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Abstract  

Electron counting can be performed algorithmically for monolithic active pixel sensor direct 

electron detectors to eliminate readout noise and Landau noise arising from the variability in the 

amount of deposited energy for each electron. Errors in existing counting algorithms include 

mistakenly counting a multi-electron strike as a single electron event, and inaccurately locating 

the incident position of the electron due to lateral spread of deposited energy and dark noise. Here, 

we report a supervised deep learning approach based on Faster R-CNN to recognize single electron 

events at varying electron doses and voltages. The deep learning approach shows high accuracy 

according to the near-ideal modulation transfer function and detector quantum efficiency for sparse 

images. It predicts, on average, 0.47 pixel deviation from the incident positions for 200 kV 
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electrons versus 0.59 pixel using the conventional counting method. The deep learning approach 

also shows better robustness against coincidence loss as the electron dose increases, maintaining 

the MTF at half Nyquist frequency above 0.83 as the electron density increases to 0.06 e- / pixel. 

Thus, the deep learning model extends the advantages of counting analysis to higher dose rates 

than conventional methods. 

Keywords: transmission electron microscopy, direct detector, electron counting, low-dose, neural 

network, object detection, deep learning 

1. Introduction  

Direct electron detectors have been rapidly developed and widely applied in both materials and 

biological transmission electron microscopy (TEM). Compared to scintillator-coupled cameras, 

direct detectors expose their radiation-hardened sensor directly to the electron beam and avoid the 

inefficiency inherent in electron-to-photon conversion in a scintillator-coupled system, enabling 

direct detectors to achieve high signal-to-noise ratio (SNR) equal to or better than that of film 

(McMullan et al. 2014). A direct detector used in electron microscopy should have a high SNR for 

single electrons, especially for low-dose imaging of beam-sensitive materials such as biomaterials 

(Li, Mooney, et al. 2013) or metal-organic frameworks (MOFs) (Peng et al. 2022). High single-

electron SNR is also vital for fast acquisition during in situ TEM or 4D scanning TEM (STEM). 

This aspect of performance can be characterized by detector quantum efficiency (DQE) (Meyer 

and Kirkland 2000), which is defined as the ratio of the squares of the output and input image 

SNR. Ideally, a direct detector would offer high spatial resolution imaging to preserve spatial 

details from the incident electrons. This can be characterized by modulation transfer function 

(MTF) (De Ruijter 1995), which is defined as the Fourier transform of the real-space point spread 
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function. Ideally, a direct detector would also maintain good performance over a wide range of 

primary electron beam voltages, which would facilitate imaging different types of specimens. 

There are two common types of TEM direct detectors: monolithic active pixel sensors (MAPS) 

and hybrid pixel array detectors (HPADs). MAPS detectors are devices in which the readout 

electronics are implemented within the same semiconductor wafer as the detecting layer, while 

HPADs consist of a much thicker detecting layer that is fabricated separately and subsequently 

bump bonded to an application specific integrated circuit (ASIC) (Levin 2021). 

HPADs, such as Medipix-based detectors (Mir et al. 2017), the EMPAD (Tate et al. 2016) and the 

DECTRIS ELA (Plotkin-Swing et al. 2020) have relatively wide, thick pixels designed to fully 

stop incoming electrons. The lateral spread of electrons across multiple pixels in these detectors is 

minimized at lower electron beam voltages (i.e., 100 kV and lower), but becomes more important 

at 200 and 300 kV. Sensors fabricated from high atomic number materials (Paton et al. 2021) have 

been employed by some HPADs to minimize the lateral spreading of high energy electrons. 

MAPS detectors, such as the DE-64 (Mendez et al. 2019), K3 (Sun et al. 2021), Falcon4 (Nakane 

et al. 2020), have relatively small, thin pixels, designed to sample the energy of incoming electrons 

without fully stopping them. This allows for a greater density of pixels on the sensor, enabling 

high-resolution imaging at fixed magnification. The lateral spread of electrons across multiple 

pixels on a MAPS detector is minimized by optimizing the sensitive layer thickness for a particular 

range of primary electron beam voltages, typically 200 and 300 kV (Levin 2021), but some 

electrons still generate signal in several pixels. Many MAPS direct electron detectors operate in 

integrating mode, where the charge generated by all primary electrons interacting with a pixel 

within the frame time is accumulated to form the output. A commonly used alternative operating 



 4 

mode is counting mode, where the electron beam intensity is limited so that the signal deposited 

by each incident electron is individually distinguishable as a separate “electron event”. In counting 

mode, each camera frame is processed via software to identify each electron event and output a 

single "count” in the corresponding estimated location of the incident electron on the sensor. 

