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ABSTRACT
Advances in tracking technologies have resulted in growing reposi-

tories of large and long-term movement data of wildlife at an un-

precedented rate. Nevertheless, many of these movement datasets

come with missing records, termed gaps in this paper, which need

to be imputed before further movement analysis. However, existing

trajectory interpolation methods have certain limitations. Their

effectiveness might be restrained by users’ domain knowledge of

the moving entity or by the properties of the trajectories, to name a

few. Moreover, the uncertainty of movement data has not received

enough attention and is often neglected in the interpolation process.

A review of existing literature suggests a need for designing more

robust and broadly applicable data-driven interpolation methods

that can self-adapt to the subject tracking data, and meanwhile, can

take movement uncertainty into consideration. This study proposes

a new trajectory interpolation model that leverages a generative ad-

versarial network (GAN) architecture supported by long short-term

memory (LSTM) layers to interpolate missing trajectory points. The

model uses a latent code in addition to the noise input to deal with

the uncertainty in movement behaviors. We apply and evaluate

the proposed model against a real-world GPS trajectory dataset

of migratory white storks to assess its effectiveness for imputing

migration paths.
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1 INTRODUCTION
Novel tracking devices and technologies (e.g., Global Positioning

System (GPS) tracking collars) are providing scientists and wildlife

conservationists with wildlife tracking data at an unprecedented

speed and at much lower costs. These tracking devices usually sam-

ple the location of wildlife at mostly regular intervals, which forms

sequences of timestamped locations, named trajectories. Compu-

tational movement ecology and other wildlife conservation analy-

ses are developed on the foundation of reliable tracking data [17].

Nevertheless, many factors (e.g., battery outage, signal loss, signal

multi-pass) may lead to the interruption of tracking data record-

ing or introducing erroneous data points and outliers that need

to be considered before further analysis. This results in missing

data and often long gaps in movement data. In this study, a se-

quence of consecutive missing tracking points is termed as a gap.
It originates from the scenario where the tracked animal contin-

ues moving, but the tracking device stops tracking or when the

recording is interrupted by the environmental and mechanical con-

ditions surrounding the sensors. These forms of gaps often create

a significant problem since they may appear stochastically. Gaps

may also be intentionally introduced into the dataset. For instance,

some animal trackers are solar-powered and thus are designed to

turn off automatically after sunset to save battery, which leads to

irregular sampling rates. However, there is a special case, although

not the focus of this paper, where some trackers may pause record-

ing when an animal is inactive. In this case, the missing points are

merely temporal but not spatial, as the moving entity remains at

the same location. For a more comprehensive understanding and

representation of movement and its patterns through data-driven

approaches, gaps are the primary targets that need to be dealt with

before further analysis.

In movement ecology, there is often a desire and necessity to

estimate a moving entity’s unknown locations according to the ob-

served ones. The process of actively filling the gap by estimating the

locations (and other attributes if necessary) of the missing points

along a trajectory is termed trajectory interpolation. As shown in

Figure 1, for a trajectory containing a gap, the goal of trajectory

interpolation is to obtain the estimation of unknown locations

(denoted as �̂), given two observed segments at two ends of that tra-

jectory (denoted as �1, �2). A review of existing literature suggests a

need for designing more robust and broadly applicable data-driven

interpolation methods that can self-adapt to the subject tracking

data [7, 15, 30, 27]. Meanwhile, another aspect that is understudied

in trajectory interpolation is the uncertainty of movement path

choices. As shown in Figure 1, there might be multiple possible and

acceptable paths in the gap that a moving entity might choose, and
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thus a robust interpolation method needs to take uncertainty into

consideration.

x₁

x₂

y

Moving direction

Potential path

Figure 1: Problem definition of trajectory interpolation

To bridge this research gap, this paper aims to propose a generic

generative trajectory interpolation model that can unravel the

knowledge needed to interpolate a gap from the observed track-

ing data, especially from the very trajectory that contains the gap.

The proposed model relies on a generative adversarial network

(GAN) supported by long short-term memory (LSTM). The main

contributions of this work are as follows:

(1) A generative adversarial network (GAN) supported by long

short-term memory (LSTM) is proposed to impute gaps con-

tained in GPS trajectories in the vector space. We fuse the

two pieces of information learned from two ends of a tra-

jectory containing a gap to form the interpolation context

for each individual trajectory, guiding the estimation of un-

known locations. This makes the proposed model distinct

from existing models using a similar structure for trajectory

prediction (extrapolation) in the raster (pixelated) space.

