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A Case Study of Beta-Variational Auto-Encoders,
disentanglement impacts of input distribution
and beta variation based upon a computational
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Abstract We present work that quantifies the disentanglement of the recon-
struction of β-VAEs varying the hyper-parameter β for three different input
distributions[1]. Currently the majority use of VAEs are for image processing
and little work has been done in the field of material science using this ML
technique to create reconstructions to explore the search for new designs. This
work highlights the importance of the distribution shape can be more impor-
tant than the quantity of data in creating neural network reconstructions such
as β-VAEs which has been used for this effort. Furthermore, this work shown
highlights that the best disentangled reconstruction doesn’t necessarily create
the best reconstruction.

Keywords Auto Encoders · Particle packing · ballistic deposition · Packing
fraction

1 Introduction

1.1 Motivation

Variational Auto-Encoders (VAEs) is a type of neural network system that
utilizes a probabilistic approach in the latent space (mean and standard devi-
ation vectors). One of the purposes of the creation of this tool was to perform
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efficient learning with probabilistic models with intractable posterior distri-
butions and large datasets[2]. Key applications of image analysis have shown
to be promising with the general application towards recognizing handwrit-
ten images[3]. VAEs were an improvement over typical Auto-Encoders by en-
forcing a regularization constraint on the latent space by forming a normal
distribution.

An improvement to the VAE model has been done by incorporating a regu-
larization coefficient, β, which constrains the capacity of the latent information
and puts implicit independence pressure on the learnt posterior [4]. This reg-
ularization coefficient is a weight on the Kullback–Leibler divergence term,
DKL. Weighting DKL is an attempt to force the learning process to drive the
entropy between the two distributions to zero. A general sense of increasing
this coefficient has the effect of encouraging the model to learn the most ef-
ficient representation of the data. However, it is theorised that driving β too
high can result in a poor reconstruction due to the loss of the high frequency
details when compressing the data to the latent space[4].

1.2 Particle Packing Application

Typically Auto-Encoder models have been generally used for image processing
and recognition systems[5]. In the recent years these VAEs have been finding
applications into research of materials areas such as generative chemistry[6],
transient fluid flow[7], molecule optimization[8]. Additionally, there is little
work in the area of data distribution inputs into a β-VAE machine learning
model[9]. The work by Alam and Shehu apply a variation between input sizes
of contact maps (64 square pixels vs 72 square pixels). The data distribution
in this work is a much larger type of variation.

This effort compares two types of distributions of data. The first type of
distribution is understanding the concepts of packing fractions. A single dat-
apoint used in the learning is made of the composition of three different com-
pounds. The volume occupied by all of the compounds over the total volume is
the packing fraction, since the compounds are made up of spheres this results
in a value less than one due to the voids between the particles. Each of these
three compounds have their own variation to capture realistic manufacturing
methods. Creating one of the compounds results in a variation in particle size
which can be controlled. This results in a set of three distributions for each
data point of learning, an example is shown in Figure 1.

The second type of distribution evaluated in this effort is the distribution
of the packing fraction generated from the data set. The prior work[10] from
the author indicated a highly Gaussian data set resulted in poor model perfor-
mance. The author has taken the compilation of the results and removed data
points to force the distribution of packing fraction to create three different
distributions to see if the distribution of the data can be more of a influence
over the number of data points used in learning. The distributions of packing
fractions are shown in Figure 2.
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Since VAEs utilize a probabilistic scheme in the latent space the authors
believe this could see an improvement for problems involving distributions.
The importance of understanding the relationship to particle size and distri-
butions relate to the mechanical and ballistic performance of the solid fuel
that is comprised of similar compounds. Understanding the geometric vari-
ation present is the first step in a series of steps to measure the material
performance. The optimal ballistic performance comes from the most densely
packed solution and the optimal structural performance comes from the least
packed solution. There exist a configuration where both sets of requirements
is satisfied. This effort is a series of studies to understand the variables of
importance that should be controlled to obtain this optimum configuration
for a set of conditions based upon the polymer binder, structural loads, and
ballistic requirements.

