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ABSTRACT

Advances in tracking technologies have resulted in growing reposi-
tories of large and long-term movement data of wildlife at an un-
precedented rate. Nevertheless, many of these movement datasets
come with missing records, termed gaps in this paper, which need
to be imputed before further movement analysis. However, existing
trajectory interpolation methods have certain limitations. Their
effectiveness might be restrained by users’ domain knowledge of
the moving entity or by the properties of the trajectories, to name a
few. Moreover, the uncertainty of movement data has not received
enough attention and is often neglected in the interpolation process.
A review of existing literature suggests a need for designing more
robust and broadly applicable data-driven interpolation methods
that can self-adapt to the subject tracking data, and meanwhile, can
take movement uncertainty into consideration. This study proposes
anew trajectory interpolation model that leverages a generative ad-
versarial network (GAN) architecture supported by long short-term
memory (LSTM) layers to interpolate missing trajectory points. The
model uses a latent code in addition to the noise input to deal with
the uncertainty in movement behaviors. We apply and evaluate
the proposed model against a real-world GPS trajectory dataset
of migratory white storks to assess its effectiveness for imputing
migration paths.
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1 INTRODUCTION

Novel tracking devices and technologies (e.g., Global Positioning
System (GPS) tracking collars) are providing scientists and wildlife
conservationists with wildlife tracking data at an unprecedented
speed and at much lower costs. These tracking devices usually sam-
ple the location of wildlife at mostly regular intervals, which forms
sequences of timestamped locations, named trajectories. Compu-
tational movement ecology and other wildlife conservation analy-
ses are developed on the foundation of reliable tracking data [17].
Nevertheless, many factors (e.g., battery outage, signal loss, signal
multi-pass) may lead to the interruption of tracking data record-
ing or introducing erroneous data points and outliers that need
to be considered before further analysis. This results in missing
data and often long gaps in movement data. In this study, a se-
quence of consecutive missing tracking points is termed as a gap.
It originates from the scenario where the tracked animal contin-
ues moving, but the tracking device stops tracking or when the
recording is interrupted by the environmental and mechanical con-
ditions surrounding the sensors. These forms of gaps often create
a significant problem since they may appear stochastically. Gaps
may also be intentionally introduced into the dataset. For instance,
some animal trackers are solar-powered and thus are designed to
turn off automatically after sunset to save battery, which leads to
irregular sampling rates. However, there is a special case, although
not the focus of this paper, where some trackers may pause record-
ing when an animal is inactive. In this case, the missing points are
merely temporal but not spatial, as the moving entity remains at
the same location. For a more comprehensive understanding and
representation of movement and its patterns through data-driven
approaches, gaps are the primary targets that need to be dealt with
before further analysis.

In movement ecology, there is often a desire and necessity to
estimate a moving entity’s unknown locations according to the ob-
served ones. The process of actively filling the gap by estimating the
locations (and other attributes if necessary) of the missing points
along a trajectory is termed trajectory interpolation. As shown in
Figure 1, for a trajectory containing a gap, the goal of trajectory
interpolation is to obtain the estimation of unknown locations
(denoted as ), given two observed segments at two ends of that tra-
jectory (denoted as x1, x2). A review of existing literature suggests a
need for designing more robust and broadly applicable data-driven
interpolation methods that can self-adapt to the subject tracking
data [7, 15, 30, 27]. Meanwhile, another aspect that is understudied
in trajectory interpolation is the uncertainty of movement path
choices. As shown in Figure 1, there might be multiple possible and
acceptable paths in the gap that a moving entity might choose, and
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thus a robust interpolation method needs to take uncertainty into
consideration.
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Figure 1: Problem definition of trajectory interpolation

To bridge this research gap, this paper aims to propose a generic
generative trajectory interpolation model that can unravel the
knowledge needed to interpolate a gap from the observed track-
ing data, especially from the very trajectory that contains the gap.
The proposed model relies on a generative adversarial network
(GAN) supported by long short-term memory (LSTM). The main
contributions of this work are as follows:

(1) A generative adversarial network (GAN) supported by long
short-term memory (LSTM) is proposed to impute gaps con-
tained in GPS trajectories in the vector space. We fuse the
two pieces of information learned from two ends of a tra-
jectory containing a gap to form the interpolation context
for each individual trajectory, guiding the estimation of un-
known locations. This makes the proposed model distinct
from existing models using a similar structure for trajectory
prediction (extrapolation) in the raster (pixelated) space.
Based on InfoGAN [3], this study uses a latent code in ad-
dition to the noise input, enabling the proposed model to
generate diverse interpolation results, which provides a bet-
ter approximation to the gap ground truth (real trajectory)
and helps deal with the inherent uncertainty in movement
path choices.
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2 RELATED WORK

2.1 Trajectory interpolation

There are many existing trajectory interpolation techniques put
forward to deal with gaps in movement data. A classic method is
linear interpolation, which assumes that the entity is moving at a
constant speed and heading in the interpolated area. The most im-
portant supremacy of linear interpolation is that it can be easily and
straightforwardly implemented and requires little computational
resources, which might make a substantial difference when a move-
ment dataset is in tremendous volume. However, for a large gap
or movement involving more complicated patterns, the trajectory
segment produced from linear interpolation is often oversimplified,
especially when the temporal resolution of the data is coarse. One
important reason is that some extent of stochasticity exists in move-
ment. Thus, some researchers model movement as a probabilistic
random process, e.g., random walks [24, 26], or with uncertainty, us-
ing Brownian bridges [12, 10] or a potential path area (PPA) [1, 16].
These approaches are suitable for many types of animals, especially
terrestrial animals since they manifest more random movement
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patterns. Nevertheless, the major challenge is to precisely parame-
terize the probabilistic rules, which often requires sufficient domain
knowledge of the moving process, including knowledge of the
moving entities and the surrounding environment. Consequently,
movement models using random walks, Brownian bridges, and PPA
can generate a general movement coverage area over a long period
of time, but it is usually challenging for them to estimate precisely
where a moving entity is at a given timestamp.

To solve that problem, researchers turn to movement modeling
with mathematical and statistical support. In view of trajectories’
geometrical characteristics, researchers have explored various in-
terpolation methods based on curve fitting, such as cubic splines,
Bézier curves, and polynomial curves [30]. In this way, the location
of a moving entity at any given timestamp can be estimated since
the whole movement process is modeled mathematically. Trajectory
interpolation supported by curve fitting is proven suitable for some
marine mammals as their movement does demonstrate regular geo-
metric patterns [27]. However, such interpolation methods focus
on the spatial features only and neglect the temporal or spatiotem-
poral features implied in trajectories, such as time and speed. To
incorporate spatiotemporal features, some researchers put forward
the kinematic interpolation methods [7, 15]. This kind of interpola-
tion method usually includes a series of carefully designed complex
kinematic functions, which can result in high accuracy if one has
sufficient domain knowledge to tune the parameters. Unfortunately,
that characteristic also restricts the robustness and adaptiveness of
these kinematic interpolation methods. When the set of kinematic
functions is tuned for one movement dataset, it usually cannot
be applied to other types of moving entities and sometimes even
different behavior patterns manifested by the same entity might
cause a disturbance to the interpolation performance. Therefore, it
is needed to design a data-driven trajectory interpolation method
that can self-adapt to movement datasets and more importantly, to
the very trajectory containing the gap.

