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Abstract—Recent advancements in single-cell multiomics se-
quencing create new research opportunities but also pose chal-
lenges, particularly in cell clustering. One major challenge is
feature fusion. Early fusion models are robust but ignore the
unique distributions of omics and cannot handle various omic
dimensions. Most current clustering methods use late fusion,
employing independent encoders for each omic. However, the
extracted omic features belong to different latent spaces, leading
to difficulties in aligning omics. Additionally, current cell cluster-
ing methods do not incorporate prior biological knowledge, such
as interactions within and across omics, which has been shown
plays a key role in defining cell types.

To address these shortcomings, we propose a novel, scalable,
end-to-end clustering method, called single-cell graph embedding
multiomics cluster (scGEMOC). scGEMOC utilizes prior biolog-
ical knowledge to represent inter- and intra-omics connections
as a heterogeneous graph. It applies graph embedding to ag-
gregate omics interaction data as a pseudo omic and employs
contrastive learning for effectively aligning omics in the latent
space. We evaluated scGEMOC on three public datasets against
five state-of-the-art baseline models. scGEMOC achieves superior
clustering performance compared to the baseline models on all
datasets. An ablation study confirms the significant contribution
of each component and identifies the most impactful one.

Index Terms—single-cell, multiomics, cell clustering, con-
trastive learning, graph embedding, gene regulatory network

I. INTRODUCTION

The rapid development of single-cell sequencing technology
has enabled researchers to simultaneously profile multiple
omics of biological information, including gene expression,
chromatin accessibility, and surface protein [1]-[3]. This mul-
tiomics data provides a more comprehensive perspective of
cellular processes, such as embryonic development and disease
progression [4]. However, integrative analysis of the generated
multiomics data presents new challenges, especially in the field
of cell clustering. Cell clustering is a crucial step in single-cell
analysis. It facilitates the construction of cell subpopulations
for any downstream analysis, reveals the trajectory of cell de-
velopment among samples, and uncovers common biomarkers
associated with a specific cell type. Clustering on single-cell
multiomics sequencing data introduces new challenges.

Fusion of different omics is a major challenge in multiomics
data analysis. There are two types of fusion model, early
fusion [5], [6] and late fusion, but most models use late fusion
because this approach can better accommodate different omic
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dimensions and unique distributions of different omics. Cur-
rent late-fusion methods for single-cell clustering can be cat-
egorized into three types based on their feature extractors [7].
The first involves using matrix factorization to decompose the
multiomics data, such as MOFA+ (multi-omics factor anal-
ysis v2) [8]. The second contains variations of autoencoder-
style neural-network-based models, which emerged with the
recent advancement of machine learning. For example scM-
VAE (single-cell multimodal variational autoencoder) uses
variational autoencoder as the backbone [9], MoClust uses
an autoencoder-like model to integrate different omics [10],
and GLUE utilizes autoencoders to encode omics data and
knowledge-based guidance graph [11]. The third features
models use graph to represent relationship among cells such
as WNN (weighted nearest neighbour) and sigDGCNb [12],
[13]. However, one disadvantage of these methods is that they
don’t align the extracted features in the latent space.

One solution is to use adversarial training by using a dis-
criminator to differentiate among latent features from different
omics during the training stage [11], [14]. Different omic
features can be considered in the same latent space if a
discriminator cannot distinguish them. However, the use of
discriminators has been found to possess several major draw-
backs: 1) it is difficult to prioritize different omic features if
the features are forced to be indistinguishable from each other;
II) since not all clusters can be distinctly separated in every
omic, the presence of a incomplete clustering structure within
each omic prevents the clear cluster separation after the fusion;
IIT) adversarial training only aligns feature distributions, which
could cause a cluster in one omic aligns with a different cluster
in another omic and hampers the clustering results [15].