(2) Based on InfoGAN [3], this study uses a latent code in ad-

dition to the noise input, enabling the proposed model to

generate diverse interpolation results, which provides a bet-

ter approximation to the gap ground truth (real trajectory)

and helps deal with the inherent uncertainty in movement

path choices.

2 RELATEDWORK
2.1 Trajectory interpolation
There are many existing trajectory interpolation techniques put

forward to deal with gaps in movement data. A classic method is

linear interpolation, which assumes that the entity is moving at a

constant speed and heading in the interpolated area. The most im-

portant supremacy of linear interpolation is that it can be easily and

straightforwardly implemented and requires little computational

resources, which might make a substantial difference when a move-

ment dataset is in tremendous volume. However, for a large gap

or movement involving more complicated patterns, the trajectory

segment produced from linear interpolation is often oversimplified,

especially when the temporal resolution of the data is coarse. One

important reason is that some extent of stochasticity exists in move-

ment. Thus, some researchers model movement as a probabilistic

random process, e.g., randomwalks [24, 26], or with uncertainty, us-

ing Brownian bridges [12, 10] or a potential path area (PPA) [1, 16].

These approaches are suitable for many types of animals, especially

terrestrial animals since they manifest more random movement

patterns. Nevertheless, the major challenge is to precisely parame-

terize the probabilistic rules, which often requires sufficient domain

knowledge of the moving process, including knowledge of the

moving entities and the surrounding environment. Consequently,

movement models using random walks, Brownian bridges, and PPA

can generate a general movement coverage area over a long period

of time, but it is usually challenging for them to estimate precisely

where a moving entity is at a given timestamp.

To solve that problem, researchers turn to movement modeling

with mathematical and statistical support. In view of trajectories’

geometrical characteristics, researchers have explored various in-

terpolation methods based on curve fitting, such as cubic splines,

Bézier curves, and polynomial curves [30]. In this way, the location

of a moving entity at any given timestamp can be estimated since

the whole movement process is modeledmathematically. Trajectory

interpolation supported by curve fitting is proven suitable for some

marine mammals as their movement does demonstrate regular geo-

metric patterns [27]. However, such interpolation methods focus

on the spatial features only and neglect the temporal or spatiotem-

poral features implied in trajectories, such as time and speed. To

incorporate spatiotemporal features, some researchers put forward

the kinematic interpolation methods [7, 15]. This kind of interpola-

tion method usually includes a series of carefully designed complex

kinematic functions, which can result in high accuracy if one has

sufficient domain knowledge to tune the parameters. Unfortunately,

that characteristic also restricts the robustness and adaptiveness of

these kinematic interpolation methods. When the set of kinematic

functions is tuned for one movement dataset, it usually cannot

be applied to other types of moving entities and sometimes even

different behavior patterns manifested by the same entity might

cause a disturbance to the interpolation performance. Therefore, it

is needed to design a data-driven trajectory interpolation method

that can self-adapt to movement datasets and more importantly, to

the very trajectory containing the gap.

2.2 Machine learning approaches to model
movement trajectories

Recent years have seen the versatility and effectiveness of machine

learning proven in an increasing number of domains and fields.

Through sufficient training, deep neural networks can capture and

unravel high-level features of the trajectories and identify implicit

patterns that are otherwise imperceptible [13, 28]. Long short-term

memory (LSTM), a special kind of recurrent neural network (RNN),

stimulates the interests of movement researchers since its structure

makes it inherently suitable for processing time series data [9]. As

an improved version of the traditional RNN, LSTM has the capa-

bility to apprehend both long-term and short-term dependencies,

which are key to making a well-informed estimation of unknown

timesteps in sequential data [5]. To further improve the learning

and prediction capabilities, LSTMs are used inside the architecture

of a generative adversarial network (GAN) to predict pedestrian

trajectories using pixel-based pedestrian tracking datasets captured

by cameras. A GAN is an architecture for training deep generative

models based on a minimax game that is put formally in Equation
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(1) [6].

min

𝐺
max

𝐷
𝑉GAN (𝐷,𝐺)

= E𝑥∼𝑃data [log𝐷 (𝑥)] + E𝑧∼𝑃noise {1 − log[1 − 𝐷 (𝐺 (𝑧))]}
(1)