2.2 Machine learning approaches to model
movement trajectories

Recent years have seen the versatility and effectiveness of machine
learning proven in an increasing number of domains and fields.
Through sufficient training, deep neural networks can capture and
unravel high-level features of the trajectories and identify implicit
patterns that are otherwise imperceptible [13, 28]. Long short-term
memory (LSTM), a special kind of recurrent neural network (RNN),
stimulates the interests of movement researchers since its structure
makes it inherently suitable for processing time series data [9]. As
an improved version of the traditional RNN, LSTM has the capa-
bility to apprehend both long-term and short-term dependencies,
which are key to making a well-informed estimation of unknown
timesteps in sequential data [5]. To further improve the learning
and prediction capabilities, LSTMs are used inside the architecture
of a generative adversarial network (GAN) to predict pedestrian
trajectories using pixel-based pedestrian tracking datasets captured
by cameras. A GAN is an architecture for training deep generative
models based on a minimax game that is put formally in Equation
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(1) [e].
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It has been proven in a variety of studies that the GAN archi-
tecture can lead to a considerable increase in model performance
[2, 8, 25]. One major limitation of traditional GANs, however, is
their invariability, and thus they cannot deal with the uncertainty
in movement modeling [20]. In the trajectory interpolation context,
given a trajectory containing a gap, an interpolation model based
on the traditional GAN will only generate one interpolation result
that it believes to be the most probable. Even if asked to do the inter-
polation task multiple times, the model will generate results that are
highly similar. This is because apart from the input trajectory, the
only input this model takes is a random noise z, of which we have
little control. Hence, its outputs cannot cover diverse possibilities,
which might exist in reality because of movement and behavior
uncertainty. A variant of traditional GANs, named InfoGAN [3], is
proposed to solve that problem. In addition to the random noise
input z, it adds a latent code ¢ to model the uncertainty of move-
ment behaviors. The introduction of such a latent code not only
improves the model’s capability of dealing with uncertainty but
also helps avoid the mode collapsing problem, which is common in
the training process of traditional [2]. With different inputs of ¢, an
InfoGAN-based model varies its prediction, accordingly, making
it feasible to create diverse interpolation results among all pos-
sibilities. Note that this association between the latent code and
movement behavior patterns is also learned from trajectories. To
put it formally, an InfoGAN solves the information-regularized
minimax game shown in Equation (2).

Iéllél max Vinfocan(D; G, Q) = V(D,G) — AL{(G, Q) (2)

where A is a hyperparameter, Q(c|x) is an auxiliary distribution,
and L7 (G, Q) is a variational lower bound of the mutual information
I(c; G(z, c)). For more detailed information on how that is derived,
refer to [3].

The InfoGAN has stimulated the interest of researchers studying
movement (e.g., predicting pedestrian trajectories [2]), for its ability
to generate diverse results by varying the latent code c. Inspired
by previous work, this study aims to develop an InfoGAN-based
trajectory interpolation model, which differs from previous works
in the following aspects. First, this study focuses on trajectory
interpolation while most previous works, especially the ones built
upon a similar architecture, focus on prediction (extrapolation).
Second, many of those models are developed in the field of computer
vision, and thus the trajectories considered in those models are
usually quite short (e.g., lasting for less than 20 timesteps with the
observed and predicted segments combined) and the sampling rate
is usually very high. In videos, moving entities are often sampled
at the rate of milliseconds. Although in many studies, such video
movement datasets are down-sampled to reduce the computational
resources needed, they are still considerably high compared to
the sampling rate of GPS trajectories collected for wildlife. Third,
they work on rasterized trajectories which may compromise the
accuracy of movement locations. Therefore, this study advances the
LSTM-GAN to develop a trajectory interpolation model applicable
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to wildlife GPS trajectories, which have longer durations and lower
sampling rates, compared to trajectories captured in videos.

