
experiment-performing systems that have the po-
tential to accelerate the discovery of solutions for
key societal needs such as carbon-neutral/net-zero
processes, food and agriculture, fuels, clean en-
ergy, energy storage, drug discovery, and struc-
tural materials [1]. SDLs can improve experimen-
tal reproducibility [2] and increase researcher pro-
ductivity by automating tedious, repetitive tasks.
They require scientists to learn new skills relat-
ing to the supervision, modification, and mainte-
nance of autonomous systems, at both the hard-
ware (e.g., liquid handlers, robotic arms) and soft-
ware (e.g., optimization algorithms, workflow or-
chestration, data infrastructure) levels. This con-
cept allows scientists to focus on higher-level cog-
nitive tasks such as hypothesis formulation, exper-
imental design, and data interpretation, which are
not easily automated [3].

The concept of accelerated discovery via automa-
tion goes by several names, including SDLs [3–8],
materials acceleration platforms [9], Lab 4.0 [10–
12], Internet of Laboratory Things [13–15], Robot
Scientists [16], the Autonomous Research System
(ARES) [17], and autonomous experimentation
systems [18]. While each term has its own nuances,
here we use the term SDL exclusively and interpret
it as referring to autonomous research systems used
to accelerate materials discovery without human in-
tervention. It is important to note that for the rest
of the article, automation refers to the use of tech-
nology to perform tasks with minimal human in-
tervention, while autonomy implies the ability of a
system to operate independently, making decisions
and taking actions without human control.

SDLs that are used to solve societal challenges
are considered to be materials acceleration for so-
cietal solutions (MASS) platforms [1]. Such plat-
forms need to be widely deployed and adopted if
societal challenges are to be addressed. However,
such “critical MASS” (in the words of Seifrid et al.
[1]) will require lower costs, enhanced ability to re-
configure and expand, and a joint effort to make
available easy-to-understand examples and systems
for more advanced research tasks. Since the intro-

duction of the concept of an artificial intelligence
system to laboratory automation in 1985 by Isen-
hour [19], the development of SDLs has gained trac-
tion. However, there are only a handful of low-cost
SDLs reported in the literature. Stach et al. [18]
provide a community perspective on SDLs in the
context of academia, industry, government labo-
ratories, and funding agencies, and supply a de-
scriptive table of selected SDLs across a variety
of applications including chemical vapor deposi-
tion [20], nanocrystals [21], flow- [22] and vial-
based [23] chemistry, oil-in-water emulsions [24],
additive manufacturing [25], thin films [7], quan-
tum materials [26], and solid-state materials [27].
Many review and perspective articles have been
contributed [1, 3, 4, 9, 18, 28–44], and a list of 27
recent reviews is given in Table 1 of Xie et al. [44].

What sets our review apart from others is that
we explicitly focus on low-cost SDLs, i.e., frugal
twins of high-cost SDLs. We hope that this atten-
tion to the importance of low-cost SDLs will shift
perspectives on the educational and research capa-
bilities of low-cost systems and provide a common
reference point for building new solutions.

The question of what is low- vs. high- cost is
both a subjective and contextual problem. Mone-
tary cost and space constraints are particularly ap-
parent in educational settings, as indicated by the
large fraction of educational SDLs specifically de-
scribed as low-cost, under USD 1000 [45–47], and
which occupy relatively small footprints. This is
in part because the final objectives are often based
on learning outcomes rather than specific research
objectives.

In both contexts, there is a range between mone-
tary costs that can be covered by business-as-usual
“spare” monetary resources vs. costs that require
dedicated support from grants and other funding
sources. For example, the National Science Foun-
dation currently places a threshold of USD 5000 to
differentiate between consumables and equipment,
above which a purchase must be “adequately jus-
tified” on a grant proposal. An example such as
the Opentrons OT-2 platform (USD ∼7500 start-
ing cost) likely fits more clearly into the “dedicated
support” category for many education-oriented sys-
tems and somewhere in-between “spare resources”
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and “dedicated support” for research tasks. Nev-
ertheless, the context depends on a multitude of
other factors including the specific research group
and institution.

With an emphasis on chemistry and materials
science applications and as part of a broader fo-
cus on materials acceleration platforms and ma-
terials acceleration for societal solutions, we walk
through topics relevant to low-cost SDLs. First,
we describe the development of “frugal twins” that
capture the core principles of real-world systems
at an education-friendly cost, and present areas
where the community benefits from low-cost twins
(Section 2). Next, we delineate how educational
outcomes and autonomy can equip the next gen-
eration of scientists with industry-relevant skills
(Section 3). Afterwards, we detail how modu-
larity for hardware and software plays an impor-
tant role in reducing redesign costs for future sys-
tems (Section 4.1). We also illustrate how us-
ing a hardware-centric approach when developing
SDLs can reduce system complexity by leveraging
existing hardware in unconventional ways in com-
parison to other design approaches (Section 4.2).
Next, we highlight how discovery can be acceler-
ated further through high-throughput and paral-
lelized systems (Section 4.3.1). With the growth
of cloud infrastructure, we show that cloud experi-
mentation (similar to cloud computing, but for ex-
periments) decentralizes hardware, computing, and
domain expertise, reducing the barrier-of-entry for
SDLs and enabling robust and efficient batch opti-
mization (Section 4.3.4). Finally, we describe ideas
for new frugal twins, suggest potential SDL course
outcomes, and discuss how to classify autonomy
levels in SDLs (Section 6). To encourage a con-
tinuing discussion, we also provide a list of public,
community-driven discussions (Section 7).

2. What are frugal twins, and why do we
need them?

Inspired by the digital twin, a virtual counter-
part of a physical entity, we introduce the concept
of the frugal twin, a low-cost counterpart of a phys-
ical entity [48]. A digital twin is designed for sim-
ulation, modelling, and evaluation, and can offer

insights into the physical entity, either before its
inception [48] or during its lifetime [49]. Likewise,
a low-cost SDL can serve as a frugal twin of a high-
cost SDL. Frugal twins present a low-risk environ-
ment for rapid prototyping and a new educational
platform which can offer insights into the high-cost
entity.

Any frugal twin of an SDL is located within a
trade-off spectrum between cost and research capa-
bilities, with the balance between two factors deter-
mining its usefulness for particular education and
research activities (Section 2.1). We show in Fig-
ure 1 some illustrative examples of these trade-offs
for materials science and chemistry, and a list in
Table 1 of various low-cost SDLs.

2.1. Trade-offs between cost and capabilities
There are two primary ways to reduce costs when

creating a frugal twin: scale back research capabil-
ities, or reduce accuracy and precision. The ap-
propriate balance between cost and capability will
typically be governed by available resources, and
necessary functions to perform the desired task. We
illustrate in Figure 1 possible trade-offs in the con-
text of two experiments: one in materials science
and one in chemistry. Although some of the exam-
ples shown in the figure are not standalone SDLs,
each could be integrated into an SDL for various
research purposes.

In the materials science experiment, the state-
of-the-art (SOTA) capability is to 3D print various
metal alloys at extremely high temperatures, as can
be accomplished, for example, by the FormAlloy
metal 3D printer [55]. As cost decreases, the ca-
pabilities of frugal twins stray further away from
SOTA capabilities (Figure 1). The arc melter
can form alloys at high temperatures, but cannot
3D print them. The next drop in cost renders
the instrument only capable of toy problems: the
Procuisini 5.0 3D chocolate printer can form and
3D print various chocolate compositions. Lastly,
the “Hello World” of a materials science SDL, at
the lowest cost shown, is the solid dispenser for
colored wax, capable of producing candle wax in
customized colours [50].

Likewise in the chemistry context, the SOTA re-
search capability of multi-step, multi-batch synthe-
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Figure 1: Spectrum of frugal twin capability vs. cost trade-off. A) From left to right: solid dispenser for colored wax [50],
Procuisini 5.0 chocolate 3D printer used with a 3-point bend test apparatus [51, 52], arc melter used with a nanoinden-
ter [53, 54], FormAlloy metal 3D printer [55], and Instron electromechanical universal testing system for metals [56]. B)
From left to right: liquid handling for dye mixing [50], automated titrator built from LEGO [46], Jubilee sonochemical
synthesis platform used with a plate reader for absorbance and fluorescence measurements [57–59], Opentrons OT-2 inte-
grated directly with a plate reader [60–62], and Chemspeed integrated with an HPLC-MS/MS [63, 64].
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Table 1: Low-cost SDL summary. Estimated costs in USD. Abbreviations: carbon nanotube (CNT); additive manu-
facturing (AM); Autonomous Research System (ARES); LEGO Low-cost Autonomous Science (LEGOLAS); Bayesian
Optimization Bartender (BOB); metal–organic framework (MOF).

