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A B S T R A C T   

Orogenic ophiolites are a hallmark of Phanerozoic plate tectonics, containing igneous lithologies that provide 
constraints on fundamental tectono-magmatic processes. The c. 1900Ma Pembine Ophiolite (Wisconsin, USA) is 
associated with the Penokean Orogen and represents a rare example of a proposed Paleoproterozoic ophiolite. 
The Penokean Orogen shares broad characteristics with Phanerozoic (<541 Ma) orogens, but the origin of the 
Pembine Ophiolite remains unclear, with the mafic volcanic rocks interpreted as representing either an intra- 
oceanic arc or continental back arc setting. To test these hypotheses, we present the results of petrography, 
bulk-rock geochemistry and mineral chemistry for a suite of 34 Pembine rocks, as well as U-Pb zircon 
geochronology for two samples. Based on trace elements established as immobile in the studied rocks, we 
demonstrate that mafic volcanism progressed (up-stratigraphic-section) from mid-ocean ridge-like to boninitic. 
The chemical evolution is identical to that observed in < 250 Ma ophiolites in the Himalayan–Alpine Orogen, 
which record forearc spreading during the nascent stages of subduction in the Tethys Ocean. We interpret the 
Pembine Ophiolite as forearc lithosphere formed during subduction initiation and obducted to the margin of the 
Superior Craton during the Penokean Orogeny. The processes responsible for forming (and preserving) this 
example of a Paleoproterozoic ophiolite may not have been dissimilar to those operating on the Phanerozoic 
Earth.   

1. Introduction 

Orogenic ophiolites — fragments of oceanic crust and upper mantle 
preserved within continental collision zones (Steinmann et al., 1927) — 
are a hallmark of Phanerozoic plate tectonics (Dewey and Bird, 1971), 
with hundreds of examples recognized globally (e.g., Dilek and Furnes, 
2014; Stern, 2020). The chemical and isotopic signatures of the mantle 
portions of ophiolites record processes of melt extraction and meta
somatism (e.g., Martin et al., 2016; O’Driscoll et al., 2015; Pagé et al., 
2009). In addition, the chemistry of the mafic volcanic stratigraphy — 
forming the upper part of the crustal portion — records evolution in 
melting processes (and their tectonic drivers) leading to volcanism 
(Stern et al., 2012; Whattam and Stern, 2011), including decompression 
melting during seafloor spreading and flux melting of the mantle wedge 
during subduction. In comparison to the Phanerozoic ophiolite record, 

unambiguous Precambrian ophiolites are rare (Moores, 2002; Stern, 
2020). Tracking the record of volcanism recorded in ophiolites through 
geologic time presents opportunities to understand secular change in 
plate tectonics on Earth, including how oceanic lithosphere was formed 
and preserved. 

The c. 1900 Ma Pembine Ophiolite is an example of a proposed 
Paleoproterozoic ophiolite (Holm et al., 2020b; Schulz and Cannon, 
2007). Other, similarly-aged (c. 2000–1850 Ma) ophiolites from Laur
ussia include: Jormua in Finland (Kontinen, 1987; Peltonen et al., 1996); 
Flin Flon in Manitoba (Babechuk and Kamber, 2011; Stern et al., 1995); 
West Greenland (Garde and Hollis, 2010); and Purtuniq in Quebec (Scott 
et al., 1999, 1992). The Pembine Ophiolite forms an important part of 
the Pembine–Wausau Terrane, which was accreted to the southern 
margin of the Superior Craton along the Niagara Fault (Fig. 1) during the 
c. 1880–1820 Ma Penokean Orogeny (Schulz and Cannon, 2007; Zi 
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et al., 2022). Although the Penokean Orogeny is generally accepted as 
sharing features with Phanerozoic orogenic belts (Hoffman, 1987; Van 
Schmus, 1976), the specific nature of its evolution — including the 
origin of the Pembine–Wausau Terrane — remains a matter of consid
erable debate (e.g., Schulz and Cannon, 2007; Zi et al., 2022). One 
outstanding question is whether the Pembine Ophiolite formed as an 
intra-oceanic arc (e.g., Schulz and Cannon, 2007), a continental back- 
arc (e.g., Van Wyck and Johnson, 1997; Zi et al., 2022), or via some 
alternative mechanism. A complicating factor is that the primary 
mineralogy and chemistry of the Pembine Ophiolite has been over
printed and obscured by multiple phases of Paleoproterozoic deforma
tion and metamorphism, including during the Penokean (geon 18), 
Yapavai (geon 17), Mazatzal (geon 16) and possibly Baraboo (geon 14) 
Orogenies (Daniel et al., 2013; Holm et al., 2020b, 1998, 2007, 2005; 
Medaris et al., 2021; Schulz and Cannon, 2007). 

In this paper, our principal aim is to test these hypotheses and 
establish the primary geochemical affinity and tectonic setting of mafic 
volcanic rocks of the Paleoproterozoic Pembine Ophiolite, with a sec
ondary aim of adding geochronological constraints to our understanding 
of the Penokean Orogeny. We present the results of petrography, bulk- 
rock and mineral geochemistry for a suite of 34 samples, with addi
tional U-Pb zircon geochronology for two samples. We examine the 
chemical effects of metamorphism/hydrothermal alteration and discuss 
the suitability of several traditional bulk-rock tectonic discrimination 
schemes, before assessing the primary chemical signatures recorded by 
the mafic volcanic rocks. These data are placed in a temporal context 
using previously published and new U-Pb zircon dates to constrain the 
tectonic processes responsible for the evolution of the Penokean 
Orogeny, as well as the nature of Paleoproterozoic plate tectonics 
globally. 

2. The Paleoproterozoic Penokean Orogeny 

The tectonic processes recorded by the c. 1880–1820 Ma Penokean 
Orogeny (Blackwelder, 1914) are considered broadly comparable to 
those recorded by modern orogenic belts (Hoffman, 1987; Van Schmus, 
1976), representing subduction and accretion along the southern margin 
of the Superior Craton (Schulz and Cannon, 2007; Sims et al., 1989; Zi 
et al., 2022). Rocks affected include metamorphic rocks of the Archean 
Superior Craton and associated supracrustal suites, in addition to meta- 
igneous rocks of the Pembine–Wausau and Marshfield Terranes 
(collectively the Wisconsin Magmatic Terranes), which are interpreted 
as having been accreted to the Superior Craton along the south-dipping 

Niagara Fault (Fig. 1; Drenth et al., 2021; Schulz and Cannon, 2007; Van 
Wyck and Johnson, 1997; Zi et al., 2022). The rocks of the Penokean 
Orogen also experienced regional metamorphism and deformation 
during the 1780–1750 Ma Yavapai and 1650–1600 Ma Mazatzal events, 
and contact metamorphism during intrusion of the c. 1476–1470 Ma 
Wolf River Batholith (Holm et al., 1998, 2020a, 2005, 2007; Schulz and 
Cannon, 2007). 