3 LSTM-GAN TRAJECTORY INTERPOLATION
MODEL

The proposed generative trajectory interpolation model consists
of a long short-term memory (LSTM) encoder-decoder generator
and an LSTM discriminator. When interpolating a gap, the gener-
ator first encodes the observed segments of that very trajectory
sequentially to learn individual patterns and then decodes the gap
with the individual movement pattern as the prior knowledge. The
discriminator supervises the generator’s work, making certain the
interpolation result is close to the ground truth. Figure 2 demon-
strates a schematic illustration of the proposed interpolation model
with the GAN architecture that can transform a trajectory with a
gap (see Figure 2b) to a complete trajectory with the gap interpo-
lated (see Figure 2c).
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Figure 2: Schematic illustration of the proposed trajectory
interpolation model

3.1 Generator

In this study, the generator has an LSTM encoder-decoder struc-
ture, enabling the generator to read the whole trajectory sequence
before estimating the unknown locations in the gap. The encoder
first obtains knowledge about movement patterns from the ob-
served segments (denotes as x; and x2) at two ends of a trajectory
containing a gap (see Figure 1 for the illustration of trajectory in-
terpolation problem definition). Here, a trajectory is represented as
a n X k matrix, where n denotes the total time step and k denotes
the number of attributes used to represent movement (e.g., location,
speed, heading). For an input trajectory, the encoder LSTM cells
encode the observed segments x; and x to obtain the hidden states

hz ne1 @and hz ncp &t time step ¢ through Equations (3-4)
t _ t—1 t,
hener = Aenct (hepey> X33 WAencl) ®)
t-1 _t
héncz = Aenca (hepepr X3 W/lencz) 4)

where A(-) represents an encoder LSTM with weight W.
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The two pieces of information learned from these two segments
are then fused through fully connected layers to obtain the final
hidden state of the encoder hZ,. through Equation (5).

hgnc = Penc (hgncl’ hZHCZ; W¢enc) Q)

where ¢enc () represents the fully connected layers with the LeakyReLu

activation function and weight Wy_ .

Since our goal is to generate gap interpolations that are consis-
tent with what has been observed, the hidden state of the decoder
LSTM is initialized as hy,.0 = hgy,. After initializing h g, ., the de-
coder interpolates the gap (denoted as 7) using what is learned
by the encoders as prior knowledge through the recurrence of
Equations (6-8).

I VA A (6)
hzlec = AdeC(hé;cl’ Otil; W)Ldec) (7)
9" = baec(hfe Wiy, ®

where z ~ /#/(0, 1) denotes noise, c is a latent code, [-] represents
concatenation, o’ ~! denotes the input of the decoder LSTM, ﬁt
denotes the output of the decoder fully connected layers ¢ge(-)
with weight Wy, , and hy. is the hidden state of the decoder
LSTM Agec(+) at time step ¢.

3.2 Discriminator

In the discriminator module, we first reconstruct the complete tra-
jectory. The discriminator has an equal chance of selecting the
ground truth of the gap (denoted as y) or the interpolation result
output by the generator (denoted as ). In this way, the probabilities
are equal that the discriminator sees a real trajectory Ty = [x1, y, x2]
or a fake trajectory Ty = [x1, 7, x2]. Suppose we denote a recon-
structed trajectory (either real or fake) as T = {p!,p%...,p"},
where p? represents the tracking point at time step i. It is processed
by the discriminator LSTM layer to obtain the hidden state h(tiisc at
time step ¢ through Equation (9).

h(tﬁsc = )’diSC(h(tii_S(lz’pt; WAdisc) (9)

where A(-) represents an encoder LSTM with weight W.

After processing the whole sequence, we obtain the final hid-
den state b, encoding the important information extracted from
trajectory T. Based on this information, the discriminator then dif-
ferentiates whether it sees a real or fake trajectory through Equation
(10) and then decodes the latent code ¢ through Equation (11).

i= ¢label(hgisc; Wobrr) (10)

¢ = ge(h W) (1)

where @1ape1 () represents the fully connected layers with the Sig-

moid activation function and weight Wy, ., and ¢¢(-) represents

the fully connected layers with the LeakyReLu activation function

and weight Wy . [ and ¢ are the label (real or fake) and latent code

predicted by the discriminator.

In such context, the terms V(D, G) and L;(G, Q) in Equation (2)

are instantiated as in Equations (12-13).

