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Abstract

Leafhoppers comprise over 20,000 plant- sap feeding species, many of which are im-

portant agricultural pests. Most species rely on two ancestral bacterial symbionts, 

Sulcia and Nasuia, for essential nutrition lacking in their phloem and xylem plant sap 

diets. To understand how pest leafhopper genomes evolve and are shaped by micro-

bial symbioses, we completed a chromosomal- level assembly of the aster leafhopper's 

genome	(ALF;	Macrosteles quadrilineatus).	We	compared	ALF's	genome	to	three	other	
pest leafhoppers, Nephotettix cincticeps, Homalodisca vitripennis, and Empoasca onukii, 

which	have	distinct	ecologies	and	symbiotic	relationships.	Despite	diverging	~155 mil-

lion years ago, leafhoppers have high levels of chromosomal synteny and gene family 

conservation. Conserved genes include those involved in plant chemical detoxifica-

tion, resistance to various insecticides, and defence against environmental stress. 

Positive selection acting upon these genes further points to ongoing adaptive evolu-

tion	in	response	to	agricultural	environments.	In	relation	to	leafhoppers'	general	de-

pendence on symbionts, species that retain the ancestral symbiont, Sulcia, displayed 

gene enrichment of metabolic processes in their genomes. Leafhoppers with both 

Sulcia and its ancient partner, Nasuia, showed genomic enrichment in genes related 

to	microbial	population	regulation	and	immune	responses.	Finally,	horizontally	trans-
ferred genes (HTGs) associated with symbiont support of Sulcia and Nasuia are only 

observed	in	leafhoppers	that	maintain	symbionts.	In	contrast,	HTGs	involved	in	non-	
symbiotic	functions	are	conserved	across	all	species.	The	high-	quality	ALF	genome	
provides deep insights into how host ecology and symbioses shape genome evolution 

and a wealth of genetic resources for pest control targets.
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1  |  INTRODUC TION

Leafhoppers (Hemiptera: Auchennorrhyncha: Cicadellidae) are 

one of the largest Hemipteran families, encompassing >20,000 

described	 species	 (Brambila	 &	 Hodges,	 2008;	 Dietrich,	 2005; 

Grimaldi et al., 2005). They rely on plants for food and reproduc-

tion, with most species exclusively feeding on phloem or xylem 

plant sap. The feeding range of leafhoppers can vary consider-

ably, with some species exhibiting a high degree of polyphagy, 

while others specialize exclusively on only one or a few plant spe-

cies	 (Weintraub	&	Beanland,	2006; Wilson & Weintraub, 2007). 

Leafhoppers are also primary vectors for many viral (e.g., plant vi-

ruses) and bacterial (e.g., phytoplasmas) plant pathogens, causing 

enormous economic losses in agricultural and horticultural indus-

tries	(Banttari	&	Zeyen,	1979; Chasen et al., 2015; Greenway, 2022; 

Hogenhout, Ammar, et al., 2008;	 Nielson,	 1979; Tsai, 1979; 

Weintraub	&	Beanland,	2006). Remarkably, however, leafhoppers 

depend on non- pathogenic, beneficial bacteria to feed on plants 

in	the	first	place	(Buchner,	1965).	Due	to	the	essential	nutritional	
deficiencies in their primary diet (xylem and phloem), most leaf-

hopper species have evolved ancient and complex nutritional re-

lationships with bacteria. The abilities of leafhoppers to feed on a 

wide range of plants in both agricultural and natural ecosystems 

and their dependence on beneficial bacteria likely exert significant 

evolutionary	pressures	across	their	genomes	(Després	et	al.,	2007; 

Francis	 et	 al.,	2005; Hogenhout et al., 2009; Wang et al., 2018; 

Zhang	et	al.,	2022). Yet, we have a limited understanding of how 

leafhopper genomes evolve and how these specific evolutionary 

pressures influence that process. We further lack effective com-

parative tools to investigate such questions fully.

Here, we present the complete genome of the aster leafhopper 

(hereafter	known	as	ALF),	Macrosteles quadrilineatus (Hemiptera: 

Cicadellidae:	 Deltocephalinae).	 ALF	 is	 a	 widespread	 pest	 that	
feeds on over 300 agriculturally important plants, including car-

rots, celery, wheat, barley, flax, and lettuce (Wallis, 1962).	 It	 is	
the primary vector of the Aster Yellows phytoplasma, a bacte-

rium that causes crop stunting, deformation, and ultimately loss 

(Kunkel, 1926).	Given	ALF's	ability	to	feed	and	reproduce	on	mul-
tiple plant species and its dependence on beneficial microbial 

symbionts,	 ALF	 is	 an	 emerging	model	 system	 for	 understanding	
vector	biology	and	beneficial	symbioses	(Bennett	&	Moran,	2013; 

Hogenhout, Ammar, et al., 2008;	Hogenhout,	Oshima,	et	al.,	2008; 

Mao et al., 2018).

ALF's	 ability	 to	 feed	 on	 such	 a	 diverse	 array	 of	 plants	 is	
owed in part to its dependency on two intracellular bacteria, 

“Candidatus Sulcia muelleri” (Bacteroidetes; hereafter Sulcia) and 

“Candidatus	Nasuia	deltocephalinicola”	 (Betaproteobacteria; here-

after Nasuia).	 Both	 bacteria	 complement	 each	 other	 to	 provide	
ALF	with	the	10	essential	amino	acids	(EAAs)	that	are	depauper-
ate	 in	 its	 phloem	 diet	 and	 that	 no	 animal	 can	make	 (Bennett	 &	
Moran, 2013;	Douglas,	2017; McCutcheon & Moran, 2012; Moran 

et al., 2008).	ALF,	and	many	other	 related	auchenorrhynchan	 in-

sects, house symbionts within specialized cells (bacteriocytes) and 

organs (bacteriomes) and exclusively transmit bacteria transo-

varially	 (Baumann,	 2005;	 Buchner,	 1965;	 Fronk	 &	 Sachs,	 2022). 

As a result, Sulcia and Nasuia are ancient, having been vertically 

transmitted within lineages and across generations for >300 mil-

lion	 years	 (Bell-	Roberts	 et	 al.,	2019; Moran et al., 2005). These 

conditions have led to the streamlining and severe reduction of 

their genomes to <10% of those of their free- living ancestors (190 

kilo base- pairs [Kbp] and 112 Kbp in Sulcia and Nasuia, respec-

tively; McCutcheon & Moran, 2012; McCutcheon et al., 2019). To 

maintain these highly degraded symbionts, the host or partner 

symbionts must compensate for incomplete genomic functions 

(Ankrah et al., 2020;	Douglas,	2016; Hansen & Moran, 2011; Mao 

et al., 2018).	To	accomplish	this,	ALF	has	acquired	100s	to	1000s	
of support genes that differentially support Sulcia or Nasuia. 

These support mechanisms evolved from the reassignment of mi-

tochondrial support genes, ancient horizontal gene acquisitions 

from other infecting bacteria, and widespread gene duplications 

(Mao et al., 2018). However, how these evolutionary processes 

have	 structured	 the	 ALF	 genome,	 as	 well	 as	 genomes	 of	 other	
leafhoppers with different symbiotic relationships (i.e., losses and 

replacements), remains unclear.

While	 ALF	 and	 related	 species,	 such	 as	 the	 treehoppers	 from	
the family Membracidae and leafhoppers from the subfamily 

Deltocephalinae,	 generally	 retain	 both	 ancient	 symbionts,	 other	
leafhopper groups have replaced or lost Sulcia, Nasuia, or both 

(Bell-	Roberts	et	al.,	2019;	Bennett	&	Mao,	2018; Mao, Yang, Poff, 

et al., 2017; Michalik et al., 2021; Sudakaran et al., 2017).	For	exam-

ple, the sharpshooter leafhopper family appears to have replaced 

the more ancient symbiont, Nasuia, with “Candidatus	 Baumannia	
cicadellinicola” (hereafter Baumannia) >60 million years ago 

(MYA) in a transition between phloem and xylem feeding (Moran 

et al., 2003). Similar to Nasuia, Baumannia convergently evolved to 

provide	 the	same	two	EAAs	as	Nasuia and a few other nutritional 

resources (Wu et al., 2006). However, because Baumannia is rela-

tively young, its genome encodes more functional capabilities re-

quiring	 much	 less	 support	 from	 its	 partner	 symbionts	 (Bennett	
et al., 2014;	Mao	&	Bennett,	2020; Wu et al., 2006).	In	other	early	
evolutionary events, some leafhopper lineages, such as the subfam-

ily Typhlocybinae, have lost all obligate symbionts as a consequence 

of shifting to a more nutrient- rich plant parenchyma diet (Günthardt 

& Wanner, 1981). Species in this group no longer retain Sulcia and 

Nasuia,	nor	the	organs	that	house	and	support	them	(Buchner,	1965; 

Cao	&	Dietrich,	2022).	In	contrast	to	symbiont	replacement	in	sharp-

shooter leafhoppers, we have a more limited understanding of how 

the dramatic symbiotic transitions of symbiont loss influence the 

evolution of host genomes.

