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Abstract

Electron counting can be performed algorithmically for monolithic active pixel sensor direct
electron detectors to eliminate readout noise and Landau noise arising from the variability in the
amount of deposited energy for each electron. Errors in existing counting algorithms include
mistakenly counting a multi-electron strike as a single electron event, and inaccurately locating
the incident position of the electron due to lateral spread of deposited energy and dark noise. Here,
we report a supervised deep learning approach based on Faster R-CNN to recognize single electron
events at varying electron doses and voltages. The deep learning approach shows high accuracy
according to the near-ideal modulation transfer function and detector quantum efficiency for sparse

images. It predicts, on average, 0.47 pixel deviation from the incident positions for 200 kV



electrons versus 0.59 pixel using the conventional counting method. The deep learning approach
also shows better robustness against coincidence loss as the electron dose increases, maintaining
the MTF at half Nyquist frequency above 0.83 as the electron density increases to 0.06 e / pixel.
Thus, the deep learning model extends the advantages of counting analysis to higher dose rates

than conventional methods.
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1. Introduction

Direct electron detectors have been rapidly developed and widely applied in both materials and
biological transmission electron microscopy (TEM). Compared to scintillator-coupled cameras,
direct detectors expose their radiation-hardened sensor directly to the electron beam and avoid the
inefficiency inherent in electron-to-photon conversion in a scintillator-coupled system, enabling
direct detectors to achieve high signal-to-noise ratio (SNR) equal to or better than that of film
(McMullan et al. 2014). A direct detector used in electron microscopy should have a high SNR for
single electrons, especially for low-dose imaging of beam-sensitive materials such as biomaterials
(Li, Mooney, et al. 2013) or metal-organic frameworks (MOFs) (Peng et al. 2022). High single-
electron SNR is also vital for fast acquisition during in situ TEM or 4D scanning TEM (STEM).
This aspect of performance can be characterized by detector quantum efficiency (DQE) (Meyer
and Kirkland 2000), which is defined as the ratio of the squares of the output and input image
SNR. Ideally, a direct detector would offer high spatial resolution imaging to preserve spatial
details from the incident electrons. This can be characterized by modulation transfer function

(MTF) (De Ruijter 1995), which is defined as the Fourier transform of the real-space point spread



function. Ideally, a direct detector would also maintain good performance over a wide range of

primary electron beam voltages, which would facilitate imaging different types of specimens.

There are two common types of TEM direct detectors: monolithic active pixel sensors (MAPS)
and hybrid pixel array detectors (HPADs). MAPS detectors are devices in which the readout
electronics are implemented within the same semiconductor wafer as the detecting layer, while
HPADs consist of a much thicker detecting layer that is fabricated separately and subsequently

bump bonded to an application specific integrated circuit (ASIC) (Levin 2021).

HPADs, such as Medipix-based detectors (Mir et al. 2017), the EMPAD (Tate et al. 2016) and the
DECTRIS ELA (Plotkin-Swing et al. 2020) have relatively wide, thick pixels designed to fully
stop incoming electrons. The lateral spread of electrons across multiple pixels in these detectors is
minimized at lower electron beam voltages (i.e., 100 kV and lower), but becomes more important
at 200 and 300 kV. Sensors fabricated from high atomic number materials (Paton et al. 2021) have

been employed by some HPADs to minimize the lateral spreading of high energy electrons.

MAPS detectors, such as the DE-64 (Mendez et al. 2019), K3 (Sun et al. 2021), Falcon4 (Nakane
et al. 2020), have relatively small, thin pixels, designed to sample the energy of incoming electrons
without fully stopping them. This allows for a greater density of pixels on the sensor, enabling
high-resolution imaging at fixed magnification. The lateral spread of electrons across multiple
pixels on a MAPS detector is minimized by optimizing the sensitive layer thickness for a particular
range of primary electron beam voltages, typically 200 and 300 kV (Levin 2021), but some
electrons still generate signal in several pixels. Many MAPS direct electron detectors operate in
integrating mode, where the charge generated by all primary electrons interacting with a pixel

within the frame time is accumulated to form the output. A commonly used alternative operating