V(D, G) = Exl,x2~Pdata(x1,x2) [IOgD(y|x1, xZ)] (12)
+E,.p,(z) log(1 — D(G(z, c|x1, x2)))]
Li(G,Q) = E7.~Pz(z),c~PC(c) [log O(c|G(z c|x1,x2))]  (13)
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3.3 Model training

The generator and the discriminator modules are both trained in
each epoch but with separate loss functions and optimizers. Three
types of losses, namely adversarial loss, information loss, and dis-
tance loss, are used to instantiate the minimax game defined in
Equations (2, 12-13). Both adversarial loss and distance loss target
the interpolation result ¢, while the information loss targets the
reconstructed latent code ¢. The adversarial loss represents the
ability of the discriminator to differentiate the interpolation result
generated by the generator from the ground truth. The distance
loss measures the squared average Euclidean distance between the
interpolation result and the ground truth. And finally, the informa-
tion loss measures the difference between the reconstructed latent
code ¢ and the original c input. In this way, the total loss £ is a
weighted sum of these three types of loss functions, as in Equation
(14).
& = Lady + Winfo * Linfo + Wdist * Ldist (14)

where w represents the weight.

In addition, this study uses the average displacement error (ADE),
a commonly used evaluation measure, to evaluate the model per-
formance. ADE, as shown in Equation (15), averages the Euclidean
distances between the ground truth and the interpolated locations
for all tracking points in the gap.

LN
ADE(y.9) = — Do lyt =3l (15)
i=1

where 7 is the length of the gap, || - || represents a distance metric
and we use the Euclidean distance in this study.

4 EXPERIMENTS

The proposed LSTM-GAN trajectory interpolation model is imple-
mented using PyTorch, a high-performance deep learning library
written in Python [19].

4.1 Dataset and data preprocessing

We use a subset of the trajectory dataset collected from 35 adult
white storks (Ciconia ciconia) over five years (2012-2016) [22]. This
dataset is publicly available on Movebank! [11, 21], an online plat-
form that helps researchers organize, share, and annotate animal
movement data. White storks are long-distance migratory avian
animals, which spend their winter times in sub-Saharan Africa
before migrating back to Eurasia for breeding [22]. The migration
dataset has over a million tracking points. Note that this dataset
contains only the trajectories of spring (return) migration, but not
their fall (outbound) migration.

Since the tracking devices are solar-powered, they record GPS
fixes every 5 min in good solar conditions (95% of the time) or other-
wise, every 20 min. At night, the tracking device usually hibernates
between 22:00 and 4:00 (for 6 hours). But the exact time might vary
according to the solar conditions of that day. Nevertheless, since
white storks migrate only during daylight [23, 14], this dataset
captures the majority of their movement during migration. To con-
struct continuous trajectories, we connect adjacent tracking points
of the same bird to form the trajectories as long as their sampling

Uhttps://www.movebank.org/
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interval is within the threshold #;5. In this case, it is crucial to set a
threshold t,, that allows ordinary day-to-day time intervals (e.g., 6
hours from 22:00 to 4:00) but meanwhile, identifies abnormal ones
(e.g., 20 hours from 21:00 to 17:00) and splits the trajectory there.
To achieve this, we first calculate all sampling intervals between
adjacent tracking points and then select only large ones (i.e., > 4
h) as they might represent day-to-day time intervals. After that,
based on the distribution of these large intervals, we determine that
t;p, = 10 h is an appropriate setting, and it preserves 98.5% of these
large intervals. The constructed trajectories are visualized in Figure
3. The white storks start their migration from different wintering
sites in Africa but arrive at almost the same location in Europe.