Contrastive learning has recently shown promising results
for self-supervised clustering in computer vision [15], [16].
The principle of contrastive learning is to assign positive
and negative pairs to different features, and maximizing the
similarities of positive pairs while minimizing the similarities
of negative ones. Contrastive learning preserves structures and
distributions within each omic during omic alignment, which
makes it a better measure than adversarial training. However,
the application of contrastive learning in single-cell multiomics
clustering has not been studied thoroughly [10]. We aim to
utilize contrastive learning for more effective omic alignment.
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Fig. 1: The overall structure of the model. Trapezoids labeled with f(°) represent feature extraction functions, rectangles
represent features, and hexagons represent loss terms. Dashed lines with double arrowheads represent terms regulated by the
loss function. f(9) is the variational graph encoder, with its detailed inner structure depicted in Figure 2.

An important insight from the bulk-cell multiomics analysis
is that the inter- and intra-omics connections plays a crucial
role in defining cell types and utilizing such information
improves cell type classification [5], [17]-[19]. To our best
knowledge, there is no clustering method that incorporates
such biological knowledge [11]. Overall, our goals for single-
cell multiomics clustering are: to utilize the prior knowledge,
to use a late-fusion model for modeling omic distributions,
and to utilize contrastive learning for better omic alignment.

We propose a novel single-cell Graph Embedded Mulito-
mics clustering model, sScGEMOC. Our contributions are:

o The proposed model, sScGEMOC, is the first single-cell
multiomics clustering model to incorporate prior biolog-
ical knowledge in the form of omics interaction network
for better clustering performance;

e« sScGEMOC utilizes contrastive learning that preserves
omic-specific geometric structure and omic in-variance
while avoiding the drawbacks of adversarial training;

o sScGEMOC offers a scalable model structure so that it
can easily accommodate additional omics with different
dimensions as future sequencing technology emerges.

II. METHOD

As shown in Figure 1, the model uses a distinct encoder
for each omic to extract features, along with a variational
graph encoder to extract features from the graph representing
inter- and intra-omics interactions, which we refer to as the
mulitomics network (MON). The features on regular omics are
regulated by a zero-inflated negative binomial (ZINB) loss and
all features are aligned by a contrastive learning module [20].
A fused feature is derived from a weighted sum with learnable
omic weights. Deep divergence-based clustering (DDC) loss
is used to regulated the cluster assignment for each cell.

A. Omics and Graph Construction

Assuming the data consists of N samples with O omics
data, denoted as X = [X() . X(O)] the o-th omic is
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denoted as X(© € RVN*M“ for all 0 € {1,...,0}, where

M () is the the feature dimension of the o-th omic.

Utilizing prior biological information, we constructed a het-
erogeneous multi-layer graphs, representing both inter-omics
and intra-omic connections, referred to as MON. Prior study
in bulk-cell multiomics has shown both connections provides
crucial information on cell types [17]. Let’s denote the graph
as G = (V,&,X), where V represents a set of vertices
indicating omic entities, such as genes or ATAC peaks with
their attributes X, and V| = 3_._, |X(©)|. Here, £ denotes
the set of inter-omic and intra-omic edges. The adjacency
matrix A is constructed as follows:

All AlO
Aot Aoo

)

where A;; € RMU)XM“),Z € 1,..,0 is the intra-omic
connections for i-th omic, and A;; = AJ-Ti € RMW <MD i
j € 1,...,0 is the inter-omic connections between i-th and
j-th omics. When there is no applicable connections for A;;
or Ajj, Ay = Ipnpoand Ay = 0p56) ) Tespectively. All
nodes in G are self-connected.

In our experiments, we used multiomics datasets that in-
clude transcriptomics and epigenomics, specifically mRNA
and ATAC. The intra-omic edges for mRNA are based on
gene-gene interactions sourced from BioGrid [21], while intra-
omic edges for ATAC are not applicable. The inter-omic edges
between mRNA and ATAC peak are determined based on their
proximity. If an ATAC peak falls within the region of a gene
or its 1000 bases upstream, we consider them connected.

