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Abstract

Background: The small hive beetle (SHB), Aethina tumida, has emerged as a worldwide threat to honey bees in the past two decades.
These beetles harvest nest resources, feed on larval bees, and ultimately spoil nest resources with gelatinous slime together with the
fungal symbiont Kodamaea ohmeri.

Results: Here, we present the first chromosome-level genome assembly for the SHB. With a 99.1% representation of conserved (BUSCO)
arthropod genes, this resource enables the study of chemosensory, digestive, and detoxification traits critical for SHB success and
possible control. We use this annotated assembly to characterize features of SHB sex chromosomes and a female-skewed primary sex
ratio. We also found chromosome fusion and a lower recombination rate in sex chromosomes than in autosomes.

Conclusions: Genome-enabled insights will clarify the traits that allowed this beetle to exploit hive resources successfully and will

be critical for determining the causes of observed sex ratio asymmetries.

Keywords: pest, invasion, sex chromosome, genome assembly, recombination, sex ratio

Background

The small hive beetle, Aethina tumida (SHB, NCBI :txid116153), is a
nest parasite of social bees. Outside its native range, SHB was first
reported in the United States in 1996 and then further invaded
Australia, Europe, and Asia [1-4]. This beetle is exceptionally dam-
aging to managed honey bee colonies, accelerating colony decline
and spoiling honey and other hive products [5]. The previous SHB
draft genome identified genes involved in detoxification, physi-
ological and chemosensory pathways, and supplemented mito-
chondrial markers used to track the ongoing diaspora of this pest
species [6, 7]. As expected, the SHB movement largely follows in-
ternational trade lines, and incipient populations fare well against
SHB-naive hosts [8-12]. In Africa, worker honey bees mount a
range of defenses against these beetles, attacking and isolating
them, so they remain at low numbers. Naive honey bee popu-
lations seem to lack many of these defenses, consequently sup-
porting substantially higher SHB populations [13]. When honey
bee colony size decreases due to management, disease, or stress,
SHB populations can rapidly take advantage, removing resources
and eventually “sliming” the colony with a resinous substance.
This slime, and indeed much of the biology of SHB, is linked with
a commensal fungus, Kodamaea ohmeri [14-16]. Metabolites from
this fungus are attractive to beetles, providing a bait to trap the

SHB in the field [17]. However, the route to transfer this fungal
symbiont to SHBs remains unclear, which is essential to under-
stand the symbiosis.

In beehives, the observed SHB sex ratio is often female biased,
a fact that was proposed to facilitate the global invasion [18, 19].
However, plausible mechanisms for such a skew remain unclear.
In other insects, female-biased sex ratios have also been observed
[20-22]. Selfish genetic elements and the symbiotic bacteria Wol-
bachia were found to act as sex ratio distorters, skewing ratios to-
ward females [21, 23, 24]. In a previous metagenomic study, Wol-
bachia fragments were found in the small hive beetles [25]. It is
challenging to explain the mechanism under the observed biased
SHB sex ratio because it is impossible to determine the primary
sex ratio. Therefore, a chromosomal-level SHB genome assembly
and the identification of the sex chromosomes were urgently re-
quired.

Previously, we assembled a 234-Mbp SHB genome without con-
text to the chromosomal structure. Here, we substantially im-
proved the SHB genome and generated a 259-Mbp SHB genome
assembly consisting of only 38 gapless contigs and scaffolded
to 8 chromosomes. We identified and characterized the SHB sex
chromosomes for the first time and established the egg sex ratios
for this species. We have also used this complete assembly to es-
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Table 1: Statistics of current and previous small hive beetle
genome assemblies. Overall, the assembly statistics have been
substantially improved compared with the previous version.

icAetTumil.1 Atum_1.0

GCA_024364675.1 GCA_001937115.1

(Current version) (Previous version)
Assembly level Chromosome Contig
Assembly size (Mbp) 259.9 234.3
Number of contigs 38 3,063
Contig N50 (kbp) 11,742 298
Number of gene 14,581 14,076
Number of mRNAs 21,401 17,634
BUSCO % 99.1 97.5

timate tandem repeats and recombination rates and produced a
definitive gene set.