Name Field Purpose Cost REF

Educational ARES Education 3D Printing 300 [65]
Additive manufacturing ARES Mat. Sci. 3D Printing 1000 [17]
Bioreactor for real-time … culture measurements Biology Cell growth 250 [66]
Autonomous Research System (ARES) Mat. Sci. CNT growth 5000 [20]
Closed-loop Spectroscopy Lab: Light-mixing Education Color opt. 50 [67]
Bayesian Optimization Bartender (BOB) Education Color opt. 200 [68]
Accelerate Synthesis of MOFs Mat. Sci. Crystallinity 830 [69]
Evolution of oil droplets … Biology Evolution 1000 [70]
A … robot for discovering … protocell behavior Biology Evolution 1000 [24]
… a configurable 3D printed fluidic platform Biology Evolution 2000 [71]
A microfluidic platform [for] chemical evolution Biology Evolution 5000 [72]
Chemical synthesis robot for nanomaterials Mat. Sci. Morphology 15 000 [73]
Cheap automated synthesis platform Chemistry Organic Synth. 450 [74]
Networking chemical robots Chemistry Organic Synth. 500 [75]
Autonomous … platform for … synthesis Chemistry Organic Synth. 10 000 [76]
“The Chemputer” Chemistry Organic Synth. 30 000 [77]
3D printed [microfluidic] autonomous analyzer … Chemistry Photometry 2050 [78]
High-Throughput [CdSe Nanocrystal Synthesis] Chemistry Quantum dots 2000 [57]
Crystallization Robot Mat. Sci. Randomness 3000 [79]
Scientific Inquiry in Middle Schools Education Titration 250 [45]
LEGO Low-cost Autonomous Science (LEGOLAS) Education Titration 300 [46]
Autonomous titration for chemistry classrooms Education Titration 600 [80]
Automated pH Adjustment … Education Titration 650 [81]
Automatic titrator for intro chemistry labs Education Titration 934 [82]
Automatic titration for teaching chemistry Education Titration 4160 [83]
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sis and characterization can be accomplished by a
Chemspeed integrated with high-performance liq-
uid chromatography coupled with mass spectrom-
etry (HPLC-MS). At a significantly lower cost, the
Opentrons OT-2 platform can perform single-step,
multi-batch synthesis and limited characterization
techniques using an integrated plate reader, focused
primarily on biological applications [60, 61]. The
next lowest in cost is the Jubilee system which can
be adapted to perform sonochemical synthesis and
used with an offline plate reader [57, 58]. The auto-
mated titrator built from LEGO, one step lower in
cost than the Jubilee, can no longer perform syn-
thesis but only multi-batch liquid dispensing, and
uses a pH probe for characterization [46]. Lastly,
the cheapest SDL is a liquid handler for dye mix-
ing, tasked with obtaining a customized color as
characterized by a light sensor [67, 68, 75, 84, 85].

We note that it may not always be possible to
create a useful frugal twin for an SDL. For exam-
ple, a large part of cutting-edge research relies on
expensive analytical instrumentation to be able to
obtain sufficient information about experiments. In
the context of compound characterization, instru-
ments such as nuclear magnetic resonance spec-
troscopy (NMR) and HPLC-MS apparatus can cost
hundreds of thousands of dollars to acquire and op-
erate. However, infrared radiation can be a cheaper
alternative to expensive analytical techniques like
the ones mentioned before for tasks such as in-line
reaction monitoring [86, 87]. This can be sufficient
for low-fidelity reaction monitoring but is incapable
of unknown compound characterization. Sacrific-
ing research capabilities for lower costs is some-
times infeasible depending on the task at hand.
To perform robust unknown compound character-
ization, low-cost (≤∼10 000 USD) alternatives to
NMR or HPLC-MS do not currently exist on the
market.

Analogous to the trade-off between cost and re-
search capabilities, there can be a trade-off between
throughput and fidelity [37]. For example, a bench-
top NMR is lower cost (≥∼40 000 USD) [88] and
easily adapted to flow chemistry SDLs, but sac-
rifices measurement precision and accuracy. The
cost/benefit analysis must consider the expected
speedup in the rate of progress for a lower fidelity

analysis tool and the cost from potential inaccura-
cies compared to the gold standard analysis tools.

2.2. Rapid, low-risk prototyping and proofs of con-
cept for research

SOTA SDLs are feats of both science and engi-
neering which are typically both complex and ex-
pensive such that rapid prototyping is challeng-
ing. Frugal twins for SOTA SDLs can enable re-
searchers to easily prototype and engage in an it-
erative loop to explore new design concepts, gain
new knowledge, refine and validate existing designs,
and easily share information within a group of re-
searchers [89]. This relaxed requirement prototyping
approach [89] leverages trade-offs between accuracy
and cost. In addition, advanced optimization algo-
rithms for SDLs can be integrated and tested on
the frugal twin.

Preliminary evidence acquired from a low-cost
SDL can serve as a proof of concept for solving an
analogous research problem that can then justify
the funding for a more capable high-cost SDL. The
low-cost SDL may have lower accuracy and reliabil-
ity, but still provide evidence of feasibility for the
proposed research, as well as answering some rele-
vant research questions. In addition, the low-cost
SDL can act as a proxy for estimating the acceler-
ation factor that an SDL can offer in comparison
to manual experimentation.

An example that compellingly captures how a
frugal twin can promote rapid prototyping and
teach transferable skills to students in a low-risk
setting is the MIK-I, a frugal twin of “The Ma-
chine” [74, 90]. The initial goal for researchers
is to build “The Machine” [90]. However, prior
to assembling this SOTA research tool, they built
MIK-I with approximately USD 450 (Figure 2), the
main purpose of MIK-I’s creation being to familiar-
ize the researchers with automated synthesis plat-
forms. The frugal twin is designed to handle liquids
of different physicochemical properties such as den-
sity, viscosity, and surface tension. However, when
building MIK-I, liquid handling became an issue
because the pumps needed to be calibrated differ-
ently for each liquid in the system. This problem
gave students hands-on experience with an issue
that would also occur with the SOTA research tool,
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Figure 2: MIK-I, a low-cost automated synthesis workflow
platform. a) Peristaltic pumps controlled by a Raspberry
Pi, b) synthesis reactor, c) reagent bottles [74].

Figure 3: The scheme for a general crossed aldol condensa-
tion reaction as a proof of concept [74].

which would allow them to solve the eventual prob-
lem more readily. To evaluate the scope of MIK-I,
the researchers successfully performed C–C bond
formation reactions widely used in organic chem-
istry such as the Claisen-Schmidt condensations,
Suzuki-Miyaura coupling, Knoevenagel condensa-
tions, and Morita-Baylis-Hillman reactions in an
automated fashion (Figure 3) [74].

2.3. Education of future workforce will be critical
for self-driving labs

New skills, including AI, autonomy, and com-
plex data analysis will be required to design, build
and operate SDLs. SOTA SDLs can have a high
training burden and potentially high cost from mis-
takes. The frugal twin can provide a potential so-
lution to these problems by enabling new users to
gain transferable skills for the SOTA SDLs in a
low-cost, low-risk setting. Low-cost SDLs create
an environment conducive to experiential learning
via trial and error, which acts as a stepping stone
for new users with limited robotics and program-
ming experience. Furthermore, by making SDLs

affordable and easier to access, barriers to entry to
citizen scientists will be reduced, which enables a
wider group of citizens, both in terms of quantity
and diversity, to partake in the pursuit of scientific
research. This feat requires overcoming both finan-
cial and technical barriers, by providing detailed
schematics, parts lists, assembly instructions, code
documentation, and troubleshooting guides.

3. How are frugal twins being used in edu-
cation and research?

In this section, we offer an in-depth overview of
low-cost SDLs in materials science and chemistry
designed for education (Section 3.1) and research
(Section 3.2). From these examples, there are many
lessons to be learned and areas to be improved,
which are later discussed in Section 4.

3.1. Designed for Education
Two pertinent educational topics are examples

of automated/autonomous titration setups (Sec-
tion 3.1.1) and minimal working examples of SDLs
(Section 3.1.2).

3.1.1. Titration
Titrations are a common experiment type in

high school and undergraduate chemistry curric-
ula. The automation of a titrator allows many
students, including those with certain disabilities
who may otherwise be excluded, to further their
understanding of chemistry, while simultaneously
providing an opportunity to learn about electron-
ics and robotics [91] (Figure 4). A variety of fea-
tures can be incorporated around an automated
titrator, such as a web interface for remote work,
a liquid (acid/base) dispenser using a solenoid
valve or peristaltic pump, a pH probe for char-
acterization, a pH indicator with computer vision,
voice activation via digital assistants such as Siri,
and a LEGO framework for modularity and high-
throughput [46, 82, 83, 91, 92].

A programmable titrator can also support a va-
riety of other educational tasks. Students can be
tasked with developing their own automation meth-
ods for this previously manual procedure, a prob-
lem that is engaging, encourages critical thinking
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and provides additional opportunities for learning.
Typically, students develop their own heuristics,
such as adding large amounts of titrant at the start
of the experiment and slowly reducing the addi-
tion of titrant until the endpoint is reached, with
the goal of optimizing for efficiency and accuracy.
An automated titrator can accelerate the pace at
which students can quantify and test multiple titra-
tion strategies for optimal efficiency and/or accu-
racy [80].

The applicability of skills acquired from ed-
ucational settings to research and industry set-
tings is critical [93], and modification of a titra-
tion experiment presents a direct example of this
transferability. For instance, Pomberger et al.
[81] designed their titration apparatus with high-
throughput batch samples, and active machine
learning (ML) to model the pH response of multi-
buffered polyprotic systems, a challenging yet im-
portant task for many chemical labs and industrial
plants. For context, educational titration setups
with a single-buffered system like those mentioned
above can be accurately described by the Hender-
son–Hasselbalch equation [81]; however, this does
not hold for multi-buffered polyprotic systems [81].
Although the multi-buffered polyprotic problem
has greater complexity, students can learn to adapt
solutions to fit their needs and work around the
limitations. By exploiting the benefits of modular-
ity (outlined in Section 4.1), students can choose
from several optimization algorithms such as ML,
proportional-integral-derivative control, and model
predictive control [81]. Although automated solu-
tions improve efficiency and robustness, an educa-
tional apparatus should also provide the option for
a student to be put back in the loop (i.e., man-
ual mode) because it can provide the student with
more direct interactions with the hardware.

3.1.2. Color-matching
Another straightforward demo for SDLs is color-

matching, where the goal is to find the optimal mix-
ture of a set of colors (e.g., primary colors) that
will mix to produce a target color. The concept is
low-cost and straightforward and has been demon-
strated for both light-mixing [67, 84] and liquid-
mixing examples [68, 94].