Counting mode normalizes the intensity of each detected electron, eliminating noise arising from 

the intrinsic variations in the deposition of energy by primary electrons (Landau noise), 

dramatically improving DQE, along with enabling super-resolution readout if localization of each 

electron event is performed with sub-pixel precision (Li, Zheng, et al. 2013). It also allows 

compression of datasets from digital readout to low bit electron counts, minimizing storage and 

computer memory requirements. However, the performance of existing counting algorithms 

(Battaglia et al. 2009; G McMullan et al. 2009; Datta et al. 2021) is limited due to the inherent 

randomness of electron scattering through the sensor. First, there is significant room for 

improvement in the accuracy of localizing the point of incidence of an electron within a cluster of 

illuminated pixels, which would further improve resolution and MTF. Second, it is challenging to 

distinguish multiple electron events occurring close to one another from a single electron event 

covering several pixels. When two or more electrons are counted as one—a phenomenon known 

as coincidence loss— signal is lost, reducing sensitivity and DQE. 

Deep learning methods are a promising approach to image analysis tasks like electron counting. 

Convolutional neural networks (CNNs) have been used for tasks ranging from image classification 

to objection detection and segmentation across a number of technical or scientific fields including 

autonomous vehicles (Grigorescu et al. 2020), medical image processing (Wang et al. 2021), and 

image analysis in material science (Jacobs 2022). van Schayck et al. trained a CNN to reconstruct 

the incident position of electrons for the Timepix3 HPAD detector (van Schayck et al. 2020). The 
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Timepix3 events created by 300 kV electrons on a 500 µm thick sensor are quite large, covering 

up to 12 × 12 physical pixels of size 55 µm, which significantly degrades the detector performance. 

The CNN improved determination of the incident electron position, resulting in significant 

improvement of the MTF (van Schayck et al. 2020) compared to conventional counting methods. 

This work shows that the deposited energy pattern of a primary electron, even though generated 

by a stochastic electron trajectory, contains 2D features that a CNN can learn.  

Here, we present a deep learning (DL) model trained to recognized electron events for a Celeritas 

XS direct electron detector (Direct Electron LP, San Deigo, CA, USA) and compare the counting 

performance of the DL model with a conventional method, connected component labeling (CCL) 

(He et al. 2017). The Celeritas XS camera (Chatterjee et al. 2021) is a 1024 x 1024 pixel MAPS 

direct detector with 15 µm pixel size, optimized for high frame rate readout and high dynamic 

range imaging for 4D STEM. Frame rates of up to 87 kHz can be achieved by reducing the physical 

readout area on the sensor down to 256 × 64 pixels. This ultrafast capability enables 4D STEM 

acquisition at similar scan speeds to conventional STEM. When compared to slower MAPS 

detectors, the fast frame rate of Celeritas XS results in a sparser signal in each frame at a fixed 

electron dose. 

The electron event sizes for the Celeritas XS in this study are small, and, as shown below, the 

incident positions are close to the peak intensity positions. Thus, we focus on recognizing single 

electron events within the frame instead of localizing the electron strike position within the event. 

The model is trained on simulated Celeritas XS data and tested on experimental Celeritas XS data. 

It adopts the popular object detection neural network Faster R-CNN due to its high accuracy 

especially for small objects (Ren et al. 2017). The model performance is characterized using the 

MTF, DQE, and other evaluation metrics on images with different electron densities. Finally, we 



 6 

illustrate model performance by applying it to ptychographic imaging of a 2D material and 4D 

STEM strain mapping of SrTiO3. The DL model allows accurate electron counting at higher 

electron dose rates than CCL. Although these results are specific to the Celeritas XS detector, a 

similar approach should extend the benefits of counting to higher electron dose for other MAPS 

direct detectors as well. 

2. Methods 

 

2.1 Electron trajectory and detector readout simulation 

Supervised learning of a neural network requires training data with known ground truth. In this 

case, that means electron images where the position of every electron strike is known. 

