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We present a new quantum field-theoretic definition of fully unintegrated dihadron fragmentation

functions (DiFFs) as well as a generalized version for n-hadron fragmentation functions. We demonstrate

that this definition allows certain sum rules to be satisfied, making it consistent with a number density

interpretation. Moreover, we show how our corresponding so-called extended DiFFs that enter existing

phenomenological studies are number densities and also derive their evolution equations. Within this new

framework, DiFFs extracted from experimental measurements will have a clear physical meaning.
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Introduction.—High-energy collisions of hadrons are

central to understanding their femtoscale structure at the

level of quarks and gluons (partons) within the theory of

quantum chromodynamics (QCD). The critical ingredients

that encode this information are parton distribution func-

tions (PDFs) and fragmentation functions (FFs). A crucial

property of PDFs and FFs is their interpretation as number

densities in a parton model framework [1,2], which con-

sequently allows one to derive certain sum rules [1–5]. For

example, the unpolarized transverse momentum dependent

(TMD) PDF f
i=N
1 ðx; k⃗2TÞ gives the number density in the

momentum fraction x and transverse momentum k⃗T of a

parton i ¼ q or g in a nucleon N [1,2]. Similarly, the

unpolarized TMD FFD
h=i
1 ðz; P⃗2

⊥Þ gives the number density

in the momentum fraction z and transverse momentum P⃗⊥

of a hadron h fragmenting from a parton i [1,2]. Since PDFs
and FFs are number densities, one can also use them to

calculate expectation values (see, e.g., Refs. [6–9]). The

information contained in sum rules and expectation values

are important pieces to understanding hadronic structure as

well as constraining or cross-checking phenomenological

extractions and model calculations of PDFs and FFs.

The most common type of FFs describe the situation

where a single hadron h is detected in the final state,

i → hX (X representing all undetected particles). Another

intensely studied class of reactions analyzes the case of

two hadrons h1 and h2 being detected from the same

parton-initiated jet, i → ðh1h2ÞX, where dihadron FFs

(DiFFs) become relevant [10–50]. The quantum field-

theoretic definition of DiFFs at the fully unintegrated

level (what we will call uDiFFs) was first written down

almost 25 years ago in the pioneering paper of Bianconi,

Boffi, Jakob, and Radici (BBJR) [20]. This work has

been the basis for all subsequent dihadron-related research

for observables sensitive to the relative transverse momen-

tum of the two hadrons [21–25,27,31,32,35–39,41–48].

Unfortunately, the BBJR definition does not allow the

uDiFFs, nor the so-called extended DiFFs (extDiFFs) that

are the focus of existing phenomenological analyses, to

retain a number density interpretation in a parton model

framework.

The main purpose of this Letter is to disseminate a new

definition of uDiFFs that corrects this issue. We justify its

number density interpretation by explicitly proving certain

sum rules. We also show our corresponding extDiFFs are

number densities and derive their evolution equations.

Given the existing electron-positron annihilation dihadron

cross section data [51], dihadron transverse single-spin

asymmetries in electron-positron annihilation [52], semi-

inclusive deep-inelastic scattering (SIDIS) [53,54], and

proton-proton collisions [55,56], and anticipated measure-

ments of the proton-proton dihadron cross section and

SIDIS dihadron multiplicities, one eventually will be able

to perform rigorous fits of extDiFFs within QCD global

analyses. These studies must be carried out within our new

framework for the extracted extDiFFs to have a clear

physical meaning—see Refs. [57,58].

New correlator definition of DiFFs.—We begin by

briefly discussing two different reference frames that will

be relevant for our analysis: the “parton frame” (p), where

the fragmenting parton has no transverse momentum, and

the “dihadron frame” (h), where the dihadron has no
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transverse momentum. In both frames the parton has the

same large minus-light-cone momentum component k−

[V�
≡ ðV0 � V3Þ=

ffiffiffi

2
p

for a generic vector V]. They are

connected through the following Lorentz transformation

(see, e.g., Ref. [2], Sec. 12.4.1): V−
p ¼ V−

h ≡ V−; Vþ
p ¼

ðk⃗T=k−Þ2V−=2þVþ
h − k⃗T ·V⃗T=k

−; V⃗⊥¼−ðk⃗T=k−ÞV−þV⃗T .