™\ Trajectory >
0 1,500 3,000 .
[ e J{

Figure 3: White stork spring migration trajectories

After that, we calculate the speed, heading, and local time of
the day for each tracking point to form matrix representations
of trajectories. Each trajectory is represented as a n X 5 attribute
matrix, where n denotes the number of tracking points and the
five attributes chosen in this study are relative movements in x, y
directions (denoted as Ax, Ay), speed in x, y directions (denoted as
0x, 0y, containing information on both speed and heading), and time
of the day. In addition to the first four commonly used attributes
in movement modeling, we also include the time of the day to
account for variations in white storks’ travel speeds, since they
exhibit significantly different speeds depending on the time of day
(see Figure 4).

Next, we create trajectory samples by introducing artificial gaps.
Following a similar procedure in previous interpolation studies
[15, 29, 27], this study uses trajectory samples containing artificial
gaps that are manually created to train and evaluate the proposed
trajectory interpolation model. In a trajectory sample T; composed
of n tracking points, we place a gap consisting of n/2 points in
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Figure 4: Speed distribution per time of the day with median
speeds represented as bars.

the middle, as in Equation (16). In this study, we create trajectory
samples of a variety of lengths to conduct a comparative sensitivity
analysis (see Section 4.2.2). Then, following the machine learning
tradition, we split the trajectory samples of each length into the
training set, validation set, and test set according to a ratio of

0.7:0.2:0.1.
To={p....p
—_—

xi: 4 points y: 4 points  x;: § points

n
4

n 3n 3n
Pt p") (16)

4.2 Sensitivity analysis

4.2.1 Model hyperparameters. Three hyperparameters that may
play a significant role are the number of LSTM units, noise dimen-
sion, and latent code dimension. Following the common strategy in
developing LSTM-based or GAN-based models [18, 8], we experi-
ment with the number of LSTM units in a range from 16 to 256, the
noise dimension from 8 to 128, and with the latent code dimension
from 1 to 16. As for the weights of loss functions in Equation (14),
we use Winf, = 0.5 as recommended in [2] and we find that setting
wgist = 1 gives a promising start in the early training stage as the
distance loss helps guide the generator into the right direction.

In the sensitivity analysis of model hyperparameters, we use
10000 trajectory samples, each containing 200 tracking points in
total with the middle 100 points missing as a gap (i.e., |x1| = |x2| =
50, |y| = 100). The models with each setting are trained 100 epochs,
and the best model, i.e., the model with the smallest ADE, is selected
as representative of that setting. The results are shown in Figure 5,
suggesting that the optimal model hyperparameter setting is 128
LSTM units, 32 noise dimensions, and 2 latent code dimensions,
where the validation ADE is minimum.

4.2.2 Trajectory sample length. This study applies a comparative
sensitivity analysis to evaluate how the length of input trajectory
might impact the outcomes. The trajectory sample lengths of 50,
100, 200, 400, 800, and 1600 tracking points are considered. Each
input trajectory includes a gap in the middle, with a length of half
of the total sample length (see Equation (16) for illustration). The
length sensitivity analysis results are presented in Table 1. The
overall trend of the relationship between model performance and
trajectory length is clear and intuitive. The proposed model has
the worst performance on the shortest trajectory samples (i.e., 50
points). This is reasonable because there might not be enough infor-
mation contained in such short trajectories to accurately interpolate
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Figure 5: Sensitivity analysis of the number of LSTM units,
noise dimension, and latent code dimension

the gap. Then, with the increase in trajectory lengths, it performs
better and yields the best result on trajectory samples composed
of 200 tracking points. After that, the model performance starts
decreasing with a further increase in trajectory lengths. This in-
dicates that the model might be overwhelmed and confused by
the information contained in long and complex trajectories. In the
following experiments of this study, we continue with trajectory
samples with 200 points.