The Pembine-Wausau Terrane, which is located south of the Niagara 
Fault and includes the Pembine Ophiolite, comprises a sequence of 
volcanic rocks that host c. 1890–1760 Ma (predominantly felsic) intru
sive rocks (Sims et al., 1989). The volcanic rocks range from mafic to 
felsic and show tholeiitic to calc-alkaline compositions (Sims et al., 
1989), whereas the felsic intrusive lithologies are predominantly 
granodiorite and tonalite, with minor diorite and granite (Schulz and 
Cannon, 2007; Zi et al., 2022). The intermediate–felsic intrusions 
include three temporal groupings (Fig. 2): (1) the 1889 ± 6 Ma Twelve 
Foot Falls Diorite (Holm et al., 2020a); (2) a c. 1860 Ma (Sims et al., 
1992) or c. 1845 Ma (Zi et al., 2022) suite that includes the Dunbar 
Gneiss, Marinette Quartz Diorite and Newingham Tonalite; and (3) 
several Yavapai (1800–1750 Ma) granitic bodies (Holm et al., 2005; 
Sims, 1992). 

The Twelve Foot Falls Quartz Diorite is mapped as intrusive into the 
basaltic–andesitic Quinnesec Formation and neighboring inter
mediate–felsic volcanics — the Beecher, Pemene and McAllister For
mations of Jenkins (1973), which we group together as the Beecher 
Formation (Fig. 2) — and interpreted to represent a subvolcanic intru
sion cogenetic with the Beecher Formation (Sims and Schulz, 1993; 
Schulz, 2018). However, a recent 1842 ± 7 Ma U-Pb zircon date for the 
Beecher Formation has been interpreted to suggest that the inter
mediate–felsic volcanics are younger than the c. 1889 Ma Twelve Foot 
Falls Diorite and were therefore deposited on or are in fault contact with 
the plutonic body (Zi et al., 2022). Monazite separated from the Beecher 
Formation rocks yielded a U-Pb date of 1775 ± 25 Ma interpreted to 
record regional metamorphism during the Yavapai event (Zi et al., 
2022). 

The Marshfield terrane comprises 50 % Archean gneiss and 50 % 
volcano-sedimentary rocks. The latter includes c. 1870–1860 Ma 
mafic–felsic volcanic rocks, accompanied by subordinate siliciclastic 
and minor carbonate sedimentary rocks (Schulz and Cannon, 2007 and 
references therein). These lithologies are cross-cut by felsic plutonic 
rocks that yield crystallization ages ranging c. 1890–1840 Ma (Sims 
et al., 1989). Isotopic studies highlight differences in Pb isotopic sig
natures of the Superior Craton and the Archean rocks of the Marshfield 
Terrane, suggesting the latter evolved as a distinct, allochthonous 
terrane rather than representing a rifted fragment of the former, 
although the latter hypothesis is not ruled out (Van Wyck and Johnson, 
1997). 

Questions remain regarding the relationship between the Marshfield 
and Pembine–Wausau Terranes. Based on lithological and structural 
characteristics, the Marshfield Terrane has generally been considered a 
distinct terrane accreted — from the south (current coordinates) — to 
the Superior Craton margin between 1860 and 1850 Ma, following the 
accretion of the oceanic Pembine–Wausau Terrane at c. 1875 Ma (Schulz 
and Cannon, 2007; Sims et al., 1989). Van Wyck and Johnson (1997) 
argued that the presence of a 2.61 Ga tonalite gneiss in the northern part 
of the Pembine–Wausau Terrane provides evidence that these two 
Paleoproterozoic crustal fragments record a common magmatic history, 
representing distinct domains within a single terrane (Zi et al., 2022). In 
the latter scenario, the Pembine–Wausau Terrane is considered to have 
an origin as a continental back-arc (Zi et al., 2022), rather than an intra- 
oceanic arc (Sims et al., 1989). 

Fig. 1. Simplified geologic map of the Great Lakes region detailing the location 
and geologic context of the Pembine Ophiolite study area (redrawn after 
Karlstrom et al., 2001; Zi et al., 2022). Inset: location of Great Lakes region 
within North America. 
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3. Ophiolite samples studied 

3.1. Samples and sample preparation 

A total of 34 samples were collected from the eastern part of the 
Pembine–Wausau Terrane, including 17 samples of mafic volcanic rock 
(Quinnesec Formation), four samples of intrusive mafic rock, nine 
samples of intermediate–felsic volcanic rock (eight from the Beecher 
Formation), two samples of the Marinette Quartz Diorite and two sam
ples of the Twelve Foot Falls Diorite (Fig. 2; Table 1). All samples were 
collected from a metavolcanic sequence previously interpreted to 
represent the uppermost parts of a suprasubduction zone (SSZ) ophiolite 

(Schulz and LaBerge, 2003; Schulz and Cannon, 2007). 
Bulk-rock chemical analysis was performed on all samples (Section 

4.1), with 16 samples selected for petrographic assessment in thin sec
tion, including nine samples of the Quinnesec Formation, four samples 
of intrusive mafic rocks, and three samples of the Beecher Formation. 
Major element mineral chemistry was characterized for four mafic 
samples, with the goal of understanding mineralogical controls on the 
bulk-rock major element data (see Section 5.1). Two zircon-bearing 
samples were selected for U-Pb geochronology (Fig. 2): (1) UP19-04, 
an unnamed gabbro hosted within the Quinnesec Formation in the 
northern part of the Pembine–Wausau terrane; and (2) UP19-38, a 
sample of the intrusive Marinette Quartz Diorite. These samples were 

Fig. 2. Geologic map of northeast Wisconsin and northwest Michigan detailing the variety and distribution of samples collected as part of this study (redrawn after 
Sims and Schulz, 1993). 
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chosen to supplement recently published U-Pb geochronology on the 
Beecher Formation, Dunbar Gneiss, Newingham Tonalite and Twelve 
Foot Falls Diorite (Holm et al., 2020; Zi et al., 2022). See Table 1 for 
sample locations and the analyses types conducted on each sample. 

3.2. Petrographic summary 

The mafic volcanic rocks of the Quinnesec Formation (n = 9 of 17) 
contain 15–80 modal % amphibole (variably altered to fine-grained 
chlorite) and 20–85 modal % plagioclase (variably altered to sericite), 
with accessory ilmenite, epidote, quartz, apatite, titanite, calcite, 
magnetite and pyrite. The mean grain size of samples is 0.3–1.0 mm 
(Fig. 3). Polyphase, sub-millimetre-scale veins containing quartz, chlo
rite, pyrite and calcite locally cross-cut some samples in places. 

The intrusive mafic rocks (n = 3 of 4) are mineralogically compa
rable to the mafic volcanic rocks of the Quinnesec Formation, contain
ing: 30–75 modal % amphibole (variably altered to fine-grained 
chlorite) and 25–70 modal % plagioclase (variably altered to sericite), 
with accessory quartz, calcite, titanite, ilmenite, apatite, magnetite and 
pyrite. Mean grain sizes are 1.5–2 mm, with sub-millimeter- to 
millimeter-scale veins containing quartz, pyrite, calcite and chlorite. 

The intermediate–felsic volcanic rocks of the Beecher Formation (n 
= 2 of 8) contain 5–15 modal % plagioclase (+/- amphibole and quartz) 
phenocrysts and 85–95 modal % microcrystaline groundmass. The na
ture of the phenocrysts is variable; plagioclase ranges from subhedral to 
euhedral in some samples to rounded, < 3.5 mm-diameter, highly 
altered patches in others. Rare hornblende phenocrysts occur as sub
hedral, < 1.5 mm grains showing thick rims of fine-grained (<300 µm) 
amphibole. The microcrystalline groundmass is composed of fine- 
grained (<200 µm) aggregates of quartz, plagioclase, amphibole and 
minor mica. 

