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Abstract

In scientific disciplines, benchmarks play a vital role in driving progress forward. For a
benchmark to be effective, it must closely resemble real-world tasks. If the level of difficulty or
relevance is inadequate, it can impede progress in the field. Moreover, benchmarks should have
low computational overhead to ensure accessibility and repeatability. The objective is to achieve
a kind of "Turing test" by creating a surrogate model that is practically indistinguishable from the
ground truth observation, at least within the dataset's explored boundaries. This objective
necessitates a large quantity of data. This study encompasses numerous features that are
characteristic of chemistry and materials science optimization tasks that are relevant to industry.
These features include high levels of noise, multiple fidelities, multiple objectives, linear
constraints, non-linear correlations, and failure regions. We performed 494498 random hard-
sphere packing simulations representing 206 CPU days’ worth of computational overhead.
Simulations required nine input parameters with linear constraints and two discrete fidelities
each with continuous fidelity parameters. The results were logged in a free-tier shared
MongoDB Atlas database, producing two core tabular datasets: a failure probability dataset and
a regression dataset. The failure probability dataset maps unique input parameter sets to the
estimated probabilities that the simulation will fail. The regression dataset maps input parameter
sets (including repeats) to particle packing fractions and computational runtimes for each of the
two steps. These two datasets were used to create a surrogate model as close as possible to
running the actual simulations by incorporating simulation failure and heteroskedastic noise. In
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the regression dataset, percentile ranks were calculated for each group of identical parameter
sets to account for heteroskedastic noise, thereby ensuring reliable and accurate results. This
differs from the conventional approach that imposes a-priori assumptions, such as Gaussian
noise, by specifying mean and standard deviation. This technique can be extended to other
benchmark datasets to bridge the gap between optimization benchmarks with low computational
overhead and the complex optimization scenarios encountered in the real world.

Specifications table

Subject

Computational materials science

Specific subject area

Physics-based geometric packing

Type of data

Table
Figure

How the data were
acquired

Data was acquired by running compiled C software hosted at
https://github.com/VasiliBaranov/packing-generation in a two-step
process orchestrated using Python in https://github.com/sparks-
baird/matsci-opt-
benchmarks/blob/main/scripts/particle packing/packing generation
submitit.py. The Python code was utilized as a driver for the
compiled packing generation executable and executed using the
resources provided by the University of Utah's Center for High-
performance Computing (CHPC). The submission of jobs to the
SLURM scheduler was facilitated through
https://github.com/facebookincubator/submitit, and the MongoDB
Data API was utilized to record results in JSON format. For a
snapshot of the code utilized in matsci-opt-benchmarks, please refer
to https://github.com/sparks-baird/matsci-opt-
benchmarks/tree/v0.2.2
(https://zenodo.org/record/7697264#.ZAJo6nbMleM).

Data format

Raw
Analyzed
Filtered

Description of data
collection

A total of 65536 parameter combinations were randomly sampled
using quasi-random Sobol sampling, varying seven irreducible
parameters in addition to the number of particles and initial scaling
factor. A constrained search space was employed through the Ax
Platform with repeats. Out of these simulations, 494498 were
successfully completed, requiring 206 CPU days to run. Failed
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simulations were recorded as NaN values with ratio of successful to
total simulations tracked on a per parameter set basis
(sobol_probability_filter.csv). Repeat simulations were grouped and
ranked by percentile using the “dense” method with pct=True in
pandas.core.groupby.GroupBy.rank (sobol_regression.csv)'.
Surrogate models were fitted for failure probability, packing fraction,
and computational runtime for each of two particle packing
algorithms, totaling six surrogate models.