Analyses

Genome assembly statistics

The final assembly (GenBank accession: GCA_024364675.1) com-
prised 8 chromosomes and a mitochondrial genome (Table 1).
These 9 genetic components were assembled from 38 contigs us-
ing Hi-C contacts and derived from A. tumida (Supplementary Ta-
ble S1). The ancestral insect telomere motif (TTAGG), was de-
tected on the 5 end of chromosomes 1, 2, 3,4, 5, and 8 and the 3’
end of chromosomes 2,3, 4,5, and 6. The ancestral insect telomere
motif was also detected at around 27.8 Mb and 37.6 Mb of chromo-
some 1, indicating recent chromosome fusion. The final assembly
has a total length of 259 MB, which is about 10% larger than the
genome size estimated by GenomeScope (Supplementary Fig. S1),
which is likely due to highly repetitive regions in the assembly that
did not contribute to the estimated size derived from k-mer anal-
ysis or an inflated assembly of the highly heterochromatic cen-
tromere regions. Corroborating the low proportion of artifact du-
plicates were the k-mer frequencies of the raw circular consensus
sequencing (CCS) reads relative to the k-mers detected in the final
assembly (Supplementary Fig. S2). Genomic completeness mea-
sured by the proportion of Endopterygota BUSCOs revealed a high
level of completeness, with the genome containing 99.1% of ex-
pected genes (97.2% in a complete single copy and 1.9% complete
but duplicated) and an annotated protein set containing 99.3%
of expected genes (97.4% complete single copy and 1.9% com-
plete but duplicated) (Supplementary Fig. S3). Additionally, 99.6%
of genes were validated using transcriptomic data. We addition-
ally analyzed 50 chromosome-level beetle genomes. On average,
13 + 4 chromosomes were annotated in beetle genomes, and the
genome size ranged from 132 to 2,533 Mbp. Compared with other
beetle genomes, SHB showed a relatively compact genome size
(one-sample t-test, P < 0.001) (Supplementary Fig. S4).

XY sex determination in small hive beetles

We established 3 beetle families, producing 49 offspring beetles
with known sex (Fig. 1, Table 2). On average, 84 million reads
(150-bp paired reads) were aligned per offspring. By plotting the
alignment depth along the genome, we found that the shortest
chromosome (Chr8) only exists in male beetles, defined as the
Y chromosome. Comparatively, we did not identify any chromo-
some that only aligned in females. Additionally, the depth of the
longest chromosome (Chrl) was twofold higher in female than
male beetles, defined as the X chromosome (Fig. 2). In the remain-

ing chromosomes (Chr2-Chr7), the depth ratio between males and
females was approximately equal (paired t-test, P = 0.54), suggest-
ing them to be autosomal.

Chromosome fusion

By aligning the protein-encoding sequences of the small hive bee-
tle to that of the red flour beetle, the 2 beetle species shared 5,846
synteny blocks (>5 genes in a block). At the chromosome level, or-
thologous groups were well paired along the genome (Fig. 3). In the
small hive beetle genome, the X chromosome was twice as large
as the other autosomes and matched the X chromosome and 2
autosomes in the red flour beetle (Tribolium castaneum). The gene
density of ChrY (139 kbp per gene) was over an order of magnitude
lower than autosomes (11 kbp per gene). Even though the overall
gene density in ChrX (13 kbp per gene) was similar to the autoso-
mal density, the gene density at the 3’ end (11 kbp per gene) was
twice higher than at the 5’ end (24 kbp per gene) in ChrX (Supple-
mentary Fig. S5).