mode is counting mode, where the electron beam intensity is limited so that the signal deposited
by each incident electron is individually distinguishable as a separate “electron event”. In counting
mode, each camera frame is processed via software to identify each electron event and output a
single "count” in the corresponding estimated location of the incident electron on the sensor.
Counting mode normalizes the intensity of each detected electron, eliminating noise arising from
the intrinsic variations in the deposition of energy by primary electrons (Landau noise),
dramatically improving DQE, along with enabling super-resolution readout if localization of each
electron event is performed with sub-pixel precision (Li, Zheng, et al. 2013). It also allows
compression of datasets from digital readout to low bit electron counts, minimizing storage and
computer memory requirements. However, the performance of existing counting algorithms
(Battaglia et al. 2009; G McMullan et al. 2009; Datta et al. 2021) is limited due to the inherent
randomness of electron scattering through the sensor. First, there is significant room for
improvement in the accuracy of localizing the point of incidence of an electron within a cluster of
illuminated pixels, which would further improve resolution and MTF. Second, it is challenging to
distinguish multiple electron events occurring close to one another from a single electron event
covering several pixels. When two or more electrons are counted as one—a phenomenon known

as coincidence loss— signal is lost, reducing sensitivity and DQE.

Deep learning methods are a promising approach to image analysis tasks like electron counting.
Convolutional neural networks (CNNs) have been used for tasks ranging from image classification
to objection detection and segmentation across a number of technical or scientific fields including
autonomous vehicles (Grigorescu et al. 2020), medical image processing (Wang et al. 2021), and
image analysis in material science (Jacobs 2022). van Schayck ef al. trained a CNN to reconstruct

the incident position of electrons for the Timepix3 HPAD detector (van Schayck et al. 2020). The



Timepix3 events created by 300 kV electrons on a 500 um thick sensor are quite large, covering
up to 12 x 12 physical pixels of size 55 pm, which significantly degrades the detector performance.
The CNN improved determination of the incident electron position, resulting in significant
improvement of the MTF (van Schayck et al. 2020) compared to conventional counting methods.
This work shows that the deposited energy pattern of a primary electron, even though generated

by a stochastic electron trajectory, contains 2D features that a CNN can learn.

Here, we present a deep learning (DL) model trained to recognized electron events for a Celeritas
XS direct electron detector (Direct Electron LP, San Deigo, CA, USA) and compare the counting
performance of the DL model with a conventional method, connected component labeling (CCL)
(He et al. 2017). The Celeritas XS camera (Chatterjee et al. 2021) is a 1024 x 1024 pixel MAPS
direct detector with 15 um pixel size, optimized for high frame rate readout and high dynamic
range imaging for 4D STEM. Frame rates of up to 87 kHz can be achieved by reducing the physical
readout area on the sensor down to 256 x 64 pixels. This ultrafast capability enables 4D STEM
acquisition at similar scan speeds to conventional STEM. When compared to slower MAPS
detectors, the fast frame rate of Celeritas XS results in a sparser signal in each frame at a fixed

electron dose.

The electron event sizes for the Celeritas XS in this study are small, and, as shown below, the
incident positions are close to the peak intensity positions. Thus, we focus on recognizing single
electron events within the frame instead of localizing the electron strike position within the event.
The model is trained on simulated Celeritas XS data and tested on experimental Celeritas XS data.
It adopts the popular object detection neural network Faster R-CNN due to its high accuracy
especially for small objects (Ren et al. 2017). The model performance is characterized using the

MTF, DQE, and other evaluation metrics on images with different electron densities. Finally, we



illustrate model performance by applying it to ptychographic imaging of a 2D material and 4D
STEM strain mapping of SrTiOs. The DL model allows accurate electron counting at higher
electron dose rates than CCL. Although these results are specific to the Celeritas XS detector, a
similar approach should extend the benefits of counting to higher electron dose for other MAPS

direct detectors as well.

2. Methods

2.1 Electron trajectory and detector readout simulation

Supervised learning of a neural network requires training data with known ground truth. In this
case, that means electron images where the position of every electron strike is known.
Unfortunately, this data is not available from experiments. Due to the randomness of energy
deposition in the sensor, the “true” electron strike position is not just unknown but unknowable.