It has been proven in a variety of studies that the GAN archi-

tecture can lead to a considerable increase in model performance

[2, 8, 25]. One major limitation of traditional GANs, however, is

their invariability, and thus they cannot deal with the uncertainty

in movement modeling [20]. In the trajectory interpolation context,

given a trajectory containing a gap, an interpolation model based

on the traditional GAN will only generate one interpolation result

that it believes to be the most probable. Even if asked to do the inter-

polation task multiple times, the model will generate results that are

highly similar. This is because apart from the input trajectory, the

only input this model takes is a random noise 𝑧, of which we have

little control. Hence, its outputs cannot cover diverse possibilities,

which might exist in reality because of movement and behavior

uncertainty. A variant of traditional GANs, named InfoGAN [3], is

proposed to solve that problem. In addition to the random noise

input 𝑧, it adds a latent code 𝑐 to model the uncertainty of move-

ment behaviors. The introduction of such a latent code not only

improves the model’s capability of dealing with uncertainty but

also helps avoid the mode collapsing problem, which is common in

the training process of traditional [2]. With different inputs of 𝑐 , an

InfoGAN-based model varies its prediction, accordingly, making

it feasible to create diverse interpolation results among all pos-

sibilities. Note that this association between the latent code and

movement behavior patterns is also learned from trajectories. To

put it formally, an InfoGAN solves the information-regularized

minimax game shown in Equation (2).

min

𝐺,𝑄
max

𝐷
𝑉
InfoGAN

(𝐷,𝐺,𝑄) = 𝑉 (𝐷,𝐺) − 𝜆𝐿𝐼 (𝐺,𝑄) (2)

where 𝜆 is a hyperparameter, 𝑄 (𝑐 |𝑥) is an auxiliary distribution,

and 𝐿𝐼 (𝐺,𝑄) is a variational lower bound of the mutual information

𝐼 (𝑐 ;𝐺 (𝑧, 𝑐)). For more detailed information on how that is derived,

refer to [3].

The InfoGAN has stimulated the interest of researchers studying

movement (e.g., predicting pedestrian trajectories [2]), for its ability

to generate diverse results by varying the latent code 𝑐 . Inspired

by previous work, this study aims to develop an InfoGAN-based

trajectory interpolation model, which differs from previous works

in the following aspects. First, this study focuses on trajectory

interpolation while most previous works, especially the ones built

upon a similar architecture, focus on prediction (extrapolation).

Second, many of thosemodels are developed in the field of computer

vision, and thus the trajectories considered in those models are

usually quite short (e.g., lasting for less than 20 timesteps with the

observed and predicted segments combined) and the sampling rate

is usually very high. In videos, moving entities are often sampled

at the rate of milliseconds. Although in many studies, such video

movement datasets are down-sampled to reduce the computational

resources needed, they are still considerably high compared to

the sampling rate of GPS trajectories collected for wildlife. Third,

they work on rasterized trajectories which may compromise the

accuracy of movement locations. Therefore, this study advances the

LSTM-GAN to develop a trajectory interpolation model applicable

to wildlife GPS trajectories, which have longer durations and lower

sampling rates, compared to trajectories captured in videos.

3 LSTM-GAN TRAJECTORY INTERPOLATION
MODEL

The proposed generative trajectory interpolation model consists

of a long short-term memory (LSTM) encoder-decoder generator

and an LSTM discriminator. When interpolating a gap, the gener-

ator first encodes the observed segments of that very trajectory

sequentially to learn individual patterns and then decodes the gap

with the individual movement pattern as the prior knowledge. The

discriminator supervises the generator’s work, making certain the

interpolation result is close to the ground truth. Figure 2 demon-

strates a schematic illustration of the proposed interpolation model

with the GAN architecture that can transform a trajectory with a

gap (see Figure 2b) to a complete trajectory with the gap interpo-

lated (see Figure 2c).