4.3 Model evaluation

4.3.1 Qualitative and quantitative evaluation. After the first 100
epochs of training with distance loss weight wgjt = 1, the best
model obtained has a validation ADE of 987.02 m for the trajectory
length of 200 points. At this early training stage, distance loss pro-
vides crucial enlightenment to the generator, guiding it to imitate
the ground truth. Hence, we set a large weight for it. After that, our
goal is to motivate the generator to generate diverse interpolation
results covering a larger probability space when given different
latent codes c. In this case, distance loss is restraining the model’s
ability to deal with uncertainty in movement path choices. There-
fore, on the basis of the best model from the first 100 epochs, we
train the model for another 100 epochs with wgist = 0.5, and the
best model in this second round of training has a validation ADE
of 968.03 m. After that, no better model can be obtained even if we
continue to this model or further decrease wyg;s; to 0.1, indicating
that the model training has converged. Therefore, we complete the
model training process and obtain the best model with a validation
ADE of 968.03 m. Testing it on the test set, we get a test ADE of
929.67 m, which validates the model performance on trajectory
interpolation.

The proposed LSTM-GAN model generates diverse interpolation
results with different latent codes c. Therefore, it is crucial to deter-
mine the number of applications n, the proposed model needs in
order to cover a reasonably large probability space without wasting
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computational resources. To analyze that, we experiment with a
range of n, values, and for each trajectory sample, we calculate the
average of the minimal ADE among n, applications with different
random noise and latent codes. From the results shown in Figure 6
we can tell that the average minimal ADE drops sharply when the
number of applications n, increases from 1 to 5, and then levels off
with further increases of n,. This indicates that applying the model
5 times with different noise and latent codes can effectively get
better approximations of the gap ground truth, that is, the ground
truth is more likely to lie within the spatial boundary defined by
5 interpolation results. Thus, in the following experiments, we set
ng = 5.

£92%5
w 900
Q875
< 850
E 825
800
§ 775
< 750

0 5 10 15 20 25 30
Number of applications with random noise and latent codes

Figure 6: Analysis of the number of applications needed

Six examples of the interpolation results using the model trained
on a sample length of 200 points are demonstrated in Figure 7. The
observed segments in each trajectory sample are shown in gray,
the ground truth during the gap in blue, and the model predictions
of the missing points in red. A green circle marks the start of
a gap and a yellow triangle marks its end. In each example, the
proposed LSTM-GAN model is applied 5 times to create 5 possible
interpolation results. Since the trajectory samples are created based
on the number of points in the observed segments x1, x2 and gap
y instead of the distance traveled, it is possible that some of these
segments are quite short in terms of the distance traveled. As shown
in Figure 7 (a-d), although either or both the observed segments are
short, providing minimal useful information, the proposed model
manages to generate some reasonable interpolation results for the
gap. An extreme case is shown in Figure 7 (d) where both x; and
X7 are quite short, but the model still generates some interpolation
results that are similar in shape to the ground truth. However,
when the tortuosity of the trajectory is large (see Figure 7 (e-f)),
the model becomes less accurate. The trajectory sample in Figure
7 (f) has the largest tortuosity, leading to a conspicuous deviation
between the gap ground truth and the interpolation results. Overall,
the proposed model is able to generate reasonable interpolation
results when encountered with trajectories with conspicuously
different shapes. However, the interpolation results generated by
the proposed model have a simpler geometric shape than that of
the ground truth.

4.3.2 Comparative evaluation. To further evaluate the proposed
LSTM-GAN model, we compare it against commonly used inter-
polation methods and present the results in Table 2. The proposed
model outperforms linear interpolation and curve-fitting-based in-
terpolation methods when the model is applied only once. When we
apply the model n,; = 5 times with random noise and latent codes,
the model obtains a smaller average minimal ADE, in which case
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Table 1: Sensitivity analysis of trajectory sample length

# points in trajectories Average length (m) Median length (m)

Training ADE (m) Validation ADE (m) Training time (h)

50 38,388 11,214
100 79,234 53,163
200 160,995 158,816
400 325,259 324,725
800 656,987 660,577
1600 1,329,767 1,332,549

1133.28 1151.91 0.75
1131.83 1091.23 1.28
1006.64 986.94 2.22
1014.50 998.68 4.17
1065.03 1064.73 8.11
1096.10 1107.98 15.83
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Figure 7: Trajectory interpolation results

we can further approximate the gap ground truth. The proposed
model also outperforms the one with traditional GAN architecture,
especially when the model is applied multiple times, proving the
effectiveness of using an InfoGAN. The results generated by a tradi-
tional GAN are highly similar, whereas an InfoGAN learns diverse
route choice behaviors using the latent code.