Therefore, we turn to simulations to create the required training data.

Individual electrons impacting the Celeritas XS sensor were simulated using pyPenelope software
(Salvat et al.). The ‘shower’ package with default parameters was used to simulate 100,000
primary electron trajectories for 80 kV and 55,000 electrons for 200 kV, impacting a multi-layer
material that matches the physical design of the sensor from Direct Electron. A Gaussian blur was
added to the location of the energy deposited to account for diffusion within the epitaxial layer,
and custom Python code was used to translate the energy deposited in the epitaxial layer by the
electron trajectories into pixel values representing an electron event on Celeritas XS. Figure 1
shows that the distributions of event energies and event sizes for simulated events were comparable

to experimental events. The somewhat poorer agreement of the size distributions may reflect



limitations in the experimental identification of events, rather than limitations of the simulations.
The same parameters were used for 80 kV and 200 kV simulations. The position of the electron
impacts was randomly distributed within the central pixel of the electron event. Example event

images are shown in Figure 1(c, f) for 200 and 80 kV respectively.

2.2 Experimental data

A Thermo Fisher Titan STEM equipped with a CEOS probe aberration corrector was used to
collect datasets for the characterization of counting algorithms. The microscope was operated at
200 kV and 80 kV in TEM mode. The Celeritas XS detector was operated in rolling shutter mode
with an adjustable readout area of the 1024 x 1024 pixel sensor. Uniformly illuminated frames
were collected at different frame rates for noise power spectrum calculations and a beam stop was

used to introduce a silhouette for MTF calculations.

A 4D-STEM dataset of monolayer WS, for ptychography reconstruction was acquired with a
convergence semi-angle of 16.7 mrad, a C2 aperture sized 50 um, and a camera length of 160 mm.
The electron probe current was 7.5 pA and the scan step size was 0.14 A. The Celeritas XS detector
acquired frames synchronously with the probe scanning with a frame rate of 7385 Hz. The total
electron dose for each exposure is about 10* e A2, and the electron density of the bright field
region of each diffraction pattern is 0.04 e”/pixel. Another ptychography dataset was collected
under similar experiment parameters, except that the frame rate is 1959 Hz, which gives a much
higher electron density of 0.15 e”/pixel. A 4D-STEM dataset of SrTiO3[001] was acquired for
lattice parameter measurement with a convergence semi-angle of 1.3 mrad. The electron probe
scanned across a uniform area with a step size of 1.7 A and dwell time of 2 ms. The electron dose

for each exposure is about 400 e per frame.



2.3 Faster R-CNN model for electron event recognition

We trained a Faster R-CNN (Ren et al. 2017) model using TorchVision (maintainers and
contributors 2016) as the backend. Faster R-CNN, as the popular two-stage object detection
algorithm, stands out at detection and localization accuracy especially for small objects compared
to other single-shot algorithms, such as the You Only Look Once (YOLO) and Single Shot
Detector (SSD) methods (Liu et al. 2021). Despite the faster inference speed of single-shot
algorithms, the need for high accuracy in electron event recognition and precise bounding boxes
makes Faster R-CNN the optimal choice. We have also explored semantic segmentation methods.
A U-Net (Ronneberger et al. 2015) model was trained to classify each pixel into zero-electron,
one-electron, and multiple-electron classes. The trained U-Net missed more electrons compared to
the conventional counting algorithm as electron density started to increase. It became evident that
the basic U-Net model was insufficient for this complex task, where the size and shape variation
of the objects arises from a combination of random electron trajectories and overlapping electron

events, and image contrast significantly varies as electron density changes.