Loss: Generator loss, Discriminator loss
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Figure 2: Schematic illustration of the proposed trajectory
interpolation model

3.1 Generator
In this study, the generator has an LSTM encoder-decoder struc-

ture, enabling the generator to read the whole trajectory sequence

before estimating the unknown locations in the gap. The encoder

first obtains knowledge about movement patterns from the ob-

served segments (denotes as 𝑥1 and 𝑥2) at two ends of a trajectory

containing a gap (see Figure 1 for the illustration of trajectory in-

terpolation problem definition). Here, a trajectory is represented as

a 𝑛 × 𝑘 matrix, where 𝑛 denotes the total time step and 𝑘 denotes

the number of attributes used to represent movement (e.g., location,

speed, heading). For an input trajectory, the encoder LSTM cells

encode the observed segments 𝑥1 and 𝑥2 to obtain the hidden states

ℎ𝑡
enc1

and ℎ𝑡
enc2

at time step 𝑡 through Equations (3-4)

ℎ𝑡
enc1

= 𝜆enc1 (ℎ𝑡−1enc1
, 𝑥𝑡

1
;𝑊𝜆enc1 ) (3)

ℎ𝑡
enc2

= 𝜆enc2 (ℎ𝑡−1enc2
, 𝑥𝑡

2
;𝑊𝜆enc2 ) (4)

where 𝜆(·) represents an encoder LSTM with weight𝑊 .
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The two pieces of information learned from these two segments

are then fused through fully connected layers to obtain the final

hidden state of the encoder ℎ𝑛
enc

through Equation (5).

ℎ𝑛
enc

= 𝜙enc (ℎ𝑛enc1, ℎ
𝑛
enc2

;𝑊𝜙enc
) (5)

where𝜙enc (·) represents the fully connected layerswith the LeakyReLu
activation function and weight𝑊𝜙enc

.

Since our goal is to generate gap interpolations that are consis-

tent with what has been observed, the hidden state of the decoder

LSTM is initialized as ℎ
dec

0 = ℎ𝑛
enc

. After initializing ℎ
dec

0 , the de-

coder interpolates the gap (denoted as 𝑦) using what is learned

by the encoders as prior knowledge through the recurrence of

Equations (6-8).

𝑜𝑡−1 = [𝑦𝑡−1, 𝑧, 𝑐] (6)

ℎ𝑡
dec

= 𝜆
dec

(ℎ𝑡−1
dec

, 𝑜𝑡−1;𝑊𝜆dec ) (7)

𝑦𝑡 = 𝜙
dec

(ℎ𝑡
dec

;𝑊𝜙dec

) (8)

where 𝑧 ∼ 𝒩(0, 1) denotes noise, 𝑐 is a latent code, [·] represents
concatenation, 𝑜𝑡−1 denotes the input of the decoder LSTM, 𝑦𝑡

denotes the output of the decoder fully connected layers 𝜙
dec

(·)
with weight 𝑊𝜙dec

, and ℎ
dec

𝑡 is the hidden state of the decoder

LSTM 𝜆
dec

(·) at time step 𝑡 .

3.2 Discriminator
In the discriminator module, we first reconstruct the complete tra-

jectory. The discriminator has an equal chance of selecting the

ground truth of the gap (denoted as 𝑦) or the interpolation result

output by the generator (denoted as𝑦). In this way, the probabilities

are equal that the discriminator sees a real trajectory𝑇1 = [𝑥1, 𝑦, 𝑥2]
or a fake trajectory 𝑇0 = [𝑥1, 𝑦, 𝑥2]. Suppose we denote a recon-

structed trajectory (either real or fake) as 𝑇 = {𝑝1, 𝑝2, . . . , 𝑝𝑛},
where 𝑝𝑖 represents the tracking point at time step 𝑖 . It is processed

by the discriminator LSTM layer to obtain the hidden state ℎ𝑡
disc

at

time step 𝑡 through Equation (9).

ℎ𝑡
disc

= 𝜆
disc

(ℎ𝑡−1
disc

, 𝑝𝑡 ;𝑊𝜆disc ) (9)

where 𝜆(·) represents an encoder LSTM with weight𝑊 .

After processing the whole sequence, we obtain the final hid-

den state ℎ𝑛
disc

, encoding the important information extracted from

trajectory 𝑇 . Based on this information, the discriminator then dif-

ferentiates whether it sees a real or fake trajectory through Equation

(10) and then decodes the latent code 𝑐 through Equation (11).

ˆ𝑙 = 𝜙
label

(ℎ𝑛
disc

;𝑊𝜙label

) (10)

𝑐 = 𝜙𝑐 (ℎ𝑛
disc

;𝑊𝜙𝑐
) (11)

where 𝜙
label

(·) represents the fully connected layers with the Sig-
moid activation function and weight𝑊𝜙label

, and 𝜙𝑐 (·) represents
the fully connected layers with the LeakyReLu activation function

and weight𝑊𝜙𝑐
.
ˆ𝑙 and 𝑐 are the label (real or fake) and latent code

predicted by the discriminator.

