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ABSTRACT

Recent Machine Learning (ML) developments have opened new perspectives on accelerating the
discovery of new materials. However, in the field of materials informatics, the performance of
ML estimators is heavily limited by the nature of the available training datasets, which are often
severely restricted and unbalanced. Among practitioners, it is usually taken for granted that more
data corresponds to better performance. Here, we investigate whether different ML models for
property predictions benefit from the aggregation of large databases into smaller repositories. To
do this, we probe three different aggregation strategies prioritizing training size, element diversity,
and composition diversity. For classic ML models, our results consistently show a reduction in
performance under all the considered strategies. Deep Learning models show more robustness, but
most changes are not significant. Furthermore, to assess whether this is a consequence of a distribution
mismatch between datasets, we simulate the data acquisition process of a single dataset and compare
a random selection with prioritizing chemical diversity. We observe that prioritizing composition
diversity generally leads to a slower convergence toward better accuracy. Overall, our results suggest
caution when merging different data sources and discourage a biased acquisition of novel chemistries
when building a training dataset.

Keywords Materials Informatics · Machine Learning · Data Aggregation

1 Introduction

In recent years, following the increased availability of computational material databases [Jain et al., 2013, Kirklin
et al., 2015, Blokhin and Villars, 2018], Machine Learning (ML) and data-driven approaches have opened new frontiers
for accelerating materials discovery. These aim at overcoming the limitations imposed by the expensive physical
simulations adopted in density functional theory (DFT), which allow only for a narrow exploration of the chemical
space. Furthermore, DFT suffers from systematic errors due to numerical approximations occurring in any solver
[Schleder et al., 2019]. Besides the computational advantages, ML models can also discover novel patterns that are
otherwise hard to identify by only leveraging traditional chemical knowledge [Mansouri Tehrani et al., 2018, Tewari
et al., 2020].
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While, on the one hand, such approaches have shown remarkable success [Wang et al., 2022, Khakurel et al., 2021, Cao
et al., 2019, Li et al., 2019], it is important to acknowledge their limitations and potential downsides. One significant
challenge is the difficulty in assessing the quality of performance outside the distribution of training data. As it happens,
ML models can learn patterns that are too specific to the training data and fail to extrapolate to unseen data (overfitting).
Such approaches also heavily rely on the size of the training data and scarcity can lead to models with limited capabilities
or inaccurate predictions. Experimental datasets of specific chemical properties, such as thermoelectric properties
[Gaultois et al., 2013, Katsura et al., 2019], are very unbalanced and rare throughout the literature. This is a consequence
of the popular material repositories predominantly relying on DFT calculations [Curtarolo et al., 2012, Jain et al.,
2013, Kirklin et al., 2015], which tend to provide a constrained selection of chemical attributes. This hampers the
ability to effectively target specific material classes. Different approaches have been adopted to mitigate the natural
presence of bias in materials data. LOCO-CV [Meredig et al., 2018] has been proposed as a modification of the standard
KFold evaluation strategy to measure the extrapolation error of machine learning models on unseen chemical clusters.
Furthermore, an entropy-based metric has been recently proposed to mitigate the imbalance of a crystal structures
dataset by improving the diversity of underrepresented crystal systems [Zhang et al., 2023]

On a general level, three main strands are usually considered to improve the predictive accuracy of ML models:

• Better model: in a model-centric approach, the primary emphasis is on creating better algorithms to extract
valuable insights from the available data. Lately, especially in the area of Deep Learning, this is mostly done
by designing novel architectures. Here, a popular approach is to strengthen the algorithm by tailoring the
architecture to the specific application, usually by leveraging symmetries that exist in the data, e.g. crystal
structures [Klipfel et al., 2022];

• Better data: in a data-centric approach, the focus is instead on the quality of the inputs for the model. Notable
examples are the refinement of the measurement strategy and preprocessing, e.g. data balancing or outlier
filtering. Also falling under this category are methods that leverage domain knowledge to design better data
features, more commonly known as ’feature engineering’ Ward et al. [2016] Lee et al. [2023]

• More data: in this branch of the data-centric approach, the attention is shifted to increasing the number of
data points. This is generally considered to be more significant in view of a better-performing statistical model
[Goodfellow et al., 2016, Zha et al., 2023] and a compelling alternative to vast domain knowledge [Murdock
et al., 2020].