Our modified Faster R-CNN structure is shown in Figure 2(a). Compared to natural images usually
analyzed using Faster R-CNN, the detector readout image contains less complicated features but
a much larger number of very small objects to be recognized. We modified the backbone, anchors,
and hyperparameters of the model accordingly. A simple 4-convolutional-layer backbone was used
to generate feature maps, excluding any down-sampling operation in the backbone to preserve
high-resolution features. The region proposal network (RPN) was trained to generate object region
proposals based on feature maps and predefined shapes, i.e. anchors. We chose the four anchor
shapes shown in Figure 2 based on the dominant event sizes on the Celeritas XS detector (Figure

1). The subsequent non-maximum suppression (NMS) (Neubeck and Van Gool 2006) selects a



single proposal from many overlapping proposal candidates based on a threshold of intersection
over union (IoU). Then, a region-of-interest (ROI) pooling layer extracts a fixed-length feature
vector from the feature maps for each object proposal and feeds it into the classifier. The classifier
is composed of fully connected layers that finally branch into two sibling output layers: one that
produces softmax probability estimates for the electron event object class and background class
and another layer that outputs four real-valued numbers as the refined bounding boxes for each
class. Table 1 summarizes the hyperparameters of the Faster R-CNN model which were optimized

based on preliminary observations of model performance.

The model was trained on ~8000 simulated detector readout images of varying electron densities
between 0.002 ~ 0.1 e”/pixel. Most of the Celeritas XS electron events are less than 4 pixels (Figure
1). An eligible proposed impact region from the RPN that is only one pixel off the ground truth
could therefore result in an extremely low IoU score, which would be undesirably filtered out and
mislead the model training. To avoid this problem, the images were up-sampled by a factor of 2
before being used for training to make the objects larger and easier to detect. We used the 4-step
alternating training as described in (Ren et al. 2017). Aggregation loss (Zhang et al. 2018) was
used for each step to force proposals to be compactly located to the corresponding objects, so that
real neighboring events are not filtered out by NMS. The training parameters are also listed in
Table 1. One set of final weights was saved after training on 200 keV data and another set was

saved after training on 80 keV data.

Figure 2(b) shows the workflow for using the model to count electrons in an image. The raw image
is first up-sampled and divided into equal-sized patches using overlapping windows, as the model
performs better when the input size is close to that of the training dataset, and the computation

complexity scales up with the square of the input image size (Wu 2018). Overlapping windows



are used to capture events that might otherwise cross a window boundary. Each window is
separately fed into the Faster R-CNN to generate the bounding boxes. To guide the model towards
more accurate detection at different electron density levels, the hyperparameters annotated as
‘tuned’ in Table 1 are tuned based on the number of electrons estimated from the total digital
counts within the window, which is calculated from the total intensity and the known mean single
event intensity. After down-sampling the detected boxes and assigning incident positions to the
peak intensity pixels within each box (as discussed in Section 3.1), the generated image patches

are stitched together to produce the final counted image.

2.4 Evaluation metrics

For experimental detector readout images, MTF and DQE are the primary characterization metrics.
The MTF was calculated by FindDQE (Ruskin et al. 2013) using the beam stop silhouette method,
and it accounts for lost counts at low resolution. The DQE was calculated as (G. McMullan et al.

2009)

MTF? (w)
NNPS(w)’

DQE = DQE(0)

where the DQE(0) was estimated using the noise binning method, and the NNPS(w) is the
normalized noise power spectrum calculated from the FFT of a uniformly illuminated image. Two
sets of experimental images were used to measure MTF/DQE. One set was collected at a
vanishingly low electron density, and the other set was collected at much higher density. The
relative detector conversion efficiency (DCE) was used to describe the coincidence loss (Li,
Zheng, et al. 2013) at different doses. DCE is defined as the ratio of input and detected electron

counts and is normalized by the ratio at a very low electron dose. The absolute electron dose for
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experimental data is not reported since our microscope does not have a Faraday cage detector, but
a series of images of proportionally increasing dose can be obtained by proportionally increasing

the exposure time under identical beam conditions, giving a concrete trend of the coincidence loss.

For simulated data with known ground truth of electron hits, position deviation, recall, precision,
and F1 score were measured to evaluate the model performance. Position deviation is the root
mean square (RMS) error between detected electron incident positions and the ground truth
positions in units of pixels. Instead of defining the recall or precision based on an IoU threshold
as is typical for object detection problems, we combined the recognition and localization steps
together and set the criteria for detection to be an event found within one pixel of the ground truth

position.