4. Methods 

4.1. Bulk-rock geochemistry 

Following the removal of weathered surfaces using a rock saw, 
samples were crushed and powdered in alumina/ceramic for bulk-rock 
geochemical analysis. Glass discs were prepared by mixing 1 g of sam
ple with 4 g of Li tetraborate, and major element analysis was conducted 
using a Malvern PANanlytical Inc. Xetium X-Ray fluorescence spec
trometer in the Franklin & Marshall X-Ray Laboratory, Franklin & 
Marshall College. Trace element analysis was performed on the same 
glass discs by laser ablation inductively coupled plasma mass spec
trometry (LA-ICP-MS) using a Teledyne Cetac Analyte G2 193 nm laser, 
equipped with a HelEx II two-volume cell, coupled to an Agilent 8900 
triple quadrupole ICP-MS in the TeMPO Laboratory, Johns Hopkins 
University (JHU). Data were collected using 600 µm linescans, 
employing a scan rate of 10 µm/s, laser repetition rate of 20 Hz, fluence 
of 3 J cm−2 and a square spot with side length of 100 µm. Helium was 
introduced into the cell at a rate of 0.35 L min−1 and ablation cup at a 
rate of 0.25 L min−1, and Ar makeup gas was added at a rate of 0.8 L 
min−1 prior to introduction of the analyte stream to the ICP–MS. All 
unknowns were run in duplicate, with the second analysis used to verify 
results from the first. Standard references glasses NIST612, NIST610, 
AGV-2G and BHVO-2G were each measured once for every six un
knowns, with NIST612 used as the primary standard for data reduction 
and NIST610, AGV-2G and BHVO-2G used as secondary–quaternary 
standards. Measured average abundance for each element in each of the 
secondary standards were within 15 % of values reported on the 
GeoReM database (Jochum et al., 2005). 

Table 1 
Sample locations (in decimal degrees) for this study, alongside the analysis type(s) conducted on each sample. Abbreviations: pet = petrography; BR chem = bulk-rock 
chemistry; Min chem = mineral chemistry; U-Pb zirc = U-Pb zircon geochronology.  

Sample Unit Latitude Longitude Pet BR chem Min chem U-Pb zirc 

UP19-02 Quinnesec Formation (mafic volanic rocks)  45.75216  −87.91494 X X   
UP19-03 Quinnesec Formation (mafic volanic rocks)  45.74894  −87.92657 X X   
UP19-04 Intrusive mafic rocks  45.74725  −87.94872 X X  X 
UP19-06 Quinnesec Formation (intermediate rock)  45.76057  −87.96948 X X   
UP19-07 Intrusive mafic rocks  45.76717  −87.99258 X X X  
UP19-08 Quinnesec Formation (mafic volanic rocks)  45.84770  −88.33157  X   
UP19-10 Quinnesec Formation (mafic volanic rocks)  45.85342  −88.35971  X   
UP19-12 Quinnesec Formation (mafic volanic rocks)  45.79974  −88.25700  X   
UP19-13 Quinnesec Formation (mafic volanic rocks)  45.79275  −88.19263 X X   
UP19-14 Quinnesec Formation (mafic volanic rocks)  45.76782  −88.18765  X   
UP19-16 Quinnesec Formation (mafic volanic rocks)  45.75241  −88.15078 X X X  
UP19-18 Intrusive mafic rocks  45.77814  −88.12070 X X X  
UP19-19 Quinnesec Formation (mafic volanic rocks)  45.78104  −88.07622  X   
UP19-22 Intrusive mafic rocks  45.78545  −88.04353  X   
UP19-24 Quinnesec Formation (mafic volanic rocks)  45.78999  −88.03852 X X   
UP19-25 Quinnesec Formation (mafic volanic rocks)  45.68933  −87.85870  X   
UP19-26 Quinnesec Formation (mafic volanic rocks)  45.69281  −87.83435  X   
UP19-27 Quinnesec Formation (mafic volanic rocks)  45.68576  −87.83372 X X   
UP19-28 Quinnesec Formation (mafic volanic rocks)  45.65560  −87.82474 X X   
UP19-29 Quinnesec Formation (mafic volanic rocks)  45.64070  −87.94621  X   
UP19-30 Twelve Foot Falls Diorite  45.58551  −88.01230  X   
UP19-31 Beecher Formation (int-fel volcanic rocks)  45.56780  −88.01115 X X   
UP19-32 Beecher Formation (int-fel volcanic rocks)  45.55806  −88.05861  X   
UP19-33 Beecher Formation (int-fel volcanic rocks)  45.56296  −88.07549  X   
UP19-34 Beecher Formation (int-fel volcanic rocks)  45.55651  −88.13316  X   
UP19-35 Twelve Foot Falls Diorite  45.58771  −88.13902  X   
UP19-38 Marinette Quartz-Diorite  45.71736  −88.04295  X  X 
UP19-39 Marinette Quartz-Diorite  45.72793  −88.10143  X   
UP19-40 Quinnesec Formation (mafic volanic rocks)  45.73391  −87.91553 X X   
UP19-41 Quinnesec Formation (mafic volanic rocks)  45.68908  −87.91389 X X X  
UP19-42 Beecher Formation (int-fel volcanic rocks)  45.56402  −87.90949 X X   
UP19-43 Beecher Formation (int-fel volcanic rocks)  45.60366  −87.86429  X   
UP19-44 Beecher Formation (int-fel volcanic rocks)  45.59375  −87.87062  X   
UP19-50 Beecher Formation (int-fel volcanic rocks)  45.59401  −87.77684 X X    
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4.2. Major element mineral chemistry 

Quantitative mineral analyses were conducted in the Department of 
Mineral Sciences, Smithsonian National Museum of Natural History, 
using a JEOL 8900 electron microprobe equipped with five wavelength 
dispersive spectrometers (WDS) and one energy dispersive spectrometer 
(EDS). Spot analyses used a 1 µm diameter spot, 15 kV accelerating 
voltage and 20nA beam current. A total of 220 quantitative spot analyses 
were performed on silicate mineral phases, including 87 on amphibole 
grains, 21 on chlorite grains, 39 on epidote grains and 73 on plagioclase 
grains. The full dataset is available, in element oxide wt. % format, in the 
supplementary material. 

Primary standardization was conducted using a suite of Smithsonian 
standard reference materials, with secondary standards — pyrope 
(NMNH143968), garnet (NMNH87375), Cr-augite (NMNH164905), 
chromite (NMNH118075), manganite (USNM157872), ilmenite 
(USNM96189) and hornblende (NMNH143965) — analyzed regularly to 
monitor accuracy and precision of the analyses (see supplementary 
material). The average abundance of elements analyzed for the stan
dards were within 1.5 % of certified values, with precision ranging from 
0.4 to 2.8 % RSD. 

4.3. U-Pb zircon geochronology 

Geochronology samples were crushed using a stainless-steel ring- 
and-puck mill, sieved to < 250 µm then washed to remove clay-sized 

particles. The sieved and washed material was subjected to magnetic 
separation using a Frantz LB-1 separator. The highly non-magnetic 
fraction was subjected to density separation using diiodomethane 
(specific gravity = 3.32 g cm−3). Zircon grains were picked from the 
diiodomethane-heavy fraction on the basis of optical properties, 
annealed at 900 ◦C for 66 h and mounted in 1″ epoxy rounds. Rounds 
were polished to a 0.3 µm grit size, carbon coated and imaged using a 
Deben Centaurus cathodoluminescence (CL) detector attached to a 
Thermo Scientific Helios G4 UC scanning electron microscope (SEM) in 
the Materials Characterization & Processing Facility, JHU. 

