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Abstract—Advancements in materials discovery tend to rely
disproportionately on happenstance and luck rather than em-
ploying a systematic approach. Recently, advances in computa-
tional power have allowed researchers to build computer models
to predict the material properties of any chemical formula.
From energy minimization techniques to machine learning based
models, these algorithms have unique strengths and weaknesses.
However, a computational model is only as good as its accuracy
when compared to real-world measurements. In this work,
we take two recommendations from a thermoelectric machine
learning model, TaVO5; and GdTaO4, and test their thermoelec-
tric properties of Seebeck coefficient, thermal conductivity, and
electrical conductivity. We see that the predictions are mixed;
thermal conductivities are correctly predicted, while electrical
conductivities and Seebeck coefficients are not. Furthermore, we
discover a possible new avenue of research of a low thermal
conductivity oxide family.

Index Terms—thermoelectrics, oxides, data-driven, materials
informatics, thermal conductivity, NTE

I. INTRODUCTION

Accelerating worldwide energy demand and interest in
preventative measures regarding global climate change have
led to increasing development of diverse methods of energy
production. One such method is the use of thermoelectric
generators to capture waste heat [1]. Thermoelectric generators
rely on thermoelectric materials, which can generate an electric
potential difference (i.e. a voltage) from a temperature gradient
with with no moving parts. This unique set of properties makes
these materials promising for a wide variety of engineering
applications. However, current thermoelectric devices suffer
from low efficiency and often rely on rare and expensive
elements, so they have thus far been relegated to use in mission
critical applications where no other options are available,
such as space applications including rovers and probes. [2]-
[5]. Indeed, some of the highest performance thermoelectric
materials utilize toxic elements, such as PbTe, making them
unfit for many uses. New high-efficiency and low-cost thermo-
electric materials will need to be discovered to enable broader
device applications.

Unfortunately, discovering new high-efficiency materials
has proven challenging. Device efficiency scales with 27T,
which can be calculated using the relation

2
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where S is the Seebeck coefficient, o is electrical conductivity,
K is thermal conductivity, and 7 is temperature. From this we
can see that the ideal thermoelectric is electrically conductive
but thermally resistive. The challenge is that these properties
are interrelated, making the maximization of 27" non-trivial.
Many strategies have been developed for maximizing electrical
transport while minimizing thermal transport, and previous
work has shown that some chemical systems have reached the
point of diminishing returns in enhancing 27" through thermal
conductivity reduction, while others have not [1], [6].

The large potential compositional and structural space avail-
able for exploration makes this challenge perhaps well-suited
for data-driven approaches. In recent years, materials informat-
ics, or data science tools directed towards materials research,
have proven valuable in the rapid discovery and development
of a variety of different materials including photovoltaics,
superhard materials, metal alloys, and more [7]-[9]. In the
field of thermoelectrics itself materials informatics is finding
increasing application [10]-[12]. A recent report used machine
learning models to identify a new aperiodic structure transition
metal oxide, Ba;(Y¢TigOo7, with thermal conductivity among
the lowest ever measured for an oxide [13]. In this paper, we
evaluate two new oxides, TaVO5 and GdTaO,, as candidates
for low thermal conductivity materials and measure their
thermoelectric properties, relating the observed transport to
their structures.

II. MATERIALS AND METHODS
A. Machine Learning Algorithm

The machine learning model used to make materials recom-
mendations was described previously [12]. Briefly, a random
forest algorithm was trained on a combined dataset created
using experimental data taken from literature values, the NIMS
database, and the Materials Project. Rather than predicting
materials properties via regression, the model instead treated
predictions as classifications of whether or not they would have
values above or below a given cut-off. For a given chemical
formula, the model assigns a confidence value with a score
p, where p € (0, 1), for four physical properties that correlate
with desired thermoelectric behavior. The score represents the
probability that the property meets the specified cutoffs de-
fined for the absolute Seebeck coefficient (S > 100 uV-K™1),



electrical conductivity (o < 1072 £2-cm), thermal conductivity
(k < 10W-m~1.K~!) and band gap (E, > 0eV).

