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Summary 
 

Closed-loop Spectroscopy Lab: Light-mixing Demo (CLSLab:Light) is a teaching and prototyping 
platform for autonomous scientific discovery. It consists of a set of LEDs and a light sensor while 
encapsulating key principles for "self-driving" (i.e., autonomous) research laboratories, including 
sending commands, receiving sensor data, physics-based simulation, and advanced optimization. 
CLSLab:Light is a "Hello, World!" introduction to these topics, accessible by students, educators, 
hobbyists, and researchers for less than 100 USD, a small footprint, and under an hour of setup time. 
 

For context, please refer to Baird et al.1.  
 



 
 

 
Graphical abstract 
 

 
 

Before you begin 
 
The protocol below describes how to set up a “Hello, World!” demonstration1–6 for a self-driving 
laboratory7–11  using a Pico W microcontroller, LEDs, a light sensor, and Bayesian optimization. 
 

Order Required Parts 
 
Timing: 5 min (not including shipping time) 
 

1. Order the required parts [Self-contained Digikey Order] (60.80 USD + shipping as of 2022-10-
20)  

a. The sculpting wire needs to be 14 gauge (2 mm) or thinner, including the insulation 
jacket, and rigid enough to support the sensor. Sculpting wire is also available at 
Amazon. Approximately 3' is required. 

b. The purpose of the wall adapter is so that, after initial setup, the demo can be 
powered standalone 

c. The bill of materials is also available at Adafruit, though you may need to source a 
Pico W with headers or a Pico WH separately. See Raspberry Pi's supported resellers 
for the Pico W. 

https://www.digikey.com/short/045j7502
https://www.amazon.com/dp/B01FG9IRM2?ref_=cm_sw_r_cp_ud_dp_TV8WBR44GZVJ3544KA1X
https://www.amazon.com/dp/B01FG9IRM2?ref_=cm_sw_r_cp_ud_dp_TV8WBR44GZVJ3544KA1X
http://www.adafruit.com/wishlists/553992
https://www.raspberrypi.com/products/raspberry-pi-pico/?variant=raspberry-pi-pico-w
https://www.raspberrypi.com/products/raspberry-pi-pico/?variant=raspberry-pi-pico-w


Figure 1

Additional Prerequisites

Timing: N/A

2. Ensure access to a 2.4 GHz WiFi network (SSID + password)
a. The Pico W only supports 2.4 GHz WiFi networks. See self-driving-lab-demo #76 for 

additional context.
i WPA enterprise networks such as Eduroam and other networks that use 

captive portals (most schools, coffee shops, etc.) are not yet supported. It 
needs to be a network such that on a computer, you can click on the WiFi 
name (SSID), enter the password, and click connect (no additional steps). 
Check to see if your institution offers network support for internet of things 
devices (e.g. ULink at University of Utah).

ii Home networks can have both a 5G and a 2.4 GHz network (e.g. "My Network 
5G" and "My Network")

iii If you use a mobile hotspot, you may need to use your device's "extended 
compatibility" feature to drop the mobile hotspot from 5G to 2.4 GHz. See 
also prepaid, long-expiry hotspot and classroom demo with standalone 
network access discussions.

3. Ensure access to a computer (for initial setup only)
a. At a minimum, the computer needs to be able to run the Thonny editor (lightweight) 

and it needs at least one USB-A port
4. Ensure access to a soldering iron and soldering wire (thinner is better in this case)
5. (Optional) Before soldering, ensure the Pico W can successfully connect to a computer

https://github.com/sparks-baird/self-driving-lab-demo/issues/76
https://github.com/sparks-baird/self-driving-lab-demo/discussions/83
https://github.com/sparks-baird/self-driving-lab-demo/discussions/88
https://github.com/sparks-baird/self-driving-lab-demo/discussions/88


 
 

a. You can do this by holding the BOOTSEL button on the Pico W while connecting the 
Pico W to your computer via the USB cable. If a new drive appears, that indicates the 
Pico W is working normally 

b. Be careful only to heat the gold pads while soldering to avoid damaging the circuitry 