Mounted and CL-imaged zircon grains were analyzed using the 
previously mentioned LA-ICP-MS in the TeMPO Laboratory, JHU. Spot 
analyses were conducted using a square spot with a diameter of 40 x 40 
µm, 250 (UP19-04) or 200 (UP19-38) shots at a laser repetition rate of 
10 Hz (UP19-04) or 8 Hz (UP19-38) and fluence of 1.33 J cm−2 (UP19- 
04) or 3 J cm−2 (UP19-38). Helium was introduced into the cell at a rate 
of 0.35 L min−1 (UP19-04) or 0.5 L min−1 (UP19-38) and ablation cup at 
a rate of 0.325 L min−1 (UP19-04) or 0.3 L min−1 (UP19-38), and Ar 
makeup gas was added at a rate of 0.8 L min−1 prior to introduction of 
the analyte stream to the ICP–MS. ‘SQUID’ tubing used to smoothen the 
signal at the detector. Data were collected over three analytical sessions 
in June 2022, and May and June 2023. 

Zircon standard reference materials 91,500 (1063.6 ± 0.3 Ma: 
Schoene et al., 2006; Wiedenbeck et al., 1995), Plešovice (337.13 ±

0.37 Ma: Sláma et al., 2008), Temora 2 (416.78 ± 0.33 Ma: Black et al., 
2004), and FC-1 (1099.9 ± 1.1 Ma: Paces and Miller Jr, 1993) were 

Fig. 3. Photomicrographs (a, b, d) and back-scattered electron (BSE) images (c) illustrating the range of metamorphic minerals and textures observed in the Pembine 
Ophiolite rocks subject to chemical characterization using electron microprobe analysis. Note the presence of hornblende–tschermakite series amphiboles in UP19-18 
(a), whereas actinolite dominates all other samples shown (b–d). The significance of these observations — in the context of the metamorphic evolution of the 
Pembine Ophioloite — is discussed in Section 5.1.1. White scale bar = 20 µm; yellow scale bar = 500 µm. Abbreviations: act = actinolite; cal = calcite; chl = chlorite; 
hbl-tch = hornblende–tschermakite series; ilm = ilmenite; qtz = quartz; plg = plagioclase. 
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measured prior to every analytical run and every six unknown analyses. 
Standard reference material 91,500 was the primary standard material 
used for data reduction, which was conducted in Iolite v4 (Paton et al., 
2011), employing a median fit to the standard data (autospline fit was 
used for UP19-04 due to all reference materials analyzed displaying a 
uniform, monotonic drift in intensity) and using the downhole frac
tionation application of Paton et al. (2010). Prior to age calculation, a 
‘lab excess uncertainty’ of 2 % was added in quadrature to all isotope 
ratios outputted from iolite (method outlined in Horstwood et al., 2016). 
Concordia diagrams were plotted and ages calculated using IsoplotR 
(Vermeesch, 2018). Full details of standard and unknown analyses 
(following the reporting guidelines of Horstwood et al., 2016) are pro
vided in the supplementary material, as are statistical parameters 
demonstrating satisfactory performance of the standards. 

5. Results and discussion 

5.1. Effects of metamorphism and alteration: Establishing robust 
geochemical proxies 

5.1.1. Major elements 
The rocks of the Pembine–Wausau Terrane have been affected by 

multiple phases of metamorphism (Section 2.0), with the preserved 
mineral assemblages recording metamorphic grades ranging from upper 
greenschist to mid-amphibolite facies (Geiger and Guidotti, 1989; 
Schulz and Cannon, 2007). This variation in metamorphic mineral 
assemblage is reflected in the amphibole species present in the Pembine 
Ophiolite mafic rocks assessed in this study. In most samples, the 
amphibolite species are magnesium-hornblende, actinolite and 
actinolite-hornblende (greenschist to lower-amphibolite facies), 
whereas highly pleochroic tschermakite and Fe-tschermakite (mid- to 
upper-amphibolite facies) occurs in one sample (UP19-18; supplemen
tary material Fig. A). 

Plagioclase compositions also vary between samples. Plagioclase in 
sample UP19-41 – the most easterly sample for which mineral chemical 
data was collected – shows limited chemical variation, with this sample 
exhibiting the lowest Al2O3 (21–22 wt%) and CaO (0.7–2.4 wt%) con
tents, but highest SiO2 (66–69 wt%) and Na2O (6.3–8.5 wt%) contents 
(Supplementary Table B). Plagioclase in Sample UP19-18 also shows 
limited chemical variation and comparable Na2O (4.6–8.2 wt%) con
tents to UP19-41, but exhibits slightly higher Al2O3 (23–25 wt%) and 
CaO (4.4–6.9 wt%) contents, as well as lower SiO2 (60–63 wt%) con
tents. Plagioclase in UP19-16 and −07 shows broader compositional 
variation, with Al2O3 from 23 − 34 wt%, CaO from 2 − 18 wt%, SiO2 
from 46 − 63 wt% and Na2O from 1 − 8 wt% (Supplementary Table B). 

These mineralogical observations have implications for the major 
element compositions of the bulk rocks analyzed as part of this study 
(Fig. 4). The trend from actinolite towards tschermakite amphibole 
compositions — reflecting the progressive effects of fluid alteration/ 
transport during amphibolite facies metamorphism — has the effect of 
locally decreasing SiO2 and MgO contents (Fig. 4a), while also 
increasing FeO, Al2O3 and Na2O (Supplementary Figure A). The chlorite 
alteration would have caused (at least locally) SiO2, CaO and TiO2 loss 
and mild MgO gain (Fig. 4), while the variation in plagioclase compo
sitions could reflect a combination of primary crystallization and sec
ondary alteration during metamorphism. The major element 
compositions of the analyzed bulk-rocks therefore represent a combi
nation of primary igneous processes and metasomatic alteration/trans
port during metamorphism. 

This raises broader questions about the utility of major element 
discrimination plots for elucidating the chemical affinity and tectonic 
environment of lavas that have experienced extensive metamorphism, as 
commonly encountered in orogenic ophiolites. The boninite classifica
tion scheme of Pearce and Reagan (2019), which utilizes multiple ele
ments that have been established as fluid-mobile (at least locally) during 
metamorphism of the Pembine Ophiolite (e.g., SiO2, MgO), is considered 

inappropriate for the rocks studied in this paper. On the TiO2 versus 
MgO plot (Fig. 4d), five samples plot in the boninite field, but only two 
samples classify as boninite according to the rigorous trace element 
analysis presented in Section 5.1.2 (see below). This discrepancy in 
chemical classification is interpreted as a consequence of Mg mobility 
during metamorphism. Similarly, other plots commonly used to estab
lish primary chemical affinity would yield unreliable results if applied to 
the mafic volcanic rocks of the Pembine Ophiolite, including: (1) 
bivariate plots with MgO on the horizontal axis, commonly used to 
compare major element compositions among ophiolites and modern 
tectonic environments (e.g., Dilek et al., 2008; Dilek and Thy, 1998); (2) 
FeO/MgO ratio (or Mg-number), commonly used to distinguish tholei
itic from calc-alkaline affinity lavas (e.g., Dilek et al., 2008) as well as to 
differentiate between mid-ocean ridge basalt (MORB), island arc basalt 
(IAB) and boninite (e.g., Pe-Piper et al., 2004). 