As this last point is generally taken for granted, little attention has been dedicated to it in the literature on materials
informatics. Given this and the limited availability of experimental data, it is natural for practitioners to consider the
aggregation of diverse data sources. However, data aggregation in materials informatics presents unique challenges
compared to most ML datasets [Himanen et al., 2019]. Unlike many other domains, chemical datasets can often be
unbalanced, small in size, or collected under diverse experimental conditions. Additionally, the ranges of values can
be considerably large, and the data space can exhibit pronounced discontinuities. As an example, in the context of
thermoelectric materials, the introduction of chemistry defects through doping can lead to substantial alterations in
electronic properties [Kdasap, 2002, Na et al., 2021]. These challenges emphasize the need for careful consideration
when aggregating different datasets in materials informatics research.

In this work, we deepen the aggregation of different datasets reporting chemical formulas and associated properties. In
particular, we study whether the predictive accuracy of different ML models can benefit from the aggregation of local
repositories with databases with larger availability. In order to do that, we consider three different aggregation strategies
in which we prioritize training size, element diversity, and composition diversity. Our main findings are summarized as
follows:

• We report that classical ML methods undergo a noticeable degradation in accuracy subsequent to a con-
catenation with popular databases. Additionally, we show that the incorporation of data points focusing on
maximizing chemical diversity also leads to a decline in the performance of such models.

• We establish that Deep Learning (DL) models exhibit a much higher level of robustness. However, the majority
of changes in the accuracy, whether improvements or degradations, are not statistically significant.

• We simulate the data acquisition process on a single dataset by utilizing both the DiSCoVeR algorithm and
a random acquisition approach. We proceed to compare the results obtained from these two methods on
both a randomly generated test set and a biased test set, which was previously constructed using DiSCoVeR.
Notably, our observations demonstrate that a biased acquisition strategy for new stoichiometries deteriorates
the learning process of the model, regardless of the test set scenario.

The rest of the paper is structured as follows. In Sec. 2, we present the datasets and the downstream ML models that we
use to support our claims; in Sec. 3, we evaluate different dataset aggregation strategies and discuss results; in Sec. 4,
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Figure 1: Violin plots of all pairs of datasets. Notably, archives’ data covers a wider range of the target property.

we present the result about prioritizing chemical diversity in progressive data acquisition; Sec. 5 concludes the paper
with the final remarks.

2 Preliminaries

2.1 Datasets

In our experimental setting, we consider eight different datasets for eight different chemical properties:

• electrical resistivity, electrical conductivity and Seebeck coefficient from the MRL dataset [Gaultois et al.,
2013];

• thermal conductivity from the Citrine platform [Mullin, 2017];

• Band gap from Zhuo et al. [2018];

• DFT calculated Bulk modulus and Shear modulus from AFLOW [Curtarolo et al., 2012].

For each property, the respective dataset is aggregated with experimental data coming from the Materials Platform for
Data Science (MPDS)Blokhin and Villars [2018], retrieved by using the provided API. MPDS is one of the largest
resources currently available for material scientists. It leverages the extensive data available in the Pauling File Villars
et al. [2004], a comprehensive database of materials information reporting crystal structures chemical compositions and
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Property units dataset nature size minimum maximum aggregation label

Electrical resistivity (Ω· cm) MRL exp. 400 −5.3 (log) 2.17 (log) A
MPDS exp. 6352 −10 (log) 7.6 (log) B

Electrical conductivity (S/cm) MRL exp. 401 −2.17 (log) 5.3 (log) A
MPDS exp. 1489 −15 (log) 11 (log) B

Thermal conductivity (W/mK) Citrine exp. 219 −0.70 (log) 2.37 (log) A
MPDS exp. 878 −0.85 (log) 2.30 (log) B

Seebeck coefficient (µV/K) MRL exp. 416 −476.68 525.2 A
MPDS exp. 2050 −640 674 B

Band gap (eV) Zhuo exp. 2287 0.02 6.43 A
MPDS exp. 918 2× 10−4 8 B

Bulk modulus (GPa) AFLOW calc. 4822 0.66 312.94 A
MP calc. 6221 0.73 324.70 B

MPDS exp. 1367 2× 10−7 379.4 B

Shear modulus (GPa) AFLOW calc. 4747 0.65 175.81 A
MP calc. 6073 0 174.12 B

MPDS exp. 358 0.36 293 B

Table 1: Dataset details. Datasets labeled with ’A’ are the ones that will be increased through aggregation (denoted ’A’)
with points from dataset ’B’

phase diagrams, to enable efficient exploration, analysis, and modeling of materials. For the two calculated datasets, we
also consider the aggregation with calculated data from the Materials Project (MP) database Jain et al. [2013].