 

Key resources table 
 

REAGENT or 
RESOURCE SOURCE IDENTIFIER 

Deposited Data 
Red, Green, and Blue 
LED Spectral Data 

https://github.com/sparks-baird/self-driving-lab-
demo/tree/v0.6.0/src/self_driving_lab_demo/data 

v0.6.0 

Software and Algorithms 
self-driving-lab-demo 
v0.6.0 

https://github.com/sparks-baird/self-driving-lab-demo  

YouTube build tutorial https://youtu.be/GVdfJCsQ8vk  
Other 
STEMMA QT AS7341 
COLOR SENSOR 

DigiKey (Adafruit Product) Cat#1528-4698-ND 

4-PIN 
STEMMA/GROVE - 
QT/QWIIC 4" 

DigiKey (Adafruit Product) Cat#1528-4528-ND 

RASPBERRY PI PICO 
W 

DigiKey (Adafruit Product) Cat#2648-SC0918CT-
ND 

CBL USB2.0 A PLUG-
MCR B PLUG 3' 

DigiKey (Adafruit Product) Cat#380-1431-ND 

CONN HEADER VERT 
20POS 2.54MM 

DigiKey (Amphenol CS) Cat#10129378-
920001BLF-ND 

MAKER PI PICO BASE 
(WITHOUT PICO) 

DigiKey (Adafruit Product) Cat#3614-MAKER-PI-
PICO-NB-ND 

AC/DC WALL MOUNT 
ADAPTER 5V 5W 

DigiKey (Adafruit Product) Cat#1470-2768-ND 

HOOK-UP SOLID 
18AWG BLACK 100' 

DigiKey (Remington Industries) Cat#2328-
18UL1007SLDBLA-
ND 

128MB MICRO SD 
MEMORY CARD 
(optional) 

DigiKey (Adafruit Product) Cat#1528-5250-ND 

 

Step-by-step method details 

 
Hardware Setup 
 

Timing: 20 min 
 



 
 

Solder the headers onto the Pico W, mount the light sensor so that the pinhole is facing the red green 
blue (RGB) LED, connect the light sensor to the board, and get the microcontroller ready for firmware 
installation. 
 

1. Solder headers onto the Pico W 
a. Insert the Pico W headers into the Maker Pi Pico base 
b. Place the Pico W on top of the headers 
c. Solder the headers to the Pico W 

i MagPi guide 
ii Tom's hardware guide 
iii YouTube video 

d. Remove the Pico W from the Maker Pi Pico base 
2. Prepare 3 feet of sculpting wire (cut with wire cutters or bend until it breaks) 
3. Thread the sculpting wire through each mounting hole on the Maker Pi Pico base, then twist 

the wires together near the RGB LED. This setup will allow the position and orientation of the 
sensor to be both adjustable and steady. Continue twisting until you have 4 to 6 inches of 
twisted wire, and ensure that there are at least 3 inches of loose, untwisted wire at each end 
(the leftover, untwisted wire will be threaded through the mounting holes of the light sensor 

https://magpi.raspberrypi.com/articles/how-to-solder-gpio-pin-headers-to-raspberry-pi-pico
https://www.tomshardware.com/how-to/solder-pins-raspberry-pi-pico
https://www.youtube.com/watch?v=R11QanPDccs


 
 

in the next step). For reference, a diagram is also included below.

 
Figure 2 



 
 

 
Figure 3 

4. Thread the same sculpting wire through the AS7341 light sensor and position the sensor so 
the pinhole is facing approximately 3 to 4 inches away from the RGB LED. 
 



 
 

 
Figure 4 

5. Connect the Grove/Stemma-QT connector into Grove port 6 (GP26&27) and the AS7341, 
insert the Pico W, and while holding the BOOTSEL button, connect the Pico W to the 



 
 

computer.

 
Figure 5 

Software Setup   
 

Timing: 20 min 
 
Install the MicroPython firmware onto the Pico W microcontroller, enter the WiFi credentials, and 
upload the source code files. 
 