To better understand how pest ecology and obligate symbi-

oses	 shape	ALF	and	other	 leafhopper	genomes,	we	used	PacBio	
HiFi	long-	read	sequencing	and	Omni-	C	long-	range	proximity	liga-
tion	to	generate	a	chromosome-	level	genome	assembly	of	ALF.	In	
an	evolutionary	framework,	we	compared	ALF's	genome	to	those	
of all other existing chromosome- level pest leafhopper genomes. 

These species come from different leafhopper subfamilies that 
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have	overlapping	and	distinct	symbiotic	 relationships.	Our	ques-
tions focus on understanding: (i) how leafhopper genomes evolve 

in a global sense, (ii) what evolutionary pressures pest species 

biology and agricultural ecology place on leafhopper genomes, 

and (iii) how major transitions in symbioses shape leafhopper 

genome	evolution.	Our	results	show	remarkable	conservation	of	
leafhopper genomes but distinct signatures of pest ecology and 

symbioses in the expansion and retention of genes and molecular 

evolution of specific genes.

2  |  MATERIAL S AND METHODS

2.1  |  Insect rearing and material preparation

Lab- reared Macrosteles quadrilineatus	 (ALF)	 insect	 lines	 for	 this	
analysis were originally field- collected from Yale West Campus, 

West Haven, Connecticut (USA) in 2013. Specimens were iden-

tified according to Kwon (1988) and confirmed with mitochon-

drial	 locus	 Cytochrome	Oxidase	 1	 barcoding	 (following	 Bennett	
& Moran, 2013; Le Roux & Rubinoff, 2009) and whole mitochon-

dria	 genome	 sequencing	 (Mao,	Yang,	&	Bennett,	2017). A single 

mated	 female	 and	male	 of	 ALF	was	 used	 to	 establish	 an	 inbred	
line to reduce genetic heterozygosity. This line was maintained 

on	barley	 for	 four	 generations	 at	 25°C	with	 12L:12D	 light/dark.	
Inbred	female	and	male	adults	were	starved	for	6 h,	 immediately	
flash-	frozen	 in	 liquid	nitrogen,	and	stored	at	−80°C.	Pinned	 rep-

resentatives	 of	 ALF	 have	 been	 deposited	 in	 the	 University	 of	
Hawaii	Mānoa	 Insect	Museum	 (UHIM2017.00001	 -		 .00003)	 and	
at	the	UC	Berkeley	Essig	Museum	of	Entomology	(EMEC1749040	
-		EMEC1749049).

2.2  |  Genome sequencing and assembly

A chromosome- level genome assembly was generated with the 

Omni-	C	 proximity	 ligation	 technique	 developed	 by	 Dovetail	
Genomics (Santa Cruz, CA, USA). The assembly process involved 

scaffolding assembled genome contigs into chromosomes using a 

combination	 of	 long-	read	 (Pacific	 Biosciences:	 PacBio)	 and	 short-	
read	 (Illumina	HiSeqX)	 sequences.	Briefly,	 a	draft	genome	was	as-
sembled	 using	 58.2	 giga	 base-	pairs	 (Gbp)	 of	 PacBio	 HiFi	 circular	
consensus sequencing reads and the de novo assembler Hifiasm 

v0.15.4- r347 with default parameters. Scaffolds identified as pos-

sible contamination by blobtools v1.1.1 were removed (Laetsch & 

Blaxter,	2017). Haplotigs and contig overlaps were removed using 

purge_dups v1.2.5 (Guan et al., 2020).	The	dovetail	Omni-	C	library	
was	sequenced	on	an	Illumina	HiSeqX	platform	for	~30× coverage. 

The	de	novo	PacBio	assembly	and	Dovetail	OmniC	library	reads	were	
used as the inputs for HiRise proximity ligation assembly (Putnam 

et al., 2016).	To	evaluate	genome	completeness,	BUSCO	v4.0.5	was	
used on the chromosome- level assembly using the eukaryote_odb10 

lineage dataset (Simão et al., 2015;	Zdobnov	et	al.,	2017).

2.3  |  Genome annotation

The	 NCBI	 Eukaryotic	 Genome	 Annotation	 Pipeline	 was	 used	 for	
genome	 annotation	 (NCBI,	2017). Repeat families were identified 

and masked using WindowMasker (Morgulis et al., 2006).	For	gene	
predictions	using	Gnomon,	RNA-	seq	data	 from	 five	previously	 se-

quenced	 ALF	 samples	 and	 high-	quality	 protein	 coding	 sequence	
alignments from six closely related insects were aligned to the ge-

nome	with	STAR	v2.7.10b	and	ProSplign	v3.8.2	(Dobin	et	al.,	2013; 

Kiryutin et al., 2007; Mao et al., 2018; Porter et al., 2019). The final 

annotation	 quality	 of	 ALF's	 genome	 was	 assessed	 with	 BUSCO	
v4.1.4 (Manni et al., 2021; Simão et al., 2015;	Zdobnov	et	al.,	2017).

2.4  |  Chromosome number confirmation by 
karyotyping

Three	ALF	 adult	male	 individuals	 from	 the	 same	 lab	 culture	were	
dissected in 1×	PBS	solution.	The	testicular	follicles	were	separated	
from	the	rest	of	the	abdominal	contents	and	transferred	to	1.5 mL	
tubes.	The	 testicular	 follicles	were	 immersed	 in	100 μL	of	0.075 M	
sodium	 citrate	 solution	 for	 10 min,	 fixed	 in	 100 μL of modified 

Carnoy's	 solution	 (3:1	absolute	ethanol:	glacial	acetic	acid)	 for	1 h,	
and	treated	with	100 μL of 50% acetic acid. The acetic acid solution 

containing testicular follicle tissue was gently mixed, spotted onto 

slides preheated to 60°C, and allowed to air- dry at room tempera-

ture.	Following	complete	drying	of	the	solution,	the	spot	was	stained	
with	 15 μL	of	 5%	Giemsa	 stain	 for	 30 min.	 Finally,	 the	 slides	were	
thoroughly rinsed and mounted in deionized water. The slides were 

viewed	under	a	Nikon	Eclipse	 te2000-	u	 inverted	 fluorescence	mi-
croscope. Cells with clear chromosome segregation were recorded 

and	photographed	with	a	Nikon	DS-	Ri2	Microscope	Camera	to	de-

termine chromosome number.

2.5  |  Comparative 
genomics and orthologue analysis

Chromosomal conservation and shared gene families across leaf-

hoppers were inferred using comparative genomic analysis with the 

green	rice	leafhopper	(Deltocephalinae:	Nephotettix cincticeps; here-

after known as GRLH; Yan et al., 2021), glassy- winged sharpshooter 

(Cicadellinae: Homalodisca vitripennis; hereafter known as GWSS; Li 

et al., 2022), and the tea green leafhopper (Typhlocybinae: Empoasca 

onukii;	hereafter	known	as	TGLH;	Zhao	et	al.,	2022) (Table 1). Prior 

to all comparative analyses, annotated gene isoforms and transcript 

duplicates were consolidated into the single longest gene using a 

custom script. Total orthogroups and single- copy orthologues be-

tween	all	 species	were	 identified	using	OrthoFinder	v2.5.4	 (Emms	
& Kelly, 2019).	 For	 further	 clustering	 of	 orthologous	 groups	 and	
gene enrichment analyses across the four leafhopper species, we 

used	OrthoVenn2	(settings:	e-	value = 1e-	5,	inflation	value = 1.5)	(Xu	
et al., 2019).	 Within	 OrthonVenn2,	 we	 identified	 Gene	 Ontology	
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(GO)	categories	enriched	in	conserved	gene	clusters	across	leafhop-

per	lineages	and	those	exclusive	to	ALF.	Functional	gene	enrichment	
analyses were conducted across three levels: (i) shared core genes 

across all species, (ii) between different symbiotic modalities or rela-

tionships (leafhoppers with Sulcia, and leafhoppers with both Sulcia 

and Nasuia),	and	 (iii)	unique	gene	clusters	to	ALF.	Among	all	 levels	
of functional enrichment analyses, we identified gene clusters that 

contribute to pest ecology, as well as symbiosis, in order to under-

stand how these pressures may be shaping leafhopper genomes. We 

assessed chromosomal synteny among the leafhopper species using 

BLASTP	(settings:	e-	value = 1e-	5)	and	MCScanX	with	default	param-

eters (Altschul et al., 1990; Wang et al., 2012).	Finally,	SynVisio	was	
used	for	the	visualization	of	synteny	across	the	genomes	 (Bandi	&	
Gutwin, 2020).