For the light-mixing example, Baird and Sparks
[67] developed a system known as Closed-loop Spec-
troscopy Lab: Light-mixing (CLSLab:Light) as
a teaching and prototyping platform that entails
mixing the light from red, green, and blue light-
emitting diodes (Figure 5). The demo employs light
rather than matter while retaining the principles
of SDLs. Taking language from the software com-
munity, it is a “minimal working example” of an
SDL. The primary benefits of this device relative to
more costly, time-intensive, higher-footprint (and,
of course, more chemistry-relevant) liquid han-
dlers such as Opentrons OT-2 [60], Sidekick [95],
evoBOT [96], OpenLH [97], OTTO [98], and Open-
Workstation [99] are that it costs under USD 100,
requires less than an hour of setup time, takes up
minimal desk space, and does not require chemi-
cal consumables. While CLSLab:Light cannot pro-
vide experimental data directly relevant to mate-
rials discovery, its features make it a prime candi-
date for classroom settings, allowing each student
or team to obtain hands-on experience. Addition-
ally, the platform can be used to prototype concepts
such as creating a network of geographically distant
experiments and implementing advanced optimiza-
tion topics such as batch (Section 4.3.1) and multi-
fidelity optimization (Section 4.3.2). Over a dozen
tutorials and examples for basic optimization, ad-
vanced optimization, device communication, and
data ecosystems are given in the Closed-loop Spec-
troscopy Lab documentation.

CLSLab:Light has also evolved as an example
and suggestion of SDL best practices. The soft-
ware is modular, and open-source. Build instruc-
tions [84] and a video build tutorial are provided,
with parts lists designed to be modular and robust
to supply chain issues. Additional features of the
CLSLab:Light platform that helps students to learn
and implement best practices are summarized in
Table 2.

Baird and Sparks [84] have explored the com-
mercialization of CLSLab:Light as an at-cost kit,
with two successful rounds of crowdfunding via
the GroupGets platform (see Campaign #1112 and
Campaign #1129), totalling 39 kits; many kits have
already been used in classroom settings at the Uni-
versity of Toronto, Massachusetts Institute of Tech-
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Figure 4: Example of a titration setup that can be equipped with automation, voice activation, computer vision, high-
throughput capabilities, and machine learning. Adapted with permission from [82, 83, 91, 92]. Copyright 2016, 2019,
2021 American Chemical Society. Adapted with permission from [81] under the Creative Commons Attribution license
(CC-BY). Copyright Elsevier 2022.
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Table 2: Summary of best practice topics (Topic) that address development pain points (Pain Point). Related resources/-
tools (Resources) and corresponding implementations in the CLSLab:Light framework (CLSLab:Light) are also given. In
other words, the Resources column links directly to the tools while the CLSLab:Light column typically links to various
places in https://github.com/sparks-baird/self-driving-lab-demo. ∗Detailed setup instructions for MQTT and
MongoDB are provided in Baird and Sparks [84].

Topic Pain Point Resources CLSLab:Light

Version control Keep detailed, accessible, and efficient
snapshots of your code at any point in time

Git, GitHub GitHub
repo/history

Project
Generator

Streamline setting up modular code for a
new project while conforming to best
practices

PyScaffold,
cookiecutter-
pypackage

PyScaffold
and initial
commit

Python packages Make installation and setup easier for users PyPI (pip),
Anaconda

PyPI via
setup.cfg

Unit tests Catch bugs and ensure functionality pytest tests folder

Continuous
integration

Regularly and automatically validate code,
run tests, and publish new versions

GitHub
actions

actions via
ci.yml

Secure wireless
communication

Safely communicate within and between
software and hardware

MQTT MQTT∗

host/client

Data
management

Store data that is “Findable, Accessible,
Interoperable, Reusable” (FAIR)

MongoDB,
SQL

MongoDB∗

main.py

Installation-free
notebook
tutorials

Make it easy for users to learn, test, and
adapt the functionality

Google
Colab,
Binder

Tutorials
page

Documentation
web host

Host a website with your documentation for
free

Readthedocs,
GitHub pages

Readthedocs
site

Documentation
builder

Package your documentation, tutorials, and
API as web-friendly HTML files

Sphinx,
Jekyll

Source files,
conf.py
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(a) (b)

Figure 5: The CLSLab:Light demo. (a) A summary schematic of CLSLab:Light. (b) An annotated image of the
CLSLab:Light. (a) was adapted with permission from [67]. Copyright Elsevier 2022.

nology, and University of Chicago. For continuing
discussion related to packaging open-source hard-
ware as commercial kits, see Discussion #124.

CLSLab:Light has already seen success, but
domain-specific communities (biology, chemistry,
solid-state materials science) will benefit from their
own minimal working examples. Baird and Sparks
[84] have explored extensions that adapt the in-
structive lessons from CLSLab:Light to other do-
mains. For example, using the modular soft-
ware and hardware components, Baird and Sparks
[84] extend the platform to a liquid-based color-
matching task (Closed-loop Spectroscopy Lab:
Liquid-mixing (CLSLab:Liquid)) which uses the
prototypical example of mixing red, yellow, and
blue food coloring dyes (Figure 7).

The inherent simplicity of the color matching
application as demonstrated in CLSLab:Light has
also inspired others to employ it in other settings.
For example, Ginsburg et al. [85] have implemented
a color matching application in the context of their
workcell execution interface science factory archi-
tecture [94]. It is designed with modular instru-
ment interfaces and workflow specifications used to
implement an application that connects an Open-
trons OT-2 liquid handler, liquid replenishment
robot, and camera station (see Figure 6). The
Globus platform is employed [43] to link optimiza-

tion algorithms running on remote computers and
to publish results to a remote data portal.

In sharp contrast to biology and chemistry appli-
cations, low-cost examples of SDLs for solid-state
materials science are effectively non-existent. To
address this gap, an idea for a solid-state materials
science extension involving the melting and mixing
of colored wax powders is described in Section 6.1.

3.2. Designed for Research
Typically, low-cost setups are not regarded as

research tools because of their lack of accuracy,
precision, and capabilities. However, many re-
search groups are developing low-cost SDLs for rea-
sons such as full control over the end-to-end design
(Section 3.2.1), and ease of parallelization (Sec-
tion 3.2.2). For example, the Sidekick liquid dis-
penser [95] was designed around the liquid dispens-
ing requirements associated with automated ex-
ploratory synthesis of halide perovskites, [100], and
only later used for teaching an introductory chem-
istry laboratory on automation [101]. Similarly, the
Jubilee system [57] was originally demonstrated in
the context of nanocrystal synthesis research, [102]
and later used for education [58].

3.2.1. End-to-end design
Instead of purchasing expensive and inflexible

commercial systems to produce an SDL, building
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Figure 6: A photograph and diagram of the robotic work cell used for a workcell execution interface-based color mixing
experiment. The Sciclops picks up a 96-well plate from its plate storage towers and transfers it to its exchange location.
The PF400 then transfers the plate to the Opentrons OT-2, which mixes the three target colors. When the liquid reservoirs
in the system are empty, the custom robot, Barty, refills them by using peristaltic pumps. Once mixing is completed, the
plate is transferred to the Camera location to be imaged. The plate is then looped between the camera and the Opentrons
OT-2 until the experiment is over. Reprinted from Ginsburg et al. [85].

(a) (b)

Figure 7: The CLSLab:Liquid demo. (a) A summary schematic of CLSLab:Liquid. (b) An annotated image of the
CLSLab:Liquid [50].
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a low-cost SDL from scratch gives the researcher
full control over the system. This concept of build-
ing a complete system from beginning to end is
referred to as end-to-end design. Salley et al. [103]
demonstrate this process through several examples
over the last decade. With the wider availability of
3D printers and low-cost development kits, growing
supply chains, better tutorials, and greater access
to internet of things in the last two decades, cus-
tom scientific apparatus can be built at low costs.
However, although low-cost electronic and hard-
ware components offer a wide range of unique capa-
bilities compared to fully developed systems, they
generally require significant time and effort to de-
sign, engineer, and test.

Nevertheless, with a specific, unique, and fo-
cused research problem, Gutierrez et al. [70] take
advantage of the full control over the end-to-end
design of a novel, custom-built chemorobotic plat-
form. This system is capable of exploring a di-
verse range of oil-droplet formulations which was
designed to improve the understanding of evolu-
tionary dynamics. Many low-cost components such
as a RepRap 3D printer, camera, Arduino micro-
controller, and 3D printed parts are used to gain the
desired functionality for this specific experimental
task [70]. Later, this robot was redesigned with a
3D printed arena for droplet mixing which could
be easily transformed into different environments,
adding a new independent variable to experimen-
tation [71]. With high-throughput experimentation
and automation, it is not crucial for the robot to
be extremely accurate or precise, due to the ease
of performing multiple replicates to reduce the un-
certainty of results. In this oil-droplet system, sev-
eral replicates are performed and the uncertainty of
each measurement is accounted for before drawing
conclusions from general trends [71]. Full control
over the design of the experimental apparatus is
invaluable for niche research problems.

The modular Geneva wheel platform engineered
by Salley et al. [104, 105] is another example of
a low-cost SDL designed end-to-end to leverage
the advantages of low-cost components and custom
parts. Due to its modular nature, it can be eas-
ily reconfigured for the synthesis of gold nanoparti-
cles, polyoxometalates, or other coordination com-

pounds [73, 104–107]. From this system, an im-
portant takeaway is that “automation can only be
so cheap before significant frustration is experi-
enced” [103]. In this example, Salley et al. [103] re-
place cheap aquarium pumps with motor-controlled
stepper pumps, which offer better control and ac-
curacy over liquid dispensing while still remaining
affordable.

Although the “Chemputer” is not as low-cost
as our other considerations, it is worth mention-
ing because of its end-to-end design for universal
chemical synthesis. The Chemputer not only has
custom 3D printed parts and low-level electronic
components such as syringe pumps, but also inter-
faces with existing chemistry instruments that may
already be in the lab such as hotplates, photore-
actors, flow reactors, a rotary evaporator, bench-
top NMR spectrometers, and in-line spectrometers
(UV-Vis, infrared spectroscopy (IR) and electro-
spray ionization-MS) to perform organic synthe-
sis and characterization [108–117]. Given its wide
range of research capabilities, the “Chemputer” can
cost over USD 30 000 with a setup time of 1 week.
Manzano et al. [76] develop the “mini-Chemputer,”
which reduces the barrier of entry from USD 30 000
to USD 10 000, and 1 week to 1 day of reported
setup time. Having full control over the end-to-
end design of this system enabled the Cronin group
to develop both the Chemputer, and the low-cost,
portable mini-Chemputer.