In summary, many of the major element proxies appropriately 
applied to young (<200 Ma), relatively unmetamorphosed ophiolites 
are not useful for discrimination of magmatic processes and tectonic 
environments in ancient orogenic belts such as the c. 1880–1820 Ma 
Penokean Orogeny of North America, which has experienced multiple, 
widespread episodes of metamorphism and deformation (and associated 
element mobility). 

5.1.2. Trace elements 
Determining the correlation between individual trace elements and 

those considered most immobile at crustal conditions (e.g., Y, Yb, Zr; 
Cann, 1970; Guice et al., 2018, Guice et al., 2019) can be a useful 
approach to constraining bulk-rock trace element mobility in co-genetic 
suites of mafic rocks. This simple method provides no details about 
which stage of metamorphism was responsible for element mobility, but 
does broadly indicate the magnitude of metamorphism-related meta
somatism. Here, Yb was selected as the most immobile element, based 
on it having the lowest correlation with Ba (a highly mobile element) 
and highest correlation with other highly immobile elements (Y, Zr). To 
avoid complications arising from the effects of crystal fractionation, only 
the mafic volcanic samples (n = 17) were included in linear correlation 
calculations. Results for fits among trace elements and Yb are shown in 
supplementary material Figure B. 

Linear fits to the trace element bivariate plots for the Pembine mafic 
volcanic rocks show that abundance of the most compatible elements 
(Nd–Lu on normalized trace element plots; Fig. 5) correlate strongly 
with Yb (R2 = 0.77–0.99) and do not correlate at all with Ba (R2 < 0.1). 
This suggests that these elements were relatively immobile during 
metamorphism and hydrothermal alteration. In contrast, the most 
incompatible trace elements (Rb–Sr on the normalized trace element 
plot; Fig. 5) show poor correlations with Yb (R2 < 0.15), suggesting 
these elements were likely mobilized relative to Yb during the multiple 
phases of metamorphism experienced by the Pembine Ophiolite mafic 
rocks. Only trace elements considered relatively immobile during 
metamorphism (Nd–Lu on normalized trace element plots; Fig. 5) are 
here used to establish the primary chemical signatures of the mafic 
volcanic samples from the Pembine Ophiolite. These data underline the 
importance of conducting a detailed assessment of element mobility 
prior to applying bulk-rock trace element data to investigate the primary 
magmatic affinity of metamorphosed mafic volcanic rocks (Guice, 2019 
and references therein). 

5.2. Mafic volcanic rock chemistry: A progression from MORB-like to 
boninitic volcanism 

Based on elements considered immobile (Section 5.1), the Quinnesec 
Formation mafic volcanic rocks analyzed as part of this study are sub
divided into three groups (Fig. 5). Groups 1 and 3 are end-members that 
resemble mid-ocean ridge basalt (MORB) and mean Izu-Bonin-Mariana 
(IBM) boninite, respectively, whereas Group 2 is transitional between 
these end-members. All mafic volcanic rocks that were assessed contain 
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Fig. 4. (a-d) Bulk-rock bivariate plots for rocks analyzed from the Pembine Ophiolite. (a) and (c) detail the mineralogical controls of the bulk-rock composition, 
including annotations outlining the chemical effects of metamorphism. (b) and (d) are the same plots as (a) and (c), respectively, but instead show the major- and 
minor-element classification fields of Pearce and Reagan (2019). Abbreviations: A = andesite; amf = amphibolite; BA = basaltic andesite; D = dacite; HMA = high- 
magnesium andesite; BADR = basalt–andesite–dacite–rhyolite; all other abbreviations as for Fig. 3. (e-f) Amphibole compositions. 
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5–14 wt% MgO, 43–56 wt% SiO2 and 13–15 wt% Al2O3, and have 
mineral assemblages described in Section 3.1. 

The immobile trace element characteristics of the three groups are as 
follows (Fig. 5): Group 1 (MORB-like; n = 9) samples are enriched in 
compatible elements ([Lu]pmN = 7.8–16.5), with positively sloping 
trace-element patterns ([Zr/Lu]pmN = 0.4–0.6), mild positive Zr–Hf 
anomalies and mild negative Ti anomalies (Fig. 5); Group 2 (transi
tional; n = 6) samples are depleted in compatible trace elements relative 
to Group 1 ([Lu]pmN = 2.3–5.9), exhibiting positively sloping to near-flat 
trace element patterns ([Zr/Lu]pmN = 0.1–0.8) and mild negative Zr and 
Ti anomalies; Group 3 (boninite-like; n = 2) samples are strongly 
depleted in compatible trace elements relative to Group 1 ([Lu]pmN =

2.6–2.9) and show near-flat trace element patterns ([Zr/Lu]pmN =

0.7–0.8). 
Group 1 and Group 2 samples are spatially concentrated close to the 

Niagara Fault, in the north of the mapped Quinnesec Formation (Figs. 1, 
2), whereas the Group 3 samples occur closer to the contact with the 
intermediate–felsic volcanic rocks (Beecher Formation), at the southern 
extent of the Quinnesec Formation. Thus, assuming the inter
mediate–felsic volcanic rocks represent the stratigraphic top of the 
Pembine Ophiolite (Sims et al., 1989), the described geochemical evo
lution from Group 1 (MORB-like) to Group 3 (boninite-like) occurs in an 
up-stratigraphic direction (Fig. 6). Based on a sub-vertical dip, the 
maximum stratigraphic thickness for the mafic volcanic rocks is 

Fig. 5. Chondrite-normalized rare earth element (REE) plots (left column) and primitive mantle-normalized trace element plots (right column) illustrating the trace 
element compositions of the mafic volcanic rocks from the Pembine Ophiolite. For elements considered relative immobile (in dark grey on the x axis), group 1 
compositions resemble N-MORB, while group 3 composition resemble the mean boninite from the Izu-Bonin-Mariana. Normalizing values are from McDonough and 
Sun (1995); MORB and OIB compositions are from Sun and McDonough (1989); mean Izu-Bonin-Mariana (IBM) boninite composition calculated using data 
downloaded from the GEOROC database (https://georoc.eu/). Red elements are considered mobile in the studied rocks (see Section 5.1.2). The full dataset are 
included in the supplementary material. 
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approximately 18 km; however, the true thickness is almost certainly 
significantly less (Fig. 6) and will depend on the true dip of the Quin
nesec Formation, which is unclear based on current geologic mapping 
(Fig. 2). LaBerge et al. (2003) suggest the Quinnesec may be several km 
thick and that the Beecher Formation (our usage, combining the 
Beecher, Pemene and McAllister Formations of Jenkins, 1973) may also 
be several km thick. 