For mRNA data, we filtered the scRNA-seq data by top
variance after log transformation and normalization. For ATAC
data, we aggregated scATAC-seq count in the region of a gene
or its 1kb-upstream as the promoter activity for that gene.
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B. Omic Encoder with ZINB Loss

The latent feature of each regular omic, Z(°) 0 =1, ...,0,
is extracted by the function, f(°)(.). f(°) consists of a three-
layer shallow fully-connected network (FCN). To better model
the sparse distribution of transcriptomics (scRNA-seq) and
chromatin accessibility (scATAC-seq), a ZINB-based encoder
is utilized for each omic [20]. There are three parameters for
ZINB distribution, mean (u), dispersion (6), and the weight of
the point mass (7). Its distribution can be expressed as follows.

ZINB(z;m, p, 0) = woo(x) + (1 — 7)NB(z; 1, 0), (2)
0 T

where NB(z; i, 6) = Fgf”(;)@) (%) (#ﬂ} and do(-) is a

Dirac function. Each parameter is estimated by an individual

network. The loss function of the ZINB encoder is:
10)

L7Ng = — Z Yo log(ZINB(X () |14(0) 7(©) g0))),

o=1

3)

where 7, is a positive weight for the o-th omic.

Self-Attention
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Z(e)
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Fig. 2: The structure of graph encoder is plotted. Two GCN
layers are used to obtain p and o. The graph embedding is
obtained in a variational-encoder style. Then the embedding
is passed through a transformer layer to obtain Z(9).

C. Graph Encoder

The structure of the graph encoder is shown in Figure 2.
We build the graph encoder based on the variational graph
autoencoder [22]. The MON pseudo omic feature is obtained
by two graph convolution network (GCN) layers combined
with corresponding pooling layers defined as follows:

“4)

where GCN(X, A) = AReLU(AX Wqcn,)Wacen,» GCN,,
and GCN, shares the same weight Wgcn,, and A =
D~'/2AD~'/2, The graph embedding is defined as p+o xe,
€ € (0,1). The graph embedding is then passed through a
transform layer comprising a two-layer FCN to obtain the final
MON pseudo omic feature , which is denoted as Z (9, The
fused feature is obtained by summing all features by weights.

pn=GCN,(X,A), logo=GCN,(X,A),

o
7 = ZwOZ(O) + ng(g),

o=1

S
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where the weights, w, and w, are learnable scalar parameters.
Since all samples share the same graph structure, using only

the GCN layer yields indistinct features across clusters. After
each GCN layer, we introduce a self-attention graph (SAG)
pooling layer. The SAG pooling layer is used to preserve only
the most crucial nodes for the sample, thereby enhancing the
distinguishability of the graph embedding across all cells [23].
The SAG pooling layer first computes an attention score, U €
RVl for every node defined as the following.

U=0(AXOuy), (6)

where O, € RF*1 is the only parameter of the SAG pooling
layer, and F' is the node output feature size from the prior GCN

layer. Let’s denote ¢ € (0, 1] as the pooling ratio parameter.
Nodes are then selected based on U score.

idx = top-rank(U, [q[V[]), Z2)

mask

— Z(g)

idx

(N
where top-rank(-) returns the indices of the top (q\VH nodes.

D. Contrastive Learning

(u

Initially, we define the similarity score s;; ) between two

latent features zgu) (the u-th omic feature of i-th cell) and
z§1’) in Equation (8).This equation defines the cosine similarity,
an optimal metric for measuring similarities between feature

vectors in the latent feature space.

T
s = () 277 [ 121]

The contrastive loss is based on NT-Xent loss [16] shown
as follows.

®)

1 N O O (w)
Lcontrastive = 200 —1) ; ; 2 Luzol; 77 9)
where 1 is an indicator function and
1) — _og exp(s;;” /7) (10)

s"€Neg(z¥,2z?) eXp(S’/T) ’

where T is a hyperparameter set to 0.1 and Neg(z¥, z?) is the
set of similarity scores for all the negative pairs of sample 3.