The deep learning model was benchmarked against the state-of-the-art CCL method implemented
using the SciPy Ndimage library. Both methods were characterized using the same datasets and

metrics.

3. Results and discussion

3.1 Optimum incident electron event localization method

Once electron events are recognized, we must select a pixel within the event as the position of the
incident electron. For Celeritas XS, the pixel with the maximum intensity is the best choice. Figure

3 compares the accuracy of three common electron event localization methods, centroid, binarized
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centroid, and maximum intensity, applied to the simulated electron event data. The centroid
method calculates the geometric center of a cluster where each pixel has been weighted according
to their intensity values. The binarized centroid method calculates the centroid after thresholding
and binarization, so that all pixels above the noise threshold level have an equal weight of 1
regardless of their intensity. The maximum method assigns the incident position to the pixel with
highest intensity. For 200 kV simulated electron events, a larger proportion of position deviations
of the maximum method fall within one pixel compared to the other two methods. For 80 kV
electrons, there is no significant difference in the accuracy of these methods, so the maximum
method is selected because it requires the least computation. Approximately 75 to 90% of the
predictions of the maximum method show error within 1 pixel, making it an excellent electron

localization method for the Celeritas XS detector.

3.2 Accuracy of the deep learning counting approach

Figure 4 shows the performance characterization of the deep learning approach versus CCL. At
200 keV, the voltage for which the detector is optimized, the counting mode MTF calculated from
sparse experimental images is already very close to ideal using CCL counting. However, the MTF
at Nyquist frequency is improved to 0.63 by the DL model vs. 0.60 by CCL (The ideal value is
0.637). The sharp drop in MTF at low frequency that occurs in the CCL counting and integrating
mode does not occur in the DL model, indicating that the model is less affected by the intensity
clusters contributed by electrons scattered to large lateral distances from their incident positions.
The averaged electron event size from the DL model is 2.06 pixels vs. 2.88 pixels from CCL, also
showing that the DL model distinguishes overlapping electron events better than CCL. The DL
model MTF remains higher at high frequency due to its high accuracy of finally locating the

incident positions. The averaged position deviation (Figure 4c), calculated from simulated frames
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with known ground truth, is slightly lower for the DL model than CCL, consistent with the modest
improvement in experimental MTF. The DQE for the DL model and CCL are also quite close to
each other, although the DL model only falls to 0.37 at the Nyquist frequency vs. 0.34 for CCL.

The DQE results indicate that no extra noise is induced by the DL model detection.

At 80 keV, the DL model provides similar incremental improvement over CCL for sparse images.
At lower voltage, the lateral spread of electrons in the thin sensitive layer of a MAPS detector is
larger than at higher voltages (Levin 2021). For the Celeritas XS detector, the mean 80 keV
electron event size is 3.4 pixels, compared to 2.3 pixels for 200 keV. The DL model improves
event recognition, but it does not improve the accuracy of identifying the pixel struck by the
electron. Therefore, it offers limited improvement in MTF at the highest spatial frequencies (above

0.75 Nyquist) and position deviation compared to CCL.

The DL model shows high robustness against electron energy variations for the Celeritas XS
detector. When tested on 80 keV data, we found that the model trained on only 200 keV data gives
a similar MTF, DQE, and other performance metric scores as those obtained using a model trained
on 80 keV data. The difference in event intensities at different voltages is interpreted by the model
in the total electron counts estimation step. The moderately different event size distributions at
different voltages do not cause significant domain shift and are equally well recognized by the
model. When migrating the DL approach for other detectors that have a significant difference in
event size at different voltages, it will be necessary to use training data at the specific voltage to

achieve best performance.