5.3. Temporal constraints on the evolution of the Pembine Ophiolite 

5.3.1. Existing temporal constraints 

5.3.1.1. Pre-Penokean (>1880 Ma) magmatism. The history of mag
matism associated with the Pembine Ophiolite started with eruption of 
the MORB-like units of the Quinnesec Formation, which are close to the 
stratigraphic base (see Section 5.2; Fig. 6). These rocks are constrained 
as older than c. 1890 Ma by a U-Pb zircon age for the Twelve Foot Falls 
Diorite (1889 ± 6 Ma: Holm et al., 2020). However, the only geochro
nology work directly dating these rocks is a whole-rock Sm–Nd date of 
1870 ± 56 Ma for the Quinnisec Formation (Beck and Murthy, xxxx), 
which is not precise enough to differentiate it from other units of the 
Pembine–Wausau Terrane. The Twelve Foot Falls Diorite has an εNd 
(1900 Ma) value of + 4.54 (Schulz and Ayuso, 1998), consistent with a 
(single-stage) depleted mantle extraction timing identical to its crys
tallization age (c. 1889 Ma: Holm et al., 2020) and similar to the Nd 
composition of the Quinnesec Formation (Beck and Murthy, 1991). 
Primary crystallization of the Beecher Formation was recently dated at 
1842 ± 7 Ma (U-Pb zircon; Zi et al., 2022), challenging interpretations 
of the Beecher Formation as cogenetic with the geochemically-similar 
Twelve Foot Falls Diorite (Sims, 1992). 

5.3.1.2. Penokean-age (1880–1820 Ma) magmatism. Intrusive igneous 
units dated to the 1880–1820 Ma interval include the Marinette Quartz 
Diorite, Newingham Tonalite and Spike Horn Creek Granite, which are 
all interpreted — based on field relationships — to post-date the Dunbar 
Gneiss (Sims, 1992). Sims et al. (1992) dated the Dunbar Gneiss, 
Marinette Quartz Diorite and Newingham Tonalite at 1862 ± 5 Ma, 
1857 ± 16 Ma and 1861 ± 40 Ma, respectively (all by U-Pb zircon). Zi 
et al. (2022) recently published younger U-Pb zircon dates of 1845 ± 7 
Ma for the Dunbar Gneiss and 1847 ± 10 Ma for the Newingham 
Tonalite. Neodymium isotope analyses for the Dunbar Gneiss, Marinette 
Quartz Diorite, Hoskin Lake Granite and Newingham Tonalite suggest 
these units crystallized from evolved magmas (Van Wyck and Johnson, 
1997; Schulz and Ayuso, 1998). 

5.3.1.3. Yavapai-age (1800–1750 Ma) metamorphism. The Pembine 
Ophiolite experienced metamorphism at c. 1775, constrained by a U-Pb 
monazite date from the intermediate–felsic volcanic rocks of the Beecher 
Formation (Zi et al., 2022). This recently published monazite date is 
associated with the Yavapai metamorphic event recorded in continental 
terranes north of the Niagara Fault (Holm et al., 2007; Schneider et al., 
2004) and farther south in Wisconsin (Medaris et al., 2021). 

5.3.2. New U-Pb zircon constraints 
To better constrain the timing of magmatism in the Pembine 

Ophiolite, samples of a gabbro within the Quinnesec Formation (UP19- 
04) and of the Marinette Quartz Diorite (UP19-38) were dated by U-Pb 
zircon LA-ICP-MS. Full data tables for the geochronology work are 
provided in the supplementary material. 

Sample UP19-04 — a mafic unit with SiO2 = 46.75 wt% — yielded 
four zircons. They are translucent-brown and euhedral, with aspect ra
tios of ~ 2:1 and a short-dimension width of ~ 100 µm. The zircons 
display oscillatory zoning in CL (Fig. 7C) and have Th/U values of 
1.1–1.9, which is suggestive of igneous origin. Individual grains were 
large enough to fit 3–4 spots on each, for a total of 14 analyses. Analyses 

Fig. 6. Stratigraphic column detailing the stratigraphy of the Pembine 
Ophiolite, with a specific focus on the chemostratigraphic evolution of the 
mafic volcanic rocks, as described in Section 5.2. Normalizing values from 
McDonough and Sun (1995). Abbreviations: MORB = mid-ocean ridge basalt. 
“G1” and “G3” refer to the Group 1 and 3 mafic volcanics, respectively, as 
defined in Section 5.2 and Fig. 5. 
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clustered on concordia, yielding a 207Pb/206Pb date of 1770 ± 25 Ma 
(MSWD = 0.14, n = 14; Fig. 7A) that we interpret to date crystallization 
during the Yavapai event. The gabbro bodies within the Quinnesec 
Formation are isotropic (unlike the heavily-deformed Quinnesec For
mation metavolcanics that host them), which is consistent with a late- 
tectonic or post-tectonic intrusive timing. 

Marinette Quartz Diorite sample UP19-38 yielded numerous, heavily 
metamict zircons that are opaque-chocolate brown. The grains are 
euhedral, displaying well-developed terminations, aspect ratios between 
1:1 and 5:1, and a short-dimension width of 100–200 µm. The zircons 
are relatively uniform in CL response, displaying oscillatory zoning at 
the rims but incoherent zoning in the cores, suggestive of extensive 
metamictization (Fig. 7d). Grains have Th/U values of 0.1–2.3. Four 
analyses were performed on 36 different zircons, for a total of 144 an
alyses. The Tera-Wasserburg plot of the data shows evidence of both Pb 
loss associated with metamictization and minor inheritance (Fig. 7b). 
Applying discordance filters of 1 %, 2.5 % and 5 % — based on 
206Pb/238U date vs. 207Pb/235U date, using the 238U/235U ratio of Hiess 
et al. (2012) — resulted in culling of the original dataset (n = 144) to n 
= 23, n = 44 and n = 72, respectively. The two most aggressive culling 
approaches yielded single statistical age populations with indistin
guishable 207Pb/206Pb dates of 1867 ± 12 Ma (MSWD = 0.8, n = 40; 1 % 
cutoff) and 1866 ± 9 Ma (MSWD = 0.63, n = 40; 2.5 % discordance 
cutoff) when old outliers are excluded. We choose to report the date 
obtained using the 2.5 % cutoff (Fig. 7b). 

Our c. 1770 Ma date for the undeformed, Quinnesec-hosted gabbro 
sample (UP19-04) suggests that the gabbro intrusions within the 

Quinnesec Formation are associated with the Yavapai event; though 
previous interpretations have considered these gabbros to be cogenetic 
with the Quinnesec Formation (e.g., Sims et al., 1992), it appears that 
they significantly post-date that volcanism. The Yavapai event has also 
been associated with widespread regional metamorphism in the Pem
bine–Wausau Terrane (Zi et al., 2022) and the marginal (Superior) ter
ranes to the north (Holm et al., 2007; Schneider et al., 2004) and 
Yavapai terrane to the south (Medaris et al., 2021). The enriched MORB- 
like compositions of these gabbros (Fig. 6) suggest that the Yavapai 
event may have involved decompression melting and advection of heat 
from the mantle into the crust, raising interesting questions of heat 
sources for the Yavapai regional metamorphism. 