B. Synthesis of TaVOs

In accordance with Wang et al. [14], stoichiometric powders
of TasO5 and V505 were mixed with ethanol and ball milled
for ten hours with zirconia media. This mixture was then
allowed to dry overnight. The dried powder mixture was then
ground with an agate mortar and pestle and pressed into 13 mm
diameter discs. These were buried in sacrificial powder and
underwent reaction heating at 800°C for 24 hours. Sacrificial
powder was used to reduce vanadium loss during synthesis as
vanadium would diffuse into the alumina crucible boats during
reaction heating. The discs were then crushed into powder with
an agate mortar and pestle, and the powder was spark plasma
sintered at California Nanotechnologies Inc. under a load of
5.7kN for 20 minutes at 1000°C to achieve maximum density
for thermal and electrical measurements.

C. Synthesis of GdTaOy4

In accordance with Yang et. al. [15], GdTaO4 was synthe-
sized with starting materials Gd2Og and TayO5, which were
calcined at 800°C for 8 hours. Stoichiometric powders of these
calcined starting materials were mixed with ethanol and ball
milled for ten hours with zirconia media. This mixture was
allowed to dry overnight. The dried powder mixture was then
ground with an agate mortar and pestle and pressed into 13 mm
diameter discs. These discs underwent reaction heating at
1400°C for 12 hours. The discs were then crushed into powder
with an agate mortar and pestle, and the resulting powder
was spark plasma sintered at California Nanotechnologies Inc.
under a load of 5.7kN for 29 minutes at 1500°C to achieve
maximum density for thermal and electrical measurements.

D. Material Characterization

Powder X-ray diffraction measurements were taken with a
Bruker D2 Phaser diffractometer. Quantitative phase analysis
was carried out by the Rietveld refinement method using
GSAS-II software [16]. Heat capacity measurements were
taken on small portions of the synthesized powder using a
Netzsch 3500 DSC differential scanning calorimeter.

The sintered discs were mounted in epoxy and cut with
a diamond saw to a thickness of one to two millimeters for
the measurement of the Seebeck coefficient, electrical con-
ductivity, and thermal diffusivity. Prior to measurement, discs
were sanded with a 1200 grit sandpaper on a Struers TegraPol-
11. The electrical conductivity and Seebeck coefficient were
measured using a Netzsch Nemesis 458 which has a 7% stan-
dard error for Seebeck coefficient and a 5% standard error for
electrical conductivity. The thermal diffusivity was measured
via the laser flash technique on a Netzsch LFA 457, which has
a standard error of 10%. The bulk density was measured with
the Archimedes method in an immersion medium of deionized
water. Thermal conductivity was calculated using the standard
relationship:

k= aCpp )

where « is thermal diffusivity, C, is heat capacity, and p is
bulk density.

IIT. RESULTS

X-ray diffraction spectra for the TaVO5; sample along with
Rietveld refinement are shown in Figure 1. A good fit,
Rp=9.85%, was obtained by including two phases, TaVOs
and Tay 05, in the refinement. TaVO5 was shown to be approx-
imately 98% pure with approximately 2wt% Ta;O5 impurities.
Meanwhile, X-ray diffraction spectra for the GdTaO4 sample
along with Rietveld refinement are shown in Figure 2. A
similarly good fit, R,,,=8.68%, was obtained by including
two phases, GdTaO,4 and Gd2Os, in the refinement. GdTaOy4
was shown to be approximately 95% pure with approximately
Swt% Gd2Ogs impurities.
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Fig. 1. Rietveld refinement of powder X-ray diffraction data from TaVOs
samples showing a high purity sample with <2wt% TapOs impurity.

Since this study was focused specifically on machine learn-
ing predictions of thermal conductivity, stoichiometric oxides
of both TaVO5 and GdTaO4 were synthesized. By simple elec-
tron counting one would rightly predict both Ta[V]V[V]O5
and Gd[III]Ta[V]O4 to be insulators, and this was con-
firmed by electrical conductivity measurements which were
all outside the bounds of the Nemesis 458, signifying a
conductivity below the limitations of 0.05S-cm~!. Density
functional theory (DFT) calculations from literature suggest
TaVOs to have an indirect band gap of 2.11eV [17], and
GdTaO, to have an indirect band gap of 4.86eV [18].