Unfortunately, this data is not available from experiments. Due to the randomness of energy 

deposition in the sensor, the “true” electron strike position is not just unknown but unknowable. 

Therefore, we turn to simulations to create the required training data. 

Individual electrons impacting the Celeritas XS sensor were simulated using pyPenelope software 

(Salvat et al.). The ‘shower’ package with default parameters was used to simulate 100,000 

primary electron trajectories for 80 kV and 55,000 electrons for 200 kV, impacting a multi-layer 

material that matches the physical design of the sensor from Direct Electron. A Gaussian blur was 

added to the location of the energy deposited to account for diffusion within the epitaxial layer, 

and custom Python code was used to translate the energy deposited in the epitaxial layer by the 

electron trajectories into pixel values representing an electron event on Celeritas XS. Figure 1 

shows that the distributions of event energies and event sizes for simulated events were comparable 

to experimental events. The somewhat poorer agreement of the size distributions may reflect 
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limitations in the experimental identification of events, rather than limitations of the simulations. 

The same parameters were used for 80 kV and 200 kV simulations. The position of the electron 

impacts was randomly distributed within the central pixel of the electron event. Example event 

images are shown in Figure 1(c, f) for 200 and 80 kV respectively. 

2.2 Experimental data 

A Thermo Fisher Titan STEM equipped with a CEOS probe aberration corrector was used to 

collect datasets for the characterization of counting algorithms. The microscope was operated at 

200 kV and 80 kV in TEM mode. The Celeritas XS detector was operated in rolling shutter mode 

with an adjustable readout area of the 1024 x 1024 pixel sensor. Uniformly illuminated frames 

were collected at different frame rates for noise power spectrum calculations and a beam stop was 

used to introduce a silhouette for MTF calculations.  

A 4D-STEM dataset of monolayer WS2 for ptychography reconstruction was acquired with a 

convergence semi-angle of 16.7 mrad, a C2 aperture sized 50 μm, and a camera length of 160 mm. 

The electron probe current was 7.5 pA and the scan step size was 0.14 Å. The Celeritas XS detector 

acquired frames synchronously with the probe scanning with a frame rate of 7385 Hz. The total 

electron dose for each exposure is about 104 e- Å-2, and the electron density of the bright field 

region of each diffraction pattern is 0.04 e-/pixel. Another ptychography dataset was collected 

under similar experiment parameters, except that the frame rate is 1959 Hz, which gives a much 

higher electron density of 0.15 e-/pixel. A 4D-STEM dataset of SrTiO3[001] was acquired for 

lattice parameter measurement with a convergence semi-angle of 1.3 mrad. The electron probe 

scanned across a uniform area with a step size of 1.7 Å and dwell time of 2 ms. The electron dose 

for each exposure is about 400 e- per frame. 
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2.3 Faster R-CNN model for electron event recognition 

We trained a Faster R-CNN (Ren et al. 2017) model using TorchVision (maintainers and 

contributors 2016) as the backend. Faster R-CNN, as the popular two-stage object detection 

algorithm, stands out at detection and localization accuracy especially for small objects compared 

to other single-shot algorithms, such as the You Only Look Once (YOLO) and Single Shot 

Detector (SSD) methods (Liu et al. 2021). Despite the faster inference speed of single-shot 

algorithms, the need for high accuracy in electron event recognition and precise bounding boxes 

makes Faster R-CNN the optimal choice. We have also explored semantic segmentation methods. 

A U-Net (Ronneberger et al. 2015) model was trained to classify each pixel into zero-electron, 

one-electron, and multiple-electron classes. The trained U-Net missed more electrons compared to 

the conventional counting algorithm as electron density started to increase. It became evident that 

the basic U-Net model was insufficient for this complex task, where the size and shape variation 

of the objects arises from a combination of random electron trajectories and overlapping electron 

events, and image contrast significantly varies as electron density changes.  