6. Download and install Thonny, a Python IDE with native support for microcontrollers. Choose 
the platform appropriate for you (in my case, this is Windows 64-bit, Python 3.10). When 
installing, use the default settings: "Standard (default)". 

7. Click on the lower-right dropdown and click "Install MicroPython"

 
Figure 6 

https://thonny.org/


 
 

8. Choose "MicroPython variant: Raspberry Pi - Pico W / Pico WH" and click install

 
Figure 7 

9. Change the interpreter from Local Python 3 to MicroPython (Raspberry Pi Pico)

 
Figure 8 

10. In Thonny's menubar, click "View" then "Files" to open a sidebar

 
Figure 9 



 
 

11. Download sdl_demo.zip from the latest release at self-driving-lab-demo and unzip it 

12. In Thonny, navigate to the unzipped sdl_demo folder, open secrets.py, enter your WiFi 
network name (SSID) and password as Python strings. Optionally, you can create your own 
MongoDB Atlas database and enter values for MONGODB_API_KEY, 
MONGODB_COLLECTION_NAME, and DEVICE_NICKNAME (see below). Optionally, you can 
create your own HiveMQ instance and enter the credentials there (see below). 
Save secrets.py 

 
Figure 10 

 
Figure 11 

https://github.com/sparks-baird/self-driving-lab-demo/releases/latest


 
 

a. (Optional) Set up a MongoDB database backend 
i. Create an account at https://www.mongodb.com/cloud/atlas/register 

ii. Create a free, Shared Cluster (optionally rename Cluster0 to something of 
your choice, e.g. self-driving-labs. You can leave the default provider as-is) 

 
iii. Navigate to “Data Services” → “Deployment” → “Database” and click 

“Browse Collections” then “Add My Own Data”. Enter a database name (e.g., 
clslab-light-mixing) and collection name (e.g., test). Copy the names into 
MONGODB_DATABASE_NAME and MONGODB_COLLECTION_NAME in 

https://www.mongodb.com/cloud/atlas/register


 
 

secrets.py. 

 
iv. Navigate to “Data Services” → “Services” → “Data API”, use the dropdown to 

select your cluster, and click “Enable Data Access from the Data API” 

 
v. Note the app name in the “URL Endpoint” box of the form 

“https://data.mongodb-api.com/app/<data-abc123> /endpoint/data/v1” 
where <data-abc123> is the app name. Copy the app name into the 
MONGODB_APP_NAME variable in secrets.py. 

 
vi. Click “Create API Key”, enter a name of your choice (e.g. clslab-light), and click 

“Generate API key”. Copy the API key and store it somewhere secure. Paste 



 
 

the API key into the MONGODB_API_KEY variable in secrets.py. 

 
b. (Optional) Create your own HiveMQ instance 

i. Navigate to https://www.hivemq.com/mqtt-cloud-broker/, click “Try out for 
free”, and create an account 

ii. Set up credentials by entering a username and password and press “ADD” 

 
iii. Navigate to the “Clusters” tab and copy the URL (e.g., 

abc123.s2.eu.hivemq.cloud) to HIVEMQ_HOST in secrets.py. Also update 
HIVEMQ_USERNAME and HIVEMQ_PASSWORD with the username and 

https://www.hivemq.com/mqtt-cloud-broker/


 
 

password from the previous step. 

 
iv. Create a certificate using the Google Colab notebook at 

https://github.com/sparks-baird/self-driving-lab-
demo/blob/v0.7.3/notebooks/7.2.1-hivemq-openssl-certificate.ipynb. Enter 
the server address (same as HIVEMQ_HOST), run the Google Colab cells, and 
follow the instructions to download the hivemq-com-chain.der file to the 
unzipped sdl_demo folder. This file is used to do secure authentication via 
HiveMQ. 