Reduced recombination rate in sex chromosome

Among the 3 beetle families, parental and offspring beetles shared
60,118 biallelic single-nucleotide variants (SNVs), generating 1,450
linkage groups. The X chromosome showed the lowest recombi-
nation rate (0.04 cM/Mbp), followed by the Y chromosome (0.06
cM/Mbp). Comparatively, chromosome 3 showed the highest re-
combination rate (2.3 cM/Mbp). By comparing the recombination
rate between males and females, the variance was minor in auto-
somes (chi-squared test, P > 0.05). On average, the recombination
rate was 30-fold higher in autosomes (1.5 cM/Mbp) than in sex
chromosomes (0.05 cM/Mbp).

Female-biased sex ratio in small hive beetle eggs

A pair of primers (SHB-Y) on the Y chromosome was designed to
differentiate male and female eggs (Table 3). As the sex of adult
beetles can be visually identified, we validated the primers in 15
adult male and female SHBs, respectively. The PCR product gen-
erated by the primer pair was approximately 569 bp (Supplemen-
tary Figs. 56, S7). The sensitivity and specificity were 100% in adult
SHBs. A previously designed universal primer (SHB-universal) to
detect SHB served as a positive control (Table 3). The eggs that am-
plified SHB-Y were defined as male eggs. The eggs that amplified
SHB-universal, but not SHB-Y, were defined as female eggs. In to-
tal, 79 eggs were collected from the lab-reared SHBs, and 33 male
and 46 female eggs were identified from pool-reared adults. Even
though statistically insignificant, the egg sex ratio skewed toward
females (chi-squared test, P = 0.37; Supplementary Table S2). In
the adult beetles, slightly more females were pupated (27 females)
than males (22 males) (chi-squared test, P = 0.76; Table 2).

Discussion

Coleoptera (beetles) make up 40% of all described insect species,
including many agricultural parasites [26]. Emergent parasites
can readily evade the defenses of their hosts, and the SHB is a
perfect example of a parasite adept at exploiting naive host popu-
lations. Rarely seen in honey bee colonies in their historical range
in Africa, SHB is now a notorious global parasite [5]. These bee-
tles are remarkably fecund in weaker honey bee colonies, destroy-
ing food resources and feeding on developing bees. SHBs share
many traits with invasive emergent pests, including high female
fecundity, excellent dispersal and homing skills, broad diet prefer-
ences, and a female-biased adult sex ratio [20, 27-29]. Genomic re-
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Figure 1: Life stages of small hive beetles. (A) Dorsal image of adult SHB. (B) ventral image of adult SHB. (C) Dorsal image of pupa. (D) Ventral image of

pupa. (E) Dorsal image of larva. (F) Ventral image of larva.

Table 2: Beetle families established to determine sex chromo-
somes. Several beetle pairs (a male and a female) were con-
structed, and 3 beetle families were successfully established, with
both male and female offspring. Beetle family F17 first laid male
and female offspring, followed by the family F31 and F8.

Beetle Parental Parental Offspring Offspring

family male female male female  Sex ratio

F8 1 1 5 10 Chi-
squared
test, P =
0.76

F17 1 1 8 8

F31 1 1 9 9

sources can be used to compare SHB to other fully (chromosome-
level assemblies) sequenced beetles and thereby help address
beetle biological and evolutionary questions. Here we present a

complete genome analysis of SHB and use this resource to charac-
terize sex chromosome traits, develop a tool for genetically distin-
guishing male and female beetle eggs, and present global studies
of chromosomal and gene traits.

Given the proposal that SHBs benefit from a sex-biased adult
sex ratio as a part of their global dispersal [18, 19], our first goal
was to characterize the genetic factors determining sex in these
beetles. Sex determination is a fundamental biological character,
substantially impacting organisms’ effective population size and
reproductive behavior. Across a subset of Coleoptera, 3,348 beetle
species have an XY sex determination system, and 766 have an
XO sex determination system [30]. In our study, bias in coverage
across several chromosomes identified the sex chromosomes and
suggested that SHB has an XY sex determination. In small hive
beetles, female-biased sex ratios were observed in field and lab
conditions [18, 19]. As a complete metamorphosis insect, the sex
ratio can be biased in any stage of eggs, larvae, and pupation.In lab
conditions, the mortality of pupation was not different between
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Figure 2: The sequence alignment depth along each chromosome. To determine the sex chromosome, the alignment depth was calculated along the
genome. Chromosome 1 (Chrl) is the longest, and the alignment depth was twofold higher in female than male beetles, suggesting that this is the X
chromosome. Chromosome 8 (Chr8) is the shortest chromosome, explicitly associated with male beetles as the Y chromosome. This pattern was
highly congruent in 3 independent beetle families, F8 (A), F17 (B), and F31 (C). Collectively, the data suggest an XY sex determination mechanism in
small hive beetles. Red indicates female beetles; blue indicates male beetles; the error bar indicates standard error.