Our 1866 ± 9 Ma date for the Marinette Quartz Diorite is slightly 
older than the 1845 ± 7 Ma date Zi et al. (2022) recently determined for 
the Dunbar Gneiss, which the Marinette Quartz Diorite intrudes; how
ever, the difference between these dates (~1 %) is within the generally 
accepted accuracy for in-situ U-Pb geochronology (e.g., Košler et al., 
2013). On the other hand, the 1842 ± 7 Ma date for the Beecher For
mation (Zi et al., 2022) is ~ 2.5 % younger than the 1889 ± 6 Ma date 
for the Twelve Foot Falls Diorite (Holm et al., 2020), whichis interpreted 
to have intruded the Beecher Formation (Sims, 1992). Given apparent 
widespread perturbation to U-Pb zircon systematics in the Beecher 
Formation and Dunbar Gneiss by younger Yavapai metamorphism (Zi 
et al., 2022), we argue that the Zi et al. (2022) dates should be treated as 
minima. If the Beecher Formation is older than (or cogenetic with) the 
Twelve Foot Falls Diorite then the volume of pre-Penokean (>1880 Ma) 
volcanism can be extended significantly. Additional dating of the 

Fig. 7. U-Pb zircon geochronology results for this study. (a) Tera-Wasserburg concordia plot showing all analyses for the UP19-04 sample of unnamed gabbro, with 
inset showing weighted mean plot. (b) Tera-Wasserburg concordia plot showing all analyses for the UP19-38 sample of Marinette Quartz Diorite, with blow up of 
main data cluster and inset showing weighted mean plot. Individual analyses were filtered for a 2.5 % discordance cutoff: discordant data are colorless; concordant 
but anomalously old data are cyan; concordant main-population data are orange. (c) CL images for representative set of zircons from UP19-04, showing locations of 
individual analyses and their dates. (d) CL images for a representative set of zircons from UP19-38, showing locations of individual analyses and their dates. Orange, 
cyan and white color code as for sub-figure (b). MSWD = mean squared weighted deviation. All dates are 207Pb/206Pb dates, with 2se uncertainty. 

G.L. Guice et al.                                                                                                                                                                                                                                 



Precambrian Research 399 (2023) 107223

11

Beecher Formation and overlying volcanics and/or Nd analysis of these 
units (i.e., testing for juvenile vs. more evolved origin) may help to shed 
light on this issue. 

5.4. The Pembine Ophiolite: Forearc oceanic lithosphere produced during 
subduction initiation 

In previous tectonic models for the Paleoproterozoic Penokean 
Orogeny, the Pembine Ophiolite has been interpreted as: (1) a c. 1900 
Ma intra-oceanic arc that was accreted to the southern margin of the 
Superior Craton at c. 1875 Ma (Schulz and Cannon, 2007); or (2) a 
continental back-arc (Van Wyck and Johnson, 1997), with ultra
mafic–mafic magmatism a product of back arc extension and decom
pression melting at c. 1845 Ma (Zi et al., 2022). In the intra-oceanic arc 
model, the Pembine–Wausau Terrane is interpreted as a supra
subduction zone ophiolite, with the accretion of this terrane at c. 1875 
Ma marking the culmination of south-dipping subduction (current co
ordinates), triggering subduction polarity flip and back-arc extension 
(Schulz and Cannon, 2007). By contrast, the continental back arc model 
proposes that the Pembine Ophiolite was associated with West Pacific- 
style ‘tectonically-switching’ accretionary orogenesis, which involved 
pulses of extension and contraction (see Collins, 2002) over a north- 
dipping subduction zone (Zi et al., 2022). The data presented here 
supports the suprasubduction zone ophiolite model of Schulz and 

Cannon (2007), with the Pembine Ophiolite further interpreted here as 
having formed in response to forearc spreading during subduction 
initiation at or before 1890 Ma. 

The geochemical evolution recorded in the Quinnesec Formation 
mafic volcanics — from MORB-like at the base (n = 9) to boninitic (n =
2) at higher stratigraphic levels (see Section 5.2) — is a characteristic 
feature of < 250 Ma SSZ ophiolites; ophiolites showing this volcanic 
evolution include many “Tethyan-type” ophiolites of the Alpi
ne–Himalayan mountain system (Dilek and Furnes, 2014). Although 
geochemical and stratigraphic variability occurs among examples, these 
Tethyan ophiolites show a consistent trend towards boninite-like com
positions stratigraphically upward. As summarized in Fig. 8, this 
geochemical progression is characterized by decreases in the abundance 
of: (1) the most compatible trace elements (e.g., Yb, Lu; Fig. 8a–b); (2) 
the high field strength elements (HFSE; e.g., Zr and Ti; Fig. 8c); and (3) 
moderately compatible trace elements (e.g., Nd; Fig. 8d). Notably, in the 
Nd v. Yb plot (Fig. 8d the Pembine rocks define two arrays — one 
consistent with the Mirdita, Oman and Pindos data, the other consistent 
with the Troodos data — reflecting the geochemical diversity among 
mafic volcanic stratigraphies of Tethyan ophiolites. The stratigraphic 
top of the Pembine Ophiolite comprises intermediate–felsic volcanic 
rocks with distinctive negative Nb–Zr–Hf–Ti anomalies (Fig. 6), which is 
a feature that is also characteristic of Tethyan ophiolites (Dilek et al., 
2008). The striking geochemical and lithological similarities between 

Fig. 8. Primitive mantle-normalized trace element plots (a–b) and trace element bivariate plots (c–d) showing the similarity of the mafic volcanic rocks of the 
Pembine Ophiolite to MORB (G1–Pembine) and boninite (G3–Pembine) samples from various Tethyan ophiolites. Plume-related basalts from Hawaii are also 
included on the bivariate plots for comparison, with the Pembine data distinct from these plume compositions. Tethyan data from: Dilek et al. (2008); Dilek and Thy 
(2009); Pe-Piper et al. (2004); Saccani and Photiades (2004). IBM and Hawaii data from the GEOROC database (https://georoc.eu/). 
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the Pembine Ophiolite and Tethyan ophiolites raises the intriguing 
possibility that the processes of magmagenesis (e.g., mantle source, 
melting trigger and degree of partial melting) and the typical evolution 
of these processes at c. 1900 Ma were similar to those operative in the 
Mesozoic and Cenozoic Eras. 

There is growing consensus that Tethyan ophiolites preserve young, 
buoyant forearc lithosphere ideally situated for obduction following 
subduction initiation (Casey and Dewey, 1984; Wakabayashi and Dilek, 
2004). This hypothesis has been strengthened by petrologic and 
geochemical findings for the IBM forearc, which is associated with 
active subduction in the West Pacific, southeast of Japan (Ishizuka et al., 
2006, 2011). The mafic volcanic rocks of the IBM forearc show the same 
up-stratigraphic-section geochemical progression as the Tethyan 
ophiolites (Dilek and Furnes, 2009), recording evolution from tholeiitic 
lavas associated with extension and forearc seafloor spreading to calc- 
alkaline and arc lavas reflecting the increasing influence of 
subduction-derived fluids (Whattam and Stern, 2011; Stern et al., 2012). 

Our observation that the mafic volcanic chemical stratigraphy of the 
Pembine Ophiolite is comparable to that of Mesozoic, Tethyan ophiolites 
raises the possibility that it formed as forearc oceanic lithosphere — 
comparable to that of the modern IBM — during subduction initiation at 
c. 1900 Ma, and was subsequently obducted onto the Superior Craton. 
This interpretation requires that the Pembine Ophiolite is an oceanic- 
derived terrane. 