An intuitive approach involves assigning positive pairs to
the omic features of the same object, and negative pairs to
the omic features of different objects. However, this strategy
forces the omic features of cells from the same clusters
far away too, which deteriorates the downstream clustering
performance [15]. In the proposed model, we assign positive
pairs to omic features of samples that originate from the same
cluster, while assigning negative pairs to omic features of
samples that come from different clusters. We construct the
negative similarity score set as follows.

Ni={s":j#iand j € {1,...N},

u,v € {1,...,0},argmax o; # argmax o },

(1)

where a; € R¥ is the clustering assignment vector for i-th cell
and K is the number of clusters. And Neg.. .. is obtained
by sampling a constant number of similarity scores from A/;.
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Fig. 3: UMAP visualizations for three datasets colored by the ground truth cell types is plotted in the upper row and UMAP
visualizations colored by the predicted cell types is plotted in the lower row.

E. Clustering

As mentioned in section II-C, we obtained fused features
via aggregating the individual omic features by scalar weights.
Then, these fused features are passed through an FCN to obtain
h; and another FCN to obtain the soft cluster assignment
vector «y; with a softmax activation function. We use the DDC
loss to regulate the clustering process, which shows promising
results in single modality clustering [24].

The DDC loss comprises three major components: cluster
separability and compactness, cluster assignment separability,
and closeness of cluster assignment vectors to simplex corners.
The first term L£; is a generalization form derived from
Cauchy-Shwarz divergence to achieve separation between
clusters in the latent feature space.

gz]
Loy y W a2

i=1 j=it+1 gzzgm
where K is the number of  clusters and
9ij = Z _ Zb 1amhababj, In this context,
hij = exp(—|lhi — h;||*/(20?)), h; is the i-th omic

latent feature, o is a hyperparameter, and «g; is the i-th
element on the cluster assignment vector for sample a.

We use the second term Lo to separate cluster assignment
vectors «; by encouraging them to be orthogonal.

N —-1N-1 N
Lo = <2> Z Z afa; (13)
i=1 j=i+1

The third term L3 is to enforce cluster assignment vectors to
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a standard simplex.
-1

K-1 K (K
L3 = . 14
3 ; Z u“u” (14)
N N
where w;; = >, szl Maiha »Mpj, In which m;; =

exp(—|l; — €;||?), and e; is the j-th corner of the standard
simplex in R¥,

The overall loss function is £ = Lzng + L1 + Lo + L3 +
d min(wi, .., wo, Wq) Lcontastives» Where d is a hyperparameter
for the strength of contrastive learning loss, and wy, ..., wo, wg
are regular omics and MON pseudo omic’s fusion weights.

II1. EXPERIMENT

We tested the proposed model against five baseline models
that cover all three categories of feature extractors: MoClust,
GLUE, MOFA+, EarlyFusion+Leiden, and sigDGCND.
MoClust: an autoencoder-based clustering model with
contrastive learning for alignment but no MON [10].
GLUE: only integrative model for single-cell multiomics
data that incorporates similar knowledge graph with reg-
ular omic alignment through adversarial training. It is not
clustering-focused so KMeans is used for clustering [11].
MOFA+: a widely adopted statistical clustering model
that utilizes matrix factorization [8].
EarlyFusion+Leiden: a conventional approach for early-
fusion clustering. Both omics are filtered by variance.
sigDGCNDb: a network-based clustering method for single
omic data that constructs a cell-cell similarity graph [13].
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TABLE I: Detail Description of Three Datasets

Datasets Taput Dimemngglr‘? Sparsity  Taput Dimension AT?pirsity (ATier Agg) # of Samples  # of Clusters  Average Number of Samples per Clusters
10xPBMC 36,601 94.8% 98,318 84.7% 2,711 25 108.4 + 194.6