We use⊥ðTÞ to denote transverse components in the parton

(dihadron) frame. The parton frame is more natural for the

formulation of fragmentation correlators (whether single

hadron or dihadron) as number densities, whereas the

dihadron frame is more practical for proofs of factorization

needed for phenomenological applications.

The quantum field-theoretic correlator for the fragmen-

tation of a parton i into two hadrons h1 and h2, after

integrating over kþ, is defined as [20]

Δ
h1h2=i
αβ ðz1; z2; P⃗1⊥; P⃗2⊥Þ

¼ 1

Ni

X

Z

X

Z

dξþd2ξ⃗⊥
ð2πÞ3 eik·ξO

h1h2=i
αβ ðξÞ

�

�

�

ξ−¼0
; ð1Þ

where z1 and z2 are the fractions of the parton’s

longitudinal momentum carried by each hadron and P⃗1⊥

and P⃗2⊥ are the transverse momenta of the hadrons relative

to the parton. For a quark, Ni is the number of quark colors

Nc ¼ 3, and

O
h1h2=q
αβ ðξÞ¼ h0jWð∞;ξÞψq;αðξþ;0−; ξ⃗⊥ÞjP1;P2;Xi

× hP1;P2;Xjψ̄q;βð0þ;0−; 0⃗⊥ÞWð0;∞Þj0i; ð2Þ

where ψq is the quark field, α and β are indices for the

components of the field, and W is a Wilson line in the

fundamental representation of SU(3) that ensures color

gauge invariance [2,59]. A sum over color indices in Eq. (2)

is implied. For a gluon, Ni ¼ N2
c − 1, and

O
h1h2=g
αβ ðξÞ ¼ h0jWbað∞; ξÞFa

þαðξþ; 0−; ξ⃗⊥ÞjP1; P2;Xi

× hP1; P2;XjFc
þβð0þ; 0−; 0⃗⊥ÞWcbð0;∞Þj0i;

ð3Þ

where Fa
μν ¼ ∂μA

a
ν − ∂νA

a
μ þ gfabcAb

μA
c
ν is the field

strength tensor involving the gluon field A and the

Wilson lines are now in the adjoint representation of SU(3).

Throughout this Letter, we focus on the production of

unpolarized hadrons. For the fragmentation of an unpolar-

ized parton, we parametrize the correlator in Eq. (1) as

1

64π3z1z2
Tr
h

Δ
h1h2=qðz1; z2; P⃗1⊥; P⃗2⊥Þγ−

i

¼ D
h1h2=q
1 ðz1; z2; P⃗2

1⊥; P⃗
2
2⊥; P⃗1⊥ · P⃗2⊥Þ; ð4Þ

z

32π3z1z2P
−

h

δ
ij
⊥
Δ

h1h2=g;ijðz1; z2; P⃗1⊥; P⃗2⊥Þ

¼ D
h1h2=g
1 ðz1; z2; P⃗2

1⊥; P⃗
2
2⊥; P⃗1⊥ · P⃗2⊥Þ; ð5Þ

where z ¼ z1 þ z2 is the total momentum fraction of the

dihadron and Ph ¼ P1 þ P2. As we will show in the next

section, the prefactor of 1=ð64π3z1z2Þ in Eq. (4) is crucial to
justifying the number density interpretation of the quark

uDiFFs [and similarly for the gluon case in Eq. (5)]. If one

insteadwere to use a prefactor of1=ð4zÞ, to be in full analogy
with single-hadron fragmentation [1,59–61], the quark

uDiFFs would not retain a number density interpretation.

Indeed, the fact that the prefactors on the lhs of Eqs. (4)

and (5) are needed was already recognized previously in the

context of collinear DiFFs D
h1h2=i
1 ðz1; z2Þ [28,29].

Number density interpretation.—To justify that Eqs. (4)

and (5) have the desired number density interpretation, we

will derive sum rules involving our uDiFFs in a parton

model framework. The proofs of the sum rules in this

section are left for Supplemental Material [62]. We focus

first on the number sum rule:

Z

dPSD
h1h2=i
1 ðz1;z2; P⃗2

1⊥; P⃗
2
2⊥; P⃗1⊥ · P⃗2⊥Þ¼ hN ðN −1Þi;