13. While holding Ctrl (Windows) or Cmd (Mac), select "lib", "main.py", “hivemq-com-chain.der”, 
and "secrets.py", right click in the gray region, and click "Upload to /"

 
Figure 12 
 

14. Double click to open main.py, click the green play button, and note the PICO ID that prints to 
the command window ("prefix/picow/<PICO_ID>/"). This will act as the “password” to control 

https://github.com/sparks-baird/self-driving-lab-demo/blob/v0.7.3/notebooks/7.2.1-hivemq-openssl-certificate.ipynb
https://github.com/sparks-baird/self-driving-lab-demo/blob/v0.7.3/notebooks/7.2.1-hivemq-openssl-certificate.ipynb


 
 

the demo.

 
Figure 13 

Control from the cloud 
Timing: 10 min 
 
Bayesian optimization is commonly used for computational and experimental discovery of new 
materials, and is often used with low experimental budgets in self-driving laboratory settings. This 
section covers controlling the device in a closed-loop fashion via internet-of-things style 
communication (MQTT) and run a basic optimization comparison of grid search vs. random search vs. 
Bayesian optimization. 

 
16. Open notebooks/4.2-paho-mqtt-colab-sdl-demo-test.ipynb in Google Colab 
17. Scroll to the first code cell and click the play button to install the self-driving-lab-demo Python 

package 

 
Figure 14 

 
18. Copy the PICO ID from the Thonny editor and paste it in place of "test" (without quotes). The 

following is an example image of the output; the actual output to the command window may 

https://colab.research.google.com/github/sparks-baird/self-driving-lab-demo/blob/main/notebooks/4.2-paho-mqtt-colab-sdl-demo-test.ipynb


 
 

vary in future releases.

 
Figure 15 

 
Figure 16 

19. Run the remaining code cells 
a. Instantiate a SelfDrivingLabDemo class 
b. Perform optimizations for grid search, random search, and Bayesian optimization 

20. Additional notebooks that cover advanced optimization topics12 such as constrained13–15, high-
dimensional16,17, multi-fidelity18, and multi-objective11,19–22 optimization are also available. 

 

Expected outcomes 
 

1. Successfully set up the hardware and software for a closed-loop experiment 
2. Run the first “autonomous drive” given in an example interactive notebook 
3. Explore additional example notebooks 
 
Figure 17 shows a comparison of optimization results for grid search vs. random search vs. 
Bayesian optimization averaged over repeat campaigns with standard deviation error bands, 
where Bayesian optimization, on average, performs the best. Figure 18 shows one of the outputs 
from the cloud-based control notebook of best error so far vs. iteration number comparing grid 
search vs. random search vs. Bayesian optimization. Typically, grid search is the least efficient, 
Bayesian optimization is the most efficient, and random search is somewhere in-between. Figure 
19, Figure 20, and Figure 21 show the points that were searched for a given campaign for grid 
search, random search, and Bayesian optimization, respectively. Finally, Figure 22 shows the true, 
underlying target color (defined by red, green, and blue values) and the best parameter set based 
on minimizing error between the observed spectrum and the target spectrum for each of the 
optimization methods.  

https://github.com/sparks-baird/self-driving-lab-demo/blob/main/notebooks/README.md


 
 

 
Figure 17 

 
Figure 18 



 
 

 
Figure 19 

 
 

 
Figure 20 

 



 
 

 
Figure 21 

 

 
Figure 22 

 
 

Quantification and statistical analysis 
 



 
 

Discrete Fréchet distance, as implemented in https://github.com/cjekel/similarity_measures23, is used 
to assess the mismatch between the currently observed spectrum and the target spectrum, where the 
target spectrum is determined by arbitrarily choosing a random set of RGB values and measuring the 
sensor data for the fixed, random set of RGB values. Lower Fréchet distances correspond to better 
matches between the observed and target spectra (i.e. lower error). 
 
An example JSON document logged to a MongoDB database backend containing experimental data 
for a single run is given as follows: 
 

 

The experimental parameters for two JSON documents are given in Table 1. 