Thermal conductivity measurements, shown in Figures 3
and 4, confirm the predictions that TaVO5 is a very low ther-
mal conductivity material, particularly among oxides, while
GdTaOy4 is not. The thermal conductivity of TaVOg is both
low and nearly independent of temperature. TaVO; reaches a
maximum value of 1.34 W-m~!.K~! at 100°C and then drops
consistently until reaching a minimum thermal conductivity
of 1.2W-m—1-K~1, well below the machine learning thresh-
old cutoff value of 10W-m~'-K~!'. GdTaO,4, on the other
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Fig. 2. Rietveld refinement of powder X-ray diffraction data from GdTaO4
samples showing a high purity sample with approximately Swt% Gd20O3
impurity.

hand, has a thermal conductivity of 4 W-m~'-K~! at room
temperature and the typical 1/T temperature dependence as it
approaches the value of 2.5W-m~1.K~! at 500°C.

In TaVO5 we observed during initial laser flash measure-
ments that at higher temperatures, vanadium loss became
apparent with TaVO5 decomposing into TagVOss5. Therefore,
samples were only measured up to 500°C in order to maintain
TaVOs phase stability. Samples measured at higher tempera-
tures had large hysteresis between heating and cooling which
we attribute to vanadium volatilization. New samples were
synthesized and laser flash measurements were taken up to
500°C to avoid volatilization and hysteresis.
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Fig. 3. Thermal conductivity of TaVOs5. Orange is thermal conductivity during
heating while blue is during cooling.
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Fig. 4. Thermal conductivity of GdTaO4 during heating.

IV. DISCUSSION

Given the low electrical conductivity of both TaVOs5 and
GdTaO,, the electrical contributions to the overall thermal
conductivities were calculated to be negligible. TaVOj5 ranks
lower than many well-known low thermal conductivity oxides
as outlined by Winter et al. [19]. This is noteworthy consid-
ering that most low thermal conductivity oxides achieve low
lattice thermal conductivities by relying on phonon scattering
due to aliovalent doping producing vacancies on the cation or
anion sublattices [20], [21].

Why is the thermal conductivity of TaVO5 so much lower
than that of GdTaO4? There are several possible factors that
could be responsible. Let us first consider the Debye temper-
ature, fp. Previous work has shown that 6p, the temperature
of a crystal’s highest normal mode of vibration, correlates
with structural rigidity and thus has implications regarding a
crystal’s thermal properties [22]. While the Debye temperature
can difficult to measure in practice, it can be calculated using
elastic constants with the following relation:

b [3n (Nap\1'?
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where h and kg have their usual meanings, n is the number
of atoms per formula unit, N5 is Avogadro’s number, p is
the density of the crystal structure, M is molar mass, and v,
is the mean sound speed [23]. The mean sound speed for a
polycrystalline material can be approximated with the relation:

1/2 1\
=5 () @

where v is the transverse sound speed and vy, is the longitu-
dinal sound speed. These can be obtained from the bulk and