Fig. 1 Example Multi-modal Distribution of a singe packing fraction
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Fig. 2 Cumulative Distribution Functions of different combinations of particle distributions
used as variations of input data

The focus of this study is to examine and determine the following:

1) Determine the prediction accuracy of the various input distributions
for β-VAEs
2) Examine the relationship in disentanglement metrics based on a wide
range of β

2 Methods

2.1 Vanilla β-VAE

The machine learning model used in this study is not a new novel and is an im-
pact assessment of what a basic βVAE model defined by Higgins et. al. [4] and
adapted from MNIST applications[3]. Typically the total loss in computing
the difference in VAE models is the sum of a reconstruction loss and the DKL.
This summation is called the Evidence Lower Bound (ELBO). β is a scalar
value that enhances the loss metric based upon the DKL term. The complete
ELBO for this situation is shown below in Equation . Main changes from the
basic application for this work includes changing the reconstruction loss func-
tion from the standard Binary Cross Entropy (BCE) to Mean Squared Error
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(MSE). This is due to the order of magnitude of difference in the parameters
used in the data set resulted in driving BCE negative, which is technically
impossible. BCE is commonly used in creating the loss function for VAEs,
however initially stability concerns became evident when applying BCE that
were only fixed when normalizing all of the data respective to itself. Even with
applying a normalization it was evident that MSE resulted in an significant
reduction in magnitude of the loss value. The model was a two layer neural
network that scaled down to a two feature latent vector for the mean and
standard deviation. Additionally, after decoding the data the mass continuity
had to be enforced by scaling the mass fractions to ensure the sum of the
three mass fractions equaled one hundred percent. This is a natural law of the
physics problem that was needed for a good reconstruction and required for
calculating the theoretical via ballistic deposition code.

ELBO = β(LKLD) + LMSE (1)

2.2 Input Data

Initial working on VAEs with this data set resulted in acceptable convergence
but poor prediction accuracy. Some of the concerns from the authors’ previous
work indicated that the accuracy was impacted by the input data distribution
being highly Gaussian [10]. Part of this study is to show the impact of various
forms of input data. Figure 2 graphically shows three different cumulative
distribution functions (CDFs) that are used through the remainder of this
work. Table 2.2 quantifies the data within each distribution. The uniform and
top data sets are subsets from the original data set constructed in such a way
to demonstrate variation in the input data used.

Dataset # Data Name Data size Packing Fraction Range
1 Gaussian Dataset 14,765 0.507-0.826
2 Uniform Dataset 600 0.507-0.826
3 Top Packing Dataset 500 0.750-0.826

2.3 Disentanglement Impact

The key hyper-parameter of this study is β, which the impact of this parameter
is more than a convergence term. β controls the amount of disentanglement
directly by forcing the distributions in attempt to drive the relative entropy
between the datasets to be zero. One would immediately try to drive the model
to use high values of beta. However, there is a drawback in this approach, high
frequency details are lost by passing through a constrained latent bottleneck.
This results in an optimal β that can be measured theoretically with the best
disentanglement metric. [4]. Figure 3 graphically shows the impact of β. In
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short, an appropriate amount of overlap is needed in the latent space to have
interpretability and enough constraint to exhibit the desired structure.

Fig. 3 Illustration of decomposition with varying levels of overlap of the likelihood and prior
information[11]. (Top) Too large of a value for β (Middle) Perfect value for β (Bottom) Too
small of a value for β.

3 Results and Discussion

3.1 Disentanglement Metric Scoring

Part of the learning process of machine learning (ML) is training the model
efficiently. The better the model can segregate the data into groups of the
defined outcome the better predictive capabilities of the model. Figure 4 gives
insight into this grouping via TSNE of various values of β used in the learning
process alone. The TSNE plots here were generated with the sklearn module
using the final reconstruction after 250 epochs. This is what condition that
was used to compare to the actual that the ballistic deposition code generates.
The initial data (top left) has not undergone any learning to show how poor
the grouping is based upon the feature vector’s values. There are plenty of sub-
groups, however, this lumps high and low values of packing fraction not able
to create good regression alone. The other subplots highlight the β-VAE’s re-
construction with the same TSNE procedure. The reconstruction data appears
to do a better job of sorting the data, initially into gradients and eventually
into groupings based upon their packing fraction. However, these values do not
encompass the entire range of values present in the original data. This high-
lights the trade-off with the β-VAE process, increasing learning with the lack
of model reconstruction. It has been shown prior with this data set that the
tails of the data are hard to capture from the learning process[10]. It is of note
that that each of the shown configurations in Figure 4 has a different range in
the legend which highlights a portion of the variability in the reconstruction
process. As it is shown in Figure 9 the variability of the output can be small
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or large and it is likely that data is lost in the reconstruction process. This is
a flaw in reducing feature count to a low level such as this case being reduced
down to two features.

Fig. 4 TSNE plot of various β from the Uniform input data. This graphically shows higher
β results in a higher separation or grouping of like results. This is due to the large β forces
increased learning of the input parameters.

Many different metrics have been proposed to determine the degree of
disentanglement such as: β-VAE, FactorVAE, DCI, SAP, and MIG. Recently,
a comparison of these proposed methods to show that most of them do not
satisfy the basic requirements of being disentangled[12]. Using this information
the MIG will be the metric to compare the disentanglement. Characteristics
of a disentangled representation have the following fundamental properties:
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Property 1. A metric gives a high score to all representations that satisfy
the characteristic that the metric reflects.