Several steps of preprocessing are applied to the raw datasets. First, we filter our values outside 15 K of the room
temperature, noble gases and radio-isotopes (A > 93). If input duplicates are found, we store their median. Finally,
we discard all the data points outside 3 standard deviations from the overall mean. Fig. 1 compares the distributions
of the mentioned local repositories with the corresponding dataset from which we gather the additional data. Except
for sporadic cases, we observe a general agreement in shape between the considered pairs of datasets. As expected,
local repositories generally cover a smaller range of values with respect to the data gathered from the archives. Further
details about sizes and value range for all datasets are given in Tab. 1. With the only exception of the band gap datasets
pair, the size of the archives’ data are always larger.

2.2 ML estimators

Throughout the paper, we evaluate data aggregation by comparing the performance of different ML estimators before
and after increasing the dataset size. These models include baselines and SOTA for chemical properties prediction
given the stoichiometry, with representatives of both classical and Deep Learning (DL) approaches. In more detail, we
consider ridge regression as a simple baseline model, random forest regression as a robust model for low-data regimes
[Murdock et al., 2020], Roost [Goodall and Lee, 2020] as a DL model based on graph representations and CrabNet
[Wang et al., 2021] as a transformer-based approach and representative of the SOTA. Performance is assessed through
the ordinary procedure of train-test split and on the mean absolute error (MAE), a typical metric used for regression
that quantifies the absolute deviation between models’ predictions and true corresponding values.

Finally, we adopt a classification task, inspired by recent work investigating machine learning extrapolation capabilities
in materials informatics [Kauwe et al., 2020]. We first label material instances with the corresponding property
in the top 20% of the distribution as extraordinary. Here, the term ’top’ is defined based on the specific property
under consideration. In some cases, ’top’ refers to the highest values, while in other cases, ’top’ denotes the lowest
values, depending on the tail of the distribution. We finally consider logistic regression as a simple binary classifier to
differentiate ordinary from extraordinary materials.

The regularization strength for the ridge regression and logistic regression model is optimized via Cross Validation (CV)
from a range of logarithmically spaced values between [10−4, 103]. Finally, results are averaged across 5 iterations with
different random seeds controlling the initialization of all stochastic components.
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Figure 2: Imbalance of MAE. For different datasets A in the baseline setting (see Sec. 3), the Mean absolute error
(MAE) of a Random Forest model is plotted against the occurrences of individual elements in compositions of the
training set. Error bars represent 1σ over 5 different random seeds. It can be observed how larger errors and deviations
are mostly found in correspondence with low train occurrences. Similar patterns can be observed for most other
properties and models.

3 A-B data aggregation

As our first and main experiment, we consider the aggregation of each dataset A with data points collected from the
respective dataset B. To assess the benefits of the aggregation, we first evaluate the performance of ML estimators
before integrating any new data points; this will be indicated as baseline setting. This is done, as usual, by training on a
subset (80%) of dataset A and computing prediction errors on the corresponding test set (20%). For DL models, 10% of
the training size is reserved for a validation set. In the aggregation process, data points collected from B only increase
the size of the original training set (and validation, for DL) of A. For consistency, performance is always assessed on
the original test set of A. We consider three different aggregation strategies:

Concatenation: a simple concatenation of all points from the train set of A with the whole dataset B. Duplicated
instances are removed by taking the median across reported target properties. The primary advantage of this strategy
is that the size of the resulting dataset is maximized. This is generally believed to strengthen the robustness of the
estimators and potentially discover new patterns. However, a possible drawback is a saturation effect which arises
from the compounded presence of redundant data points, hindering model learning and generalization. In particular,
different associated values and experimental conditions may have the overall effect of increasing the degree of noise in
the dataset.