2.6  |  Gene family expansion and contraction 
analysis in ALF

To investigate genome- wide family expansions and contractions 

within	 the	 ALF	 genome,	 we	 analysed	 protein-	coding	 sequences	
from 20 publicly available insect genomes (Table S1). This data-

set comprised 18 species from the Hemipteran order, as well as 

two from the Hemipteran sister order, Thysanoptera (Johnson 

et al., 2018). Annotated gene isoforms and transcript duplicates 

were consolidated into the single longest gene in all 20 species. 

OrthoFinder	 v2.5.4	 was	 used	 to	 infer	 gene	 orthology	 between	
species. The resulting single- copy orthologues were aligned with 

MAFFT	 v7.52	 (settings:	 -	m	 L-	INS-	I	 model)	 (Emms	 &	 Kelly,	 2019; 

Katoh & Standley, 2013). Ambiguously aligned regions were trimmed 

using	 BMGE	 v1.12	 (settings:	 -	m	 BLOSUM90,	 -	h	 0.4)	 (Criscuolo	 &	
Gribaldo, 2010). The concatenated alignments were then used to 

construct	 a	 maximum	 likelihood	 (ML)	 phylogenetic	 tree	 with	 IQ-	
TREE	v2.2.03	using	 the	best-	fit	 partition	model	 for	each	gene	 set	
(settings:	 -	m	MFP+MERGE,	 -	B	 1000)	 (Minh	 et	 al.,	2020). The re-

sulting ML tree was used to estimate divergence times between 

insect species. MCMCTree (PAML v4.10.6) was used to place 95% 

confidence intervals for the six node calibrations as soft bounds 

between Thysanoptera and Hemiptera (373.3, 451.2 million years 

ago [MYA]), Sternorrhyncha and Auchennorrhyncha/Heteroptera 

(353.8, 427.3 MYA), Psylloidea and Aleyrodidae (322.4, 396.6 MYA), 

Aphidomorpha	 and	 Psylloidea	 (303.9,	 377.2 MYA),	 Fulgoromorpha	
and Cicadomorpha (275.3, 348.6 MYA), and finally between the 

Deltocephalinae	tribes	Macrostelini	and	Chiasmini	(45.0,	95.0 MYA)	
(Cao et al., 2022; Johnson et al., 2018; Yang, 2007).

Gene family evolution (e.g., expansions and contractions) was in-

ferred	using	CAFÉ	v5	(setting:	p- value .01) (Han et al., 2013). Gene 

families	that	were	identified	as	significant	expansion	events	in	ALF	
were	functionally	annotated	using	eggNOG-	mapper	(Cantalapiedra	
et al., 2021).	To	perform	enrichment	at	the	KEGG	functional	level	for	
significantly expanded families, we used the R package “clusterPro-

filer”	 v4.6.2	 (settings:	 pvalueCutoff = 0.01,	 pAdjustMethod = “BH”,	
qvalueCutoff = 0.01,	minGSSize = 10)	(Yu	et	al.,	2012).

2.7  |  Selection analysis of leafhopper genes

Evolutionary	selection	operating	on	leafhopper	genes	was	estimated	
using the ratio of nonsynonymous to synonymous substitutions 

(ω = dN/dS) across sites in genes. This analysis was first conducted 

on	genes	from	ALF,	GWSS,	TGLH,	and	GRLH	to	provide	a	broader	
perspective on evolutionary patterns in leafhoppers. A narrower 

analysis	 was	 then	 performed	 between	 only	 the	 Deltocephalinae	
leafhoppers	(ALF	and	GRLH)	to	reduce	the	evolutionary	divergence	
and potential for substitution saturation, and to determine the influ-

ence of both Sulcia and Nasuia	that	are	retained	in	ALF	and	GLRH.
For	estimated	rates	of	evolution,	we	first	identified	single-	copy	

orthologues	 between	 species	 using	 OrthoFinder	 v2.5.4	 (Emms	
& Kelly, 2019). To ensure accurate alignment and avoid out- of- 

frame	indels,	we	used	PAL2NAL	v14	and	TranslatorX	v1.1	(Abascal	
et al., 2010; Suyama et al., 2006).	 Estimated	 rates	 of	 ω among 

gene sites were conducted using two nested site- specific models 

(M1a-	M2a	 and	M7-	M8)	 from	 CODEML	 in	 PAML	 v4.10.6	 (Nielsen	
& Yang, 1998; Wong et al., 2004; Yang et al., 2000, 2005). These 

nested models test for selection at any site in the gene with differ-

ences in the number of site classes (M1a: 2; M2a: 3; M7: 10; M8: 11). 

The M2a and M8 models include an additional class of sites under 

positive selection. We performed nested likelihood ratio and chi- 

squared tests (p < .05)	based	on	likelihood	scores	from	each	model.	
Specifically, we compared null models (M1a and M7), which do not 

allow for any sites with ω > 1,	against	 the	alternative	models	 (M2a	
and M8), which permit positive selection. Genes identified as under-

going	positive	selection	were	clustered	into	euKaryotic	Orthologous	
Groups	 (KOG)	 and	 used	 to	 perform	 enrichment	 of	 positive	 selec-
tion	 at	 the	 GO	 functional	 level	 using	 the	 R	 package	 “clusterPro-

filer”	 v4.6.2	 (settings:	 pvalueCutoff = 0.01,	 pAdjustMethod = “BH”,	

TA B L E  1 Four	publicly	available	leafhopper	chromosomal-	level	genomes	used	for	comparative	genomics	analysis.

Species name

Shorthand 

naming Genome size Subfamily Feeding Symbionts

Macrosteles quadrilineatus ALF 1.3 Gbp Deltocephalinae Polyphagous Sulcia, Nasuia

Nephotettix cincticeps GRLH 746 Mbp Deltocephalinae Polyphagous Sulcia, Nasuia

Homalodisca vitripennis GWSS 2.3 Gbp Cicadellinae Polyphagous Sulcia, Baumannia

Empoasca onukii TGLH 599.3 Mbp Typhlocybinae Monophagous None

Abbreviations: Gbp, giga base- pairs; Mbp, mega base- pairs.
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qvalueCutoff = 0.01,	 minGSSize = 10)	 (Huerta-	Cepas	 et	 al.,	 2019; 

Tatusov et al., 2003; Yu et al., 2012).

2.8  |  Localization of symbiosis support genes

To identify the prevalence of putative symbiosis- related genes 

(Table S2) in our leafhopper genome evolution analyses, we used 

genes identified in Mao et al. (2018). Mao et al. (2018) identified 118 

genes that are involved in nutrition synthesis, information process-

ing, population regulation, and metabolite transport in Nasuia and 

Sulcia bacteriocytes. We mapped these genes to the shared gene 

clusters identified between leafhoppers (see Sections 2.5 and 3.2) 

and to genes under positive selection (see Section 2.7)	using	NCBI-	
tBLASTX	(setting:	e-	value = 0.001).

Finally,	one	major	evolutionary	modality	to	support	ancient	ob-

ligate symbionts is the acquisition of horizontally transferred genes 

(HTGs) from various bacterial families. To investigate evolutionary 

conservation of HTGs across all four leafhopper species, we used an 

NCBI-	tBLASTX	 search	 (setting:	e-	value = 0.001)	 of	ALF	HTG	 tran-

scripts to each of the leafhopper chromosomal- level sequences to 

find homologous genes (Table S3). We identified conserved genes 

across the four species as matches with >40% identity and >100- bit 

score. We also identified possible HTG remnants as matches with 

>40% identity and a bit score between 90 and 100.

3  |  RESULTS

3.1  |  Assembly and annotation of ALF's genome

PacBio	sequencing	of	ALF	resulted	in	6,333,492	reads	and	58.2 Gbp	
of	PacBio	HiFi	circular	consensus	sequencing	reads	at	45× coverage. 

After	 scaffolding	with	 the	PacBio	assembly	and	OmniC	 reads,	 the	
final	assembly	included	1164	scaffolds	(total	size = 1.3 Gbp)	with	an	
N50	score	of	116.5	mega	base-	pairs	(Mbp)	(Table 2). All 1164 scaf-

folds	were	 larger	 than	1 KB	 and	 consisted	of	 nine	 scaffolds	 larger	

than	 78.3 MB	 (total = 1.12 Gbp).	 These	 nine	 scaffolds	 in	 ALF	 sug-
gested a haploid chromosome count of n = 9	(Figure S1).

We	 performed	 karyotyping	 on	 male	 ALFs	 to	 determine	 chro-

mosome	 number.	We	 found	 that	 ALF	 has	 a	 haploid	 chromosome	
number of n = 9	 (Figures S1 and S2), which is consistent with the 

nine large scaffolds from our genome assembly. We observed that 

two chromosomes were physically longer than the rest, which is 

consistent with the two larger scaffolds in the genome assembly 

(Figures S1 and S2).