ð6Þ

where
R

dPS¼
P

h1

P

h2

R

1
0
dz2

R

1−z2
0 dz1

R

d2P⃗1⊥

R

d2P⃗2⊥

and N is the total number of hadrons produced when

the parton i fragments. Thus, hN ðN − 1Þi is the expect-

ation value for the total number of hadron pairs produced in

the fragmentation of i. A sum over hadron spins must be

included if either or both hadrons have nonzero spin. We

remark that the labeling of the two hadrons as ðh1; h2Þ or
ðh2; h1Þ is distinguishable and no factor of 1=2 is needed in
the rhs of Eq. (6). We note that the number sum rule Eq. (6)

was first derived in Ref. [29]. A crucial step in our proof is

being able to introduce the number operator

N̂hj
≡

Z

dP−
j d

2P⃗j⊥

ð2πÞ32P−
j

â†hj âhj ¼
Z

dzjd
2P⃗j⊥

ð2πÞ32zj
â†hj âhj ð7Þ

for each hadron (j ¼ 1 or 2). This can be achieved only by

having the specific prefactors on the lhs of Eqs. (4) and (5).

Indeed, a derivation is not possible if a prefactor of

1=ð4zÞ ¼ 1=½4ðz1 þ z2Þ� is used on the lhs of Eq. (4).

The result in Eq. (6) gives a clear interpretation for

the uDiFFs we defined in Eqs. (4) and (5): They are

densities in the momentum fractions z1 and z2 and trans-

verse momenta P⃗1⊥ and P⃗2⊥ for the number of hadron

pairs ðh1h2Þ fragmenting from a parton i. The uDiFF

D
h1h2=q
1 ðz1; z2; P⃗2

1⊥; P⃗
2
2⊥; P⃗1⊥ · P⃗2⊥Þ encodes the dihadron

fragmentation process for an unpolarized quark (γ− pro-

jection of the correlator). The number density interpretation
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also holds for the fragmentation of a longitudinally polar-

ized quark (γ−γ5 projection) and a transversely polarized

quark (iσi−γ5 projection). The explicit parametrization of

Eq. (1) in terms of quark and gluon uDiFFs for all parton

polarizations, as functions of ðz1; z2; P⃗2
1⊥; P⃗

2
2⊥; P⃗1⊥ · P⃗2⊥Þ,

is given in Supplemental Material [62].

We can also derive a momentum sum rule involving

uDiFFs and TMD FFs:

X

h1

Z

1−z2

0

dz1

Z

d2P⃗1⊥z1D
h1h2=i
1 ðz1; z2; P⃗2

1⊥; P⃗
2
2⊥; P⃗1⊥ · P⃗2⊥Þ

¼ ð1− z2ÞDh2=i
1 ðz2; P⃗2

2⊥Þ: ð8Þ

If either or both hadrons have nonzero spin, then a sum over

the spin of h1 must be included on the lhs of Eq. (8) [and

Eq. (9) below]. Note that one can identify the ratio of the

uDiFF to the TMD FF, D
h1h2=i
1 ðz1; z2; P⃗2

1⊥; P⃗
2
2⊥; P⃗1⊥ ·

P⃗2⊥Þ=Dh2=i
1 ðz2; P⃗2

2⊥Þ, as a conditional number density in

the momentum ðz1; P⃗1⊥Þ for h1 fragmenting from i given

h2 has fragmented from i with momentum ðz2; P⃗2⊥Þ.
Further integrating Eq. (8) over P⃗2⊥ yields

X

h1

Z

1−z2

0

dz1 z1D
h1h2=i
1 ðz1; z2Þ ¼ ð1 − z2ÞDh2=i

1 ðz2Þ: ð9Þ

The momentum sum rule Eq. (9) was first put forth in

Refs. [11,14]. We also mention that the study of DiFFs has

a close connection to double PDFs (DPDFs), where two

partons emerge from a single nucleon. Indeed, an analo-

gous sum rule to Eq. (9) exists for DPDFs, as was derived

in Refs. [63,64]. The quantum field-theoretic derivation

of the sum rule Eq. (8) at the unintegrated (transverse-

momentum-dependent) operator level [from which Eq. (9)

follows immediately] is a new aspect presented here for the

first time.