shear moduli [24]:
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Bulk and shear moduli values of 65GPa and 140 GPa, re-
spectively, were previously calculated for GdTaO, via density
functional theory (DFT) [25]. Elastic constants for TaVOs
were unavailable in the literature so they were instead es-
timated using a machine learning model developed by our
group and described in a previous publication [26]. The details
including code and data are in Wang et al’s original publica-
tion, but briefly, we summarize the method here. To estimate
the bulk and shear moduli, materials Project data was curated
via the Materials Project python API MPRester. Data for
training the compositionally restricted attention-based network
(CrabNet) model was extracted using three key fields; the
chemical formula from the field ‘formula_pretty’, and
the Voigt-Reuss-Hill average bulk and shear moduli from
the fields *‘k_vrh’ and ‘g_vrh’. The extraction of the
data resulted in a DataFrame that contained 154,718 for-
mulae. We then preprocessed the data, removing formulas
for which ‘k_vrh’ and ‘g_vrh’ had not been calculated
using DFT. The removal of cells containing NaN in either
column (‘k_vrh’ and ‘g_vrh’) was done separately for
each elastic constant to ensure removal of cells that might
have had only one value calculated. Next, we removed any
formula which matched our target formula (TaVOs) to ensure
no data leakage when making a prediction using our models.
The preprocessing steps resulted in 7,107 training points for
each model to train on. The CrabNet model internally scales
and standardizes the input data, so this step was handled
automatically. We then separately trained two models, one
on ‘k_vrh’ and another on ‘g_vrh’. Both models had
a batch-size of 256 and were trained for 100 epochs. Each
CrabNet model had 512 embedding dimensions and three
layers, each with 4 parallel attention mechanisms. These pre-
dictions resulted in bulk and shear moduli of 49.7+11.0 GPa
and 156£15.1 GPa, respectively. Using these values, we report
estimated Debye temperatures of 459 K for TaVO5 and 406 K
for GdTaOy4. It must be noted that higher accuracy estimates
of the Debye temperature would come from calculations made
with measured elastic constants or entirely DFT-calculated
elastic constants.

While the two estimated Debye temperatures are quite close,
the Debye temperature of TaVOs; exceeds that of GdTaOs.
This is unexpected given that the thermal conductivity of
TaVOs is considerably lower than that of GdTaO4. However,
the Debye temperature is not the only material property that
influences thermal conductivity. Other metrics, such as mass
contrast and polyhedral connectivity of the crystal structure
itself, can also dictate thermal conductivity.

Let us first consider atomic mass. It is known that large
atomic mass atoms, such as Ta, and compounds with large

mass contrast between atoms result in lower thermal conduc-
tivity [20], [27], [28]. If we assume a Debye phonon spectrum,
the thermal conductivity is dependent on the inverse square
root of the defect phonon scattering coefficient at temperatures
above the Debye temperature:
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for the ith defect, where x; is the concentration of the defect,
M; is the mass of the defect, §; is the atomic size of the
defect, M is the average mass, and § is the average atomic
size. This implies that the scattering coefficient depends on the
concentration of defects, their size contrast, A§% = (0; — 3)2,
and their mass contrast, AM? = (M; — M)?. We don’t
explicitly consider the size contrast as we lack sufficient
information regarding the effective size of ions and vacancies
to make any rigorous claims about the effect of size contrast on
the scattering coefficient. Nevertheless, we can easily observe
that the mass contrast of TaVOj is substantially higher than it
is for GdTaOy4. This implies that TaVOs5 has a larger scattering
coefficient and thus a lower thermal conductivity than does
GdTaO,, which our experiments confirm. However, this cannot
alone explain the low thermal conductivity in TaVO;. For
example, consider TaO5 which exhibits both of these qualities
(high atomic mass atoms, large mass contrast) but has a
thermal conductivity over three times that of TaVOj in defect-
free films [29].

The low thermal conductivity is likely intrinsically related to
the crystal structure of TaVOs itself. As seen in Figure 5, the
TaOg octahedra is only corner-shared with the VO4 polyhedra.
This flexible linkage implies that the structure is more likely to
twist and change volume during acoustic phonon propagation,
lowering its thermal conductivity [19], [20]. Additionally, the
large mass contrast between vanadium and tantalum within the
lattice is likely to cause phonon dampening, limit the phonon’s
degrees of freedom, and interrupt the possible phonon modes
[21]. This determination is further supported by previous
Raman scattering measurements showing limited vibrational
nodes as well as distortion of octahedra and polyhedra at
higher temperatures [6].

TaVOs5 and other comparable oxides in the same Pnma
space group, such as NbVOj5 and TaPOs, are negative thermal
expansion (NTE) materials [30]-[32]. This is unsurprising as
the same anharmonicity of low-frequency phonon modes that
gives rise to NTE also results in the coupled phonons and
shorter mean free path lengths that are typically associated
with low thermal conductivity [33]. Literature review shows
a gap of thermal conductivity predictions and measurements
for this family of oxides. These Pnma corner-shared oxides,
such as NbVOj5 and TaPOs, could represent a new avenue of
low thermal conductivity materials that have yet to be fully
explored.

where
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Fig. 5. Extended crystal structure views of (a) TaVOs and (b) GdTaO4 and
local polyhedral connectivity diagrams (c) and atomic labels (d).
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Fig. 6. Seebeck coefficient of TaVOs.