Another example of end-to-end design is the Ju-
bilee platform created by Vasquez et al. [58] at the
University of Washington [58]. Originally, Jubilee
was designed for multi-tool fabrication tasks and
more. Some examples of its intended application
ranged from multi-head 3D printing to multi-pen
plotting, and simple liquid handling through sy-
ringes. Jubilee presents a modular tool-changing
design that accommodates user-created tools and
beds Section 3.2.1a) [58]. Politi et al. [57] have
demonstrated the use of this versatile, multi-tool
platform configured for automated ultrasound ap-
plication Section 3.2.1c), along with an Opentrons
OT-2 liquid-handling robot and a well-plate spec-
trometer for the synthesis of CdSe nanocrystals.
In this example, the authors were able to test
625 unique sample conditions, in triplicate, in less
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than two months, ensuring repeatability and reduc-
ing uncertainty on the results. The components
to build the Jubilee platform can be individually
sourced from readily available and 3D printed ma-
terials or even purchased as a kit, for a total cost
of ≤∼2000 USD. Furthermore, the project is fully
open-hardware and open-source, resulting in a se-
ries of resources, from build instructions to an ac-
tive Discord channel for informal communication,
and requires no previous building skills, which sig-
nificantly lowers the barrier to its implementation
in materials research spaces. No modification of the
off-the-shelf, commercially available sonicator was
required and simple electronics allowed for instru-
ment interfacing. There is currently no commer-
cially available solution for automating single-point
sonochemical processing, making this example a
great demonstration of how SOTA technology can
be easily democratized through maker skills and
cheaper electronics. While successful, the study
by Politi et al. [57] relied on three different in-
struments to conduct the workflow. It is however
possible to integrate all the synthesis, processing,
and characterization tools onto the same Jubilee
platform, given its automatic tool-changing capa-
bilities, creating a closed-loop experimental system.
Finally, it should also be noted that systems like Ju-
bilee, which originated from the digital fabrication
space, might require additional hardening and pos-
sible small materials adjustments before they can
be fully trusted as science tools. A similar approach
was performed by Opentrons when upgrading their
design from the original OT-1 to the OT-2. In fact,
even the control API for the platform needs more
stress-testing, reliability testing, and safety proto-
cols included to allow it to work in more sensitive
and complex chemical environments.

3.2.2. Ease of parallelization
With lower costs per duplicate of the system, sev-

eral duplicates can be linked together for a high
degree of parallelization offering benefits of decen-
tralization, high-throughput, and batch optimiza-
tion. Caramelli et al. [75] build a network of robots
from a series of simple chemical robots that use sev-
eral peristaltic pumps for liquid handling, a glass
reaction vial, a webcam for reaction analysis, and

a pcDuino board for electronic control. Due to its
simplicity and low cost, the hardware is easily repli-
cated, which enables parallelization of experiments.
The following experiments described below exploit
some of the advantages of building a network of
robots: collaborative azo dye chemical space explo-
ration, real-time control of an oscillating reaction, a
reproducibility assessment of inorganic cluster crys-
tallization, and gameplay-driven chemical discov-
ery [75].

First, the robots were able to communicate by
uploading results to the cloud and screening for re-
sults from other robots via Twitter. This system
prevents robots from duplicating others’ reactions
and allows them to explore more efficiently as a
team. Using a network connection, multiple phys-
ically separated robots can be synchronized in real
time. Caramelli et al. [75] use a chemical oscillator
based on the Belousov-Zhabotinsky (BZ) reaction
to showcase real-time control performance. The os-
cillation period is synchronized in real time between
robots with an uncertainty of 2 s.

Reproducibility in the context of parallelization
is necessary for accurate data acquisition. In one
experiment, the network of robots collaboratively
explores the conditions for the crystallization of
tungsten polyoxometalate clusters. Crystallization
is a stochastic process, which makes it challenging
to determine its ideal conditions, particularly on
small scale. Nevertheless, the network of robots
found six sets of conditions that offered repro-
ducibility between 11.8–50%, which may be deemed
acceptable for a stochastic process on a small scale.

Lastly, success in gameplaying offers the insight
that large amounts of data enabled by powerful
computation can push ML models to reach super-
human performance [118]. Highly robust and re-
producible materials chemistry SDLs can generate
large amounts of data with low-cost experimen-
tation and parallelization. Caramelli et al. [75]
demonstrate that two robots can compete against
each other in a well-defined game to discover novel
colors in the context of an azo coupling reaction.
The rules are simple: novel results are rewarded,
and common results are punished. Each time that
a loser emerges at the completion of a game, the
loser can change strategies by redefining their re-
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Figure 8: a) The blueprint design of the Jubilee system which can equip modular multi-headed tools. b) Example of
the Jubilee system dispensing liquids into a 96-well plate. c) The workflow of adapting Jubilee into the automated
sonochemical synthesis of nanocrystals. Adapted from [58] with written permission from the authors under the Creative
Commons Attribution license (CC-BY). Adapted from [57] with permission from the Royal Society of Chemistry.
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action space. The goal of the gamification of such
an experiment is for the model to develop an op-
timal strategy to maximize the objective without
human guidance. The success of this simple exper-
iment provides the groundwork for similar SDLs to
solve more complex problems through a low-cost
and parallelized approach.

4. How do we make frugal twins better?

We describe ways to continue improving and
leveraging the strengths of frugal twins in terms
of hardware and software modularity (Section 4.1),
human-inspired vs. hardware-centric vs. human-in-
the-loop design approaches (Section 4.2), and syn-
ergizing frugal twins with SOTA software tools and
algorithms (Section 4.3).

4.1. Modularity
Modularity refers to the assembly of a cohesive

system or device that has discrete, self-contained
modules which can be easily interconnected and
replaced. Each module performs a specific func-
tion or task, and they can be combined or modified
independently. This approach allows for flexibility,
scalability, and ease of maintenance, as well as facil-
itating the reuse of components in different applica-
tions. In this section, we explore modularity in the
context of both low-cost hardware (Section 4.1.1)
and open-source software (Section 4.1.2).

4.1.1. Hardware
MacLeod et al. [36] emphasize “the character-

istic features of modern robots that make them
useful for flexible automation [which] include large
working areas, many degrees of freedom, high posi-
tioning accuracy and repeatability, intrinsic safety,
and easy programming. Versatile multi-axis robots
that can interact with both liquids and solids offer
the flexibility to automate a wide range of exper-
iments” (Figure 9). Although low-cost SDLs can-
not generally afford such characteristics, the em-
phasis is on leveraging cost-effective and creative
strategies to automate a diverse range of exper-
iments within their limitations. Gutierrez et al.
[70] demonstrate their use of modular design for
simple reconfiguration where parts can be easily

redesigned, replaced, and tested. Their oil-water
droplet robot can be readily reconfigured for adding
new chemicals and other formulation-based studies
in a variety of simple ways [24, 70, 72]. For ex-
ample, the 3D printed polypropylene evolutionary
arena can be interchanged with different designs
that have pillars, caves, or other arrangements [71].
The well-plate array for sample preparation can
also be switched with a Geneva wheel that auto-
mates drying and cleaning, increasing experimental
throughput [24]. Another flexible concept for sim-
ple reconfigurations is Reactionware, which refers
to low-cost 3D printable reactors for custom reac-
tions and volumes [114, 119, 120].

Given that devices inevitably break down at
times, incorporating modularity into SDLs reduces
the time and cost of maintenance. If one compo-
nent breaks, then only that small portion of the
instrument needs to be repaired or replaced. In
addition, with smaller modular parts, debugging is
simplified since each individual component can be
tested separately, quickly determining the points of
failure.

An SDL should be composed of a core infras-
tructure capable of interchangeably adapting to
domain-specific requirements such as but not lim-
ited to liquid handling, solid dispensing, and thin-
film manufacturing. This is more cost-effective
than building a fixed, domain-specific system ca-
pable of performing all the desired tasks for only
one given type of experimentation. After the first
discovery campaign is completed, the cost of re-
designing an inflexible SDL for further work could
be much higher than for a modular system. To re-
duce the redesign cost for future systems, we need
to incorporate modularity at the early conception
stage of building any SDL.

Sometimes even small design choices can pro-
vide significant advantages and flexibility for an
automation platform. In this context, the Jubilee
[58] platform is a great example of hardware mod-
ularity. In fact, the platform was designed in an
application-agnostic fashion where tools can be in-
terchangeably loaded on the platform, which can
then automatically pick them up and return them
after their task is complete. All of this is accom-
plished through a locking mechanism that allows
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Figure 9: Flexible automation for SDLs where components can be rearranged and replaced around the central robot
arm. From L to R (main image): automated film synthesis station, automated conductivity and imaging station, robot
moving samples between stations (center; controller labeled in white), profilometer (front), annealing station (back), X-ray
fluorescence microscope, software modules. From L to R (inset image): imaging and spectroscopy modules (back), slide
storage rack (front), modules linked by robot (slide handling tool labeled in white), ultraviolet module (front), disposable
pipettes (back), spin-coating module (back), annealing module (front). MacLeod et al., Flexible automation accelerates
materials discovery, Nature Materials, published 2022, Copyright © 2021, Springer Nature Limited.
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the tool to lock onto the central carriage and a tool
template pattern which ensures constant tool loca-
tion. Another advantage of Jubilee is its ability to
host not only simple sample transfer tools, such as a
liquid handling pipette or syringe, but also tools for
processing or manipulation and subsequent charac-
terization such as a sonicator [57]. This is not pos-
sible with commercially available liquid-handling
robotic platforms, which can only complete a lim-
ited set of tasks before the labware needs to be
moved onto a different automation instrumenta-
tion. The flexibility of Jubilee, in fact, allows for
rapid reconfiguration of the platform for various
applications, such as the nanomaterials synthesis
shown by Politi et al. [57].