The	 final	 BUSCO	 score	 for	 the	 ALF	 assembly	 was	 96.08%	
(83.92% single, 12.16% duplicated, 1.57% fragmented, and 2.35% 

missing).	Using	the	NCBI	RefSeq	annotation	pipeline,	43.54%	of	the	
genome was masked due to repetitive elements by WindowMasker. 

A total of 24,178 genes (21,979 protein- coding genes and 103 

pseudogenes) were annotated across all 1164 scaffolds. Among the 

nine chromosome- level scaffolds, 19,395 protein- coding genes were 

identified, 88.24% of all annotated protein- coding genes.

3.2  |  Comparative 
genomics and orthologue analysis

To understand general patterns of leafhopper genome evolution, 

we investigated genomic synteny and gene content. Synteny of leaf-

hoppers is largely conserved, with some large- scale chromosomal 

rearrangements (Figure 1).	For	example,	there	are	two	notable	chro-

mosomal	rearrangements	between	the	Deltocephalinae	leafhoppers	
(ALF	 and	GRLH).	 First,	 there	 is	 the	 large-	scale	 chromosomal	 rear-
rangement	between	two	ALF	chromosomes	(ALF	chr1	and	ALF	chr2)	
and two GRLH chromosomes (GRLH chr6 and GRLH chr8). Second, 

ALF	chr6,	ALF	chr8,	and	GRLH	chr3	have	had	a	chromosomal	fusion/
fission event. There is also evidence of a chromosomal fusion/fission 

event between TGLH and GWSS, as well as chromosomal rearrange-

ments between the two species, among other shuffling of smaller 

chromosomal segments.

At	a	gene	 level,	ALF,	GRLH,	TGLH,	and	GWSS	have	14,567	or-
thogroups comprising 68,553 genes (89.1%). All four leafhoppers 

share	 3450	 single-	copy	 gene	 (1:1:1)	 orthologues.	 ALF	 exhibited	
the highest number of species- specific genes (2675) and the low-

est number of unassigned genes (1129) compared to TGLH (1848 

species- specific genes and 4024 unassigned genes), GWSS (2300 

species- specific genes and 1895 unassigned genes), and GRLH (812 

species- specific genes and 1301 unassigned genes).

Shared gene analysis across the four leafhoppers species was 

extended to consider gene clusters and includes gene duplications. 

Using	OrthoVenn,	we	found	7723	gene	clusters	shared	between	
all four leafhoppers (Figure 2). These shared gene clusters showed 

enrichment	for	10	Gene	Ontology	(GO)	processes	(peptidoglycan	
catabolic	 process,	GO:0009253;	DNA	 integration,	GO:0015074;	
transposition	 DNA-	mediated,	 GO:0006313;	 oxidoreductase	 ac-
tivity,	 GO:0016705;	 trehalose	 transport,	 GO:0015771;	 RNA-	
directed	 DNA	 polymerase	 activity,	 GO:0003964;	 translation,	
GO:0006412;	 response	 to	 bacterium,	 GO:0009617;	 proteolysis,	

TA B L E  2 Genome	statistics	of	the	Macrosteles quadrilineatus 

genome.

Feature Value

Assembly size 1,317,891,973 bp

Assembly size of chromosomes 1,127,407,133 bp

Scaffold	N50 116,548,684 bp

Scaffold L50 5

Number	of	scaffolds 1164

Number	of	total	genes 24,178

Number	of	protein-	coding	genes 21,979

Number	of	pseudogenes 103

Abbreviation: bp, base- pairs.
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6 of 20  |     VASQUEZ et al.

GO:0006508;	 and,	 telomere	 maintenance,	 GO:0000723)	
(Figure 3a; Table S4).	 Interestingly,	 the	 oxidoreductase	 activity	
category consisted of cytochrome P450 enzyme duplications (103 

genes). Similarly, the trehalose transport category exhibited mul-

tiple duplications across species of the facilitated trehalose trans-

porter Tret- 1.

TGLH (Subfamily: Typhlocybinae) is the only sequenced leaf-

hopper species in this analysis that does not have known obligate 

symbiotic associations. Therefore, we identified the shared gene 

clusters between the three leafhopper species with Sulcia:	 ALF,	
GWSS,	and	GRLH.	In	the	three	Sulcia- associated leafhopper species, 

we	found	986	unique	gene	clusters	enriched	for	four	GO	categories	
(nucleoside	 triphosphate	 biosynthetic	 process,	 GO:0009142;	 car-
boxylic	ester	hydrolase	activity,	GO:0052689;	tRNA	metabolic	pro-

cess,	GO:0006399;	and	succinate	metabolic	process,	GO:0006105)	
(Figure 3b; Table S4). We further identified shared gene clusters be-

tween	 the	 two	Deltocephalinae	 leafhoppers,	ALF	 and	GRLH,	 that	
have a symbiotic association with Sulcia's ancestral symbiont part-

ner, Nasuia.	 In	 these	two	host	species,	we	found	789	unique	gene	
clusters	 enriched	 for	 nine	GO	 categories	 (peptidoglycan	 catabolic	
process,	 GO:0009253;	 positive	 regulation	 of	 cytolysis	 in	 other	

organisms,	 GO:0051714;	 response	 to	 bacterium,	 GO:0009617;	
regulation	of	circadian	sleep/wake	cycle,	sleep,	GO:0045187;	pep-

tidoglycan	metabolic	process,	GO:0000270;	Toll	signalling	pathway,	
GO:0008063;	 regulation	 of	 inflammatory	 response,	GO:0050727;	
microtubule-	based	process,	GO:0007017;	and	apoptotic	DNA	frag-
mentation,	GO:0006309)	(Figure 3c; Table S4).	Finally,	we	identified	
598	unique	gene	clusters	specific	 to	ALF	that	are	significantly	en-

riched	for	four	GO	categories	(telomere	maintenance,	GO:0000723;	
receptor-	mediated	 endocytosis,	 GO:0006898;	 DNA	 integra-
tion,	 GO:0015074;	 response	 to	 peptide	 hormone,	 GO:0043434)	
(Figure 3d; Table S4).

3.3  |  Gene family expansion and contraction in 
ALF's genome

We investigated gene family expansions and contractions across 

evolutionary time using a time- calibrated phylogenetic tree gener-

ated from 469 shared single- copy orthologues between 20 insect 

species.	 Briefly,	 the	 estimated	 divergence	 time	 for	 the	 common	
ancestor of all four leafhopper species is ~150 million years (MY) 

F I G U R E  1 Chromosomal	synteny	between	the	four	leafhopper	species.	Chromosome	numbering	in	ALF	is	in	scaffold	order.	Other	
leafhopper	genomes	are	ordered	in	relation	to	ALF	chromosomes.	Images	of	H. vitripennis and M. quadrilineatus	are	from	Dr.	Zheng	Li	and	Dr.	
Xiushuai	Yang,	respectively.	Images	of	E. onukii and N. cincticeps are from www. inatu ralist. org (from the following users: straybird726 and 

bob15noble,	respectively.	All	photos	have	CCBY-	NC	licence).	MB,	mega	base-	pairs.
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(Confidence	 Interval	 [CI]:	44–282	MY).	Between	species,	 the	esti-
mated	divergence	time	for	ALF	and	GRLH	was	~67	MY	(CI:	39–95	
MY), and between GWSS and TGLH was ~57	MY	 (CI:	 0–155	MY)	
(Figure S3). These divergence times are similar to estimated times 

in previous studies (Cao et al., 2022; Johnson et al., 2018; Moran 

et al., 2005).

Gene family evolution analyses identified a total of 1834 and 

663 gene families that underwent expansions and contractions, re-

spectively,	 in	the	ALF	genome	(Figure S3). When compared to the 

other	19	 insect	species,	67	gene	families	 in	ALF	were	significantly	
expanded (p-	value < .05),	 and	 32	 gene	 families	 were	 significantly	
contracted (p-	value < .05)	 (Figure S3).	 ALF	 exhibited	 the	 highest	
number of significant gene family expansions and the lowest num-

ber of contractions compared to GRLH (25 expansions, 82 con-

tractions), GWSS (64 expansions, 53 contractions), and TGLH (52 

expansions, 60 contractions) (Figure S4). Significantly expanded 

families	in	ALF	were	enriched	for	genes	involved	in	the	KEGG	cate-

gories:	G-	quadruplex	DNA	unwinding,	major	facilitator	superfamily	
sugar	transporter	family,	DDE	superfamily	endonuclease,	cathepsin	
propeptide	 inhibitor	domain,	E3	ubiquitin-	protein	 ligase,	K02A2.6-	
like, and baculoviral inhibition of apoptosis protein repeat (Figure S5; 

Table S5).