Our modified Faster R-CNN structure is shown in Figure 2(a). Compared to natural images usually 

analyzed using Faster R-CNN, the detector readout image contains less complicated features but 

a much larger number of very small objects to be recognized. We modified the backbone, anchors, 

and hyperparameters of the model accordingly. A simple 4-convolutional-layer backbone was used 

to generate feature maps, excluding any down-sampling operation in the backbone to preserve 

high-resolution features. The region proposal network (RPN) was trained to generate object region 

proposals based on feature maps and predefined shapes, i.e. anchors. We chose the four anchor 

shapes shown in Figure 2 based on the dominant event sizes on the Celeritas XS detector (Figure 

1). The subsequent non-maximum suppression (NMS) (Neubeck and Van Gool 2006) selects a 
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single proposal from many overlapping proposal candidates based on a threshold of intersection 

over union (IoU). Then, a region-of-interest (ROI) pooling layer extracts a fixed-length feature 

vector from the feature maps for each object proposal and feeds it into the classifier. The classifier 

is composed of fully connected layers that finally branch into two sibling output layers: one that 

produces softmax probability estimates for the electron event object class and background class 

and another layer that outputs four real-valued numbers as the refined bounding boxes for each 

class. Table 1 summarizes the hyperparameters of the Faster R-CNN model which were optimized 

based on preliminary observations of model performance. 

The model was trained on ~8000 simulated detector readout images of varying electron densities 

between 0.002 ~ 0.1 e-/pixel. Most of the Celeritas XS electron events are less than 4 pixels (Figure 

1). An eligible proposed impact region from the RPN that is only one pixel off the ground truth 

could therefore result in an extremely low IoU score, which would be undesirably filtered out and 

mislead the model training. To avoid this problem, the images were up-sampled by a factor of 2 

before being used for training to make the objects larger and easier to detect. We used the 4-step 

alternating training as described in (Ren et al. 2017). Aggregation loss (Zhang et al. 2018) was 

used for each step to force proposals to be compactly located to the corresponding objects, so that 

real neighboring events are not filtered out by NMS. The training parameters are also listed in 

Table 1. One set of final weights was saved after training on 200 keV data and another set was 

saved after training on 80 keV data. 

Figure 2(b) shows the workflow for using the model to count electrons in an image. The raw image 

is first up-sampled and divided into equal-sized patches using overlapping windows, as the model 

performs better when the input size is close to that of the training dataset, and the computation 

complexity scales up with the square of the input image size (Wu 2018). Overlapping windows 



 10 

are used to capture events that might otherwise cross a window boundary. Each window is 

separately fed into the Faster R-CNN to generate the bounding boxes. To guide the model towards 

more accurate detection at different electron density levels, the hyperparameters annotated as 

‘tuned’ in Table 1 are tuned based on the number of electrons estimated from the total digital 

counts within the window, which is calculated from the total intensity and the known mean single 

event intensity. After down-sampling the detected boxes and assigning incident positions to the 

peak intensity pixels within each box (as discussed in Section 3.1), the generated image patches 

are stitched together to produce the final counted image. 

2.4 Evaluation metrics 

For experimental detector readout images, MTF and DQE are the primary characterization metrics. 

The MTF was calculated by FindDQE (Ruskin et al. 2013) using the beam stop silhouette method, 

and it accounts for lost counts at low resolution. The DQE was calculated as (G. McMullan et al. 

2009) 

𝐷𝑄𝐸 = 𝐷𝑄𝐸(0)
𝑀𝑇𝐹2(𝜔)

𝑁𝑁𝑃𝑆(𝜔)
, 

where the DQE(0) was estimated using the noise binning method, and the NNPS(ω) is the 

normalized noise power spectrum calculated from the FFT of a uniformly illuminated image. Two 

sets of experimental images were used to measure MTF/DQE. One set was collected at a 

vanishingly low electron density, and the other set was collected at much higher density. The 

relative detector conversion efficiency (DCE) was used to describe the coincidence loss (Li, 

Zheng, et al. 2013) at different doses. DCE is defined as the ratio of input and detected electron 

counts and is normalized by the ratio at a very low electron dose. The absolute electron dose for 
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experimental data is not reported since our microscope does not have a Faraday cage detector, but 

a series of images of proportionally increasing dose can be obtained by proportionally increasing 

the exposure time under identical beam conditions, giving a concrete trend of the coincidence loss.  