Element-focused concatenation: to introduce the next strategy, we consider the following illustrative example. In
Fig. 2, the mean average error (MAE) of a Random Forest model [Breiman, 2001] is plotted against the occurrences
of the chemical elements in compositions of the training dataset A. Two main patterns can be observed: an increase
in MAE as fewer representatives are available at the training stage, and an increase in variance (similar patterns are
also observed with other models). As a consequence, one might expect to improve the overall accuracy by populating
chemical regions with fewer representatives, while, at the same time, avoiding the introduction of noise that would alter
the performances on the rest.
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Datasets Ridge regression (regr.) Random Forest (regr.)
Baseline Concat ElemConc DiSCoVeR Baseline Concat ElemConc DiSCoVeR

Elec. res. 0.69±0.07 1.21±0.03 0.75±0.04 1.04±0.06 0.62±0.05 1.11±0.06 0.7±0.1 1.04±0.06

Elec. cond. 0.71±0.04 3.73±0.06 1.1±0.2 1.9±0.4 0.65±0.08 3.8±0.2 1.3±0.5 1.7±0.3

Therm. cond. 0.25±0.02 0.38±0.01 0.28±0.03 0.31±0.03 0.28±0.03 0.36±0.02 0.25±0.02 0.31±0.03

Seebeck 106±13 123±7 103±7 104±8 83±9 109±8 83±8 98±5

Band gap 0.53±0.01 0.55±0.01 0.53±0.01 0.53±0.01 0.43±0.02 0.46±0.02 0.42±0.02 0.42±0.01

Bulk modulus (c) 21.1±0.6 22.7±0.8 21.1±0.6 21.6±0.7 13±1 16±1 13±1 14±1

Shear modulus (c) 15.0±0.3 15.3±0.5 15.0±0.3 15.1±0.4 10.3±0.5 10.6±0.4 10.2±0.5 10.3±0.6

Bulk modulus (e) 21.1±0.6 22.7±0.4 21.2±0.6 21.4±0.5 13±1 15.9±0.7 13±1 13±1

Shear modulus (e) 15.0±0.3 15.4±0.2 15.0±0.2 15.0±0.3 10.3±0.5 10.6±0.5 10.3±0.4 10.4±0.5

Datasets Roost (regr.) CrabNet (regr.)
Baseline Concat ElemConc DiSCoVeR Baseline Concat ElemConc DiSCoVeR

Elec. res. 0.56±0.05 0.71±0.08 0.62±0.08 0.6±0.1 0.60±0.04 0.60±0.08 0.67±0.04 0.63±0.06

Elec. cond. 0.6±0.1 0.8±0.2 0.60±0.05 0.8±0.1 0.60±0.04 0.8±0.2 0.61±0.07 0.63±0.08

Therm. cond. 0.21±0.04 0.24±0.03 0.26±0.07 0.3±0.1 0.20±0.03 0.19±0.03 0.20±0.03 0.20±0.02

Seebeck 58±6 66±7 64±8 69±9 68±10 60±6 65±7 72±7

Band gap 0.42±0.02 0.41±0.01 0.47±0.06 0.40±0.03 0.38±0.01 0.37±0.01 0.39±0.01 0.38±0.01

Bulk modulus (c) 10.7±0.7 10.0±1 11±1 11.0±0.7 9.0±0.7 8.6±0.8 9.2±0.9 8.8±0.7

Shear modulus (c) 10.5±0.6 8.4±0.2 11±1 10.4±0.2 8.7±0.2 7.3±0.1 8.8±0.3 8.7±0.5

Bulk modulus (e) 10.7±0.7 12±1 11.0±0.6 11±2 9.0±0.7 9.8±0.7 9.1±0.7 9.3±0.7

Shear modulus (e) 10.5±0.6 10.6±0.5 10.4±0.3 10.4±0.5 8.7±0.2 9.0±0.2 8.8±0.2 9.0±0.6

Datasets Logistic regression (class.)
Baseline Concat ElemConc DiSCoVeR

Elec. res. 0.82±0.05 0.58±0.04 0.79±0.04 0.55±0.04

Elec. cond. 0.85±0.04 0.82±0.03 0.85±0.03 0.82±0.04

Therm. cond. 0.91±0.06 0.86±0.05 0.90±0.05 0.87±0.06

Seebeck 0.85±0.02 0.82±0.04 0.84±0.07 0.84±0.05

Band gap 0.893±0.003 0.87±0.01 0.89±0.01 0.89±0.01

Bulk modulus (c) 0.91±0.01 0.90±0.01 0.913±0.003 0.91±0.01

Shear modulus (c) 0.88±0.01 0.81±0.02 0.88±0.01 0.88±0.01

Bulk modulus (e) 0.91±0.01 0.91±0.01 0.912±0.004 0.912±0.008

Shear modulus (e) 0.88±0.01 0.89±0.01 0.88±0.01 0.881±0.004

Table 2: For each model-dataset pair, the MAE is reported before (Baseline) and after 3 different data aggregation
strategies (Concat, ElemConc, DiSCoVeR). For calculated datasets A, experiments are repeated using calculated (MP)
and experimental (MPDS) dataset B. A green color represents an improvement above one standard deviation with
respect to the Baseline setting, yellow indicates equivalent performance (variations could simply be attributed to random
fluctuations) and red denotes a worsening above one standard deviation. Overall, different aggregation strategies fail to
improve performance.