Small hive beetle

Chr. X Chr. 7 i Chr. Chr. 2 C 3 Chr. 9 Chr. 6 Chr. 4

0 5 1M 0 5 10 152Mb 2 0 L ¢ 5 10 1520Mb 0 & uMb

116 21Mb 07 13m 0 14 MB

Red flour beetle

Figure 3: Synteny between the small hive beetle and the red flour beetle genomes. The orthologs were generally well aligned in chromosomes. In the
small hive beetle, the extra-long X chromosome seems analogous to a fusion of 2 autosomes and the X chromosome in the red flour beetle. Other
chromosomes were generally well paired.

Table 3: Primer sequences to determine the egg sex ratio

Annealing
tempera- Product Target
primers F-sequence B-sequence ture size region Sensitivity Specificity Reference
SHB-Y TGACAACTCATAACCTGTTGGAT ACAGGATGGTTTCCCTGCTC 60°C 569bp Y chromo- 100% 100%  This study
some
Universal GCTAAGTTAACTGAAGATCCACCATTAGTTCCACTAATACTAAGAGCCCC  56°C 190 bp 100% 52.63% [76]

mitochondria
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male and female SHBs, suggesting the biases originated from eggs
or the competition of larvae [19]. In our study, the lab-reared eggs
and pupated adults trended toward a female-biased sex ratio, al-
though the skew was not statistically significant. In natural con-
ditions, competition for mating and food resources may further
skew secondary sex ratios even when the primary sex ratio is un-
biased [31].In this study, the identified sex chromosome and male-
specific PCR primers allow future empirical testing of the sex ratio
under different environmental conditions before apparent sexual
traits are found in adults.

In synteny alignment, we surprisingly found that the X chro-
mosome and 2 other autosomes of the red flour beetle aligned
singularly to the X chromosome of SHB. The synteny analysis sug-
gests that chromosome fusion occurred during SHB evolution. Ad-
ditionally, 2 additional telomere motifs were detected in the SHB
X chromosome, which supports chromosome fusion. Besides, the
0.5:1 coverage ratio between the X chromosome and autosomes in
males further supports chromosome fusion. Otherwise, the cover-
age ratio should be 0.8:1. In other insects, chromosomal fusion has
shown substantial impacts on speciation, genetic diversity, and
genome size [32, 33]). SHB showed a relatively compact genome
size compared with other beetles, which might be due to the par-
asitic life character [34, 35].

Recombination shuffles alleles to form novel genotypes, a
fundamental advantage of sexual reproduction [36]. Constantly
breaking linkages among genes is a central paradigm in coevo-
lutionary biology, and parasite selection for host adaptation can
promote increased host recombination frequency [37, 38]. In ani-
mals, an average recombination rate of 2.52 cM/Mb was observed,
however, an exceptionally high recombination rate of 19 cM/Mb
was found in social bees [39-41]. In our data, a recombination
rate of 1.5 cM/Mb was observed, which is lower than Drosophila
melanogaster at 2.05 cM/Mb [42] and slightly higher than the red
flour beetle (T. castaneum) at 1.3 cM/Mb [43]. Recombination is
a critical evolutionary trait in light of host-parasite interactions
[44]. Increased recombination rates were observed in mosquitoes
infected by microsporidian parasites [38]. The red flour beetle
also showed benefits from recombination when infected by mi-
crosporidian parasites [37]. As an invasive pest, novel genotypes
and broad food types facilitate population expansion.