3.4  |  Leafhopper genome- wide selection analysis

To understand how selection is broadly shaping leafhopper genome 

evolution, we investigated site- specific selection across shared 

single-	copy	 orthologues.	 Estimated	 rates	 of	 ω among gene sites 

were conducted using two neutral models (M1a and M7) and two 

models with an additional class of sites under positive selection 

(M2a and M8). The stringent M1a- M2a nested model approach iden-

tified seven orthologues under positive selection (chi p-	value < .05;	
Table S6). These genes include two uncharacterized genes, an 

IDLSRF-	like	protein,	inhibitory	POU	protein	(POU4F2),	synaptotag-
min- 7 (SYT7), voltage- dependent calcium channel type A subunit 

alpha-	1	 (cac),	and	homeobox	protein	SI-	like	 (SIX6).	 In	contrast,	 the	
M7- M8 analysis identified 1103 orthologues undergoing positive 

selection (Table S6). The M7- M8 approach identified all seven genes 

found in the M1a- M2a models.

Genes undergoing positive selection in the M7- M8 models were 

binned	by	euKaryotic	Orthologous	Groups	(KOG)	to	infer	function.	
Genes	 with	 “unknown	 function”	 (KOG	 Category	 S)	 showed	 the	
highest number of genes under positive selection (Figure S6).	 Of	
genes	with	known	functions,	signal	transduction	mechanisms	(KOG	
Category T) and post- translational modification, protein turnover, 

F I G U R E  2 Shared	gene	clusters	between	leafhopper	species.	Venn	diagram	of	shared	gene	clusters,	that	is	clusters	that	include	
duplications of genes, among the four species. My, million years.
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and	chaperones	(KOG	Category	O)	had	the	highest	number	of	genes	
under	positive	selection.	In	gene	enrichment	analysis	of	genes	with	
sites	under	positive	selection,	generation	of	neurons	(GO:0048699)	
exhibited the highest gene ratio (204/1103) of genes undergoing 

positive selection (Figure 4).

Finally,	 we	 investigated	 recent	 signatures	 of	 positive	 selection	
between	the	6198	single-	copy	orthologues	shared	between	ALF	and	
GRLH, the two leafhopper species that retain Sulcia and Nasuia. A total 

of 131 and 2048 genes show signatures of positive selection with the 

M1a- M2a and M7- M8, respectively (Table S7).	In	both	nested	model	
analyses, 129 genes were jointly identified as exhibiting sites under-

going positive selection. Gene function binning identified unknown 

function	 (KOG	 Category	 S),	 signal	 transduction	 mechanisms	 (KOG	
Category T), and post- translational modification, protein turnover, and 

chaperones	(KOG	Category	O)	as	the	three	most	enriched	categories	
(Figure S7).	Gene	enrichment	analysis	at	 the	GO	 level	 identified	cell	
morphogenesis	 (GO:0000902)	 as	 exhibiting	 the	 highest	 gene	 ratio	
(259/2048) of genes undergoing positive selection (Figure 4).

F I G U R E  3 Functional	enrichment	among	shared	gene	clusters.	(a)	Enrichment	among	gene	clusters	shared	between	all	leafhopper	
species	in	this	study.	(b)	Enrichment	among	gene	clusters	shared	between	leafhoppers	that	have	an	association	with	the	symbiont,	Sulcia. 

(c)	Enrichment	among	gene	clusters	shared	between	Deltocephalinae	leafhoppers,	which	have	an	association	with	both	ancient	symbionts	
Sulcia and Nasuia.	(d)	Enrichment	in	gene	clusters	unique	to	ALF.	GO	categories	and	number	of	unique	gene	clusters	can	be	found	in	
Table S4.	ALF,	Macrosteles quadrilineatus; GRLH, Nephotettix cincticeps; GWSS, Homalodisca vitripennis; TGLH, Empoasca onukii.
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3.5  |  Genome- wide evolution of symbiosis 
support genes

A major question concerning symbiotic insects is how their ge-

nomes evolve to support obligate symbionts living in their bodies. 

We mapped the 118 putative symbiosis- related genes identified 

by Mao et al. (2018) (Table S2) to gene clusters shared between 

all leafhopper species and found 53 gene clusters containing 

symbiosis- related genes (Table S8).	In	ALF,	these	genes	are	upreg-

ulated in either Sulcia or Nasuia tissues, as well as in body tissues. 

Generally,	their	function	falls	within	the	categories	of	DNA	repli-
cation	&	repair	and	aminoacyl-	tRNA	formation.	Symbiosis-	related	
genes	involved	in	COA	synthesis,	NH3	recycling,	and	PEP	synthe-

sis are only found in shared gene clusters from all four species. 

Within shared gene clusters between Sulcia- associated leafhop-

per	 species	 (ALF,	GRLH,	and	GWSS),	we	 found	12	gene	clusters	
containing symbiosis- related genes (Table S8). As expected, these 

genes are upregulated in Sulcia	tissues	in	ALF.	In	the	gene	clusters	
shared	by	Deltocephalinae	leafhoppers	(ALF	and	GRLH),	we	found	
18 gene clusters containing symbiosis- related genes (Table S8). 

F I G U R E  4 Top	10	GO	categories	enriched	for	positively	selected	genes.	(a)	Enrichment	in	genes	undergoing	positive	selection	among	the	
four	leafhopper	species.	(b)	Enrichment	in	genes	undergoing	positive	selection	in	the	two	Deltocephalinae	leafhoppers	(ALF	and	GRLH).	ALF,	
Macrosteles quadrilineatus; GRLH, Nephotettix cincticeps.
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Most of these 18 genes are upregulated in Nasuia tissues and 

include	 population	 regulation	 genes.	 In	 the	 analysis	 of	 selection	
across the four leafhoppers, we found nine genes involved in sym-

biosis to have support for positive selection (Table S9).	In	the	two	
Deltocephalinae	leafhoppers,	20	symbiosis-	related	genes	are	un-

dergoing positive selection (Table S10). These genes occur across 

multiple categories, with eight genes occurring in amino acid 

transport	and	aminoacyl-	tRNA	formation.
Finally,	an	important	evolutionary	mechanism	in	symbiosis	sup-

port is the incorporation of horizontally transferred genes (HTGs), 

which is widely used in leafhopper systems. Here, we investigated 

where	HTGs	found	in	the	ALF	genome	by	Mao	et	al.	(2018) occurred 

and whether they are conserved across all four leafhopper species 

(Table S3). All HTGs are exclusively located on autosomes, with 

none observed on the sex chromosome. Among duplicated HTGs, 

we found no discernable pattern of placement among chromosomes. 

For	instance,	the	five	duplications	of	peptide	deformylase	(def) occur 

on three chromosomes with some duplications occurring on the 

same	chromosome.	In	our	analysis	of	HTGs	among	our	four	leafhop-

per species, we found only three conserved HTGs (cel- 1, cel- 2, pel) 

(Figure 5).	In	ALF,	cel- 1 and cel- 2 are upregulated in body tissues, and 

the pel gene is upregulated in both bacteriocytes (Mao et al., 2018). 

Between	the	Deltocephalinae	species	that	retain	Sulcia and Nasuia, 

GRLH	 retains	 a	 total	 of	 27	 of	 30	 HTGs	 found	 in	 ALF	 (Figure 5). 

GRLH is missing two Nasuia symbiont support genes and one non- 

symbiotic gene. The sharpshooter genome, GWSS that has replaced 

Nasuia with Baumannia, retains 11 Sulcia and non- symbiotic support 

HTGs, as was found previously (Li et al., 2022; Mao et al., 2018). 

Finally,	in	the	TGLH	genome,	which	has	lost	all	ancestral	symbionts,	
we identified remnants of three genes: gh25- 2 (40% identity, 85 

amino acids), ileS (60% identity, 60 amino acids), and yebC- 1 (43% 

identity, 94 amino acids). We additionally found one gene remnant in 

GWSS: tmk (59% identity, 67 amino acids).

4  |  DISCUSSION

We present the first chromosome- level genome assembly of the 

aster	leafhopper	(ALF),	Macrosteles quadrilineatus. To better under-

stand how leafhopper genomes evolve, particularly in relation to 

evolutionary pressures from their pest ecology and symbiotic biol-

ogy, we compared the genomes of all available leafhopper species 

in an evolutionary framework. To date, only three other leafhopper 

chromosomal- level genomes exist: Nephotettix cincticeps (GRLH), 

Homalodisca vitripennis (GWSS), and Empoasca onukii (TGLH) (Li 

et al., 2022; Yan et al., 2021;	Zhao	et	al.,	2022). These species are 

all plant pests, spanning over 150 million years of leafhopper evolu-

tion. They further have distinct symbiotic modalities, ranging from 

retention of leafhoppers' ancestral symbionts Sulcia and Nasuia 

(ALF	 and	 GRLH),	 symbiont	 replacement	 of	 Nasuia (GWSS), and 

complete loss of both obligate symbionts (TGLH) (Table 1)	(Bennett	
& Moran, 2013;	 Cao	&	Dietrich,	2022; Moran et al., 2003;	 Noda	
et al., 2012). This taxon sampling uniquely places an understanding 

of	ALF	genome	evolution	in	a	framework	spanning	deep	divergences	
among leafhoppers, symbiotic interactions, and parallel pest species 

biology and ecology.