4.1.2. Software
While existing efforts to enforce SDL hardware

modularity are valuable, in practice, it is still in
its infancy. Some lessons can be taken from mod-
ern software development, such as functional and
object-oriented programming (i.e., organized use
of functions and classes), the single responsibility
principle (each module has a single, well-defined re-
sponsibility), and related concepts like version con-
trol (semantic versioning, commit history, backups,
and rolling back to previous versions). These prin-
ciples are applied out of necessity to optimization
and workflow orchestration software ecosystems
with large user bases such as Meta’s Adaptive Ex-
perimentation (Ax) Platform (https://ax.dev/)
and Agnostic’s Covalent workflow orchestration
platform (https://www.covalent.xyz/).

In some scenarios, software development best
practices have been applied to chemistry and mate-
rials informatics optimization and workflow orches-
tration packages. As a set of computer instructions
(codebase) evolves and matures, it often involves
organizing lines of code into distinct blocks (func-
tions) that perform specific tasks, and then further
organizing these blocks into categories or groups
(classes and modules) to create a more structured
and manageable system.

A practical example of this is Gryffin [121], a
Bayesian optimization tool that supports continu-
ous and categorical variables, physicochemical de-
scriptors, and batch optimization. Gryffin is writ-

ten in Python and uses a common structure called
a class to organize its code using “object-oriented
programming.” Object-oriented programming is a
style of coding involving the creation and use of ‘ob-
jects’, which are self-contained pieces of code that
can store information and perform tasks.

In the case of Gryffin, an “instance” (i.e., copy)
of an object is created based on the Gryffin class,
which is referred to as “object instantiation” in pro-
gramming terms. This object can be customized
by supplying information about the variables to be
tuned and the objectives to be optimized. Once
this object has been created, you can use its built-
in functions (class methods) to perform various op-
erations. For example, you can use the recommend
function to get recommendations from Gryffin, or
the build_surrogate function to build a surrogate
model—a simplified representation of a more com-
plex system.

Likewise, alab_management and Bluesky utilize
classes. For example, alab_management offers base
classes for devices and tasks. A user only needs
to create a custom class for a specific device or
task once that can be reused, making it unnec-
essary to copy-paste “boilerplate” code. Bluesky,
designed with synchrotron facilities in mind, uses
“motors” and “detectors” to clarify the difference
between hardware that performs tasks based on in-
puts (e.g., temperature controllers, sample chang-
ers) and characterization hardware that produces
research data (e.g., photodiodes, CCD cameras,
spectrometers) [122].

While the hardware associated with low-cost
SDLs may not be as performant as high-cost ex-
amples, the same SOTA software that is deployed
on a high-cost SDL can be deployed to a low-cost
SDL with minimal effort. This enables both rapid,
low-risk prototyping (Section 2.2) and opportuni-
ties to integrate low-cost and high-cost experiments
via multi-fidelity optimization (Section 4.3.2). A
more general discussion of SOTA optimization
with workflow orchestration tools and algorithms
is given in Section 4.3.

4.2. Design Approaches
In this section, we describe three different design

approaches for SDLs. The most common of these
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for automation is the human-inspired approach
(Section 4.2.1) because of the intuitive translation
between human and robotic motion. Alternatively,
hardware-centric design (Section 4.2.2) is becoming
more prevalent due to taking better advantage of
the potential of hardware components. However, at
times, it is more cost-effective and practical to keep
the human in the loop (Section 4.2.3) for the main
objective of accelerating scientific discovery. Each
of these approaches is conceptually summarized in
Figure 10. At the end of Section 4.2.3, we describe
the role of frugal twins in bridging gaps between
these seemingly disparate design philosophies.

4.2.1. Human-inspired
When most people think of robots, they think

of human-inspired robotic design (Figure 10b, Fig-
ure 10e), where robots perform tasks as a human
would approach the problem. For example, robotic
arm setups [23, 36] are often used to mimic human
behavior. While there are benefits, this design ap-
proach exhibits its own set of trade-offs. We define
human-inspired design as mimicking human behav-
ior to accommodate traditional experiments.

For example, robots can be made to use exist-
ing, human-centric lab equipment without modi-
fication [23]. However, without complex sensing
capabilities such as computer vision, a hard-coded
system is sensitive to slight perturbations in abso-
lute positions and orientations. This often requires
extensive routine calibration and is tedious to im-
plement when integrating new scientific instrumen-
tation. The introduction of computer vision to rec-
ognize particular objects can introduce greater flex-
ibility but suffers from the larger startup cost of the
vision algorithm and may not elegantly handle all
possible situations. Additionally, glassware is an
essential component of any chemistry lab, but it is
incredibly challenging for computer vision to rec-
ognize transparent objects [123].

An alternative that combines the benefits of
hard-coded routines and complex computer vision
decisions is to use fiducial systems such as April-
Tags [124, 125], which are used by Wang et al.
[126] and Xu et al. [123] (Section 4.2.1). These can
be thought of as QR codes or bar codes attached
to pieces of equipment to help with relative posi-

tioning. However, the true value is not simply to
identify hardware with unique IDs; an AprilTag in
conjunction with the AprilTag detection software
allows for computation of “the precise 3D position,
orientation, and identity of the tags relative to the
camera.” More recent work also enables flexible
fiducial markers to be placed on circular, annular,
and other shaped objects [127] such as vials. Like-
wise, Krogius et al. [127] demonstrate the use of
nested, recursive layouts for high dynamic range.
While there are challenges associated with mim-
icking human behavior, there remain excellent use
cases for the human-inspired approach.

4.2.2. Hardware-centric
Replicating human behavior is often a difficult

task such as computer vision using cameras or sam-
ple transfer between modules, which are tasks that
humans excel at but robots do not. An effective
alternative to the human-inspired design approach
exists which we refer to as hardware-centric de-
sign where existing hardware is leveraged to carry
out experiments without mimicking human actions.
This has been previously noted. For example,
Seifrid et al. [3] state: “[It] is critical to understand
that adapting experimental procedures that were
designed for human experimenters is not as simple
as transferring those same actions to an automated
system, and there may be more efficient ways to
achieve the same goal in an automated fashion.”
Similarly, Abolhasani and Kumacheva [4] discuss
the nuances between using a mobile robot arm, a
stationary robot arm, and fluidic sample transfer,
each with varying levels of human-likeness and dif-
ficulty.

In terms of low-cost SDLs, Deneault et al. [17]
provide a prudent example of leveraging the exist-
ing robotic setup (a 3-axis printer) and moving the
syringe into and against a fixed sponge with a he-
lical motion to clean the external surface of the sy-
ringe (Figure 10c). When cleaning a syringe, a hu-
man might run it under water, wipe it with a cloth
(Figure 10a), put it in an ultrasonic cleaner, or re-
place the tip entirely. A robotic arm with human-
inspired design could be equipped with a cloth to
wipe the syringe tip (Figure 10b), or remove the
tip and place it in an ultrasonic cleaner. However,
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Figure 10: Examples of human-in-the-loop vs. human-inspired vs. hardware-centric design. (a) Wiping a needle by hand
vs. (b) wiping a needle using a cloth attached to a robot arm vs. c) helical insertion into a sponge. Adapted from [17] under
the Creative Commons Attribution license (CC-BY). Copyright © 2021, This is a U.S. government work and not under
copyright protection in the U.S.; foreign copyright protection may apply. d) Mixing liquids together in a traditional lab
setting using manual pouring vs. e) using a peristaltic with a digitally controlled stir plate vs. f) leveraging a bidirectional
peristaltic pump to perform both liquid transfer and mixing.

Figure 11: AprilTags, a type of fiducial marker, are affixed to a base plate to allow for accurate detection of its position
and orientation (six degrees of freedom) relative to the camera. Reproduced from [123]) with permission from Xu, H.;
Wang, Y. R.; Eppel, S.; Aspuru-Guzik, A.; Shkurti, F.; Garg, A. arXiv 2021. DOI: 10.48550/arXiv.2110.00087.
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helical insertion into a sponge leverages existing
equipment at a low cost. While it has limitations
(e.g., how well is the syringe tip cleaned relative to
more standard procedures; cross-contamination),
it is an informative example of hardware-centric
design. Another example is liquid handling that
is dual-purposed for both dispensing and mixing,
where mixing occurs by cycles of forward and re-
verse pumping to agitate the solution (Figure 10f)
instead of using a magnetic stir bar and stir plate
(Figure 10d and Figure 10e).

By designing equipment with desired material
states and processing conditions in mind, we cre-
ate hardware that is time- and cost-efficient for au-
tonomous experimentation. Especially in low-cost
settings, we should try to do as much hardware-
centric design as possible. This will both lower cost
and require less equipment.

4.2.3. Human-in-the-loop
However, it can be easy to over-automate,

whether in hardware-centric or human-inspired de-
sign. Sometimes, we need humans to be “in the
loop” for tasks where robots do not excel. We
have evidence from Amazon, Tesla, Carnegie Mel-
lon University cloud labs, and personal experience,
where robots do not perform well on certain tasks.
We define human-in-the-loop design as systems that
require manual human intervention during an ex-
periment.

Here, we draw from the “Pareto principle,” de-
scribed by Jana and Tiwari [128] as a commonplace
case where “80% of the outcomes are controlled or
decided by 20% of the activities or factors. For
example, 80% of the total profit is generated by
20% of the product categories, or 80% of the main-
tenance expenses are incurred by 20% of the ma-
chines.” Applying the Pareto principle, the last
20% of automation may require 80% of the total
effort towards bringing full autonomy to an exper-
iment. A common example is sample transfer be-
tween automated experimental modules, especially
of solid materials or sample containers. For exam-
ple, samples often need to be moved between syn-
thesis and characterization equipment, such as the
transfer of wellplates between an OT-2 robot and
a plate reader in Vaddi et al. [102].