Conclusions

This chromosome-level genome assembly allows for the identifi-
cation of sex determination, recombination rate, and chromoso-
mal fusion. The developed tool allows for deciphering mechanism
under the female-biased sex ratio in future studies.

Methods

DNA extraction and genome sequencing

Genomic DNA was obtained from nucleic acid isolation of a single
adult male A. tumida flash frozen in liquid nitrogen. High molec-
ular weight DNA for sequencing was extracted using the fresh
or frozen tissue protocol of the Qiagen MagAttract HMW DNA
Kit (Qiagen, Hilden, Germany). Following isolation, genomic DNA
was subjected to a 2.0x bead cleanup to improve sample purity
and then quantified using the dsDNA Broad Range (BR) Qubit as-
say (Thermo Fisher Scientific, Waltham, MA, USA) and the flu-
orometer of a DS-11 Spectrophotometer and Fluorometer (DeN-
ovix, Wilmington, DE, USA). Purity was determined using the UV-
Vis spectrometer feature of the DS-11, which reports OD 260/230
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(>2.0 and <2.2) and 260/280 ratios (>1.8 and <2.0). Following the
first bead cleanup, the high molecular weight DNA sample was
sheared to a mean size of 20 kb with the Megaruptor 2 (Diagenode,
Denville, NJ, USA). Subsequent size distribution was assessed with
the High Sensitivity (HS) Large fragment kit run on the Fragment
Analyzer (Agilent Technologies, Santa Clara, CA, USA). A PacBio
SMRTBell library was prepared using the sheared DNA and the
SMRTBell Express Template Prep Kit 2.0 (Pacific Biosciences, Menlo
Park, CA, USA). The prepared library was bound and sequenced
at the USDA-ARS Genetics and Animal Breeding Research Unit in
Clay Center, Nebraska, USA, on a Pacific Biosciences 8 M SMRT
Cell on a Sequel Ile system (Pacific Biosciences) beginning with a
2-hour preextension followed by a 30-hour movie collection time.
After sequencing, consensus sequences from the PacBio Sequel
Ile subreads were obtained using the SMRTLink v8.0 software.

Concurrent to the PacBio HiFi library prep and sequencing, a
Hi-C library was prepared from a second adult male A. tumida col-
lected from the same Apis mellifera colony. The proximity-ligated
sequencing library was prepared using the Arima Hi-C kit (Arima
Genomics, San Diego, CA, USA) from crosslinked tissue prepared
following the Arima Hi-C low-input protocol. Following proxim-
ity ligation, DNA was sheared using a Bioruptor Pico (Diagenode),
and DNA fragments in the range of 200 to 600 bp were selected
as the input for the Illumina library prep using the Swift Accel
NGS 2S Plus kit (Integrated DNA Technologies, Coralville, IA, USA).
Mlumina 2 x 150-bp sequencing was performed on a NovaSeq
6000 (RRID:SCR_016387) at the Hudson Alpha Genome Sequenc-
ing Center (Huntsville, AL, USA), and adapter trimming after se-
quence collection was performed using BaseSpace software (Illu-
mina, San Diego, CA, USA; RRID:SCR_011881).