Property 2. A metric gives a low score for all representations that do not
satisfy the characteristic that the metric reflects.

Mutual information Gain (MIG) has been shown to be the only real metric
to quantify the degree of disentanglement of the methods that are commonly
used[12]. MIG comes from probability and information theory and is the the
joint entropy of both separate features. A perfect MIG would be composed
of identical subsets. MIG will be used to examine this metric in this work in
comparing the hyper-parameter β. For two completely random variables the
MIG and DKL are the same by definition, however this is only for a limited
scenario and does not hold true for all values[13]. MIG used in this effort is
calculated after the fact and compares the reconstruction against the computed
data. Since the theory of MIG and DKL is of similar approach it’s reasonable
to train with DKL and to compare with MIG as a metric-like property since it
satisfies the disentangled representation. MIG is not a true metric by definition
since it does not satisfy the identity of indiscernibles. Additionally, MIG has
been shown to be a practical measure in β-VAEs [14]. This effort could not
get a fully disentangled data-set with the training (MIG=1, in bits).

3.2 β Variance Results

The β-VAE model described herein was run for 250 epochs for all 27 com-
binations, this was chosen to ensure that each simulation fully converged.
The convergence value of the total loss was approximately 0.1 - 0.4 and be-
haved similarly to what is shown in Figure 5. This level of loss is expected
for a VAE[15]. Then the author took the last reconstruction for comparison
to actual computed values. Then 25 actual computations of each of the 27
reconstructions were performed to compare against the true value.
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Fig. 5 Typical epoch loss for each run

Validating the three different distributions as inputs for different values of
β is found in the parity plots in Figure 6. In general, these model predictions
are quite horrible for most conditions with key exceptions of β equal to 10 and
15. This chart represents the key motivation of this effort since this hyper-
parameter is a key impact to the reconstruction independently.

The response of β values of zero and one drives the reconstruction values
essentially the same in under predicting. However, when β is equal to zero no
matter the input distribution configuration both the reconstruction and actual
values generated resulted in the same, significantly under-predictive. Changing
β to unity the model is still under-predictive but now the input distribution
starts to show some impact.

At β equal to four, as mentioned by Sikka, the reconstruction starts to show
some feasibility in prediction, however, with only the uniform distributed data.
The other two systems are still quite under-predictive but have some variation
in actual values. Skipping to β of ten and fifteen the trend of increasing model
reconstruction accuracy holds true for everything but the largest most Gaus-
sian data-set. After values of fifteen and the near random response at seven β
seems to start having reconstructions that are failing to be representative of
the actual values. Additionally, at a β value of 7 the response seems to highly
under predictive to the actual and has no understanding on the true variation.
This intermediate value could be a key point where the reconstruction is miss-
ing significant information and yet does not benefit from the disentanglement.
There are a few key takeaways from the parity plots:

1) Only changing this hyper-parameter (β) to change the result dras-
tic enough to go from no correlation to one overlaying with the ideal
response.
2) Regardless of the value of β for “all data” provided the predictive
nature of the model was terrible. The best fits were β of 10 and 15.
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3) Intermediate and high values of β show poor reconstruction, this is
likely from the competition of poor reconstruction quality and improved
disentanglement resulting in a net negative response. Some intermediate
values do show good correlation and this could be when the competition
results in a net positive response.

Fig. 6 Parity plots for all distributions and varying β, (Blue) All input data, (Orange)
Uniform input data (Green) Top input data

One of the main points about this effort is to document the model’s ability
to reproduce a similar distribution with the hyper parameter β. Figure 7 shows
a general trend of the MIG with increasing β with MIG in units of bits, possible
range of 0-1. In general the β appears to have no direct impact on the MIG
with such a poor correlation. However, second order polynomials were fit to
each distribution separately and in which some conclusion can be considered
from this that agrees with Welling and Kingma determining the improved
disentangling prior to the reconstruction loss dominating. The “uniform data”
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is evenly spread and shows more of the general nature of what is expected of
the impact of varying β. For β > 1 MIG improves with increasing β until a
reconstruction loss exists, although the accuracy of this trend is quite poor.

Both datasets “all data” and “top data” are of Gaussian nature which
has the inverse trend for the first few incremental values of β until the value
is sufficiently high that the MIG increases to something of value. This could
suggest that Gaussian distributed data has the best reconstruction with higher
values of β than compared to a uniform distribution. Data-set ”all data” differs
by approximately 30 times the number of data-points and still have a similar
trend with β which is another likely outcome; the amount of data is not the
largest impact and where the data lies is a first order effect.