CellLine 18,666 91.0% 136,771 60.4% 1,047 4 261.8 + 108.7

BMMC 13,431 97.5% 116,490 97.9% 69,249 22 3147.7 + 3203.9

TABLE II: Clustering Results of the Proposed Model and Baseline Models on Three Datasets

Model 10xPBMC CellLine BMMC
ACC NMI ARI ACC NMI ARI ACC NMI ARI

scGEMOC 0552 0.620 0416 0.893 0.719 0.771 0.574 0.635 0.466
MoClust 0501 0613 0339 0.721 0.634 0556 0.557 0.603 0.420
GLUE+KMeans 0426 0510 0373 0571 0462 0397 0336 0319 0.275
MOFA+ 0461 0473 0394 0.708 0.691 0.742 0.481 0568 0.410
EarlyFusion+Leiden | 0.351 0.508 0.229 0336 0447 0226 0444 0597 0.321
sigDGCNb 0.504 0457 0363 0.848 0.760 0.764 0469 0542 0412

We implemented scGEMOC in Python. The source code is
available at https://github.com/Nabavil.ab/scgemoc.

A. Datasets and Evaluation Criteria

We conducted experiments on three public single-cell mul-
tiomics mRNA and ATAC datasets, 10xPBMC, CellLine, and
BMMC dataset [25]-[27]. The details of the datasets are
presented in Table I. The cell types for the CellLine and
BMMC datasets are annotated by experts, and the cell types
for the 10xPBMC dataset are annotated by WNN [12]. Both
the mRNA omic and the aggregated ATAC omic show clear
sparsity. The UMAP visualizations for cell type groud truth
of all datasets are shown in Figure 3a, 3b and 3c. Table
I reveals evident cluster imbalances within the 10xPBMC
and BMMC datasets, which may cause prediction issues for
smaller clusters and potentially lead to a suboptimal overall
performance. We selected three criteria to evaluate the models’
performance: clustering accuracy (ACC), normalized mutual
information (NMI), and adjusted rand index (ARI).

B. Results and Discussions

Table II illustrates that the proposed model outperforms
baselines in all metrics across datasets, except for NMI in
the CellLine dataset. This superior performance attests to
the benefits of incorporating the MON information and the
effectiveness of contrastive learning in omic alignment.

When compared to the other contrastive learning method,
MoClust, scGEMOC outperforms MoClust in every criterion
across datasets, which shows the additional information from
the MON pseudo omic helps scGEMOC to better cluster
cells. Among five baseline models, MoClust, as the only one
with contrastive learning, achieves third best performance at
the 10xPBMC and CellLine datasets, and second best perfor-
mance at the BMMC dataset. The proposed model, scGEMOC
and baseline model, MoClust outperform others, showing
that contrastive learning enhances clustering in single-cell
multiomics data. Moreover, their superior performance over
MOFA+ demonstrates that neural-network-based models are
preferable for clustering on single-cell multiomics data.

The proposed model, scGEMOC displays evident improve-
ment in performance over sigDGCNb. This underscores the
benefit of utilizing multiomics sequencing data for cell type

clustering. However, sigDGCNDb achieves second best perfor-
mance at two datasets, which indicates that the relationship
among cells also contribute significantly to the results.

GLUE and EarlyFusion+Leiden are the only two non
end-to-end clustering models among baselines. EarlyFu-
sion+Leiden achieves the worst performance twice out of all
three datasets, which shows early fusion and conventional
models are not suitable for high-dimensional complex single-
cell multiomics data. Despite GLUE’s inclusion of the ad-
ditional knowledge graph information, it yields the second-
to-worst performance on all datasets, which highlights the
superiority of dedicated end-to-end clustering methods.

As mentioned earlier, there is an imbalance problem in the
10xPBMC and BMMC datasets. The UMAP visualizations,
with cell types predicted by scGEMOC, are shown in Figures
3d, 3e and 3f. These figures demonstrate sScGEMOC captures
11 clusters in the 10xPMBC dataset and 15 in the BMMC
dataset, capturing both large and some small clusters despite
the imbalance. However, scGEMOC fails to capture the ex-
tremely small clusters. Enhancing the model’s robustness to
such imbalances and its ability to identify these tiny clusters
is one of our future research goals.