3.3 Robustness of performance at higher electron dose
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Figure 5 illustrates the performance of the DL model at increased electron density using both
simulated and experimental data. Figure 5(a)-(c) evaluates performance on simulated images. For
typical sparse images for electron counting (below 0.02 e/pixel), the DL model and the CCL
perform almost identically, with the DL model giving slightly higher recall and CCL giving
slightly higher precision, resulting in similar F1 scores. As the electron dose increases, the DL
model maintains the high precision and increasingly better recall, thus keeping the F1 score above
0.75 at 0.1 e”/pixel and sparser. Figure 5(d)-(g) evaluates performance on experimental data. The
relative DCE in Figure 5d is in good agreement with the trend of recall in Figure 5(a). Figure 5(e)-
(f) shows MTF, NPS, and DQE for data with an electron density of 0.06 e”/pixel. Neither the DL
model nor CCL MTF reaches 1 at low frequencies due to lost counts, i.e. coincidence loss (Li,
Zheng, et al. 2013), but the DL model MTF is higher at all frequencies. Higher NPS also arises
from the reduced coincidence loss of the DL model. The DL model DQE remains as high as the
low dose DQE in Figure 4b. Based on the robustness of the DL model at high electron dose and
the fast readout speed of Celeritas XS, ~ 0.06 e”/pixel represents 120 ~ 5000 e”/pixel/s, which is at
least ten times higher than the maximum counting rate of other MAPS detectors operating in on-
the-fly counting mode (Nakane et al. 2020; Sun et al. 2021; Peng et al. 2023). For counting and
integrating mode, the tradeoff between high DQE and no coincidence loss always exists, even
though it is less concerning when using the DL model as shown in Figure 5(e-g). At even higher
electron dose, the choice between integrating and DL model counting could depend on the

information needed at different frequencies for specific datasets.

3.4 Validation on experimental 4D STEM data

Ptychographic Phase reconstruction

14



Ptychographic phase reconstruction from CBED patterns benefits from the interference between
the diffracted beams and the zero beam, but the zero beam can be too bright for counting mode on
MAPS detectors. We applied the CCL counting method and the DL model to a 4D STEM dataset
of monolayer WS, and compared the reconstructed phase images using the Wigner distribution
deconvolution (WDD) (Rodenburg and Bates 1992) or single side band (SBB) (Pennycook et al.
2015) implemented in the pyptychoSTEM software (Tim Pennycook & Christoph Hofer 2021), as
shown in Figure 6. The phase images generated from the counted datasets show better quality than
phase images generated from uncounted data, as indicated by the cleaner background of the
embedded diffractograms in Figure 6(b) and (c) vs. Figure 6(a). With less noise transferred from
the detector readout, the counted datasets resolve many atoms better as highlighted by the color
boxes in Figure 6 (a-c). The absolute phase is lower for the counted datasets due to coincidence
loss, which has a more significant effect on the CCL counted data than the DL model counted data

(Figure 6d), consistent with the characterization results in Section 3.2.

We have also performed the same comparison using a dataset that is collected at a higher electron
dose (~0.15 e”/pixel), which is challenging for conventional counting techniques. Not surprisingly,
the phase image reconstructed from the CCL counted dataset is strongly affected by the low
MTEF/DQE and shows poor contrast. The DL model retains the fidelity of localizing electron events
and shows lower contrast than the integrating dataset, but the reconstruction is still of a reasonably
good quality. For images with a high local intensity variance, it has been difficult to determine a
suitable boundary between the area with sufficient sparsity for counting and the area that is not
sparse enough for counting. The DL model with its proven larger applicable dose (sparsity) range
will be a useful counting algorithm that smoothes out the boundaries and works almost equally

well at local areas with different electron densities.
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Strain measurement

Counting also improves strain measurements of a 4D STEM dataset with a low convergence angle,
which can be expected from its higher MTF according to quantitative study by Christoph Mabhr e.
al. (Mabhr et al. 2015) Figure 7 compares 4D STEM data from unstrained SrTiO3 [001] processed
with DL model counting and in integrating mode without counting. The electron density inside the
zero disk is about 0.3 e”/pixel. The conventional CCL method failed at this relatively high electron
density, yielding counted images that show no disk features at all. However, Figure 7 shows that
the DL counting method can work at this dose, and, due to the elimination of Landau noise, the
diffraction disks can be resolved much more clearly using DL model counting than using

integrating mode.