For simulated data with known ground truth of electron hits, position deviation, recall, precision, 

and F1 score were measured to evaluate the model performance. Position deviation is the root 

mean square (RMS) error between detected electron incident positions and the ground truth 

positions in units of pixels. Instead of defining the recall or precision based on an IoU threshold 

as is typical for object detection problems, we combined the recognition and localization steps 

together and set the criteria for detection to be an event found within one pixel of the ground truth 

position.  

The deep learning model was benchmarked against the state-of-the-art CCL method implemented 

using the SciPy Ndimage library. Both methods were characterized using the same datasets and 

metrics. 

 

3. Results and discussion  

 

3.1 Optimum incident electron event localization method 

Once electron events are recognized, we must select a pixel within the event as the position of the 

incident electron. For Celeritas XS, the pixel with the maximum intensity is the best choice. Figure 

3 compares the accuracy of three common electron event localization methods, centroid, binarized 
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centroid, and maximum intensity, applied to the simulated electron event data. The centroid 

method calculates the geometric center of a cluster where each pixel has been weighted according 

to their intensity values. The binarized centroid method calculates the centroid after thresholding 

and binarization, so that all pixels above the noise threshold level have an equal weight of 1 

regardless of their intensity. The maximum method assigns the incident position to the pixel with 

highest intensity. For 200 kV simulated electron events, a larger proportion of position deviations 

of the maximum method fall within one pixel compared to the other two methods. For 80 kV 

electrons, there is no significant difference in the accuracy of these methods, so the maximum 

method is selected because it requires the least computation. Approximately 75 to 90% of the 

predictions of the maximum method show error within 1 pixel, making it an excellent electron 

localization method for the Celeritas XS detector.  

3.2 Accuracy of the deep learning counting approach 

Figure 4 shows the performance characterization of the deep learning approach versus CCL. At 

200 keV, the voltage for which the detector is optimized, the counting mode MTF calculated from 

sparse experimental images is already very close to ideal using CCL counting. However, the MTF 

at Nyquist frequency is improved to 0.63 by the DL model vs. 0.60 by CCL (The ideal value is 

0.637). The sharp drop in MTF at low frequency that occurs in the CCL counting and integrating 

mode does not occur in the DL model, indicating that the model is less affected by the intensity 

clusters contributed by electrons scattered to large lateral distances from their incident positions. 

The averaged electron event size from the DL model is 2.06 pixels vs. 2.88 pixels from CCL, also 

showing that the DL model distinguishes overlapping electron events better than CCL. The DL 

model MTF remains higher at high frequency due to its high accuracy of finally locating the 

incident positions. The averaged position deviation (Figure 4c), calculated from simulated frames 
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with known ground truth, is slightly lower for the DL model than CCL, consistent with the modest 

improvement in experimental MTF. The DQE for the DL model and CCL are also quite close to 

each other, although the DL model only falls to 0.37 at the Nyquist frequency vs. 0.34 for CCL. 

The DQE results indicate that no extra noise is induced by the DL model detection. 

At 80 keV, the DL model provides similar incremental improvement over CCL for sparse images. 

At lower voltage, the lateral spread of electrons in the thin sensitive layer of a MAPS detector is 

larger than at higher voltages (Levin 2021). For the Celeritas XS detector, the mean 80 keV 

electron event size is 3.4 pixels, compared to 2.3 pixels for 200 keV. The DL model improves 

event recognition, but it does not improve the accuracy of identifying the pixel struck by the 

electron. Therefore, it offers limited improvement in MTF at the highest spatial frequencies (above 

0.75 Nyquist) and position deviation compared to CCL. 

The DL model shows high robustness against electron energy variations for the Celeritas XS 

detector. When tested on 80 keV data, we found that the model trained on only 200 keV data gives 

a similar MTF, DQE, and other performance metric scores as those obtained using a model trained 

on 80 keV data. The difference in event intensities at different voltages is interpreted by the model 

in the total electron counts estimation step. The moderately different event size distributions at 

different voltages do not cause significant domain shift and are equally well recognized by the 

model. When migrating the DL approach for other detectors that have a significant difference in 

event size at different voltages, it will be necessary to use training data at the specific voltage to 

achieve best performance.  