 
Table 1. Example of data obtained from two experiments. The LED parameters are red (R), green (G), blue (B). The sensor 
settings are atime, gain, astep (affects integration time and intensity). The measured output values are of the form 
“ch###” where the three digit number corresponds to the full-width half-max (FWHM) wavelength being measured.  

utc_timesta
mp 

onboard_temperat
ure_K 

R G B atim
e 

gain aste
p 

ch41
0 

ch44
0 

ch47
0 

ch51
0 

ch55
0 

ch58
3 

ch62
0 

ch67
0 

11/4/2022 
6:40 

292.7041 41 3 31 100 128 999 188 3674 2828 354 498 2748 5661 276 

11/4/2022 
6:51 

294.1085 41 3 31 100 128 999 188 3675 2827 354 498 2756 5671 277 

 
 

{ 
    "utc_timestamp": "2022-11-4 06:51:16", 
    "ch510": 354, 
    "ch620": 5671, 
    "ch410": 188, 
    "ch440": 3675, 
    "ch583": 2756, 
    "_input_message": { 
        "_session_id": "542e6e80-9c50-4c41-95a5-832603b96238", 
        "B": 31, 
        "atime": 100, 
        "gain": 128, 
        "astep": 999, 
        "_experiment_id": "9b50c819-db8f-476f-b601-dbe79e871a46", 
        "G": 3, 
        "integration_time": 280.78, 
        "R": 41, 
    }, 
    "onboard_temperature_K": 294.1085, 
    "sd_card_ready": True, 
    "ch470": 2827, 
    "ch550": 498, 
    "ch670": 277, 
} 

 

https://github.com/cjekel/similarity_measures


 
 

Limitations 
 
Environmental noise (e.g. light conditions) and hardware variation (LED, sensor, sensor positioning, 
etc.) may affect the results obtained. 
 

Troubleshooting 
 

See the GitHub issue tracker for existing known issues or to post a new issue. See the GitHub 
discussions for general questions and discussion. 

 

Problem 1: 
Can I use this with alternate microcontrollers or firmware? 
 

Potential solution:  
 
The hardware configuration and software were designed based on Raspberry Pi’s Pico Wireless (Pico 
W) microcontroller. Libraries exist for LED control and the AS7341 light sensor in CircuitPython and 
Arduino. The hardware and configuration and software can be adapted for other microcontrollers. 
Contributions at https://github.com/sparks-baird/self-driving-lab-demo/ are welcome. 

 
Problem 2: 
Can I use this without connecting to the internet? 
 

Potential solution:  
 
While possible with minor modification, connecting via USB cable is not directly supported. The 
emphasis is on using this with sophisticated software packages (e.g., Meta’s Adaptive 
Experimentation platform) that are not typically supported via the lightweight MicroPython firmware 
that runs on the microcontroller. For private, secure communication between the Pico W 
microcontroller and the client (e.g., Jupyter notebook running locally), a free, private HiveMQ 

instance can be set up per the instructions in Software Setup. 

 
Problem 3: 
Can I use this without logging to a MongoDB backend? 
 

Potential solution:  
If the MongoDB credentials are left to their default dummy values in secrets.py, then logging to the 
MongoDB backend will fail and the device will simply notify the user rather than exit the program. The 
same applies for logging to an onboard SD card. If an SD card is detected, the microcontroller will 
write backup data to it, otherwise it will be skipped. 
 

Problem 3: 
The Stemma-QT to Grove connector is out-of-stock. 

https://github.com/sparks-baird/self-driving-lab-demo/issues
https://github.com/sparks-baird/self-driving-lab-demo/discussions
https://github.com/sparks-baird/self-driving-lab-demo/discussions
https://github.com/sparks-baird/self-driving-lab-demo/issues
https://ax.dev/docs/bayesopt.html
https://ax.dev/docs/bayesopt.html


 
 

 

Potential solution:  
An alternative connector that can be used in place of the Stemma-QT to Grove connector is a 4-pin 
JST PH to JST SH Cable (DigiKey Cat#1528-4424-ND). Another alternative is using a Stemma-QT to 
header pin cable (DigiKey Cat#1528-4209-ND) and plugging directly into the GPIO pins that 
correspond to Grove Port #6 of the Maker Pi Pico base. 