Seebeck coefficient, as seen as Figure 6, was measured
to be around -70 £ 10 V-K~! within the range of 300°C
to 600°C before vanadium loss became an issue. TaVOs
lower Seebeck coefficient can be explained by using the
density functional theory calculations of band structure which
suggest that TaVO3 has a broad band structure leading to low
effective mass for electrons in the conduction band [14]. This
makes TaVOj5 an improbable thermoelectric since improving
the low electrical conductivity would require heavy doping
which, following Mott’s formula and the Wiedemann-Franz
law, would further decrease the Seebeck coefficient [1], [34].

The electrical conductivity of GdTaO4 was unmeasurable on
the Nemesis 458, suggesting its conductivity to be somewhere
below the limitations of 0.05S-cm~!. Further measurements
done at room temperature with a Keithley 2000 multimeter
showed the resistance above the limitations of the machine
at 120M€). This is likely due to the oxide following the
completed shell of 18 electron rule, as well as having a large
band gap, requiring a noticeable energy to excite electrons into
the valence band.

Thermal conductivity, as shown in Figure 4, was
shown to start at 4W-m~1.K~! and steadily decrease to
2.5W-m~1.K~! at the 500°C upper bound of our differential
scanning calorimeter. This is on par with literature from single

crystal and polycrystal measurements [15], [35]-[37].

The higher than expected thermal conductivity of GdTaOy4
can be explained by having a more interconnected crystal
structure as well as the similar atomic weights of gadolin-
ium and tantalum. This allows more phonon modes to exist
within the structure. Single crystal studies support this theory,
showing similar sloping decreases in thermal conductivity as
well as low thermal anisotropy [15]. Despite the fact that this
is well below the cutoff value of 10 W-m~1.-K~! given by the
machine learning algorithm, GdTaO4 seems questionable as a
thermoelectric material without a noticeable decrease in the
higher temperature ranges when compared to known thermo-
electric systems of interest, which reside below 1 W-m~!.K~!
before doping [6], [34].

The Seebeck coefficient measurements of GdTaO, showed
large variation and lack of continuity and are thus not reported.
The large amount of noise and lack of linearity in the mea-
surement suggests that the Seebeck coefficient is far below the
limitations of the Nemesis 458 of 10 uV-K~!. GdTaO, shows
a shallow band structure as seen in Ding et al. [18], Materials
Project [38], and Topological Materials Database [35]-[37]
which suggest low effective masses for both carriers.

It should be noted that these sources have similar shallow
band structures but show contradictions for band gap. The
Topological Materials Database [35]-[37] lists GdTaO, as a
semimetal while others such as the Materials Project [38]
and Ding et al. [18] suggest a large band gap ranging from
3.26eV to 4.86eV respectively. Our electrical conductivity
measurements support the notion that this material is a wide-
gap semiconductor and is not a semimetal. Curvature of the
band structure indicates similar effective masses for both
carriers. This in conjunction with a large band gap means the
bipolar effect further constrains the magnitude of the Seebeck
coefficient [15].

By using predictions to excite and motivate scientists,
machine learning gives us a promising direction to explore
chemical whitespace. However, these tools are very dependent
on training data as well as algorithm choice and as such require
scrutiny and verification. In the case of the Citrination engine
model, we chose two of the recommended oxide compounds
to test as thermoelectric materials: TaVO5 and GdTaOy. It
was shown that for predicting thermal conductivity, the model
preformed as expected with both compounds being well below
the cutoff of 10 W-m~!.K~!. However other predictions
such as electrical conductivity and Seebeck coefficient were
incorrect, making the model an imperfect tool. Nevertheless,
the pursuit of data driven research has pointed us to the
possibility of a new family of low thermal conductivity oxides
which require further study. These physical measurements will
also allow thermoelectric-based machine learning algorithms
to grow and be refined for even stronger recommendations in
the future.
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