5 DISCUSSION AND FUTURE WORK

The movement patterns are key in a trajectory interpolation task,
which can be multifarious. Examples of them include how "ex-
ploratory" a moving entity is, corresponding to the tortuosity of the
trajectory, or how fast an entity tends to travel at different times
of the day, which exhibits both commonalities of a species and
characteristics of an individual. These patterns determine how enti-
ties choose their movement paths, which is also a decision-making

Table 2: Comparative evaluation results

Method ADE (m) Min ADE (m)
when ng =5
Linear 4525.48 /
Spline (degree:3) 3210.87 /
LSTM + traditional GAN 1124.57 1103.12
LSTM + InfoGAN (Proposed)  929.67 753.35

process. Traditional statistical methods are known to struggle when
modeling decision-making because the associations between vari-
ous factors and the outcome are nuanced and entangled, making
it difficult to form rigorous representations. In this study, to get
around that obstacle, the proposed model learns directly from the
data and is able to achieve promising performance given the vol-
ume of the trajectory dataset is large enough. In this manner, the
movement patterns, as well as the path choice decision-making
process, are successfully modeled. The model’s ability to deal with
uncertainty in movement behaviors comes with adding a latent
code c, transforming a traditional GAN into an InfoGAN. The in-
troduction of ¢ enables the model to generate diverse interpolation
results given the same pair of observed segments (x1, x3). However,
in the current phase, the ADE obtained is still large. There is still
much room for improvement to generate realistic interpolations. In
addition, a major demerit that comes with a deep learning model
and cannot be neglected is that the model does so without much
interpretability, which is a common demerit of almost all deep learn-
ing models. It means that even though the model outputs some
trajectory interpolation results, little does the model tell us why the
moving entity makes that path choice decision. Therefore, in future
work, it is important to study the interpretability of movement
models.

In this study, we use the migration trajectories of white storks.
During a migration process, a white stork has a clear origin and
destination (which are different from each other). An interpolation
task in this scenario is in fact studying how a moving entity chooses
the movement path from an origin (start of the gap) to a destination
(end of the gap). Although the movement path is almost never a
straight line, it is somewhat rectilinear. Studying interpolation in
this scenario provides guiding implications for developing decision-
making models targeted at movement path choices. To make such
models more realistic, future extensions may take into account the
environmental and social contexts, as they play an important role
in impacting the decision-making process [4, 25]. Nonetheless, it
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should be noted that there exist movements with other types of
patterns. For example, a tiger patrols in its home range, or a marine
animal hunts in regular geometric shapes. In these movements,
what is important is the exploring behavior during the process (e.g.,
hunting, patrolling) instead of reaching some destination. Thus,
such movements pose a greater challenge for interpolation models
or movement path decision-making models in general, since the
movement paths in this scenario are less predictable and exhibit a
higher level of randomness. Our future work aims to include such
movements.

6 CONCLUSION

This study introduces an uncertainty-aware trajectory interpolation
model with a generative adversarial network (GAN) architecture
using long short-term memory (LSTM) to interpolate trajectory
gaps (i.e., spatially and temporally missing tracking data) in wildlife
movement data. It uses an InfoGAN to produce samples with vari-
ability to deal with uncertainty in movement path choices, which is
controlled by a latent code, from the predictive distribution of each
individual trajectory. The evaluative experiments suggest promis-
ing results indicating the effectiveness of the proposed trajectory
interpolation model in real animal tracking datasets. Future work
will be devoted to assessing and further enhancing the model for
handling tracking data of various sampling rates and lengths, and
more complex structures of trajectory data.
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