In such context, the terms 𝑉 (𝐷,𝐺) and 𝐿𝐼 (𝐺,𝑄) in Equation (2)

are instantiated as in Equations (12-13).

𝑉 (𝐷,𝐺) = E𝑥1,𝑥2∼𝑃data (𝑥1,𝑥2 ) [log𝐷 (𝑦 |𝑥1, 𝑥2)]
+ E𝑧∼𝑃𝑧 (𝑧 ) [log(1 − 𝐷 (𝐺 (𝑧, 𝑐 |𝑥1, 𝑥2)))]

(12)

𝐿𝐼 (𝐺,𝑄) = E𝑧∼𝑃𝑧 (𝑧 ),𝑐∼𝑃𝑐 (𝑐 ) [log𝑄 (𝑐 |𝐺 (𝑧, 𝑐 |𝑥1, 𝑥2))] (13)

3.3 Model training
The generator and the discriminator modules are both trained in

each epoch but with separate loss functions and optimizers. Three

types of losses, namely adversarial loss, information loss, and dis-

tance loss, are used to instantiate the minimax game defined in

Equations (2, 12-13). Both adversarial loss and distance loss target

the interpolation result 𝑦, while the information loss targets the

reconstructed latent code 𝑐 . The adversarial loss represents the

ability of the discriminator to differentiate the interpolation result

generated by the generator from the ground truth. The distance

loss measures the squared average Euclidean distance between the

interpolation result and the ground truth. And finally, the informa-

tion loss measures the difference between the reconstructed latent

code 𝑐 and the original 𝑐 input. In this way, the total loss ℒ is a

weighted sum of these three types of loss functions, as in Equation

(14).

ℒ = 𝐿
adv

+𝑤
info

· 𝐿
info

+𝑤
dist

· 𝐿
dist

(14)

where𝑤 represents the weight.

In addition, this study uses the average displacement error (ADE),

a commonly used evaluation measure, to evaluate the model per-

formance. ADE, as shown in Equation (15), averages the Euclidean

distances between the ground truth and the interpolated locations

for all tracking points in the gap.

ADE(𝑦,𝑦) = 1

𝜏

𝜏∑︁
𝑖=1

∥𝑦𝑖 − 𝑦𝑖 ∥ (15)

where 𝜏 is the length of the gap, ∥ · ∥ represents a distance metric

and we use the Euclidean distance in this study.

4 EXPERIMENTS
The proposed LSTM-GAN trajectory interpolation model is imple-

mented using PyTorch, a high-performance deep learning library

written in Python [19].

4.1 Dataset and data preprocessing
We use a subset of the trajectory dataset collected from 35 adult

white storks (Ciconia ciconia) over five years (2012-2016) [22]. This
dataset is publicly available on Movebank

1
[11, 21], an online plat-

form that helps researchers organize, share, and annotate animal

movement data. White storks are long-distance migratory avian

animals, which spend their winter times in sub-Saharan Africa

before migrating back to Eurasia for breeding [22]. The migration

dataset has over a million tracking points. Note that this dataset

contains only the trajectories of spring (return) migration, but not

their fall (outbound) migration.

Since the tracking devices are solar-powered, they record GPS

fixes every 5 min in good solar conditions (95% of the time) or other-

wise, every 20 min. At night, the tracking device usually hibernates

between 22:00 and 4:00 (for 6 hours). But the exact time might vary

according to the solar conditions of that day. Nevertheless, since

white storks migrate only during daylight [23, 14], this dataset

captures the majority of their movement during migration. To con-

struct continuous trajectories, we connect adjacent tracking points

of the same bird to form the trajectories as long as their sampling

1
https://www.movebank.org/
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interval is within the threshold 𝑡𝑡ℎ . In this case, it is crucial to set a

threshold 𝑡𝑡ℎ that allows ordinary day-to-day time intervals (e.g., 6

hours from 22:00 to 4:00) but meanwhile, identifies abnormal ones

(e.g., 20 hours from 21:00 to 17:00) and splits the trajectory there.

To achieve this, we first calculate all sampling intervals between

adjacent tracking points and then select only large ones (i.e., > 4

h) as they might represent day-to-day time intervals. After that,

based on the distribution of these large intervals, we determine that

𝑡𝑡ℎ = 10 h is an appropriate setting, and it preserves 98.5% of these

large intervals. The constructed trajectories are visualized in Figure

3. The white storks start their migration from different wintering

sites in Africa but arrive at almost the same location in Europe.