3.3 Robustness of performance at higher electron dose 
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Figure 5 illustrates the performance of the DL model at increased electron density using both 

simulated and experimental data. Figure 5(a)-(c) evaluates performance on simulated images. For 

typical sparse images for electron counting (below 0.02 e-/pixel), the DL model and the CCL 

perform almost identically, with the DL model giving slightly higher recall and CCL giving 

slightly higher precision, resulting in similar F1 scores. As the electron dose increases, the DL 

model maintains the high precision and increasingly better recall, thus keeping the F1 score above 

0.75 at 0.1 e-/pixel and sparser. Figure 5(d)-(g) evaluates performance on experimental data. The 

relative DCE in Figure 5d is in good agreement with the trend of recall in Figure 5(a). Figure 5(e)-

(f) shows MTF, NPS, and DQE for data with an electron density of 0.06 e-/pixel. Neither the DL 

model nor CCL MTF reaches 1 at low frequencies due to lost counts, i.e. coincidence loss (Li, 

Zheng, et al. 2013), but the DL model MTF is higher at all frequencies. Higher NPS also arises 

from the reduced coincidence loss of the DL model. The DL model DQE remains as high as the 

low dose DQE in Figure 4b. Based on the robustness of the DL model at high electron dose and 

the fast readout speed of Celeritas XS, ~ 0.06 e-/pixel represents 120 ~ 5000 e-/pixel/s, which is at 

least ten times higher than the maximum counting rate of other MAPS detectors operating in on-

the-fly counting mode (Nakane et al. 2020; Sun et al. 2021; Peng et al. 2023). For counting and 

integrating mode, the tradeoff between high DQE and no coincidence loss always exists, even 

though it is less concerning when using the DL model as shown in Figure 5(e-g). At even higher 

electron dose, the choice between integrating and DL model counting could depend on the 

information needed at different frequencies for specific datasets. 

3.4 Validation on experimental 4D STEM data 

Ptychographic Phase reconstruction 
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Ptychographic phase reconstruction from CBED patterns benefits from the interference between 

the diffracted beams and the zero beam, but the zero beam can be too bright for counting mode on 

MAPS detectors. We applied the CCL counting method and the DL model to a 4D STEM dataset 

of monolayer WS2 and compared the reconstructed phase images using the Wigner distribution 

deconvolution (WDD) (Rodenburg and Bates 1992) or single side band (SBB) (Pennycook et al. 

2015) implemented in the pyptychoSTEM software (Tim Pennycook & Christoph Hofer 2021), as 

shown in Figure 6. The phase images generated from the counted datasets show better quality than 

phase images generated from uncounted data, as indicated by the cleaner background of the 

embedded diffractograms in Figure 6(b) and (c) vs. Figure 6(a). With less noise transferred from 

the detector readout, the counted datasets resolve many atoms better as highlighted by the color 

boxes in Figure 6 (a-c). The absolute phase is lower for the counted datasets due to coincidence 

loss, which has a more significant effect on the CCL counted data than the DL model counted data 

(Figure 6d), consistent with the characterization results in Section 3.2.  

We have also performed the same comparison using a dataset that is collected at a higher electron 

dose (~0.15 e-/pixel), which is challenging for conventional counting techniques. Not surprisingly, 

the phase image reconstructed from the CCL counted dataset is strongly affected by the low 

MTF/DQE and shows poor contrast. The DL model retains the fidelity of localizing electron events 

and shows lower contrast than the integrating dataset, but the reconstruction is still of a reasonably 

good quality. For images with a high local intensity variance, it has been difficult to determine a 

suitable boundary between the area with sufficient sparsity for counting and the area that is not 

sparse enough for counting. The DL model with its proven larger applicable dose (sparsity) range 

will be a useful counting algorithm that smoothes out the boundaries and works almost equally 

well at local areas with different electron densities.  
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Strain measurement 

Counting also improves strain measurements of a 4D STEM dataset with a low convergence angle, 

which can be expected from its higher MTF according to quantitative study by Christoph Mahr et. 

al. (Mahr et al. 2015) Figure 7 compares 4D STEM data from unstrained SrTiO3 [001] processed 

with DL model counting and in integrating mode without counting. The electron density inside the 

zero disk is about 0.3 e-/pixel. The conventional CCL method failed at this relatively high electron 

density, yielding counted images that show no disk features at all. However, Figure 7 shows that 

the DL counting method can work at this dose, and, due to the elimination of Landau noise, the 

diffraction disks can be resolved much more clearly using DL model counting than using 

integrating mode.  