Genome assembly

Prior to genome assembly, HiFi reads containing artifact adapter
sequences were removed from the HiFi read pool using the pro-
gram HiFiAdapterFilt v2.0 [45]. This filtered read set was assem-
bled into a contig assembly using HiFIASM v0.16.1-r375 (RRID:
SCR_021069) using the default parameters [46]. The output of Hi-
FIASM was an assembly in .gfa format, which was converted to a
fasta format using any?2fasta [47] The primary contig assembly
was scaffolded following the Arima Genomics mapping pipeline
and YaHS scaffolding software [48, 49]. The Arima Genomics map-
ping pipeline uses BWA-MEM2 (RRID:SCR_022192) to align the
paired I[llumina R1 and R2 reads separately to the reference contig
assembly and applies the filtering script “filter_five_end.pl” to only
retain reads that are mapped in the 5" orientation [50]. Following
filtering, the independently mapped R1 and R2 reads are paired
using the script “two_read_bam_combiner.pl,” which results in a
sorted and quality-filtered paired-end file in .bam format. The
“MarkDuplicates” function of Picard Tools [51] was used to re-
move PCR duplicate artifacts from the mapped and paired .bam
file, which, along with the reference contig assembly, served as the
input files for the YaHS scaffolding software. The YaHS software
was implemented using the “no contig error correcting” option,
and YaHS outputs were converted using the “juicer_pre” function
of YaHS to Juicebox-compatible files for the manual curation [52].
Following manual curation, edits were applied to the scaffold as-
sembly using “juicebox_assembly_converter.py” from the Phase
Genomics suite of juicebox_scripts [52]. To inform Hi-C scaffold-
ing and identify contigs containing the ancestral Insecta telomere
sequence motif (TTAGG),, the software program Tandem Repeat
Finder was run on the contig assembly using the recommended
parameters (matching weight = 2, mismatching penalty = 7, indel
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penalty = 7, match probability = 80, indel probability = 10, mini-
mum alignment score = 50, and maximum period size = 500) with
an additional parameter to denote the longest allowable TR array
(1) of 17 million bp, which represented the longest contig in the
assembly [53].

Assembly quality assessment

The Hi-C scaffold assembly and annotated protein set were as-
sessed for completeness in terms of gene content with BUSCO
(RRID:SCR_015008), using all relevant taxonomic databases for
the genome (Eukaryota, Metazoa, Arthropoda, Insecta, and En-
dopterygota) and only the most derived database, Endopterygota,
for the protein set. Ab initio annotations on the scaffold assem-
bly were performed using Metaeuk v.4.a0f584d for the Eukaryota,
Arthropoda, Insecta, and Endopterygota odb10 databases, and Au-
gustus v3.4.0 was used to detect the Metazoa odb10 orthologs
[54]. Designation of genes as a complete single copy, duplicated,
fragmented, or missing was determined using BUSCO v5.2.2 in
“genome” mode for the genome assembly and “protein” for the
annotated protein set [55]. Identification of off-target (non-A. tu-
mida) contigs in the assembly was performed by aligning all con-
tigs to the NCBI nucleotide database (accessed 14 February 2022)
using the “blastn” function (RRID:SCR_001598) of BLAST+ v2.5.9+
[56]. These contigs were secondarily aligned to the UniProt protein
database (accessed March 2020) using Diamond (RRID:SCR_00945
7) [57]. Local alignments to the nucleotide and protein databases
were then used to assign the A. tumida contigs to a taxon us-
ing the rule “bestsumorder” of blobtoolkit v.2.6.1, which assigns
contigs to a taxon first based on alignments to the nucleotide
database and then followed by alignments to the protein database
if there were no hits to the nucleotide database [58]. Coverage per
scaffold and contig record was calculated using minimap2 v2.2-
r1101 (RRID:SCR_018550) [59]. Coverage, taxonomic assignment,
and BUSCO results were aggregated using blobtoolkit and sum-
marized using blobblurb v2.0 [45]. Expected genome size was esti-
mated using GenomeScope v2.0 (RRID:SCR_017014), which uses k-
mer frequency analysis of k-mer counts performed by KMC v3.2.1
(RRID:SCR_001245) [60, 61]. The level of duplicate artifacts in the
assembly was assessed using BUSCO results for both the genome
and the protein set and using k-mer abundance in the raw HiFi
reads relative to their representation in the final assembly as de-
termined by K-mer Analysis Toolkit v2.4.2 [62]. The gene features
were annotated through the NCBI Eukaryotic Genome Annota-
tion pipeline, and the RNA sequencing data (SRR1798556) of both
males and females were used to support the annotation. The an-
notated features were displayed using the Rideogram package in
R [63].