Figure 3: White stork spring migration trajectories

After that, we calculate the speed, heading, and local time of

the day for each tracking point to form matrix representations

of trajectories. Each trajectory is represented as a 𝑛 × 5 attribute

matrix, where 𝑛 denotes the number of tracking points and the

five attributes chosen in this study are relative movements in 𝑥,𝑦

directions (denoted as Δ𝑥,Δ𝑦), speed in 𝑥,𝑦 directions (denoted as

𝑣𝑥 , 𝑣𝑦 , containing information on both speed and heading), and time

of the day. In addition to the first four commonly used attributes

in movement modeling, we also include the time of the day to

account for variations in white storks’ travel speeds, since they

exhibit significantly different speeds depending on the time of day

(see Figure 4).

Next, we create trajectory samples by introducing artificial gaps.

Following a similar procedure in previous interpolation studies

[15, 29, 27], this study uses trajectory samples containing artificial

gaps that are manually created to train and evaluate the proposed

trajectory interpolation model. In a trajectory sample 𝑇𝑠 composed

of 𝑛 tracking points, we place a gap consisting of 𝑛/2 points in
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Figure 4: Speed distribution per time of the day with median
speeds represented as bars.

the middle, as in Equation (16). In this study, we create trajectory

samples of a variety of lengths to conduct a comparative sensitivity

analysis (see Section 4.2.2). Then, following the machine learning

tradition, we split the trajectory samples of each length into the

training set, validation set, and test set according to a ratio of

0.7 : 0.2 : 0.1.

𝑇𝑠 = { 𝑝1, . . . , 𝑝
𝑛
4︸      ︷︷      ︸

𝑥1:
𝑛
4

points

, 𝑝
𝑛
4
+1, . . . , 𝑝

3𝑛
4︸           ︷︷           ︸

𝑦: 𝑛
2

points

, 𝑝
3𝑛
4
+1, . . . , 𝑝𝑛︸          ︷︷          ︸

𝑥2:
𝑛
4

points

} (16)

4.2 Sensitivity analysis
4.2.1 Model hyperparameters. Three hyperparameters that may

play a significant role are the number of LSTM units, noise dimen-

sion, and latent code dimension. Following the common strategy in

developing LSTM-based or GAN-based models [18, 8], we experi-

ment with the number of LSTM units in a range from 16 to 256, the

noise dimension from 8 to 128, and with the latent code dimension

from 1 to 16. As for the weights of loss functions in Equation (14),

we use𝑤
info

= 0.5 as recommended in [2] and we find that setting

𝑤
dist

= 1 gives a promising start in the early training stage as the

distance loss helps guide the generator into the right direction.

In the sensitivity analysis of model hyperparameters, we use

10000 trajectory samples, each containing 200 tracking points in

total with the middle 100 points missing as a gap (i.e., |𝑥1 | = |𝑥2 | =
50, |𝑦 | = 100). The models with each setting are trained 100 epochs,

and the best model, i.e., the model with the smallest ADE, is selected

as representative of that setting. The results are shown in Figure 5,

suggesting that the optimal model hyperparameter setting is 128

LSTM units, 32 noise dimensions, and 2 latent code dimensions,

where the validation ADE is minimum.

4.2.2 Trajectory sample length. This study applies a comparative

sensitivity analysis to evaluate how the length of input trajectory

might impact the outcomes. The trajectory sample lengths of 50,

100, 200, 400, 800, and 1600 tracking points are considered. Each

input trajectory includes a gap in the middle, with a length of half

of the total sample length (see Equation (16) for illustration). The

length sensitivity analysis results are presented in Table 1. The

overall trend of the relationship between model performance and

trajectory length is clear and intuitive. The proposed model has

the worst performance on the shortest trajectory samples (i.e., 50

points). This is reasonable because there might not be enough infor-

mation contained in such short trajectories to accurately interpolate
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Figure 5: Sensitivity analysis of the number of LSTM units,
noise dimension, and latent code dimension

the gap. Then, with the increase in trajectory lengths, it performs

better and yields the best result on trajectory samples composed

of 200 tracking points. After that, the model performance starts

decreasing with a further increase in trajectory lengths. This in-

dicates that the model might be overwhelmed and confused by

the information contained in long and complex trajectories. In the

following experiments of this study, we continue with trajectory

samples with 200 points.