We measured the lattice parameter at each probe position by summing ten frames and applying
cross correlation with a disk template. The cross correlation located at least two more diffraction
disks from the DL model counted frames than from the integrating frames. The standard deviation
of the lattice measurements is 0.050 A for the integrating mode dataset and 0.039 A after
processing the data using the DL counting model. This demonstrates that the DL model will be
helpful in improving the precision of strain measurement from a low dose noisy dataset that is
insufficiently sparse for conventional counting. Tolerance for noisy data allows faster data

acquisition to characterize larger areas or reduce specimen drift.

3.5 Discussion and outlook

Compared with CCL, the computational complexity of the deep learning approach is much higher.
Most of the computation time is contributed by NMS, which usually computes a large IoU matrix

of 10? ~ 10° proposals because of the large number of tiny objects that need to be detected.
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Counting electrons in a 256 x 256 image at 0.05 e/pixel took about 10 s on a single Intel Xeon
E5-2670 (2.3GHz) CPU processor with a single thread. Running it on a single GPU (Tesla M10)
doubled the computation speed. The computation time is roughly proportional to the total number
of pixels and slightly increases when counting denser images. This makes the DL model suitable
for post-acquisition analysis but not for live session processing. Multi-CPU and multi-GPU
processing would reduce the computation time. The latest YOLOvS nano object version (Jocher
et al. 2023) might be a promising base architecture to achieve higher speed as well as good

accuracy of locating small objects.

Due to differences in the characteristics of the detectors and event sizes involved, a direct
comparison of our DL counting method for Celeritas XS and the results achieved by van Schayck
et al. for the Timpix3 detector with the trained CNN is challenging, but we note that the absolute
positional accuracy of both methods is comparable. Because of the small event size of the Celeritas
XS detector, a greater proportion of electron strikes are well-located with zero deviation than was
the case for van Schayck et al. However, the outliers of the deviation distribution are about 1 pixel
larger due to false positive detections. These two sides of the performance of DL counting method
compensate for each other and result in similar mean position deviation compared to the Timepix3
CNN (0.47 pixels vs. 0.50 pixels). For potential implementation for other similar detectors, if the
average event size is large, e.g. more than 4 square pixels, adding an additional CNN branch to the
DL model for locating the incident positions within the predicted boxes of electron events might

be helpful to further improve the electron localization accuracy.

A hybrid counting approach (Bammes et al. 2019) has been developed to overcome the challenge
of limited dynamic range of MAPS detectors. The hybrid counting approach generates a binary

mask corresponding to the area that is sparse enough for counting, performing electron counting
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in sparse regions and charge integration in non-sparse regions. For datasets that contain both large
intense and diffuse areas, for example, the bright-field disk and dark-field region, the hybrid
counting approach achieves high SNR in the dark-field while preserving information from the
bright-field disk. If the hybrid counting approach is built based on DL counting, the binary mask
of sparse area can be significantly expanded towards higher electron density area, further

improving the averaged SNR over the intense and diffuse areas.

Although we have not explored them here, it is interesting to speculate on the potential benefits of
DL counting for biological electron microscopy. Improvements in MTF and DQE may improve
data quality in, for example, single-particle cryo-electron microscopy. For applications that can
sustain and benefit from higher dose, such as plastic section tomography, extending counting to

higher dose may be a significant benefit.

4. Conclusion

The deep learning model trained to recognize single electron events in Celeritas XS detector
readout images extends the benefits of counting mode to higher electron density than conventional
counting methods. It reduces coincidence losses by improved recognition of nearby electron
events, achieving MTF of 0.83 and DQE of 0.76 at half Nyquist frequency even at the relatively
high electron dose of 0.06 e”/pixel. The DL model has allowed us to generate a ptychographic
reconstruction at a dose level of 0.15 e”/pixel, and precisely measure diffraction disk positions at a
dose level of 0.3 e”/pixel, whereas a conventional counting algorithm fails at these dose levels. The
deep learning model also shows small improvements in performance for counting very sparse

images compared to conventional methods, achieving very high MTF and DQE. The DL model
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requires dramatically higher computation than conventional methods, and the current
implementation is therefore more appropriate as a post-processing technique than a real-time
imaging technique. By enabling electron counting with a higher electron dose incident on the
detector, the DL model provides greater flexibility for experiment design and can be used to
improve results from 4D STEM techniques such as ptychographic imaging and strain mapping.
Although this model is specific to the Celeritas XS detector, the general approach of training a
deep learning model and applying it to electron counting should be beneficial for other similar

direct detectors.