4.1  |  Genome evolution of leafhoppers

The	inferred	size	of	the	ALF	genome	is	1.3	Gbp	with	a	BUSCO	score	
of 96.08%, suggesting a complete high- quality assembly (Table 2) 

(Feron	&	Waterhouse,	2022; Li et al., 2022; Yan et al., 2021).	ALF's	
genome encodes 21,979 protein- coding genes, which is in alignment 

with previous leafhopper genomes (e.g., GWSS has 19,904 genes, 

F I G U R E  5 Conserved	horizontally	transferred	genes	(HTG)	
among leafhoppers. HTGs are grouped by their role in the 

symbiosis	between	ALF,	Sulcia, and Nasuia.	Empty	circles	indicate	
missing genes, while enclosed circles indicate presence of genes. 

Gene products can be found in Table S3.	ALF,	Macrosteles 

quadrilineatus; GRLH, Nephotettix cincticeps; GWSS, Homalodisca 

vitripennis; TGLH, Empoasca onukii.
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and TGLH has 19,642 genes; Li et al., 2022;	Zhao	et	al.,	2022). This 

genome further contains a relatively high number of repetitive ele-

ments (e.g., tandem repeats and interspersed repeats) in the genome 

(43.54%), aligning with the range observed in other hemipteran in-

sects	(leafhoppers:	39.4%–46.1%;	psyllids:	43.3%)	(Kwak	et	al.,	2023; 

Li et al., 2022; Yan et al., 2021).

At	the	chromosomal	level,	ALF	and	the	other	sequenced	leaf-
hoppers exhibit a relatively high level of synteny conservation 

(Figure 1). This pattern differs substantially from observations in 

aphids, which exhibit extensive autosomal rearrangements de-

spite shorter divergence times (<33 MY) (Li et al., 2020; Mathers 

et al., 2021).	Nevertheless,	 leafhoppers,	 like	sequenced	plantho-

ppers	and	aphids,	demonstrate	 large-	scale	conservation	of	the	X	
chromosome that has little to no rearrangements with autosomes 

(Li et al., 2020; Ma et al., 2021; Mathers et al., 2021). Strong selec-

tion pressures against sex chromosome rearrangements may arise 

from constraints to maintain dosage compensation mechanisms 

and	avoid	X	chromosome	elimination	errors	 in	XO	male	determi-
nation (Pal & Vicoso, 2015; Sharp et al., 2002).	 In	the	context	of	
leafhoppers	 that	display	 this	XO	sex	determination,	 these	 selec-
tion pressures may lead to a lack of sex chromosome rearrange-

ment (Halkka, 1960; Hu et al., 2022).	Despite	distinctive	genomic	
conservation in leafhoppers, their chromosomes still exhibit some 

level	of	architectural	plasticity.	For	example,	the	relatively	closely	
related	ALF	and	GRLH	species	exhibit	 large-	chromosomal	 fusion	
or fission events. Comparisons in chromosome structure among 

the other species similarly show large chromosome organization 

changes.

At the gene level, leafhopper genomes exhibit widespread func-

tional conservation, likely due to fundamentally shared biological 

and ecological leafhopper traits (Figure 2).	 For	 instance,	 among	
shared	Gene	Ontology	(GO)	categories,	translation	is	most	enriched	
in unique gene clusters, or gene orthologues that include duplica-

tions (88 gene clusters; 385 genes; Table S4), indicating a highly 

conserved biological need for these cellular functions. Leafhopper 

genomes also exhibit enrichment for functional categories involved 

in pest ecology, including the detoxification of insecticides (e.g., cy-

tochrome P450 monooxygenases and carboxylesterases), as well as 

in categories that have a role in maintaining symbionts (Figure 3). 

The conserved enrichment of these categories points to the ways in 

which shared evolutionary pressures, the agricultural environment, 

and dependence on obligate symbioses have the potential to influ-

ence gene content in genomes.

Leafhopper genomes have also experienced extensive prolif-

eration of selfish genetic elements. Several categories associated 

with the movement and integration of genetic elements within 

genomes,	 such	 as	 transposition	 (23	 genes),	 DNA	 integration	 (191	
genes),	and	RNA-	directed	DNA	polymerase	activity	(56	genes),	are	
enriched. Genetic elements can contribute to gene duplications 

and	the	general	expansion	of	other	gene	families	(Finnegan,	1989). 

Thus, they can enable duplication of advantageous genes, includ-

ing those that respond to environmental changes such as host plant 

chemical defences and climate variation, particularly insecticide 

resistance (Aminetzach et al., 2005; González et al., 2008, 2010; 

Gupta	&	Nair,	2022; Rech et al., 2019; Rostant et al., 2012; Schrader 

et al., 2014; Stapley et al., 2015).

At the molecular level, positive selection is acting upon multi-

ple single- copy orthologues across various functional categories 

(Table S6; Figure S6).	 One	 such	 category	 is	 signal	 transduction	
mechanisms	(KOG	Category	T),	with	many	genes	undergoing	posi-
tive selection (170 out of 401 analysed signal transduction genes). 

Signal transduction mechanisms include functions such as odor-

ant	receptors,	gustatory	receptors,	and	Toll-	like	receptors	 (Benton	
et al., 2007;	Engsontia	et	al.,	2014; Leulier & Lemaitre, 2008). These 

genes are likely evolving in response to environmental pressures, 

possibly in association with leafhopper food- plant finding and ovi-

position (Smadja et al., 2009).

4.2  |  The potential influence of agricultural pest 
ecology on leafhopper genome evolution

The lifestyle of plant pests, such as leafhoppers, exposes them to 

strong selective pressures, including various insecticides, fluctuating 

environmental conditions, and changes in plant chemical defences 

(Després	et	al.,	2007;	Dumas	et	al.,	2019; Khaliq et al., 2014;	Nauen	&	
Denholm,	2005; Spencer & Hughson, 2023).	One	evolutionary	strat-
egy to adapt to these pressures is the expansion of genes involved 

in stress responses (Rostant et al., 2012; Schrader et al., 2014; Stark 

& Wahl, 1984; Tabashnik, 1990). Genes involved in stress responses 

can often play dual roles as insect detoxification enzymes that break 

down	 plant	 toxins	 and	 insecticides	 (Després	 et	 al.,	2007). Several 

specific genes and gene family expansions, discussed below, have 

clear roles in selective pressures placed on leafhoppers from their 

agricultural pest ecology.

Among the leafhopper species examined in this study, their 

shared genes showed enrichment for functions involved in oxidore-

ductase activity (103 genes) and trehalose transport (101 genes), 

both of which enable adaptation to environmental stressors (Heidel- 

Fischer	&	Vogel,	2015; Kikawada et al., 2007) (Figure 3a).	For	exam-

ple, genes involved with oxidoreductase activity (e.g., cytochrome 

P450) contribute to the detoxification of xenobiotics, such as insec-

ticides, environmental pollutants, and plant secondary compounds 

(Peng et al., 2017). Specifically, these detoxification genes play dual 

roles in aiding the insect's response to plant defence compounds 

and resistance to insecticides like pyrethroids and neonicotinoids 

(Heidel-	Fischer	 &	 Vogel,	 2015; Lu et al., 2021; Schuler, 1996). 