We measured the lattice parameter at each probe position by summing ten frames and applying 

cross correlation with a disk template. The cross correlation located at least two more diffraction 

disks from the DL model counted frames than from the integrating frames. The standard deviation 

of the lattice measurements is 0.050 Å for the integrating mode dataset and 0.039 Å after 

processing the data using the DL counting model. This demonstrates that the DL model will be 

helpful in improving the precision of strain measurement from a low dose noisy dataset that is 

insufficiently sparse for conventional counting. Tolerance for noisy data allows faster data 

acquisition to characterize larger areas or reduce specimen drift. 

3.5 Discussion and outlook 

Compared with CCL, the computational complexity of the deep learning approach is much higher. 

Most of the computation time is contributed by NMS, which usually computes a large IoU matrix 

of 102 ~ 103 proposals because of the large number of tiny objects that need to be detected. 
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Counting electrons in a 256 × 256 image at 0.05 e-/pixel took about 10 s on a single Intel Xeon 

E5-2670 (2.3GHz) CPU processor with a single thread. Running it on a single GPU (Tesla M10) 

doubled the computation speed. The computation time is roughly proportional to the total number 

of pixels and slightly increases when counting denser images. This makes the DL model suitable 

for post-acquisition analysis but not for live session processing. Multi-CPU and multi-GPU 

processing would reduce the computation time. The latest YOLOv8 nano object version (Jocher 

et al. 2023) might be a promising base architecture to achieve higher speed as well as good 

accuracy of locating small objects.  

Due to differences in the characteristics of the detectors and event sizes involved, a direct 

comparison of our DL counting method for Celeritas XS and the results achieved by van Schayck 

et al. for the Timpix3 detector with the trained CNN is challenging, but we note that the absolute 

positional accuracy of both methods is comparable. Because of the small event size of the Celeritas 

XS detector, a greater proportion of electron strikes are well-located with zero deviation than was 

the case for van Schayck et al. However, the outliers of the deviation distribution are about 1 pixel 

larger due to false positive detections. These two sides of the performance of DL counting method 

compensate for each other and result in similar mean position deviation compared to the Timepix3 

CNN (0.47 pixels vs. 0.50 pixels). For potential implementation for other similar detectors, if the 

average event size is large, e.g. more than 4 square pixels, adding an additional CNN branch to the 

DL model for locating the incident positions within the predicted boxes of electron events might 

be helpful to further improve the electron localization accuracy.  

A hybrid counting approach (Bammes et al. 2019) has been developed to overcome the challenge 

of limited dynamic range of MAPS detectors. The hybrid counting approach generates a binary 

mask corresponding to the area that is sparse enough for counting, performing electron counting 



 18 

in sparse regions and charge integration in non-sparse regions. For datasets that contain both large 

intense and diffuse areas, for example, the bright-field disk and dark-field region, the hybrid 

counting approach achieves high SNR in the dark-field while preserving information from the 

bright-field disk. If the hybrid counting approach is built based on DL counting, the binary mask 

of sparse area can be significantly expanded towards higher electron density area, further 

improving the averaged SNR over the intense and diffuse areas.  

Although we have not explored them here, it is interesting to speculate on the potential benefits of 

DL counting for biological electron microscopy. Improvements in MTF and DQE may improve 

data quality in, for example, single-particle cryo-electron microscopy. For applications that can 

sustain and benefit from higher dose, such as plastic section tomography, extending counting to 

higher dose may be a significant benefit. 

 

4. Conclusion 

The deep learning model trained to recognize single electron events in Celeritas XS detector 

readout images extends the benefits of counting mode to higher electron density than conventional 

counting methods. It reduces coincidence losses by improved recognition of nearby electron 

events, achieving MTF of 0.83 and DQE of 0.76 at half Nyquist frequency even at the relatively 

high electron dose of 0.06 e-/pixel. The DL model has allowed us to generate a ptychographic 

reconstruction at a dose level of 0.15 e-/pixel, and precisely measure diffraction disk positions at a 

dose level of 0.3 e-/pixel, whereas a conventional counting algorithm fails at these dose levels. The 

deep learning model also shows small improvements in performance for counting very sparse 

images compared to conventional methods, achieving very high MTF and DQE. The DL model 
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requires dramatically higher computation than conventional methods, and the current 

implementation is therefore more appropriate as a post-processing technique than a real-time 

imaging technique. By enabling electron counting with a higher electron dose incident on the 

detector, the DL model provides greater flexibility for experiment design and can be used to 

improve results from 4D STEM techniques such as ptychographic imaging and strain mapping. 