In the low-cost automation literature, there are
many examples which incorporate automated mod-
ules while leaving experimental step(s) as human-
in-the-loop because of high opportunity cost (i.e.,
the benefits that are lost when one makes a deci-
sion over an alternative – such as the lost opportu-
nity for students to learn hands-on from running
an experiment manually when it is automated),
time constraints, and tasks where humans are nat-
urally better than robots. Xie et al. [69] automate
the design and synthesis of metal–organic frame-
works using Bayesian optimization and a RepRap
3D printer but leave humans to transfer the sam-
ple from the robot to the X-ray diffraction instru-
ment. Since many of these complex characteriza-
tion techniques are costly and designed for humans,
the time and cost of building another robot to per-
form sample transfer exceed the benefits gained
from automating every single task in the workflow
for greater efficiency. Rodriguez et al. [129] pro-
vide an excellent example of automating the most
effective process steps such as synthesis (with an
Opentrons OT-2 liquid handling robot), melting
point determination, and electrochemical charac-
terization for discovering new deep eutectic solvent
electrolytes. Rodriguez et al. [129] did not auto-
mate the processes of sample transfer or handling
of existing equipment such as a dehydrator and vac-
uum oven because of the great opportunity cost.

In a similar vein, most of the experimentation in
Salley et al. [104], Cao et al. [130], and Lachowski
et al. [131] is automated except for the character-
ization tools which include X-ray diffraction, vis-
cosity analysis, and UV-Vis spectroscopy, respec-
tively. Conversely, Chen et al. [132] develop a new
low-cost system, RAMSAY-2, for automating the
burdensome task of sample preparation for mass
spectroscopy. It involves two robot arms which
aliquot solutions, incubate the samples with the
reagents, deliver the samples to the ion source of
the mass spectrometer, and initiate data acquisi-
tion [132]. This approach significantly accelerates
the characterization workflow but is a non-trivial
solution that requires substantial time and effort.
It is also important to consider the opportunity
cost of automating tasks that are trivial for humans
but challenging for robots due to the consequential
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researcher time spent. Automation is most pro-
foundly effective when researchers are freed from
performing tedious, time-consuming, and repetitive
tasks. Another opportunity cost is the amount of
money required to acquire instruments that are al-
ready automated. For example, an automated dif-
ferential scanning calorimetry instrument can be
purchased for USD ∼50 000 [133]. However, Ro-
driguez et al. [134] automate differential scanning
calorimetry with a low-cost system of USD 1080,
which can run samples in 15 minutes, with up to
96 samples at a time [134]. A cost/benefit analysis
of the different design approaches and associated
opportunity costs remains necessary to automate
any solution.

4.2.4. Role of frugal twins
While the implementation cost of robotic solu-

tions can currently be prohibitive, the exploration
of low-cost sample transfer, especially of solid ma-
terials and across modules remains important and
robotic solutions remain a warranted goal. To push
the agenda with a future-looking vision, we need to
put low-cost frugal twins in the hands of the com-
munity.

Rather than polarizing the community between
fully autonomous vs. human-in-the-loop generalist
setups, we believe it is wiser to meet in the mid-
dle and pair the tool to the task. This type of
experimentation and exploration, enabled by low-
cost frugal twins, can form a rich test bed in class-
room settings. For example, students could be
tasked with a design problem and divided into
three groups: human-in-the-loop, human-inspired
robotic design, and hardware-centric design. The
students can present their experiences, learn from
other groups, and discuss trade-offs between each
approach: how many experiments could be per-
formed within the first day for each group? Within
the first week? This can be replicated for differ-
ent experiments to solidify best practices related
to autonomous system design and cross-pollinate
seemingly disparate design approaches.

4.3. State-of-the-art software
Seifrid et al. [3] present challenges of setting up

a SDL, such as the need for algorithms that can

handle constraints and unexpected outcomes, and
difficulties surrounding software control and inte-
gration (stemming from instrument manufacturers
generally not designing with SDLs in mind). Here,
we highlight key places where SDLs can benefit
from leveraging and integrating frugal twins with
SOTA software in terms of batch and asynchronous
optimization (Section 4.3.1), multi-fidelity opti-
mization (Section 4.3.2), workflow orchestration
(Section 4.3.3, and cloud experimentation (Sec-
tion 4.3.4).

4.3.1. Batch and asynchronous optimization
Fundamental to optimizing efficiency in the lab

is the parallelization of experiments, which reduces
the time to obtain results and allows more efficient
experimental design. Using lower-cost hardware,
even with an initial potential for loss of accuracy,
facilitates parallelization of SDLs. This democ-
ratizes access to cutting-edge research tools, such
that geographically distant labs can build clones of
the same low-cost SDL. These SDLs can then net-
work to execute high-throughput and parallel ma-
terials discovery campaigns. Caramelli et al. [75]
demonstrate the advantages of low-cost paralleliza-
tion of SDLs with their network of identical au-
tonomous research systems (Figure 12). The sys-
tems can evaluate the variability across different
instances of the robot with four different exper-
imental tasks in a financially reasonable manner
(i.e., the hardware components of their SDLs are
low-cost (USD ≤ 500)). Similarly to adding more
cores to a CPU, adding more instances of an SDL
(which need not be in the same location or even op-
erating on the same step at a given point in time)
increases throughput for an optimization campaign
at the cost of additional hardware. However, it
is important to acknowledge the trade-off between
parallelization and the total number of trials in an
optimization campaign. There is an adaptivity gap
between the parallel and the sequential approach
for optimization models. In the parallel approach,
the model is required to make decisions in advance
of having all of the information. If time is not a
limiting factor and/or cost is a limiting factor, it
is ideal to prioritize the sequential approach. Con-
versely, if time is a limiting factor and/or cost is
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not a limiting factor, it is more efficient to prior-
itize the parallel approach. For additional discus-
sion, see “Tradeoff between parallelism and total
number of trials”.

While the batch optimization described earlier
implies that all experiments within the batch need
to be completed before moving on to the next
one, the complementary topic of asynchronous op-
timization uses resources as soon as they become
available. This is important when experimental
runtimes can vary depending on the input param-
eters: thereby, equipment downtime is reduced.
Whether using batch or asynchronous optimiza-
tion, care must be taken so that redundant or low-
value experiments are not suggested by consider-
ing either completed or in-progress experiments.
Examples of methods that factor in-progress ex-
periments into the optimization scheme include
Monte Carlo-based joint acquisition optimization
and models where predictions for in-progress ex-
periments are sequentially added as “fantasy data-
points” before suggesting the next experiment in
the batch (see Appendix F2 of Balandat et al.
[135]).

4.3.2. Multi-fidelity optimization
Another use of building low-cost SDLs is to have

them work in tandem with high-cost SDLs on the
same discovery campaign through multi-fidelity op-
timization. Multi-fidelity optimization refers to
leveraging multiple information sources with vary-
ing accuracy and cost. In chemistry and materi-
als science, many optimization problems involve
finding the best set of parameters or conditions
that maximize a certain objective function, such
as the yield of a reaction or the strength of a ma-
terial. However, obtaining accurate predictions for
these systems often requires robust, reproducible,
and expensive experimental setups. In the case for
SDLs, multi-fidelity optimization seeks to balance
the trade-off between accuracy and cost by using
multiple SDLs of varying levels of fidelity, where
fidelity refers to the degree to which an SDL accu-
rately represents the true system. One approach is
to start with a low-fidelity instrument which could
be a low-cost SDL, to explore the parameter space
and identify promising regions, and then employ

a higher-fidelity SDL which is generally higher in
costs to refine the optimization in those regions.
This can reduce the overall cost of the optimiza-
tion while still achieving high accuracy in the fi-
nal result. Multi-fidelity optimization can also in-
volve the incorporation of different types of data,
including both simulations and experiments or mul-
tiple types of experiments [136, 137]. For example,
as mentioned in Section 2.1, in-line IR or bench-
top NMR is a low-fidelity yet high-throughput ap-
proach compared to the gold standard NMR instru-
ment which is high-fidelity but single-throughput.
By coarsely exploring the search space with in-line
IR or benchtop NMR, only the experiments for finer
optimizations in promising regions are directed to
the gold standard NMR instruments which can re-
duce the time and cost of operating the high-cost
NMR instruments.

4.3.3. Workflow orchestration
When experiments contain multiple steps, work-

flow orchestration software should ideally be used.
While custom code can be written to manage
workflows, it is preferable to use existing pack-
ages that are fully-featured, modular (see software
modularity in Section 4.1.2), and well-maintained
to streamline orchestration efforts. Examples of
workflow orchestration platforms include Covalent,
BlueSky, alab-management, and HELAO. A cu-
rated list of workflow orchestration platforms ap-
plicable to SDLs is available in https://github.c
om/AccelerationConsortium/awesome-self-d
riving-labs under the “Workflow Orchestration”
section.

4.3.4. Cloud experimentation
“Cloud experimentation” allows users to be geo-

graphically distant from experimental hardware, in
analogy to cloud computing, where software pro-
grams can be executed remotely. One of the key
benefits of removing geographic barriers is the de-
centralization of expertise [138]. For example, do-
main specialists, roboticists, and software develop-
ers can collaborate across continents on the same
experiments.