4.3 Model evaluation
4.3.1 Qualitative and quantitative evaluation. After the first 100
epochs of training with distance loss weight 𝑤

dist
= 1, the best

model obtained has a validation ADE of 987.02 m for the trajectory

length of 200 points. At this early training stage, distance loss pro-

vides crucial enlightenment to the generator, guiding it to imitate

the ground truth. Hence, we set a large weight for it. After that, our

goal is to motivate the generator to generate diverse interpolation

results covering a larger probability space when given different

latent codes 𝑐 . In this case, distance loss is restraining the model’s

ability to deal with uncertainty in movement path choices. There-

fore, on the basis of the best model from the first 100 epochs, we

train the model for another 100 epochs with 𝑤
dist

= 0.5, and the

best model in this second round of training has a validation ADE

of 968.03 m. After that, no better model can be obtained even if we

continue to this model or further decrease𝑤
dist

to 0.1, indicating

that the model training has converged. Therefore, we complete the

model training process and obtain the best model with a validation

ADE of 968.03 m. Testing it on the test set, we get a test ADE of

929.67 m, which validates the model performance on trajectory

interpolation.

The proposed LSTM-GANmodel generates diverse interpolation

results with different latent codes 𝑐 . Therefore, it is crucial to deter-

mine the number of applications 𝑛𝑎 the proposed model needs in

order to cover a reasonably large probability space without wasting

computational resources. To analyze that, we experiment with a

range of 𝑛𝑎 values, and for each trajectory sample, we calculate the

average of the minimal ADE among 𝑛𝑎 applications with different

random noise and latent codes. From the results shown in Figure 6

we can tell that the average minimal ADE drops sharply when the

number of applications 𝑛𝑎 increases from 1 to 5, and then levels off

with further increases of 𝑛𝑎 . This indicates that applying the model

5 times with different noise and latent codes can effectively get

better approximations of the gap ground truth, that is, the ground

truth is more likely to lie within the spatial boundary defined by

5 interpolation results. Thus, in the following experiments, we set

𝑛𝑎 = 5.
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Figure 6: Analysis of the number of applications needed

Six examples of the interpolation results using the model trained

on a sample length of 200 points are demonstrated in Figure 7. The

observed segments in each trajectory sample are shown in gray,

the ground truth during the gap in blue, and the model predictions

of the missing points in red. A green circle marks the start of

a gap and a yellow triangle marks its end. In each example, the

proposed LSTM-GAN model is applied 5 times to create 5 possible

interpolation results. Since the trajectory samples are created based

on the number of points in the observed segments 𝑥1, 𝑥2 and gap

𝑦 instead of the distance traveled, it is possible that some of these

segments are quite short in terms of the distance traveled. As shown

in Figure 7 (a-d), although either or both the observed segments are

short, providing minimal useful information, the proposed model

manages to generate some reasonable interpolation results for the

gap. An extreme case is shown in Figure 7 (d) where both 𝑥1 and

𝑥2 are quite short, but the model still generates some interpolation

results that are similar in shape to the ground truth. However,

when the tortuosity of the trajectory is large (see Figure 7 (e-f)),

the model becomes less accurate. The trajectory sample in Figure

7 (f) has the largest tortuosity, leading to a conspicuous deviation

between the gap ground truth and the interpolation results. Overall,

the proposed model is able to generate reasonable interpolation

results when encountered with trajectories with conspicuously

different shapes. However, the interpolation results generated by

the proposed model have a simpler geometric shape than that of

the ground truth.

4.3.2 Comparative evaluation. To further evaluate the proposed

LSTM-GAN model, we compare it against commonly used inter-

polation methods and present the results in Table 2. The proposed

model outperforms linear interpolation and curve-fitting-based in-

terpolation methods when the model is applied only once. When we

apply the model 𝑛𝑎 = 5 times with random noise and latent codes,

the model obtains a smaller average minimal ADE, in which case



A Generative Trajectory Interpolation Method for Imputing Gaps in Wildlife Movement Data GeoWildLife ’23, November 13, 2023, Hamburg, Germany