One can readily generalize to n-hadron (n ≥ 1) frag-

mentation in a way that retains a number density inter-

pretation:

1

4ð16π3Þn−1z1…zn
Tr
h

Δ
fhign=qðfzign; fP⃗i⊥gnÞγ−

i

¼ D
fhign=q
1 ðfzign; fP⃗2

i⊥gn; fP⃗i⊥ · P⃗j⊥gnÞ; ð10Þ

z

2P−

h ð16π3Þn−1z1…zn
δ
ij
⊥
Δ

fhign=g;ijðfzign; fP⃗i⊥gnÞ

¼ D
fhign=g
1 ðfzign; fP⃗2

i⊥gn; fP⃗i⊥ · P⃗j⊥gnÞ; ð11Þ

where z¼ z1þ���þzn, Ph¼P1þ���þPn, fhign≡h1…hn,

fzign≡z1;…;zn, fP⃗i⊥gn≡P⃗1⊥;…;P⃗n⊥, fP⃗2
i⊥gn ≡P⃗

2
1⊥;…;

P⃗
2
n⊥, fP⃗i⊥ ·P⃗j⊥gn≡P⃗1⊥ ·P⃗2⊥;…;P⃗1⊥ ·P⃗n⊥;P⃗2⊥ ·P⃗3⊥;…;

P⃗2⊥ ·P⃗n⊥, etc. The correlators Δ
fhign=iðfzign; fP⃗i⊥gnÞ are

the natural extensions of Eqs. (2) and (3) to n hadrons, i.e.,

the final state is now jP1;…; Pn;Xi. The corresponding

number sum rule reads

Z

dPSnD
fhign=i
1 ðf� � �gnÞ ¼

�

Y

n−1

k¼0

ðN − kÞ
�

; ð12Þ

where
R

dPSn denotes the n-hadron version of
R

dPS and

we have abbreviated the arguments of the FF. Interestingly,

the evolution of collinear n-hadron FFs was already studied
some time ago [12,13], as well as more recently in

Refs. [49,50], but no correlator definition was presented.

Connection to phenomenology.—In order to analyze

measurements of dihadron observables, it becomes conven-

ient to change to the dihadron frame [20,23]. In addition to

Ph, we also introduce the relative momentum R ¼
ðP1 − P2Þ=2. The individual hadrons have masses M1

andM2, while the invariant mass (squared) of the dihadron

is M2
h ¼ P2

h. Along with z, we form the variable ζ ¼
ðz1 − z2Þ=z. The hadron momenta P1 and P2 can then be

written as P1¼½ðM2
1þR⃗

2
TÞ=ðð1þζÞP−

h Þ;ðð1þζÞ=2ÞP−

h ;R⃗T �
and P2 ¼ ½ðM2

2 þ R⃗
2
TÞ=ðð1 − ζÞP−

h Þ; ðð1 − ζÞ=2ÞP−

h ;−R⃗T �.
Note that one readily finds R⃗

2
T ¼ ðð1 − ζ2Þ=4ÞM2

h−

ðð1 − ζÞ=2ÞM2
1 − ðð1þ ζÞ=2ÞM2

2. Because of this change

of reference frames, one naturally thinks of uDiFFs

as now depending on ðz;ζ; k⃗2T ;R⃗2
T ; k⃗T · R⃗TÞ rather than

ðz1;z2;P⃗2
1⊥;P⃗

2
2⊥;P⃗1⊥ · P⃗2⊥Þ.

Nevertheless, the form of the number sum rule in Eq. (6)

allows us to generalize the idea of uDiFFs as number

densities to any set of variables we choose. Consider

making a change of variables from ðz1; z2; P⃗1⊥; P⃗2⊥Þ to

ðw; x; Y⃗; Z⃗Þ, where we understand w and x to be scalars and

Y⃗ and Z⃗ to be two-dimensional vectors. Then Eq. (6)

implies

D
h1h2=i
1 ðw; x; Y⃗2

; Z⃗
2
; Y⃗ · Z⃗Þ

≡ J ·D
h1h2=i
1 ðz1; z2; P⃗2

1⊥; P⃗
2
2⊥; P⃗1⊥ · P⃗2⊥Þ ð13Þ

is a number density in ðw; x; Y⃗; Z⃗Þ, where J ¼
j∂ðz1; z2; P⃗1⊥; P⃗2⊥Þ=∂ðw; x; Y⃗; Z⃗Þj is the Jacobian for the

change of variables from ðz1; z2; P⃗1⊥; P⃗2⊥Þ to ðw; x; Y⃗; Z⃗Þ.
Substituting Eq. (4) or (5) into the rhs of Eq. (13) then gives

an operator definition of D
h1h2=i
1 ðw; x; Y⃗2

; Z⃗
2
; Y⃗ · Z⃗Þ. In

addition, integrating over one or more of the variables

ðw; x; Y⃗; Z⃗Þ will define a DiFF that is a number density in

the remaining variables.