In order to do this, we identify the k = 5 elements with the smallest prevalence in A and, for each, we collect n = 10
data points at random containing such element from dataset B. This addresses the weakness of previous concatenation
strategy. Although targeting specific classes of elements with a narrow prevalence may be attractive, the presence or
absence of a certain single element is not a good proxy for the chemical composition. In fact, this approach ignores any
high-level relationship between the involved stoichiometries.

DiSCoVeR: DiSCoVeR [Baird et al., 2022] algorithm is a recently proposed ensemble of machine learning methods
aimed at facilitating the identification of chemistries lying at the intersection between novelty and performance. In
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practice, DiSCoVeR can be used to provide novelty scores of a given pool of data with respect to another and it was
recently employed to identify new chemically novel high-temperature superconductors [Seegmiller et al., 2023] The
framework employed by DiSCoVeR is structured as follows: first, a distance matrix between all compositions in the
dataset is computed by using the Element Movers Distance [Hargreaves et al., 2020], a proposed metric which takes
into account chemical similarities; subsequently, the obtained distance matrix is used to obtain 2D UMAP embeddings
of all data points (A ∪ B); the likelihood of each point in B is computed with respect to the density of A, returning
a quantitative measure of novelty (density score). Compositions in regions of low density are assigned with a higher
novelty score. In the original DiSCoVeR implementation, a complementary score target score is calculated based on a
specific property of interest. Subsequently, these two scores are combined using predetermined weighting factors to
highlight materials that lie at the intersection of novelty and performance boundaries. We rely only on the density score
to propose the 10% top candidates of B to be merged into the training set of A. To avoid merging a novel data block
with all points similar to each other, we iteratively alternate the merging of a small number of candidates and an update
of the novelty scores, until 10% of B is integrated into A.

3.1 Discussion for A-B data aggregation

Table 2 shows the average testing errors on the original test of A obtained by training different ML estimators after
different AB aggregation strategies. A color scheme is used to guide the interpretation. Our experiments reveal
that classical ML approaches fail to leverage the advantages offered by any of the considered aggregation strategies.
Among the strategies, the plain Concatenation performs the worst, followed by DiSCoVeR, and finally ElemConc. This
observation suggests that the contamination in the original dataset increases as a function of the number of added points,
irrespective of the aggregation strategy. Contrary to classical ML approaches, DL models exhibit much greater stability.
A possible explanation for this phenomenon can be attributed to the choice of loss function employed at the training
stage. Notably, both Roost and CrabNet utilize a customized variant of the L1 loss referred to as ’robust’ [Goodall and
Lee, 2020, Wang et al., 2021]. The rationale behind employing this modified loss function is the ability to capture and
incorporate the inherent noise associated with individual data points. Therefore, this approach may facilitate a more
robust and stable data aggregation process. Despite that, except for sporadic cases, improvements or degradations in
accuracy are not significant. Interestingly, the majority of the best overall results are found in the correspondence of the
CrabNet model after performing a full concatenation with dataset B. Further investigation into the reasons behind this
could provide valuable insights for future research. By comparing the results obtained for the calculated datasets, we
also observe that maintaining consistency between the nature of datasets A and B led to slightly better performance.
In conclusion, different ML algorithms do not consistently benefit from any aggregation strategy. Most interestingly,
adding points targeting empty regions of the chemical space does not show a clear advantage. These findings shed
light on the strengths and limitations of different approaches in the context of dataset aggregation and provide valuable
insights for future studies in this domain.

While overall performance appears degraded, we have inspected the element-wise MAE for the elements that, before
the aggregation, had the lowest and highest occurrences in the training set of A. We indeed observed an increase in
training instances and sporadic improvements in MAE for the less populated element classes. However, this is often
found in correspondence with a noticeable degradation of performance for highly populated elements. This partially
explains the previously observed results, as these points weigh much more in the overall MAE. Moreover, as we enrich
certain chemical regions, we eventually saturate other chemical elements which eventually coexist within the same
chemical formula.