Several examples of cloud-based SDLs exist [67,
75, 139–145]. Many commercial solutions have a
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Figure 12: Illustration of a network of parallel chemical synthesis robots working towards a common optimization goal [75].
Reproduced from [75] with permission under the Creative Commons Attribution license (CC-BY). Copyright © 2018,
Caramelli et al.

heavy focus on biology applications such as Emer-
ald Cloud Lab [140], the former Lilly-Strateos
lab [141], Culture Biosciences [142], and Arc-
toris [143]. On the other hand, solid-state ma-
terials science cloud laboratories are effectively
non-existent except for some minor capabilities of
biology- and chemistry-focused labs. While ex-
isting cloud labs have primarily targeted indus-
try users, a noteworthy example beginning to tar-
get academic users is CMU Cloud Lab [146–151].
This is a partnership between Carnegie Mellon
University and Emerald Cloud Labs to build a
subscription-based, 40 million USD facility with
over 200 types of scientific instrument. Unlike typ-
ical user research facilities, academic and indus-
try users can conduct an end-to-end experimen-
tal workflow and acquire the results from anywhere
around the world, 24/7, 365 days a year [146–151].
Typically, a research group needs to secure funding
for the reagents, cost of the instrument, and up-
keep costs to perform an experiment. Armer et al.
[152] outline several systemic reasons for the lack
of adoption of cloud-based science, such as the lack
of initial cloud access to gain preliminary data for
grant applications, the lack of cloud science grants
in general, the lack of academic training, and the
costs for a cloud lab subscription in addition to uni-

versity facility expenses. To tackle some of these
concerns, having an academic institution such as
Carnegie Mellon University build its own cloud labs
will reduce some of the barriers of entry for aca-
demics to access SOTA scientific equipment [152].
In addition, CMU Cloud Lab promotes open sci-
ence, a recent movement that aims to enhance the
transparency, accessibility, inclusivity, and credibil-
ity of scientific knowledge [153], and in which prob-
lems and results can be shared easily.

A platform such as CMU Cloud Lab typically
requires extensive capital and expertise to develop
onboarding, security, access restriction, priority
queuing, and workflow orchestration protocols. It
also relies on human-in-the-loop sample transfer
between modules, necessitating full-time techni-
cians to perform menial tasks. The costs asso-
ciated with these infrastructure components in-
evitably get passed onto the user which can be pro-
hibitive for educational settings and citizen science.
Since low-cost SDLs operate at a smaller scale and
the risks associated with data leakage and mali-
cious threats are lower, they are a great platform
for prototyping SDL infrastructure with low oper-
ational costs. For example, free, open-source tools
may be implemented into low-cost SDLs, such as
Bluesky for workflow orchestration [122], secure,
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encrypted internet of things-style communication
through platforms such as HiveMQ [84], and the
Google Authentication application programming
interface for security measures [122]. By leveraging
the advantages of rapid, low-risk prototyping ben-
efits of SDL frugal twins described in Section 2.2,
we envision a low-cost SDL cloud lab that can act
as a test bed for research-grade cloud experimenta-
tion ecosystems, but with dramatically lower oper-
ational costs. See Discussion #62 and Discussion
#91 from Section 7.

5. Ethical benefits and risks

With any new technology, there are several ethi-
cal benefits and risks to consider, especially if low-
cost SDLs can be put into the hands of many
without regulation or guidelines, due to their low
cost. In this section, we attempt to highlight why
low-cost SDLs should overcome societal barriers to
enable citizen science (Section 5.1), and address
the concerns around democratizing this technology
which is capable of discovering novel substances
(Section 5.2).

5.1. Citizen science
Access to research facilities has historically been

limited to universities, government, and industry
laboratories, and their personnel. This limitation
reduces access for non-professional, citizen scien-
tists, many of whom could contribute greatly to the
body of scientific understanding [154]. The lack of
gender, racial, ethnic, and socioeconomic diversity,
equity, and inclusion in science hinders a truly rep-
resentative citizen science [155]. We hope that by
making SDLs low-cost, accessible, and open source,
it will be easier to build equity and inclusion into
the educational system.

Additive manufacturing (i.e., 3D printing) is
a natural place for citizen science, as it is low-
cost, operationally fairly safe, easy to learn with
the abundance of online resources, and adaptable
to many different objectives. For example, De-
neault et al. [17] developed an SDL known as Addi-
tive Manufacturing Autonomous REsearch System
(AM ARES) for optimizing the print parameters of
several materials for additive manufacturing. This

is a low-cost additive manufacturing SDL that uses
a USD 300 commercial 3D printer with a custom
syringe extruder, Raspberry Pi controllers and we-
bcams, and software that will be released as open-
source (Figure 13). The authors use Bayesian opti-
mization to guide the selection of 3D print parame-
ters for latex caulk with silicone additives, attaining
excellent extrusion properties after 100 iterations.
In addition, AM ARES performed self-calibration
for three different unknown source filaments, which
resulted in better performance than default manu-
facturer specifications in an average of 15 experi-
mental iterations. Although this system is robust,
low-cost, and a stepping-stone for many to learn
about SDLs, there is yet to be widespread adop-
tion due to the lack of educational infrastructure
such as open-source software, course materials, and
a step-by-step build guide.

To address this problem, the project was ex-
tended between the US Air Force Research Labo-
ratory and Airship Consulting to create ATHENA,
an affordable AM ARES system with open-source
software (ARES OS 2.0) and off-the-shelf hardware.
This initiative aims to make SDLs and autonomous
experimentation systems widely accessible in grade
schools, trade schools, and universities. ARES
OS 2.0 is a platform-agnostic, web-facing software
framework for autonomous experimentation SDLs
which takes much of the software development bur-
den from the researcher. The goal is to provide a li-
brary of open-source modules for all to use and con-
tribute back to the growing community, with the in-
tent that “Anyone Can Download An Autonomous
‘Research Robot’” [156]. ATHENA is an example
of the movement towards low-cost Autonomous Ex-
perimentation Systems/SDLs to improve access to
citizen scientists and especially under-served com-
munities through open-source software and low-
cost systems.

5.2. Risks

While we have focused on how SDL systems ac-
celerate the discovery of beneficial materials, au-
tonomy can be a double-edged sword if it leads to
the creation of dangerous substances, whether by
accident or design. As with any technology, there
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Figure 13: A simplified closed-loop workflow of the AM ARES platform. Reproduced from [17] with permission under
the Creative Commons Attribution license (CC-BY). Copyright © 2021. This is a U.S. government work and not under
copyright protection in the U.S.; foreign copyright protection may apply.

are risks for people or organizations to engage in ac-
tions that are harmful, illegal, or morally wrong1.
We recognize that this is a polarizing topic. On
one hand, there will always be some people with
malicious intent; people will figure out a way. For
example, the widespread adoption of low-cost 3D
printers resulted in an increase in 3D printed guns.
Updated legislation regarding firearm manufactur-
ing and use plays a key role in regulating this in-
crease. However, the large majority of gun-related
incidents do not seem to involve so-called “ghost
guns” (i.e., 3D printed guns). In another example,
explosives can be created from commonly obtained
materials, and safeguards have been put in place,
such as limiting purchase amounts or requiring li-
censes, permits, and certifications. Naturally, reg-
ulations are also region-dependent. Recently, con-
cerns have been raised about the potential for large
language models and autonomous platforms (e.g.,
SOTA cloud laboratories) to be used for nefarious
purposes such as the synthesis of illicit drugs or
chemical weapons [138, 157–160].

We do not have the solution for safeguarding
SDLs, but methods exist to make it harder for ill-
intentioned people and organizations to engage in

1See “bad actor” definition in the Cambridge Dictionary.

harmful behavior and easier for researchers to im-
plement preventive strategies against the (acciden-
tal) synthesis of harmful substances. The key is to
address this problem early, quickly, and judiciously
through governance, regulations, standards, educa-
tion, awareness, and self-adherence to ethical use.

There are valuable open source practices that can
be learned and adapted to low-cost SDLs because
there are potential risks associated with open sourc-
ing, such as open access to hazardous information
or datasets and the potential misuse of research
tools. To mitigate these risks, a cultural shift to-
wards open methodology and open review may help
regulate the dissemination of malicious code, data,
or materials [161]. Creators of SDLs should also
consider designs which mitigate misuses or failure
modes which would endanger lives or property. For
example, incorporating steps to assess the toxicity
of autonomously generated substances can prevent
the release of unknown toxic chemicals into the en-
vironment [162].

6. Future work

In this section, we describe ideas for new frugal
twins (Section 6.1), suggested educational course
content (Section 6.2, and classifying levels of au-
tonomy (Section 6.3).
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6.1. Ideas for new frugal twins
As mentioned in Section 3.1.2 there are several

examples of low-cost SDLs involving liquid han-
dling; however, low-cost SDLs involving the trans-
fer and processing of solid matter are practically
non-existent. This largely stems from the relative
ease of transferring liquids using, e.g., diaphragm or
peristaltic pumps and tubes compared with solids
using, e.g., powder feeders and robotic arms (see
Discussion #92). For perspective, autonomous
powder dispensers such as Trajan’s CHRONECT
series cost significantly more (USD 100k+) than
liquid handlers of similar resolution. Liquid trans-
fer issues such as viscosity, density, and surface
tension are largely solved problems. With pow-
der handling, variable particle sizes, consistencies,
and electrostatic interactions make it difficult to
robustly dispense powders of different types using
the same type of equipment. One workaround to
transferring solids is to dissolve or disperse them
in liquids (i.e., as solutions or slurries); however,
this approach is not feasible for many materials sci-
ence scenarios where suitable solvents are unavail-
able or unwanted chemical reactions may occur. To
complicate matters further, substrates and sample
holders may be required to accommodate high tem-
peratures, high pressures, or state changes (e.g.,
solid to liquid).