For example, if we change variables from ðz1;z2;P⃗1⊥;

P⃗2⊥Þ to ðz; ζ; k⃗T ; R⃗TÞ, as is typically done when deriving

factorization theorems used in phenomenology, then

J ¼ z3=2. Thus,
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D
h1h2=q
1 ðz; ζ; k⃗2T ; R⃗2

T ; k⃗T · R⃗TÞ

¼ z

32π3ð1 − ζ2ÞTr½Δ
h1h2=qðz1; z2; P⃗1⊥; P⃗2⊥Þγ−� ð14Þ

is a number density in ðz; ζ; k⃗T ; R⃗TÞ [where we made use of

z1z2 ¼ z2ð1 − ζ2Þ=4], and similarly for the gluon case.

Note that the arguments of the correlator on the rhs

can be replaced with z1ð2Þ ¼ zð1� ζÞ=2 and P⃗1ð2Þ⊥ ¼
−zð1� ζÞk⃗T=2� R⃗T .

We emphasize the distinction between our prefactor of

z=½32π3ð1 − ζ2Þ� in Eq. (14) and the prefactor of 1=ð4zÞ
used by BBJR. The latter does not allow for the uDiFFs to

retain a number density interpretation. The explicit para-

metrization of Eq. (1) in terms of quark and gluon uDiFFs

for all parton polarizations, as functions of ðz; ζ; k⃗T ; R⃗TÞ, is
given in Supplemental Material [62].

The functions of interest in experimental measurements

are the extDiFFs, which we define by changing variables

from ðz1; z2; P⃗1⊥; P⃗2⊥Þ to ðz; ζ; k⃗T ; R⃗TÞ (as above) and

integrating over k⃗T. In the quark sector, two twist-2

Dirac projections survive [16,20]:

z

32π3ð1 − ζ2Þ

Z

d2k⃗TTr
h

Δ
h1h2=qðz1; z2; P⃗1⊥; P⃗2⊥Þγ−

i

¼ D
h1h2=q
1 ðz; ζ; R⃗2

TÞ; ð15Þ

z

32π3ð1 − ζ2Þ

Z

d2k⃗TTr
h

Δ
h1h2=qðz1; z2; P⃗1⊥; P⃗2⊥Þiσi−γ5

i

¼ −
ϵ
ij
TR

j
T

Mh

H
∢h1h2=q
1 ðz; ζ; R⃗2

TÞ; ð16Þ

where ϵ
ij
T ¼ ϵ−þij with ϵ12T ¼ 1. One should understand the

lhs of Eqs. (15) and (16) as giving an operator definition of

the extDiFFs where the integration over k⃗T has been

explicitly carried out on the correlator in Eq. (1). In this

case, we consider these objects within full QCD. We note

that if one instead changes variables from ðz1; z2; P⃗1⊥; P⃗2⊥Þ
to ðz1; z2; k⃗T ; R⃗TÞ, integrating over k⃗T and R⃗T leads to the

collinear DiFFD
h1h2=q
1 ðz1; z2Þ, and the associated correlator

matches that in Refs. [28,29].We emphasize the existence of

H
∢h1h2=q
1 ðz; ζ; R⃗2

TÞ, which is not present for fragmentation

into a single hadron. This function has become important in

the extraction of the transversity PDFs, which couple to it in

dihadron observables [32,35,36,39,41,45,48,57,58]. The

gluon extDiFFs are given in Supplemental Material [62].

Experimental measurements of dihadron observables

are usually differential in ðz;MhÞ and integrated over ζ.