 
Problem 3: 
The sculpting wire doesn’t fit through the mounting holes. 
 

Potential solution:  
Ensure that the outer diameter of the sculpting wire is 14 AWG or higher (i.e., 1.628 mm or thinner). 
Enameled wire (often advertised as sculpting wire) has a very thin coating, whereas electrical wiring 
typically has a non-negligible insulation thickness. 

 
Resource availability 
Lead contact 
Further information and requests for resources and reagents should be directed to and will be fulfilled 
by the lead contact, Taylor D. Sparks sparks@eng.utah.edu. 
 
Materials availability 
This study did not generate new unique reagents. 
 
Data and code availability 
 
The datasets and code generated during this study are available on GitHub: 
https://github.com/sparks-baird/self-driving-lab-demo. A standalone DigiKey order is available at 
https://www.digikey.com/short/c05d10fd.  
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Figure legends 
 
Figure 1: Visual bill of materials 
Figure 2: Wire mounting instructions 
Figure 3: Wire mounting schematic 
Figure 4: Light sensor mounting instructions 
Figure 5: Hardware connections 
Figure 6: Firmware installation dropdown 
Figure 7: MicroPython installation dialogue box 
Figure 8: Interpreter dropdown 
Figure 9: Opening the files sidebar 
Figure 10: Editing secrets.py 
Figure 11: Saving secrets.py 
Figure 12: Uploading source files to microcontroller 
Figure 13: Running main.py 
Figure 14: Python package installation 



 
 

Figure 15: Copying the Pico ID from the Thonny editor 
Figure 16: Pasting the Pico ID into the Google Colab form box 
Figure 17: Example optimization comparison between grid search, random search, and Bayesian 
optimization averaged over repeated campaigns. Lower Fréchet distance between observed and 
target spectra is better. 
Figure 18: Example optimization comparison between grid search, random search, and Bayesian 
optimization. Lower error is better. 
Figure 19: Twenty-seven grid search points colored by the Fréchet distance between the target 
spectrum and the sensor data evaluated at each grid point. 
Figure 20: Twenty-seven random search points colored by the Fréchet distance between the target 
spectrum and the sensor data evaluated at each grid point. 
Figure 21: Twenty-seven Bayesian optimization points colored by the Fréchet distance between the 
target spectrum and the sensor data evaluated at each grid point. 
Figure 22: The true, underlying RGB target (purple diamond) and the best observed points for grid 
search (blue circle), random search (red circle), and Bayesian optimization (green circle). Bayesian 
optimization gave the closest match to the true target. 
 
Methods Video S1: Thread the mounting wire through the mounting holes of the Maker Pi Pico base, 
related to step 3 
Methods Video S2: Thread the remaining mounting wire through the mounting holes of the AS7341 
light sensor and position the sensor above the LEDs, related to step 4 
Methods Video S3: Attach the Pico W and the AS7341 light sensor to the Maker Pi Pico base, then 
connect the USB cable from the Pico W to the computer while holding down the BOOTSEL button, 
related to step 5 
Methods Video S4: Download the Thonny editor and install the MicroPython firmware onto the Pico 
W, related to steps 6, 7, 8, and 9 
Methods Video S5: Download the source code from GitHub, unzip it, and enter WiFi credentials, 
related to steps 10, 11, 12, and 13 
Methods Video S6: Upload the source code to the Pico W and run the main.py script, related to steps 
14 and 15 
Methods Video S7: Open the cloud-control Jupyter notebook via Google Colab and install the self-
driving-lab-demo Python package, related to steps 16 and 17 
Methods Video S8: Copy-paste the PICO ID from Thonny to Colab and control the setup remotely 
through the “evaluate” command, related to steps 18 and 19. 
Methods Video S9: Perform the “Hello, World!” of optimization, comparing grid search vs. random 
search vs. Bayesian optimization, related to step 19 
Methods Video S10: Visualize the results of the optimization comparison, related to step 19 