Although this model is specific to the Celeritas XS detector, the general approach of training a 

deep learning model and applying it to electron counting should be beneficial for other similar 

direct detectors. 

 

Data availability 

The simulated training and test datasets is available via the Foundry-ML (Blaiszik et al. 2022) 

service at DOI: 10.18126/rgew-xbw4. Experimental data is available via the Materials Data 

Facility (DOI: 10.18126/xv6r-y3lr).  All codes, including the saved model and an example Jupyter 

notebook showing how to load the data and implement the model from Foundry-ML are available 

at https://github.com/wdwzyyg/ElectronCounting.git.  
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Figure 1. Validation of simulated electron event images. (a-c) Event size distribution, event 

intensity distribution, and example single-electron event patterns for 200 kV electrons and (d-f) 80 

kV electrons.  

 

Table 1. Parameters of the Faster R-CNN model and the training process. 

Hyperparameters  Value Training parameters  Value 

RPN foreground IoU threshold 0.6 Epoch 10 

RPN background IoU threshold 0.3 Batch size (Image) 1 

RPN Pre-NMS top detection 

number 

800, or tuned Learning rate 0.0001-0.001 
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RPN Post-NMS top detection 

number 

400, or tuned Weight decay 0.0001 

RPN NMS threshold 0.2 Momentum 0.9 

Classifier foreground IoU 

threshold 

0.1 RPN batch size per image 256 

Classifier background IoU 

threshold 

0.1 RPN positive fraction 0.5 

Classifier NMS threshold 0.02 

Classifier batch size per 

image 

128 

Classifier score threshold 0.1, or tuned Classifier positive fraction 0.75 

Classifier detections per image 200, or tuned 

RPN regression weights /  

Classifier regression weights 

(1, 1, 1, 1) 
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Figure 2.  Schematic of the deep learning approach toward counting single electron event from 

detector readout. (a) Schematic of components of the Faster R-CNN model. (b) schematic 

of the workflow for applying the electron counting model. 

 

 

Figure 3.  Cumulative distribution of the deviation between the positions of the electron strike 

determined by various methods and the true position, calculated from simulated electron events at 

200 keV (top) and 80 keV (bottom). 
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Figure 4.  MTF and DQE calculated using experimental data and position deviation calculated 

from simulated data. (a-c) For 200 keV, (d-f) for 80 keV. In (c) and (f), the green triangle represents 

the mean, the red line represents the median, the box represents the first quantile and third quantile.  
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Figure 5.  Performance of the DL model and CCL at increased dose rate. (a-c) recall, precision, 

and F1 score calculated from simulated data at 200 keV, (d-g) relative DCE, MTF, NPS and DQE 

calculated on experimental data at 200 keV. The NPS curves were normalized by an averaged 

value at high frequency. MTF, NPS, and DQE are shown for an electron density of 0.06 e- / pixel. 
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Figure 6. Comparison of reconstructed phase images from original integrating dataset, dataset 

processed with counting using CCL, and dataset processed with counting using the DL model. (a-

c) Phase images reconstructed from the data collected with a moderately high electron dose. The 

boxes indicate positions where atoms in the counted dataset are better resolved relative to the 

integrated dataset. The diffractogram intensities are inserted for each phase. (d) compares the line 

profiles along the white lines in (a-c). (e-f) Phase images reconstructed from the data collected at 

higher electron dose rate, which is challenging for conventional counting methods. Scale bar is 5 

Å. 
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Figure 7.  Comparison of CBED pattern images taken from a 4D STEM data set for unstrained 

SrTiO3 [001], where the electron density inside the zero disk is about 0.3 e-/pixel. (a, c) summed 

over 10 frames recorded at one probe position. (b, d) summer over all 2560 frames of the 4D STEM 

dataset at 256 probe positions. (a) and (b) integrating mode data. (c) and (d) data summed after DL 

model counting. The CCL counting method failed at images with such high local electron density, 

so those results are not shown.  

 

 