C. Ablation Study

To evaluate the impact of sScGEMOC’s key components, we
conducted an ablation study. The full model was compared to
seven variations, each omitting different combinations of the
three key elements: MON pseudo omic, contrastive learning
loss, and ZINB loss. The results are shown in Table III.

Among three cases with one component off, the one without
ZINB loss exhibits the poorest performance. On the other
hand, the one-off combination without the MON pseudo omic
shows the best performance across all datasets. This finding
suggests that ZINB module has the biggest performance
impact while only omitting one key component. All three cases
shows performance deterioration compared to the full model.

Among three cases with two components off, they all
perform relatively similar across all datasets, except for the
combination without MON pseudo omic and contrastive learn-
ing on the CellLine dataset. We believe the reasons are two
fold. First, the omission of MON pseudo omic compensates
the omission of contrastive learning module. Since the DDC
loss regulates the learned feature to be compact, the result does
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TABLE III: Testing Effectiveness of the Three Components in the Proposed Model on 10xPBMC Dataset

Components 10xPBMC CellLine BMMC
Graph  Contrastive ZINB | ACC NMI  ARI ACC NMI  ARI ACC NMI  ARI
v v v 0552 0.620 0416 0893 0.719 0.771 0574 0.635 0.466
X v v 0501 0613 0339 0.721 0.580 0.481 0.557 0.603  0.420
v X v 0438 0588 0365 0.697 0524 0522 0498 0.514 0.398
v v X 0.408 0.600 0324 0.662 0535 0.520 0476 0491 0.401
X X v 0383 0555 0299 0.798 0.628 0588 0.417 0.440 0.354
X v X 0391 0587 0309 0.654 0469 0452 0419 0451 0372
v X X 0388 0596 0284 0622 0498 0458 0413 0447 0.359
X X X 0363 0562 0268 0619 0452 0387 0398 0.411 0.405

not show clear deterioration. Second, the CellLine dataset is a
relatively simple one, where simpler model can easily achieve
good result. Except for this combination on CellLine data, all
the other two-off combinations show a clear decrease in perfor-
mance compared to those with one off. The combination with
all three components off shows the worst performance among
all variations. Thus, we can conclude that each components
contributes differently to the model performance and ZINB
loss has the greatest single-component impact.

IV. CONCLUSION

In this study, we introduced scGEMOC, a novel and scalable
single-cell multiomics clustering method that combines the
strength of multiomics interaction information and contrastive
learning. To the best of our knowledge, scGEMOC is the first
single-cell multiomics clustering model that utilizes MON.
scGEMOC considers MON as pseudo omic, and extracts
MON features through variational graph encoder and other
omics features through individual encoders. It employs both
contrastive learning and clustering loss to align and regulate
the latent feature space for effective fusion. Additionally,
scGEMOC utilizes ZINB loss to accommodate the sparsity
characteristics of single-cell multiomics data.

We evaluated scGEMOC against five baseline models across
three datasets. sScGEMOC consistently outperforms the base-
line models in terms of clustering accuracy, ARI, and NMI
on all datasets. Our ablation study reveals that the three im-
portant components of the proposed model (MON, contrastive
loss, and ZINB) enhance performance. Omitting ZINB loss
notably impacts the model performance, while excluding the
contrastive learning module could compensate the lack of the
MON information on simpler datasets in terms of performance.

While our experiments focused on two-omic datasets, scGE-
MOC’s scalable design can extend to additional omics [28].
scGEMOC has paved a path to integrate inter- and intra-omics
connections into multiomics fusion. With the advancement of
spatial multiomics sequencing, we aim to extend our work to
include spatial information and explore cell-cell relationship
as our future work.
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