Data source location

University of Utah, Salt Lake City UT USA

Data accessibility

Repository name: Zenodo
Data identification number: 7696165

Direct URL to data: https://dx.doi.org/10.5281/zenodo.7696165

Value of the data

- Valuable for adaptive design benchmarking

- Benefits optimization researchers and practitioners in the physical sciences

- Provides insight into packing behavior in powder-bed additive manufacturing, can be
integrated with experimental data

- Provides an example for future datasets

Objective

Optimization tasks that are relevant to industry in the fields of materials science and chemistry
are typically hierarchical, noisy, multi-fidelity?®, multi-objective*®, high-dimensional®’, non-
linearly correlated, and involve mixed numerical and categorical variables subject to linear® and
non-linear constraints. Existing benchmark datasets®'# have limitations as they ignore or
simplify the impact of noise and the occurrence of failure with certain parameter combinations.
By integrating simulation failure and heteroskedastic noise, we aim to achieve a "Turing test"
scenario where the surrogate model is practically indistinguishable from the ground truth
simulation. This strategy bridges the gap between low-cost surrogate functions based on
benchmark datasets and the high-cost evaluation of objective functions in real-world scenarios.

Data description
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The failure probability dataset (sobol_probability_filter.csv) contains unique input parameter sets
(nine variables) and the estimated probabilities that the simulation will fail at each of the two steps
(force-biased algorithm and Lubachevsky—Stillinger).

The regression dataset (sobol _regression.csv) contains input parameters (including repeats)
spanning nine variables and corresponding particle packing fractions as well as computational
runtimes for each of the two steps (force-biased algorithm and Lubachevsky-Stillinger).

There are six regression models (surrogate_models.pkl) trained on all data meant for production
use. These six models can be used together to create the benchmark function.

There are five cross-validation sets of six regression models (cross_validation_models_0.pkl,
cross_validation_models_1.pkl, cross_validation_models_2.pkl, cross_validation_models_3.pkI,

cross_validation_models_4.pkl).

The model metadata (model_metadata.json) contains the raw mean absolute error scores, the
raw predictions, and the true values for each of the cross-validation folds.

Figure 1 contains a histogram for the number of successful repeats for each parameter
combination.

Figure 2 contains the probability of a simulation failing for each of the two algorithms.



Figure 3 contains the histograms of observed particle packing fractions for each of the two
algorithms.
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Figure 1. Histogram of number of parameter groups vs. number of successful repeats within a given group.
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Figure 2. Histogram of normalized simulation counts vs. the probability of a simulation failing for a given parameter
set. On average, the force-biased algorithm or fba (blue) is more likely to succeed than the Lubachevsky—Stillinger or
Is (red) algorithm.
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Figure 3. Histogram of number of simulations vs. packing fraction for the force-biased algorithm or fba (blue) and
Lubachevsky-Stillinger or Is algorithm (red). On average, the Is algorithm tends to have higher packing fractions with
a more Gaussian-like distribution than fba.

Experimental design, materials and methods

In this study, 494498 hard-sphere packing simulations were conducted using a two-step
process of a force-biased algorithm'>'6 followed by the Lubachevsky—Stillinger algorithm'7-°
The simulations were performed using mixtures of three different particle types, each
characterized by two log-normal distribution parameters and three composition parameters. Two
parameters (scale and shape) describe each of the three distributions, and three additional
composition parameters describe the fractional share (e.g., in terms of volume) of each of the
particle types. Additionally, the number of particles and an initial scaling factor were allowed to
vary. With a greater number of particles, denser and more realistic packs can be generated at
the expense of computational cost (i.e., the fidelity parameter). The initial scaling factor affects
the computational stability of the simulation; with an adequate scaling factor, the simulation is
more likely to be completed successfully. The quasi-random Sobol sampling technique was
employed to generate parameter combinations, enabling a more uniform sampling of the
allowable parameter space. Although it may serve other purposes, this dataset was primarily
designed as a multi-fidelity benchmark dataset for constrained adaptive design experiments. To
realistically capture the noise in this dataset, simulations were run multiple times for each quasi-
random parameter combination. To increase throughput and reduce latency, simulation
parameters (including repeats) were shuffled and divided into batches, which were then
dispatched to a high-performance computing environment for asynchronous evaluation. The



results were recorded in a free-tier MongoDB Atlas database and then consolidated and
prepared as datasets suitable for machine learning applications. For further implementation
details, see https://github.com/sparks-baird/matsci-opt-

benchmarks/tree/v0.2.2/scripts/particle packing and https://github.com/sparks-baird/matsci-opt-
benchmarks/tree/v0.2.2/notebooks/particle packing. Instructions for model usage are available
at https://matsci-opt-benchmarks.readthedocs.io/.
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