4 A-A Data aggregation

In this section, we conduct a further experiment with the intent of decoupling our results from the use of the archives’
data (MPDS and MP) as our resource for gathering additional data. In fact, the use of an external database does
not guarantee that the experimental conditions in A are met in B, which can lead to heavy distribution shifts [Wiles
et al., 2021]. Instead, here, we simulate a progressive data acquisition of one single dataset. This is done by initially
constricting dataset A to a random subset comprising only 5% of the original size. Subsequently, DiSCoVeR is used to
integrate new candidates from the remaining 95% of itself. Similarly to the previous experiment, the novelty scores are
updated and the new data points are iteratively added until the whole dataset is exhausted. The aforementioned strategy
is compared with a random acquisition which iteratively adds random data points ignoring any novelty constraint. We
assess the outcomes of the self-acquisition process on top of a test set created by holding out an amount corresponding
to 20% of the original dataset: in one case such test set is created randomly; in the other case the DiSCoVeR algorithm
is utilized to construct a biased test set with proportionate representatives of ordinary and extraordinary materials, with
proportions 2/3 and 1/3. The primary objective is to evaluate whether a biased data acquisition approach facilitated by
DiSCoVeR enhances the discovery of these new stoichiometries.
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Figure 3: For the Bulk Modulus dataset, the plot tracks the MAE of CrabNet (left) and random forest (right) models
under the A-A data integration setting. As explained in the text, the experiment is repeated for a random test set (top)
and for a biased one (bottom).

4.1 Discussion for A-A data aggregation

Fig. 3 shows the outcomes of the A-A aggregation process in the case of the bulk modulus, which is representative
of the results observed across all datasets. As for the regression model, we limit here, for brevity, our presentation to
the two SOTA for classic ML and DL methods, i.e. CrabNet (left) and random forest (right). The figure encompasses
the two exposed test scenarios: the randomly selected test set (top) and a biased test set created using the DisCoVer
algorithm (below). Notably, our analysis uncovers a consistent pattern across both test configurations. Contrary to our
initial expectations, in both cases, where the tests are either random or biased, the application of DisCoVer-guided data
acquisition leads to a deceleration in the model learning process with respect to a random acquisition strategy. This
observation holds true for both CrabNet and the random forest model, though with a different intensity. These findings
underscore an intriguing phenomenon: the incorporation of bias, even when guided by the DisCoVer algorithm, appears
to impede the learning progress of the models. Furthermore, this suggests that the balancing of a dataset in terms of
chemical diversity is not to be thought of in correspondence with better ML accuracies. Consequently, a thorough
examination of the intricate interplay between data acquisition strategies, model architecture, and test set composition is
warranted with the intent of gaining deeper insights and devising more effective approaches for model training and
evaluation in the field.
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5 Conclusions

In this paper, we have investigated the aggregation of different datasets in the field of materials informatics and its
impact on the performance of machine learning (ML) models for property predictions. In our evaluation, we showed
that classical ML models experienced a reduction in performance under all considered aggregation strategies, indicating
that the aggregation of diverse datasets can introduce noise and hinder model learning and generalization. Deep learning
models exhibited more robustness, but most changes in accuracy were not statistically significant. This suggests that
while deep learning models are less affected by the aggregation of datasets, they may not necessarily benefit significantly
from it. Furthermore, we simulated a data acquisition process within a single dataset and compared a random data
acquisition approach with one guided by the DiSCoVeR algorithm. Surprisingly, we found that prioritizing chemical
diversity through the DiSCoVeR-guided approach did not lead to a faster convergence toward better accuracy but
rather degraded performance. Our findings highlight the challenges and limitations of data aggregation in materials
informatics and emphasize the need for caution when merging different data sources.

Future research efforts should focus on developing more effective approaches for dataset aggregation in materials
informatics. As an example, supervised learning algorithms may be used to recognize and aggregate only chemical
families with a higher impact on a validation error. Furthermore, to facilitate the integration of diverse datasets
and enhance the reproducibility and comparability of research outcomes, the community should consider revising
data saving and storing standards, as well as creating automatic ML-driven detectors for nonsense identification. By
addressing these challenges, we can enhance the quality, reliability, and efficiency of data aggregation in materials
informatics, leading to improved ML models and accelerated materials discovery.
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