Leafhoppers further show enrichment for genes associated with 

trehalose transport (e.g., facilitated trehalose transporter Tret1) to 

different insect tissues (Kanamori et al., 2010). Trehalose is the pri-

mary sugar in insect hemolymph and is highly regulated in order to 

maintain	sugar	levels	(Becker	et	al.,	1996; Wyatt & Kalf, 1957).	It	is	
involved in energy production and insect growth and is an import-

ant bioprotectant under various stressors, including heat, oxidation, 

cold,	dryness,	and	hypoxia	(Elbein	et	al.,	2003; Kanamori et al., 2010; 

Kikawada et al., 2007; Liu et al., 2013; Tellis et al., 2023).
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At the molecular level, >1000 shared single- copy genes show 

evidence of positive selection (Figure 4a).	For	example,	the	enriched	
GO	category	undergoing	positive	selection,	generation	of	neurons	
includes genes in various important insect functions that include 

insect chemoreception (e.g., EonulR25a), immunity (e.g., toll- like 

receptor Tollo and toll- like receptor 6), reproduction and develop-

ment (e.g., homeobox proteins Six4 and Six6), and metabolism and 

energy	 regulation	 (e.g.,	 valine—tRNA	 ligase	and	bifunctional	 coen-

zyme A synthase) (Mao et al., 2018;	Zhang	et	al.,	2016, 2023;	Zhao	
et al., 2020). Some genes in these neural processes, such as those in-

volved in metabolism and energy regulation, may be associated with 

neurological regulation and response of the bacteriome organ, while 

others	 are	 targets	 for	 various	 insecticidal	 chemicals.	 For	 example,	
the generation of neurons category includes two voltage- dependent 

sodium channel genes and four voltage- dependent calcium channel 

subunit genes. These ion channels are targeted by various insecti-

cide	 classes	 like	 dichlorodiphenyltrichloroethane	 (DDT),	 diamides	
(e.g.,	chlorantraniliprole),	and	pyrethroids	(e.g.,	permethrin)	(Ffrench-	
Constant et al., 2016; Silver et al., 2014).	 While	 DDT	 has	 been	
banned in the United States since 1972, diamide insecticides (e.g., 

chlorantraniliprole and flubendiamide) and pyrethroid insecticides 

(e.g., permethrin, cypermethrin, deltamethrin) are still approved for 

use	 in	 the	United	States	 (US	EPA,	2014). Moreover, detoxification 

gene families involved in insecticide resistance, such as cytochrome 

P450 enzymes, esterases, and carboxylesterases, are also under 

positive selection (Cui et al., 2015; Montella et al., 2012).	Beyond	
agriculture- specific stressors, leafhopper genes show adaptation to 

broader environmental pressures. Protectants against thermal and 

oxidative extremes, such as heat shock proteins (i.e., HSPA12A and 

HSPA5) and a peroxiredoxin gene (i.e., PRDX6), are undergoing pos-

itive	selection	(Feder	&	Hofmann,	1999; Radyuk et al., 2001). Taken 

together, these results suggest that pest leafhopper genomes adapt 

to agricultural and environmental challenges across multiple scales.

4.3  |  The potential influence of microbial symbiosis 
on leafhopper genome evolution

Symbioses with obligate, ancient symbionts has had significant im-

pacts on leafhopper and related insect genomes (Couret et al., 2019; 

Hansen & Moran, 2011; Husnik et al., 2013; Kim et al., 2011; Mao 

et al., 2018;	McCutcheon	&	von	Dohlen,	2011;	Nikoh	et	al.,	2010; 

Nygaard	 et	 al.,	 2011; Price et al., 2011; Ratzka et al., 2013). The 

impact of symbioses on host genomes depends on the interaction 

modality, symbiont identity, and genetic capabilities of partner mi-

crobes. Leafhoppers have relied on two ancient obligate partners, 

but these relationships have changed within and between lineages 

over	 evolutionary	 time	 (Bennett,	2020; Koga et al., 2013;	 Łukasik	
et al., 2018; Moran et al., 2005). As such, we identified 53 shared 

gene clusters among all four leafhopper species that contain genes 

associated with symbiont support and integration (Table S8). Among 

the leafhopper species compared in this study, however, there have 

been significant changes in symbiont relationships outlined below.

Two	leafhopper	species	in	this	study,	ALF	and	GLRH,	share	the	
ancestral symbionts, Sulcia and Nasuia, the latter which may have 

been present with Sulcia since the origin of leafhoppers and possi-

bly	the	Cicadomorpha	and	Auchenorrhyncha	(Bennett	&	Mao,	2018; 

Koga et al., 2013).	Due	to	their	age,	Sulcia and Nasuia genomes are 

among the smallest known from any system, requiring extensive 

host	support	(Bennett	&	Moran,	2013).	To	provide	this	support,	ALF	
distinctly expresses thousands of previously identified host genes 

in symbiont- containing bacteriocytes and bacteriome organs (Mao 

et al., 2018).	ALF	and	GRLH	genomes	are	enriched	for	GO	categories	
involved in peptidoglycan catabolic process (208 genes), positive 

regulation of cytolysis in another organism (47 genes), and response 

to bacterium (59 genes). Concurrently, there is enrichment in the 

functions peptidoglycan metabolic process (12 genes), apoptotic 

DNA	 fragmentation	 (four	 genes),	 and	 Toll	 signalling	 pathway	 im-

mune response (15 genes) for defence against pathogenic microbes 

(Bao	et	al.,	2014; Hoffmann et al., 1999; Schauvliege et al., 2007). 

Furthermore,	 among	 these	ALF	and	GLRH	genes,	 some	show	evi-
dence of recent positive selection, including enrichment of multi-

ple morphogenesis- related functions (Figure 4b). We identified 20 

symbiont- support genes undergoing positive selection, which may 

be an underestimate due to the evolutionary distance and satura-

tion among evolving genes in these species (Table 3; Table S10). 

Nevertheless,	 the	 highest	 count	 of	 positively	 selected	 symbiosis-	
related genes fell within the amino acid transport (five genes) and 

aminoacyl-	tRNA	formation	categories	(three	genes).
The 20 genes identified in our tests of selection are involved in 

the direct interaction between the insect host and bacterial symbi-

onts, such as the exchange of resources (e.g., nutrition and energy) 

(Table 3; Table S10).	For	example,	genes	involved	in	essential	metab-

olites	synthesis	(coenzyme	A)	and	recycling	(glutamate	NH3	synthe-

sis) are among those undergoing positive selection. These precursor 

metabolites (e.g., glutamine, glutamate, coenzyme A) are required 

by symbionts to synthesize essential amino acids for their hosts, as 

well	 as	 their	 exchange	 (Duncan	et	 al.,	2014; Price et al., 2011).	 In	
the case of Sulcia and Nasuia, two of the most ancient symbionts 

known from any insect system, extensive genome reduction has 

led to the loss of most independent cellular functions and metab-

olisms (Koga & Moran, 2014; McCutcheon & Moran, 2007; Moran 

&	Bennett,	2014). As a result, insect genes involved in supporting 

symbionts play essential roles in the provisioning and exchange of 

resources between host and symbiont cells. Thus, positive selection 

acting on these insect genes is likely due to their intimate and co- 

evolving	 interactions	 in	prokaryotic	cellular	processes.	 In	contrast,	
recent symbiont replacements like Baumannia in sharpshooter leaf-

hoppers (discussed below) have larger genomes that encode more 

independent capabilities (Wu et al., 2006).	In	these	systems,	selec-
tion acting upon symbiont- associated host genes is likely to differ 

as there are fewer of them, and they may be less dependent on 

other insect- derived cellular resources and metabolites (Mao, Yang, 

&	Bennett,	2017).	Exploring	patterns	of	selection	in	systems	where	
symbiont losses and replacements have occurred can provide fur-

ther information about how hosts and their symbionts co- evolve on 
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a gene- by- gene level. However, such assays require a more compre-

hensive sampling of insect species and across more recent diver-

gence times.

Similarly	to	the	deltocephaline	species	(i.e.,	ALF	and	GLRH),	the	
GWSS leafhopper shares the ancestral Sulcia symbiont (Johnson 

et al., 2018; Moran et al., 2005). However, this lineage has completely 

replaced Nasuia with Baumannia >60 MYA (Moran et al., 2003; Wu 

et al., 2006). Several recent projects have identified thousands of 

host support genes expressed among the bacteriocytes and bac-

teriomes that house Sulcia and Baumannia (Li et al., 2022; Mao 

et al., 2018). Given Baumannia's relative youth, it requires far fewer 

support genes than Sulcia and Nasuia (reviewed in Li et al., 2022). 

Sulcia symbionts, on the other hand, generally have among the 

smallest, most dependent genomes (Chang et al., 2015;	 Łukasik	
et al., 2018; McCutcheon & Moran, 2010; Moran et al., 2005; Shih 

et al., 2019; Takiya et al., 2006). Among Sulcia- associated leafhopper 

species,	we	confirmed	global	enrichment	of	GO	categories	linked	to	
multiple metabolic processes, such as nucleoside triphosphate bio-

synthetic	 process	 (31	 genes),	 tRNA	metabolic	 process	 (10	 genes),	
and succinate metabolic process (10 genes) (Table S4).	Enrichment	
in these genes highlights the shared dependence of Sulcia symbionts 

on their hosts. The same mechanisms of support may be required 

to sustain this ancient and indispensable association among leaf-

hoppers and likely also the Auchenorrhyncha (Campbell et al., 2018; 

Gossett et al., 2023; Michalik et al., 2021).