5.5. Paleoproterozoic ophiolites and the evolution of plate tectonics on 
Earth 

Secular change and the evolution of Earth’s tectonic mode is a topic 
of considerable debate. Some authors argue that plate tectonic-like 
processes have operated consistently since 3500 Ma or earlier (Acker
son et al., 2021; Furnes et al., 2009), while others suggest that modern 
plate tectonic processes may only have been localized and/or ephemeral 
until c. 1000 Ma (Hamilton, 2003; Stern, 2005, 2020). However, the 
majority of researchers place the onset of plate tectonics somewhere 
between 3000 and 2500 Ma (e.g., Cawood et al., 2018), with this 
interpretation supported by the temporal evolution of several meta
morphic (Brown and Johnson, 2018; Holder et al., 2019; Holder and 
Viete, 2023), bulk-rock geochemical (Johnson et al., 2019; Tang et al., 
2016), mineral chemical (Ackerson et al., 2021), and isotopic (e.g., 
Dhuime et al., 2015) proxies. The proposed existence of Archean 
ophiolites — including the 2510 Ma Dongwanzi-Zunhua complex in the 
North China Craton (Kusky et al., 2001), the 2530 Ma Devanur complex 
in the Dharwar Craton (Yellappa et al., 2012), the 3500 Ma Jamestown 
(De Wit et al., 1987) and 3500 Ma Muldersdrif–Modderfontein com
plexes in the Kaapvaal Craton (Anhaeusser, 2006), and the 3800 Ma Isua 
Greenstone Belt in the North Atlantic Craton (Furnes et al., 2007) — 
have also been cited as evidence supporting the operation of plate tec
tonics before 2500 Ma. However, it should be noted that not all of 
Archean ophiolite interpretations are widely accepted (e.g., Kamber 
2015). 

Whether an ephemeral Paleoproterozoic process or one that had 
been operating for hundreds of millions or billions of years prior to 1.9 
Ga, the geologic record preserves strong evidence that plate tectonics 
operated during the time interval represented by the Penokean Orogeny 
(Stern, 2023). Metamorphic rocks recording relatively low thermobaric 
ratios — suggestive of formation in subduction zones — occur in the 
2.1–1.8 Ga interval (e.g., Brown and Johnson, 2018, 2019; Holder and 
Viete, 2023), and a cluster of ophiolites are also recognized at this time 
interval (Section 1.0; Condie, 2018; Stern, 2023). What remains unre
solved, however, is how the tectonic, magmatic and metamorphic pro
cesses operational during the 2.1–1.8 Ga interval compare to those 
occurring on Earth today. Has plate tectonics operated consistently since 
before 2 Ga, or have Earth’s major plate tectonic processes and their 
petrologic products changed in character over this time interval? 

As described above, the MORB-like to boninitic volcanic progression 

recorded in the Pembine Ophiolite (and Tethyan ophiolites) is consid
ered to record decompression melting and seafloor spreading associated 
with local extension during subduction initiation, followed by 
increasing influence of slab-derived fluids, leading to the traditional arc 
signature (Kelemen et al., 1993). The HFSE anomalies that characterize 
this late chemical signature are interpreted as associated with rutile- 
present melting of depleted upper mantle, with this mineral retaining 
HFSE in the source region (Klemme et al., 2005). The chemical similarity 
of the Pembine Ophiolite’s mafic volcanic stratigraphy to Tethyan 
ophiolites and the IBM arc (Section 5.4) implies that the processes 
forming oceanic lithosphere at c. 1900 Ma may have been similar to 
processes active in subduction zones today (Reagan et al., 2017). 

One potential caveat to this hypothesis is the relative lack of ultra
mafic rocks in the Pembine Ophiolite. These lithologies typically 
dominate the lowermost portions of complete or near-complete 
Tethyan-type ophiolites and form the diagnostic mantle portion 
(Fig. 9). According to current mapping, ultramafic rocks in the Pembine 
Ophiolite are restricted to an area less than 4 km x 1 km that is coinci
dent with the middle of the ophiolite stratigraphy (Fig. 2; Fig. 6). 
Though the best-preserved examples of Tethyan ophiolites contain large 
swathes of ultramafic rock (Fig. 9), many dismembered/heavily 
tectonized Phanerozoic ophiolites are dominated by mafic rocks (e.g., 
Becker et al., 2023). In these cases, the lack of ultramafic rocks may be 
attributed to tectonic processes during obduction/later faulting, rather 
than representing a fundamental difference in the processes forming the 
ophiolitic lithosphere. As described in Section 2.0, the Pembine 
Ophiolite has experienced multiple phases of tectonism since its for
mation at c. 1900 Ma. As the contact between the mafic and ultramafic- 
dominated portions of ophiolites represents a rheological boundary 
along which faults are likely to localize, detachment and segregation of 
the mafic from ultramafic portions should not be unexpected. The 
apparent lack of other classic ophiolite features, including pelagic sed
iments and a well-developed sheeted dyke complex (with plagiogran
ites), could also be attributed to the multiple episodes of tectonism 
experienced by the Pembine rocks. 

6. Conclusions 

1. The Pembine Ophiolite is a fragment of oceanic lithosphere that 
was obducted to the southern margin of the Superior Craton during the 
Paleoproterozoic Penokean Orogeny. The ophiolite stratigraphy is < 18 
km thick and preserves (from stratigraphic base): mafic volcanic rocks, 
containing intrusive mafic rocks that are concentrated mostly towards 
the base; and extrusive intermediate–felsic volcanic rocks. The strati
graphic base of the ophiolite is bound by the Niagara Fault, while the 
stratigraphic top is in direct contact with felsic intrusive rocks. 

2. Major elements commonly used in bulk-rock geochemical 
discrimination diagrams (e.g., Si, Mg) — including the popular classi
fication scheme of Pearce and Reagan (2019) — were mobilized during 
the amphibolite- and greenschist-facies metamorphism of the Pembine 
Ophiolite volcanics, making them unreliable tectonomagmatic proxies 
here. 

3. Relatively immobile trace element compositions of the Quinnesec 
Formation mafic volcanic rocks record an up-stratigraphic-section 
geochemical progression from MORB-like to boninitic in the Pembine 
Ophiolite. This geochemical evolution is identical to that observed for <
250 Ma Tethyan ophiolites preserved in the Alpine–Himalayan system. 

4. Our new U-Pb zircon geochronology conducted on an intrusive 
mafic rock (UP19-04) is suggestive of mafic magmatism at c. 1770 Ma, 
during the Yavapai orogenic event and potentially via decompression 
melting. Other new U-Pb zircon geochronology — conducted on the 
Marinette Quartz Diorite — suggests that this unit crystallized at c. 1866 
Ma. 

5. The Pembine Ophiolite is interpreted as having formed in response 
to forearc spreading during subduction initiation at c. 1900 Ma. The 
upper, intermediate–felsic volcanic unit reflects subsequent arc 
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magmatism as the subduction zone matured, with the entire package 
obducted to the continental margin of the Superior Craton during the 
Penokean Orogeny (c. 1875 Ma: Schulz & Cannon, 2007) and then 
affected by regional metamorphism during the Penokean Orogeny (c. 
1830 Ma: Holm et al., 2007; Schneider et al., 2004) and the Yavapai 
event (c. 1775 Ma: (Holm et al., 2007; Schneider et al., 2004; Zi et al., 
2022). 

6. The chemical similarity of the Pembine Ophiolite mafic volcanic 
stratigraphy to multiple examples of Tethyan ophiolites (and the mod
ern IBM arc) implies that the Pembine Ophiolite represents a rare 
ophiolite of Paleoproterozoic age, and that the (plate) tectonic frame
work at c. 1900 Ma may not have been significantly dissimilar to that of 
modern Earth. 
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