The relevant DiFFs are then dependent on ðz;MhÞ [20,22–
25,27]. We change variables from ðz1; z2; P⃗1⊥; P⃗2⊥Þ to

ðz; ζ; k⃗T ;Mh;ϕRT
Þ, where ϕRT

is the azimuthal angle

of R⃗T . The Jacobian is J ¼ z3ð1 − ζ2Þ=8. Using our

aforementioned prescription, we can define a DiFF that

is a number density in ðz;MhÞ:

D
h1h2=i
1 ðz;MhÞ≡

π

2
Mh

Z

1

−1

dζð1−ζ2ÞDh1h2=i
1 ðz;ζ;R⃗2

TÞ: ð17Þ

For completeness, we also write down our definition of

H
∢h1h2=i
1 ðz;MhÞ:

H
∢h1h2=i
1 ðz;MhÞ

≡
π

2
Mh

Z

1

−1

dζ
jR⃗T j
Mh

ð1 − ζ2ÞH∢h1h2=i
1 ðz; ζ; R⃗2

TÞ: ð18Þ

Given the number density interpretation of our DiFFs,

one can compute expectation values for the ensemble of all

ðh1h2Þ pairs in the fragmentation of a parton i. As

mentioned, two of the main variables that dihadron mea-

surements are sensitive to are z and Mh. The expectation

value of an arbitrary function Oðz;MhÞ of these variables
can then be calculated as

hOðz;MhÞih1h2=i¼
Z

dzdMhOðz;MhÞDh1h2=i
1 ðz;MhÞ: ð19Þ

For example, one could compute the average value of z or
of Mh for πþπ− pairs produced from the fragmentation of

an unpolarized quark. The DiFF D
h1h2=i
1 ðz;MhÞ can be

extracted directly from experiment, e.g., using the cross

section dσ=dzdMh for eþe− → ðh1h2ÞX measured by

Belle [51]. Our definition of uDiFFs allows us to establish

a clear physical meaning forD
h1h2=i
1 ðz;MhÞ, which has been

absent thus far in the literature.

Actually, calculating the leading-order cross section for

dσ=dzdMh for eþe− → ðh1h2ÞX serves as another verifi-

cation of the number density interpretation of our new

definition of D
h1h2=i
1 ðz;MhÞ. Starting from P0

1P
0
2dσ=

d3P⃗1d
3P⃗2, the result takes the form

dσ

dzdMh

¼ σ̂i0D
h1h2=i
1 ðz;MhÞ: ð20Þ

For i ¼ q, σ̂
q
0 ¼ 4πα2emNce

2
q=ð3sÞ, which is the partonic

cross section for eþe− → γ → qq̄, where αem is the fine

structure constant and
ffiffiffi

s
p

is the center-of-mass energy of

the eþe− pair. A sum over quarks and antiquarks is

then needed on the rhs of Eq. (20). For i ¼ g,

σ̂
g
0¼½ðα2sG2

FÞ=ð576π3Þ�f½m2
es

2ðN2
c−1Þ�=ðs−m2

HÞ2g, which
is the partonic cross section for eþe− → H → gg (H
being the Higgs boson) using an effective H − g − g
coupling [65–67], αs is the strong coupling, GF is the

Fermi constant, and me (mH) is the mass of the electron

(Higgs). A factor of 2 is now needed on the rhs of Eq. (20),

since both gluons have the ability to fragment into the

dihadron.
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The structure of Eq. (20) is exactly what one expects if

D
h1h2=i
1 ðz;MhÞ is to be interpreted as a number density,

i.e., the differential cross section equals the partonic cross

section times the DiFF. We have also explicitly confirmed

this feature for other sets of variables, including

dσ=dz1dz2 and dσ=dzdζd2R⃗T involving D
h1h2=i
1 ðz1; z2Þ

and D
h1h2=i
1 ðz; ζ; R⃗2

TÞ, respectively.
Evolution of extended DiFFs.—Since the extDiFFs in

Eqs. (15) and (16) (and their gluon analogs) are the objects

that enter most directly in existing phenomenological

studies of dihadron observables, it is important to derive

their evolution equations for our definition. Here, we

analyze the OðαsÞ perturbative corrections to the dihadron

fragmentation correlator, similar to what is done for the

single-hadron case—see, e.g., Ref. [2], Sec. 12.10. The

evolution of the DiFF correlator in Eq. (1) has two pieces: a

“homogeneous term” involving only DiFFs [an example

graph is given in Fig. 1(a)] and an “inhomogeneous term”

involving single-hadron FFs [an example graph is given in

Fig. 1(b)]. We have explicitly checked that the inhomo-

geneous term for the evolution of D
h1h2=i
1 ðz; ζ; R⃗2

TÞ is not

ultraviolet divergent (see Supplemental Material [62])

and, therefore, does not contribute to the evolution of

extDiFFs. The same conclusion was reached in Ref. [30].