Finally,	 species	 in	 the	 Typhlocybinae	 leafhopper	 lineage	
have gone further and purged all obligate bacterial symbionts 

(Buchner,	 1965;	 Cao	 &	 Dietrich,	 2022).	 It	 has	 remained	 an	 open	
question as to what happens to host genomes when they lose sym-

bionts and whether genomic palaeontology can reveal remnants 

of these associations. Remarkably, despite having lost its obligate 

symbionts, the TGLH species still indeed retains remnants of genes 

inferred to support Sulcia and Nasuia in other leafhoppers (e.g., Li 

et al., 2022; Mao et al., 2018;	Mao	&	Bennett,	2020).	For	example,	
symbiosis-	related	genes	involved	in	aminoacyl-	tRNA	formation	(13	
genes),	 amino	 acid	 transport	 (12	 genes),	 and	DNA	 repair	 and	 rep-

lication (nine genes) are found in gene clusters retained in all four 

leafhoppers (Table S8). The possible retention of symbiont- related 

genes in TGLH might indicate the retention of vestigial genes or the 

functional adaptation and reassignment of these genes for alternate 

host functions. Their retention further provides support for the 

early loss of Sulcia and Nasuia from the Typhlocybinae lineage when 

it	transitioned	to	a	more	nutrient-	rich	food	source	(Bennett,	2020; 

Buchner,	1965; Moran et al., 2005; Sudakaran et al., 2017).

TA B L E  3 Putative	symbiont	support	genes	undergoing	positive	selection	in	ALF	and	GRLH.

Gene description Gene EC number Function

DNA	mismatch	repair	protein	Msh2 MSH2 N/A DNA	repair	&	replication

Glycine-	tRNA	ligase GLYS 6.1.1.14 Aminoacyl-	tRNA	formation

b(0,+)- type amino acid transporter 1- like BAT-	1 N/A Amino acid transport

b(0,+)- type amino acid transporter 1- like BAT-	2 N/A Amino acid transport

DNA	polymerase	theta-	like POLQ 2.7.7.7 DNA	repair	&	replication

Facilitated	trehalose	transporter	Tret1-	2	
homologue

TRET-	6 N/A Sugar transport

Bifunctional	coenzyme	A	synthase COASY 2.7.7.3 & 2.7.1.24 CoA synthesis

Y + L	amino	acid	transporter	2 YLAT- 1 N/A Amino acid transport

Glutamine synthetase 2 cytoplasmic GS 6.3.1.2 NH3	recycling

Translation	factor	GUF1	homologue,	
mitochondrial- like

GUF-	1 N/A Translation

Uncharacterized	protein	LOC128983935 GOGAT 1.4.1.13 NH3	recycling

Proton- coupled amino acid transporter- like 

protein CG1139

PAT- 4 N/A Amino acid transport

Threonylcarbamoyl- AMP synthase RPC10 2.7.7.6 Transcription

Phosphopantothenate—cysteine ligase PPCS 6.3.2.5 CoA synthesis

Bifunctional	3′- phosphoadenosine 

5′- phosphosulfate synthase- like

PAPSS 2.7.1.25 & 2.7.7.4 Sulphur metabolism

Peptidoglycan recognition protein 3- like PGRP- SC N/A Population regulation

Excitatory	amino	acid	transporter-	like EAAT N/A Amino acid transport

Bifunctional	glutamate/proline—tRNA	ligase EPRS 6.1.1.15 & 6.1.1.17 Aminoacyl-	tRNA	formation

Facilitated	trehalose	transporter	Tret1-	2	
homologue

TRET-	2 N/A Sugar transport

Probable	proline—tRNA	ligase,	mitochondrial PROS 6.1.1.15 Aminoacyl-	tRNA	formation

Note:	For	more	information,	including	FPKM	values	in	each	host-	specific	tissue,	see	Table S10.
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4.4  |  Horizontally transferred genes in leafhoppers

Horizontally transferred genes (HTGs) present the opportunity for 

an organism to gain novel traits (Husnik & McCutcheon, 2018). 

This appears to be a common mechanism to support symbioses in 

insects, particularly leafhoppers and other hemipterans (Husnik 

et al., 2013; Luan et al., 2015;	Nikoh	et	al.,	2010; Sloan et al., 2014). 

ALF	has	30	HTGs	from	various	bacterial	origins,	most	of	which	were	
inferred to support either Sulcia or Nasuia (Mao et al., 2018). Given 

the likely age of these HTGs (10s to 100s of millions of years old), 

pinpointing their origins, such as whether they resulted from tan-

dem duplication or repeated horizontal transfer, is difficult to deter-

mine.	Additionally,	some	paralogues	exhibit	 low	expression	in	ALF,	
suggesting	potential	non-	functionality.	Nevertheless,	GRLH	retains	
most	of	the	HTGs	present	in	ALF,	with	notable	differences	(Figure 5). 

By	contrast,	GWSS	retains	only	11	HTGs	that	are	also	present	in	ALF,	
most of which are predicted to support Sulcia (Li et al., 2022; Mao & 

Bennett,	2020).

A major focus of HTG analysis was the fate of these genes in 

species that have lost (TGLH) and replaced more ancient symbi-

onts (GWSS). TGLH and GWSS retain orthologous HTGs involved 

in other host functions, including cell wall degradation (cel- 2, cel- 1, 

and pel). However, while GWSS has lost those related to Nasuia, 

TGLH has lost all full- length symbiosis support genes found in the 

other leafhopper species. To investigate whether remnants of lost 

ancestral HTGs in GWSS and TGLH, we scanned their genomes 

for	gene	fragments	(Queffelec	et	al.,	2022). Remarkably, we found 

remnants of three genes in TGLH used to support Sulcia (ileS and 

yebC- 1) and Nasuia (gh25- 1)	in	ALF	(Mao	et	al.,	2018). We further 

found a remnant of the cell growth gene, thymidylate kinase (tmk), 

in GWSS, which also supports Sulcia	in	ALF	(Chaperon,	2006). We 

note that the specific function of these HTGs in leafhoppers re-

mains untested and is inferred from their identities and specific 

expression	patterns	in	ALF.

4.5  |  ALF's distinct genomic traits highlight its 
polyphagous ecology

Species-	specific	gene	groups	and	gene	family	expansions	in	ALF	can	
help to identify adaptations to its unique biology and ecology. As an 

illustrative	point,	ALF's	genome	has	uniquely	experienced	gene	fam-

ily expansion involved in sugar transport and protease genes (Price 

et al., 2010; Rispe et al., 2008).	Enrichment	in	these	specific	genes	
likely	 underlies	 the	differences	between	ALF's	 host	 plant	 associa-
tions	 and	 the	 other	 species	 investigated	 here.	 ALF	 is	 a	massively	
polyphagous pest that feeds on a sugar- rich phloem diet across 

hundreds of plants. GRLH feeds narrowly on some monocot species 

(i.e., rice and other grasses), while GWSS is restricted to the sugar- 

depauperate xylem saps (Pathak, 1968; Turner & Pollard, 1959). 

TGLH is a monophagous pest that feeds on leaf parenchyma cell 

contents in tea plants (Günthardt & Wanner, 1981; Kawai, 1997; 

Qin	et	al.,	2015).	We	speculate	 that	 the	 feeding	habit	of	ALF	as	a	

polyphagous pest on eudicots plants may lead to an expansion of 

these sugar- related genes.

5  |  CONCLUSION

The	completion	and	analysis	of	the	ALF	genome	assembly	has	un-

veiled new insights into leafhopper genomics and the broad evolu-

tionary	history	of	 this	group.	Our	study	underscores	the	 intricate	
balance between genomes, symbionts, and the environment in the 

field of insect pest evolution and adaptability. Comparisons among 

the genomes of four pest species highlight the influence of envi-

ronmental pressures, including from insecticide treatments, farm 

cropping strategies (e.g., mono- cropping seasonality and cover 

crops), climate and its changes, and a range of plant secondary de-

fensive	compounds	 (Bai	et	al.,	2022;	Després	et	al.,	2007;	Dumas	
et al., 2019; Khaliq et al., 2014;	Nauen	&	Denholm,	2005; Spencer & 

Hughson, 2023; Trenbath, 1993). The ability of these species to per-

sist in these environments further depends on their obligate asso-

ciations with a diversity of bacterial symbionts. These relationships 

similarly place significant evolutionary pressures on host genomes 

and are likely to influence the environmental interactions of insects 

(Bennett	&	Moran,	2015;	Brodbeck	et	al.,	1990, 2014). Major transi-

tions in symbiotic relationships among leafhoppers have left strong 

signatures of evolution, affecting the expansion and contraction of 

gene families, as well as the fate of ancient HTGs.

Taken	together,	the	addition	of	the	ALF	genome	to	the	insect	ge-

nome resources contributes to our broader understanding of insect 

genomics, their evolutionary adaptations, and potential impacts on 

their	ecology	and	symbiotic	relationships.	Since	ALF	is	a	major	pest	
of	North	American	agriculture	(Beanland	et	al.,	2005; Wallis, 1962), 

these results can be used to inform and develop modern pest man-

agement	 strategies	 such	 as	 RNAi	 gene	 expression	 interference	
(Baum	&	Roberts,	2014; Jain et al., 2021).	ALF's	shared	and	unique	
genomic features identified in this study, including HTGs, selection 

events, and symbiosis- related genes, can potentially be targeted for 

disrupting the survival of these insects.
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