To address the lack of solid-state materials
science SDL demos, we propose a solid-based
color-matching demo extension (Closed-loop Spec-
troscopy Lab: Solid-mixing (CLSLab:Solid)) that
uses a low-cost mobile robot arm, mixtures of gran-
ulated colored wax powders (Figure 14), and a
halogen lamp. Similarly to moving from a light-
mixing to a liquid-mixing demo (Section 3.1.2),
the solid-mixing demo requires hardware and work-
flow changes. At the start of the experiment, a
robotic arm will pick and place one tealight can-
dle in a holder from a stacked array of holders in
a storage array onto a motorized turntable. The
turntable will then move the candle holder to a
position beneath a funnel connected to red, yel-
low, and blue wax powder dispensers. The candle
will then be positioned beneath a heat source (e.g.,
halogen lamp) to melt and convectively mix the
wax, followed by color sensing using the same sen-

Figure 14: A summary schematic of the CLSLab:Solid
demo [50].

sor as CLSLab:Light and CLSLab:Liquid. When
the candle holder returns to its original position on
the turntable, the robotic arm will pick it up and
place it into a separate storage/waste area.

Moving one step further is the idea of a “robot
chocolatier.” Chocolate captures key materials sci-
ence principles such as liquid phase transforma-
tions, bulk material characterization (as opposed
to thin-film), and processing-structure-property
relationships. This robot chocolatier (Robo-
Chocolatier) will reuse many components from
CLSLab:Solid and add a do-it-yourself tensile tester
and a chocolate 3D printer. Both CLSLab:Solid
and RoboChocolatier act as toy examples for the
more industry-relevant materials discovery task of
additively manufactured metal alloys for aerospace
and automotive applications. Again, as a recurring
theme, they can serve as proofs of concept that can
be used during prototyping and the preparation of
grant proposals (Section 2). For a continuing dis-
cussion of solid-state materials science SDL demos,
see Discussion #153.

Other topics that the community may consider
exploring in the context of SDL frugal twins include
other types of inorganic synthesis, battery formula-
tions, batch chemical synthesis, semiconductor fab-
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rication, polymer synthesis, artificial organ com-
patibility, mobile and fixed robotic arms, microflu-
idic devices, and closed-loop microscopy.

6.2. Suggested course outcomes
Educators may be wondering how to incorporate

SDL concepts into existing and new curricula. To
streamline efforts to democratize SDLs, it is im-
portant to define course structures and outcomes
that can be tailored to meet the individual needs
and disciplines of each student. Ideally, this would
begin as early as middle- or high school and con-
tinue throughout associate- and bachelor-level un-
dergraduate degree programs, including program-
ming, data handling, physical “maker skills” (3D
design and fabrication, electronics), automation,
and the associated core science disciplines [28].

We present in Table 3 suggestions for possible ed-
ucational outcomes for hands-on experience, learn-
ing best practices, and using algorithms. Hands-
on hardware and software development experience,
brainstorming designs, and expertise in applying
optimization algorithms are emphasized. We en-
courage the community to weigh in on and converge
on a set of desired outcomes and skills necessary for
successful SDL implementations. In future work,
we plan to flesh out the details for creating a syl-
labus, course outline, and course content along with
practical examples for teaching SDLs to students.
Eventually, as the ecosystem matures, we envision
higher education programs and degrees specific to
SDLs for chemistry and materials science.

Once again, it is inevitable to mention the multi-
tool motion platform developed at the Univer-
sity of Washington [58]. The platform was in
fact designed with community development and
customization as one of the project’s aims. Its
original design was inspired by the RepRap and
maker movements, which have already generated
an array of open-source hardware toolkits enabling
flexible and extensible technologies for laboratory
automation. This connection anticipates the co-
development of tools configured for platforms such
as Jubilee. These features also make the platform
a great educational tool, as it provides a solution
with a low-cost barrier and allows students, from
most disciplines, to obtain skills for all steps of an

experimental campaign in a single SDL platform.
A successful example of this is the implementation
of Jubilee into engineering design courses at the
University of Hawai‘i at Mānoa.

6.3. Classifying levels of autonomy

In this work, we have focused on fully au-
tonomous low-cost examples but also pointed out
a number of partially autonomous examples that
are equally important in accelerating the discov-
ery of new materials and teaching the next gen-
eration of data-driven scientists. However, there
are no established standards to define the levels
of autonomy for SDLs. To better categorize lev-
els of automated chemical design, Goldman et al.
[33] proposed a set of definitions in the context of
ideation (finding non-obvious trends) and decision
making in chemical design, similar to those for self-
driving vehicles [163, 164]. They define the high-
est level of autonomy (Level 5) as systems where
these two processes are handled without human in-
tervention over multiple iterations. Although their
focus was primarily on artificial intelligence, in the
case of SDLs, automation of synthesis, character-
ization, sample transfer hardware, and suggestion
of new procedures are equally important aspects to
ideation and decision-making. The SDL commu-
nity will benefit from collectively determining a set
of classifications or standards. One possibility is
to classify autonomy levels on a per-category basis:
Synthesis, Characterization, Sample Transfer, and
Experiment Planning.

To make these categories conceptually and vi-
sually easy to understand, emoji can be used to
represent whether a process is fully autonomous
vs. one that requires manual intervention (Fig-
ure 15). This type of classification is utilized in
https://github.com/AccelerationConsortiu
m/awesome-self-driving-labs as of 2022-08-
08. For a discussion centered on these representa-
tions, see https://github.com/AccelerationC
onsortium/awesome-self-driving-labs/disc
ussions/15. Autonomy levels could also include
failure rate/tolerance, number of iterations without
manual intervention, or use of physics-based simu-
lations to supplement experiments.
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Table 3: Suggested learning outcomes of a course covering SDL topics. For a continuing discussion, see Discussion #186.

Topic Potential Learning Outcome

Experience
• Familiarize the concept of SDLs (hardware, algorithms, orchestration)
• Acquire hands-on and software development experience by setting up a toy demo
• Propose a design for a research-oriented SDL via a white paper

Best Practices
• Identify SDL best practices (e.g., modularity, reproducibility, safety, documentation)
• Identify best practices for “cloud experimentation” (e.g., data transfer, storage)
• Identify best practices for ML (e.g., validation, prevention of data leakage)

Algorithms • Compare and contrast three forms of experiment planning algorithms
• Test the complexity/efficiency trade-offs for advanced optimization
• Identify methods for incorporating domain knowledge

Figure 15: a) Legend for the emoji classification. b) Classifying levels of autonomy in SDLs through multi-emoji clas-
sification. Emoji and their names and Unicode values are given. Synthesis ( “test tube”: U+1F9EA); characterization
( “microscope”: U+1F52C); sample transfer ( “building construction”: U+1F3D7); experiment planning ( “per-
sonal computer”: U+1F4BB); manual intervention ( “heavy multiplication X”: U+2716). Please note that the exact
symbols may appear differently on different systems. Alternatively, the symbols may be copy-pasted directly from
https://github.com/AccelerationConsortium/awesome-self-driving-labs/blob/main/contributing.md.
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7. A continuing discussion

While a review article represents a fixed snap-
shot, there is a benefit to allowing a continuing dis-
cussion of these important topics in a less rigid en-
vironment [165] that is amenable to the fast-paced
evolution of SDLs. While this can also take on
many forms such as social media and informal com-
munication, we provide a public, organized, and
persistent set of public, ongoing discussions hosted
on GitHub, as summarized in Table 4. Anyone
can access up-to-date dialogue relevant to low-cost
SDLs, and SDLs in general. GitHub accounts are
free, and users may contribute to existing threads
or open entirely new discussions. We hope that
the content in this article spurs further dialogue in
the community around democratizing SDLs, defin-
ing best practices, and gaining hands-on experience
with advanced ML algorithms.

8. Conclusion

SDL frugal twins can equip the next genera-
tion with the necessary skills, provide a low-risk
environment for prototyping and hands-on learn-
ing, and help to create a more equitable, global
ecosystem through decentralized equipment, soft-
ware, and expertise. SDL frugal twins are being
used for both education and research, and there is
much room for improvement. Modularity for both
hardware and software is an effective design prin-
ciple for reducing redesign and maintenance costs,
and care must be taken when considering human-
inspired vs. hardware-centric vs. human-in-the-loop
design approaches. The true value of these low-cost
systems can be realized when SOTA software im-
plementations such as batch and multi-fidelity op-
timization, workflow orchestration, and cloud ex-
perimentation are combined with SDL frugal twins
across the spectrum. With the ethical and respon-
sible use of this technology, frugal twins are poised
to accelerate the discovery of society-benefiting ma-
terials within the SDL community.
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Table 4: self-driving-lab-demo GitHub discussions and awesome-self-driving-labs GitHub discussions for various
topics related to SDLs.

Topic Repository Link

All discussions self-driving-lab-demo All discussions
Data and access management self-driving-lab-demo Category
Demo extensions and design self-driving-lab-demo Category
Examples and tutorials self-driving-lab-demo Category
Scaling up SDLs self-driving-lab-demo Category
Packaging open-source hardware as commercial kits self-driving-lab-demo Discussion #124
Experimental orchestration software self-driving-lab-demo Discussion #64
Educational outcomes and homework problems self-driving-lab-demo Discussion #186
Solid-state materials science demo self-driving-lab-demo Discussion #153
Low-cost powder handling self-driving-lab-demo Discussion #153
Roadmap for demo extensions self-driving-lab-demo Discussion #77
A network of cloud-based experiments self-driving-lab-demo Discussion #62
Classifying level of autonomy self-driving-lab-demo Discussion #15
What is a self-driving lab? awesome-self-driving-labs Discussion #32
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Glossary

AM ARES Additive Manufacturing Autonomous
REsearch System 25, 26

ARES Autonomous Research System 2, 5

CLSLab:Light Closed-loop Spectroscopy Lab:
Light-mixing 8, 10, 11, 27

CLSLab:Liquid Closed-loop Spectroscopy Lab:
Liquid-mixing 11, 12, 27

CLSLab:Solid Closed-loop Spectroscopy Lab:
Solid-mixing 27

HPLC-MS high-performance liquid chromatog-
raphy coupled with mass spectrometry 6

ML machine learning 8, 14, 29, 30

SDL self-driving laboratory 1–3, 5–8, 11, 13, 14,
16–19, 22–32

SOTA state-of-the-art 1, 3, 6, 7, 14, 16, 18, 22,
24, 26, 30
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