However, this inhomogeneous term is needed to derive the

full evolution for the collinear DiFFs D
h1h2=i
1 ðz1; z2Þ

[12,13,15,26,28,29,49,50]. We also remark that, for

extDiFFs, inhomogeneous diagrams will contribute at

Oðα2sÞ and higher orders of evolution.

For collinear PDFs and FFs [e.g., f
i=N
1 ðxÞ and D

h=i
1 ðzÞ],

evolution is a perturbative process for the 1 → 2 splitting of

a parton and is independent of the target (in the case of

PDFs) or final state (in the case of FFs)—see, e.g., Ref. [2],

Secs. 9.3.1 and 12.9. This observation, along with the

structure of the correlator in Eq. (1), the fact that the

extDiFFs are obtained by integrating over k⃗T, and the

conclusion that only the homogeneous term contributes to

their evolution, makes clear that the splitting functions for

extDiFFs will be the same as those for a parton fragmenting

into a single hadron. The final result reads

∂Dh1h2=iðz; ζ; R⃗2
T ; μÞ

∂ ln μ2

¼
X

i0

Z

1

z

dw

w
Dh1h2=i

0
�

z

w
; ζ; R⃗

2
T ; μ

�

Pi→i0ðwÞ; ð21Þ

where D ¼ D1 or H∢

1 and Pi→i0ðwÞ are the unpolarized

timelike splitting kernels [68] when D ¼ D1 or the trans-

versely polarized splitting kernels [69] when D ¼ H∢

1 . We

note from Eqs. (17) and (18) it is clear that D
h1h2=i
1 ðz;MhÞ

and H
∢h1h2=i
1 ðz;MhÞ obey the same evolution equations as

Eq. (21), since the ζ dependence there is not altered in the

evolution.

Evolution equations for extDiFFs were previously

derived in Ref. [30] (and commented on in Ref. [31]).

No correlator was explicitly given, though, preventing us

from unambiguously comparing to those results. We will

instead emphasize that the prefactor used to parametrize the

dihadron correlator in terms of DiFFs does affect the

evolution kernel. For example, if on the lhs of Eq. (4) a

prefactor of 1=ð4zÞ is used [instead of 1=ð64π3z1z2Þ], then
the integrand of Eq. (21) would not have the 1=w factor. We

also mention that the evolution of D
h1h2=i
1 ðz1; z2Þ was

derived in Refs. [15,26,28,29] at leading order and recently

in Refs. [49,50] at next-to-leading order. We briefly discuss

in Supplemental Material [62] how, starting from extDiFFs,

one can reproduce the leading-order result.

Conclusions.—We have introduced a new quantum field-

theoretic definition for fully unintegrated dihadron frag-

mentation functions, as well as a generalized version for

n-hadron fragmentation, that retains a number density

interpretation. We have justified this by proving certain

number and momentum sum rules. Moreover, we have

developed a simple prescription for how to define operators

for uDiFFs that are number densities in any variables of

interest. In particular, we established a clear physical

meaning for the function D
h1h2=i
1 ðz;MhÞ as a number

density in ðz;MhÞ, which was not possible with prior

definitions in the literature. The definitions in Eqs. (4)

and (5) will also be beneficial as the starting point for

possible factorization theorems beyond leading order for

processes involving uDiFFs and extDiFFs. In addition, we

derived the OðαsÞ evolution equations for our extDiFFs.

With DiFFs now rigorously established as number den-

sities through this Letter, one can achieve a deeper under-

standing of hadronic structure through phenomenological

extractions of extDiFFs. Indeed, there are electron-positron

annihilation dihadron cross section data [51] available

sensitive toD
h1h2=i
1 ðz;MhÞ, as well as several measurements

of dihadron transverse single-spin asymmetries sensitive to

H
∢h1h2=i
1 ðz;MhÞ in electron-positron annihilation [52], semi-

inclusive deep-inelastic scattering [53,54], and proton-

proton collisions [55,56]. A simultaneous global analysis

(a) (b)

FIG. 1. Example diagrams of the (a) homogeneous and

(b) inhomogeneous terms for the evolution of the extDiFF

D
h1h2=q
1 ðz; ζ; R⃗2

TÞ.
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in our framework of all the aforementioned data can be

found in Refs. [57,58].
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