Data availability

The simulated training and test datasets is available via the Foundry-ML (Blaiszik et al. 2022)
service at DOI: 10.18126/rgew-xbw4. Experimental data is available via the Materials Data
Facility (DOI: 10.18126/xv6r-y3Ir). All codes, including the saved model and an example Jupyter
notebook showing how to load the data and implement the model from Foundry-ML are available

at https://github.com/wdwzyyg/ElectronCounting.git.
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Figure 1. Validation of simulated electron event images. (a-c) Event size distribution, event
intensity distribution, and example single-electron event patterns for 200 kV electrons and (d-f) 80

kV electrons.

Table 1. Parameters of the Faster R-CNN model and the training process.

Hyperparameters Value Training parameters Value
RPN foreground IoU threshold 0.6 Epoch 10
RPN background IoU threshold 0.3 Batch size (Image) 1

RPN Pre-NMS top detection
800, or tuned Learning rate 0.0001-0.001
number
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RPN Post-NMS top detection

Anchors

—
(-

Proposals

400, or tuned Weight decay 0.0001
number
RPN NMS threshold 0.2 Momentum 0.9
Classifier foreground loU
0.1 RPN batch size per image 256
threshold
Classifier background IoU
0.1 RPN positive fraction 0.5
threshold
Classifier batch size per
Classifier NMS threshold 0.02 128
image
Classifier score threshold 0.1, or tuned Classifier positive fraction  0.75
RPN regression weights /
Classifier detections per image 200, or tuned (1, 1,1, 1)
Classifier regression weights
a b
Backbone: Conv layers Faster R-CNN Up-sampling
PhiA
Input Feature
‘ image ' ‘ maps ‘
Region Prop:sal Network ROI pooling Detected ‘ Easter
Non-maximum suppression classifier L boxes R-CNN

Down-sampling, ks B
Assign incident pixels

Stitching
windows
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Figure 2. Schematic of the deep learning approach toward counting single electron event from
detector readout. (a) Schematic of components of the Faster R-CNN model. (b) schematic

of the workflow for applying the electron counting model.
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Figure 3. Cumulative distribution of the deviation between the positions of the electron strike
determined by various methods and the true position, calculated from simulated electron events at

200 keV (top) and 80 keV (bottom).
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Figure 4. MTF and DQE calculated using experimental data and position deviation calculated

from simulated data. (a-c) For 200 keV, (d-f) for 80 keV. In (c) and (f), the green triangle represents

the mean, the red line represents the median, the box represents the first quantile and third quantile.
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Figure 5. Performance of the DL model and CCL at increased dose rate. (a-c) recall, precision,
and F1 score calculated from simulated data at 200 keV, (d-g) relative DCE, MTF, NPS and DQE
calculated on experimental data at 200 keV. The NPS curves were normalized by an averaged

value at high frequency. MTF, NPS, and DQE are shown for an electron density of 0.06 e / pixel.
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Figure 6. Comparison of reconstructed phase images from original integrating dataset, dataset

processed with counting using CCL, and dataset processed with counting using the DL model. (a-
c) Phase images reconstructed from the data collected with a moderately high electron dose. The
boxes indicate positions where atoms in the counted dataset are better resolved relative to the
integrated dataset. The diffractogram intensities are inserted for each phase. (d) compares the line
profiles along the white lines in (a-c). (e-f) Phase images reconstructed from the data collected at

higher electron dose rate, which is challenging for conventional counting methods. Scale bar is 5

A.
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Figure 7. Comparison of CBED pattern images taken from a 4D STEM data set for unstrained
SrTiO; [001], where the electron density inside the zero disk is about 0.3 e”/pixel. (a, ¢) summed
over 10 frames recorded at one probe position. (b, d) summer over all 2560 frames of the 4D STEM
dataset at 256 probe positions. (a) and (b) integrating mode data. (c) and (d) data summed after DL

model counting. The CCL counting method failed at images with such high local electron density,

so those results are not shown.
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