Small hive beetle rearing and genome
resequencing

Adult beetles were captured from collapsed honey bee (Apis cer-
ana) hives in Hainan, China, and reared in the lab according to the
standard method for small hive beetle research [64]. The pupae
were preserved in plastic cups individually. After hatching, indi-
vidual male and female beetles were paired and kept in a plas-
tic container until the first batch of larvae was pupated in the
soil. The parental and offspring beetles were then collected and
preserved in liquid nitrogen until DNA extraction. DNA was ex-
tracted from each beetle using the Magnetic Universal Genomic
DNA kit (TianGen, Beijing, China). Next, DNA for each beetle
was used to prepare libraries using the NEB Next Ultra DNA Li-
brary Pre Kit (BioLabs, ipswich, massachusetts, USA). The bee-

tles were individually sequenced on an Illumina Novaseq 6000
machine. The DNA sequencing reads were filtered through Fastp
(version 0.20.1; RRID:SCR_016962) with default parameters [65]
and then were aligned to the small hive beetle genome assem-
bly (GCF_024364675.1) using Bowtie (version 0.7.17-r1188; RRID:
SCR_005476) with default parameters [50]. To calculate the align-
ment depth, the number of reads aligned to the assembly was cal-
culated on a 5-kbp sliding widow using Jvarkit bioalcidae [66]. The
numbers of aligned reads for each 5-kbp window were normalized
using count per million reads for each library [67].

Eggs collection and DNA extraction

The offspring were from paired male and female beetles. The sex
ratio was determined by counting the emerged adult beetles. Ad-
ditionally, we developed a primer based on the Y chromosome,
which allowed us to distinguish the eggs developed to males. We
amplified the intergenic region to avoid nonspecific amplification.
In addition, the universal primers that amplify both males and fe-
males were used as a positive control for DNA quality. The eggs
were collected from pooled SHBs in the lab. The DNA was ex-
tracted using DNA isolation Kit (Omega, Norcross, Georgia, USA).

Sex chromosome identification and synteny
analysis

After normalization, there were regions with an extremely high
or low number of aligned reads, which might have been align-
ment artifacts on repetitive regions. To exclude this bias, the sec-
ond quartile was used to represent the alignment depth. First, we
examined the existence of the Y or W chromosome, which is as-
sociated with either male or female beetles. Then we examined
the ratio of alignment depth between male and female beetles.
The small hive beetle protein sequences were aligned to T. cas-
taneum (GCA_000002335.3) to infer the synteny using MCScanX
(RRID:SCR_022067) with default parameters [68, 69]. SynVisio was
used to view the synteny along the genome [70].

Recombination rate analysis

SNVs were identified from individual beetles using the GATK
pipeline (RRID:SCR_001876) with default parameters [71]. In each
beetle family, the parents’ genotypes allow inference of crossovers
in the offspring based on linkage equilibrium. We assume that
any SNVs found in offspring should also be found in the parents.
Therefore, only the SNVs identified in both parents and offspring
were kept for further analysis. The package Lep-MAP3, supporting
the integration of parents and offspring to determine recombina-
tion events using genome-wide SNVs, was used to determine the
recombination events in the offspring beetles [72].

Data Availability

Raw WGS HiFi and Hi-C Illumina sequence data were de-
posited at DDBJ/ENA/GenBank within BioProject PRINA825637,
under the Sequence Read Archive accessions SRX14827166 and
SRX14828569, respectively. The annotated primary assembly ver-
sion icAetTumil.l accession GCA_024364675.1 (Annotation Re-
lease 101, BioProject PRJNA825637) and icAetTumil.l alternate
haplotype assembly version accession GCA_024364635.1 (Bio-
Project PRJNA825646) were described in this article. Both as-
semblies are under the AglOOPest umbrella project, BioProject
PRJNA555319. The primary assembly and annotations are also
available at the i5k Workspace@NAL [73]. The genome assembly
and gene annotation are available at NCBI to download [74]. The
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beetle family genome resequencing reads were deposited to Bio-
Project PRINA776042. All supporting data and materials are avail-
able in the GigaScience GigaDB database [75].
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