Table 1: Sensitivity analysis of trajectory sample length

# points in trajectories Average length (m) Median length (m) Training ADE (m) Validation ADE (m) Training time (h)

50 38,388 11,214 1133.28 1151.91 0.75

100 79,234 53,163 1131.83 1091.23 1.28

200 160,995 158,816 1006.64 986.94 2.22
400 325,259 324,725 1014.50 998.68 4.17

800 656,987 660,577 1065.03 1064.73 8.11

1600 1,329,767 1,332,549 1096.10 1107.98 15.83

(a) (b)

(c) (d)

(e) (f)

Figure 7: Trajectory interpolation results

we can further approximate the gap ground truth. The proposed

model also outperforms the one with traditional GAN architecture,

especially when the model is applied multiple times, proving the

effectiveness of using an InfoGAN. The results generated by a tradi-

tional GAN are highly similar, whereas an InfoGAN learns diverse

route choice behaviors using the latent code.

5 DISCUSSION AND FUTUREWORK
The movement patterns are key in a trajectory interpolation task,

which can be multifarious. Examples of them include how "ex-

ploratory" a moving entity is, corresponding to the tortuosity of the

trajectory, or how fast an entity tends to travel at different times

of the day, which exhibits both commonalities of a species and

characteristics of an individual. These patterns determine how enti-

ties choose their movement paths, which is also a decision-making

Table 2: Comparative evaluation results

Method ADE (m)

Min ADE (m)

when 𝑛𝑎 = 5

Linear 4525.48 /

Spline (degree:3) 3210.87 /

LSTM + traditional GAN 1124.57 1103.12

LSTM + InfoGAN (Proposed) 929.67 753.35

process. Traditional statistical methods are known to struggle when

modeling decision-making because the associations between vari-

ous factors and the outcome are nuanced and entangled, making

it difficult to form rigorous representations. In this study, to get

around that obstacle, the proposed model learns directly from the

data and is able to achieve promising performance given the vol-

ume of the trajectory dataset is large enough. In this manner, the

movement patterns, as well as the path choice decision-making

process, are successfully modeled. The model’s ability to deal with

uncertainty in movement behaviors comes with adding a latent

code 𝑐 , transforming a traditional GAN into an InfoGAN. The in-

troduction of 𝑐 enables the model to generate diverse interpolation

results given the same pair of observed segments (𝑥1, 𝑥2). However,

in the current phase, the ADE obtained is still large. There is still

much room for improvement to generate realistic interpolations. In

addition, a major demerit that comes with a deep learning model

and cannot be neglected is that the model does so without much

interpretability, which is a common demerit of almost all deep learn-

ing models. It means that even though the model outputs some

trajectory interpolation results, little does the model tell us why the

moving entity makes that path choice decision. Therefore, in future

work, it is important to study the interpretability of movement

models.

In this study, we use the migration trajectories of white storks.

During a migration process, a white stork has a clear origin and

destination (which are different from each other). An interpolation

task in this scenario is in fact studying how a moving entity chooses

the movement path from an origin (start of the gap) to a destination

(end of the gap). Although the movement path is almost never a

straight line, it is somewhat rectilinear. Studying interpolation in

this scenario provides guiding implications for developing decision-

making models targeted at movement path choices. To make such

models more realistic, future extensions may take into account the

environmental and social contexts, as they play an important role

in impacting the decision-making process [4, 25]. Nonetheless, it
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should be noted that there exist movements with other types of

patterns. For example, a tiger patrols in its home range, or a marine

animal hunts in regular geometric shapes. In these movements,

what is important is the exploring behavior during the process (e.g.,

hunting, patrolling) instead of reaching some destination. Thus,

such movements pose a greater challenge for interpolation models

or movement path decision-making models in general, since the

movement paths in this scenario are less predictable and exhibit a

higher level of randomness. Our future work aims to include such

movements.

6 CONCLUSION
This study introduces an uncertainty-aware trajectory interpolation

model with a generative adversarial network (GAN) architecture

using long short-term memory (LSTM) to interpolate trajectory

gaps (i.e., spatially and temporally missing tracking data) in wildlife

movement data. It uses an InfoGAN to produce samples with vari-

ability to deal with uncertainty in movement path choices, which is

controlled by a latent code, from the predictive distribution of each

individual trajectory. The evaluative experiments suggest promis-

ing results indicating the effectiveness of the proposed trajectory

interpolation model in real animal tracking datasets. Future work

will be devoted to assessing and further enhancing the model for

handling tracking data of various sampling rates and lengths, and

more complex structures of trajectory data.
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