Furthermore, it is expected that a poor MIG would at a β = 0 since this
criteria forces the KL divergence to zero which is what attempts to force the
learning to create the same reconstruction. This point is quite shown quite well
with all β values between 0.4 – 0.5. The highest MIG was obtained with β = 1
or the vanilla VAE, however it is evident that the best response in a pairty plot
occurs with a MIG ranging from 0.5-0.9 (β of 10 and 15). It is this response
that shows the best model isn’t necessarily maximum disentanglement due to
poor reconstruction loss.

Fig. 7 MIG vs β. Best fit lines are second order polynomials
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The scatter found in Figure 7 was concerning with such a poor fit. This fit
is also comparable to the pairity plots in Figure 6 where most predictions were
quite horrible. An examination of the reconstruction data found an interest-
ing, yet expected trend. Figure 8 highlights the MIG value of all β against the
normalized standard deviation of the reconstructed values. This chart shows
that the higher the spread in data (standard deviation) the higher the MIG.
Also, nearly all values are ≥ 0.4 showing there is some similarity in the actual
vs reconstruction with the exception of a single data-point that had a recon-
struction of the exact same value. This implies a standard deviation of zero
which also gave a MIG value −1016. Additionally, Figure 8 graphically shows
the uniform distribution results in a higher MIG score for near all values of
reconstruction. This figure highlights part of the goal of this study, having well
placed data can lead to better prediction than having high amounts of data.

Fig. 8 MIG vs normalized reconstruction standard deviation (Left) Linear scale (Right)
Log scale. All MIG units are in bits. The MIG of zero data point had a reconstruction data
set all of the same value and had a numerically zero standard deviation. Best fit lines are
second order polynomials.

Figure 9 highlights how the variation in reconstruction of the data set
changes with both β and MIG. No real apparent trend is evident in with
increasing β on the variation of the reconstruction’s output. One desire when
starting this effort was a highly disentangled representation would result in a
highly variable reconstruction. This desire seems to be more fit for a CVAE
where one could force that condition over a β-VAE. The MIG comparison
shows that a higher variation in the reconstruction results in a higher MIG
value. What is known from this is figure is that the hyper-parameter is not the
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manner of enforcing the variation and that the higher the variation the more
disentangled the result.

Fig. 9 (Left)Normalized reconstruction standard deviation v β (Right)Normalized recon-
struction standard deviation v MIG.

Typical VAE models, like most machine learning, have increasing predic-
tion accuracy with increasing data. Stein et. al. had typical results that fol-
lowed a nearly doubling of R2 with an order of magnitude increase in data
size[16]. However, the results within this effort show that the distribution has a
larger effect in driving accuracy. This result is consistent with Alam and Shehu
who has showed that the data set used for training impacted the magnitude
of the p-value changing the statistical significance[9].

Figure 10 shows the variation of the input data-set and hyper-parameter
resulted in creating the potential to have a statistical significant comparison
of the reconstruction data. This figure highlights the comparison of the recon-
struction prediction against the actual computation. Each point in Figure 10
comprises 25 different inputs to the ML model and actual computations. The
most discouraging trait that is evident is that the t-test values don’t trend in
a way consistent with increasing β. However, one thing is aware when plotting
all the data against MIG, this is an intersecting of the critical student-t value
and the best fit line of the MIG. The intersection occurs at a MIG of approx-
imately 0.9. Using this correlation, it can be applied to datasets generated
with ML that cannot reject the null hypothesis and will also likely fulfill the
properties for being disentangled.



14 Jason R. Halla,b, Taylor D. Sparksb

Fig. 10 (Top Left) t-Test v β (Top Right) t-Test v MIG (Bottom Left) P-value v β (Bottom
Right) P-value v MIG.

4 Conclusions

This work has shown the common working knowledge of increasing β can
directly increase the MIG or disentanglement of the reconstruction. However,
the relationship is variable alone in this model and likely to be true in other
models until a Monte Carlo like assessment can be done to understand the
impact of random states in the latent space since this is likely the cause of the
poor accuracy of the polynomial fits.

Key takeaways:

1. The best disentangled reconstruction (MIG) isn’t the best prediction (pair-
ity).

2. The trend in increasing β isn’t linear due to the competition of the recon-
struction fidelity and increased disentanglement.

3. The data distribution is more important solely than the number of data-
points.

4. Disentangled reconstruction (MIG) trends well with reconstruction stan-
dard deviation and the student t-test.
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5. It’s likely to assume that a data-set that passes the student t-test will also
be highly disentangled.

The problem used to examine these traits is limited due to the small
amount of features in the learning process impacts the layering of the networks
and is why the author performed this on a vanilla VAE being the simplest for
the data at hand. If this process was applied to a larger feature set additional
variables could be investigated in such a way to see if the latent space could
make up for the concerns with β-VAE providing any meaningful progress to
certain datasets (i.e., large and Gaussian).
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