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We present a new quantum field-theoretic definition of fully unintegrated dihadron fragmentation
functions (DiFFs) as well as a generalized version for n-hadron fragmentation functions. We demonstrate
that this definition allows certain sum rules to be satisfied, making it consistent with a number density
interpretation. Moreover, we show how our corresponding so-called extended DiFFs that enter existing
phenomenological studies are number densities and also derive their evolution equations. Within this new
framework, DiFFs extracted from experimental measurements will have a clear physical meaning.
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Introduction.—High-energy collisions of hadrons are
central to understanding their femtoscale structure at the
level of quarks and gluons (partons) within the theory of
quantum chromodynamics (QCD). The critical ingredients
that encode this information are parton distribution func-
tions (PDFs) and fragmentation functions (FFs). A crucial
property of PDFs and FFs is their interpretation as number
densities in a parton model framework [1,2], which con-
sequently allows one to derive certain sum rules [1-5]. For
example, the unpolarized transverse momentum dependent

(TMD) PDF f’i/ N(x, l_%) gives the number density in the

momentum fraction x and transverse momentum I;T of a
parton i =g or g in a nucleon N [1,2]. Similarly, the

unpolarized TMD FF D}]’/ “(z, P%) gives the number density

in the momentum fraction z and transverse momentum P i
of a hadron % fragmenting from a parton i [1,2]. Since PDFs
and FFs are number densities, one can also use them to
calculate expectation values (see, e.g., Refs. [6-9]). The
information contained in sum rules and expectation values
are important pieces to understanding hadronic structure as
well as constraining or cross-checking phenomenological
extractions and model calculations of PDFs and FFs.
The most common type of FFs describe the situation
where a single hadron / is detected in the final state,
i = hX (X representing all undetected particles). Another
intensely studied class of reactions analyzes the case of
two hadrons h; and h, being detected from the same
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parton-initiated jet, i — (h;h,)X, where dihadron FFs
(DiFFs) become relevant [10-50]. The quantum field-
theoretic definition of DiFFs at the fully unintegrated
level (what we will call uDiFFs) was first written down
almost 25 years ago in the pioneering paper of Bianconi,
Boffi, Jakob, and Radici (BBJR) [20]. This work has
been the basis for all subsequent dihadron-related research
for observables sensitive to the relative transverse momen-
tum of the two hadrons [21-25,27,31,32,35-39,41-48].
Unfortunately, the BBJR definition does not allow the
uDiFFs, nor the so-called extended DiFFs (extDiFFs) that
are the focus of existing phenomenological analyses, to
retain a number density interpretation in a parton model
framework.

The main purpose of this Letter is to disseminate a new
definition of uDiFFs that corrects this issue. We justify its
number density interpretation by explicitly proving certain
sum rules. We also show our corresponding extDiFFs are
number densities and derive their evolution equations.
Given the existing electron-positron annihilation dihadron
cross section data [51], dihadron transverse single-spin
asymmetries in electron-positron annihilation [52], semi-
inclusive deep-inelastic scattering (SIDIS) [53,54], and
proton-proton collisions [55,56], and anticipated measure-
ments of the proton-proton dihadron cross section and
SIDIS dihadron multiplicities, one eventually will be able
to perform rigorous fits of extDiFFs within QCD global
analyses. These studies must be carried out within our new
framework for the extracted extDiFFs to have a clear
physical meaning—see Refs. [57,58].

New correlator definition of DiFFs.—We begin by
briefly discussing two different reference frames that will
be relevant for our analysis: the “parton frame” (p), where
the fragmenting parton has no transverse momentum, and
the “dihadron frame” (h), where the dihadron has no
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transverse momentum. In both frames the parton has the
same large minus-light-cone momentum component k~
[VE = (V04 V?3)/V/2 for a generic vector V]. They are
connected through the following Lorentz transformation
(see, e.g., Ref. [2], Sec. 12.4.1): V; =V, =V, V;:
(kp /K )2V= )24 Vi =k Vi [k V| == (kg /k)V= 4 V7.
We use L(T) to denote transverse components in the parton
(dihadron) frame. The parton frame is more natural for the
formulation of fragmentation correlators (whether single
hadron or dihadron) as number densities, whereas the
dihadron frame is more practical for proofs of factorization
needed for phenomenological applications.

The quantum field-theoretic correlator for the fragmen-
tation of a parton i into two hadrons h; and h,, after
integrating over k*, is defined as [20]

hihy i 23
Ay (2122, P11, Pay)

dét dzﬁ pikE b/
- I [ eyl

where z; and z, are the fractions of the parton’s
longitudinal momentum carried by each hadron and 131 1
and f’z | are the transverse momenta of the hadrons relative
to the parton. For a quark, N; is the number of quark colors

N, =3, and

OLf/1(&) = (OW (00, )y o0, E1) [P1 P23 X)
X (P, Py; X [i7,5(0%,07,0,)W(0,00)[0), (2)

where v, is the quark field, @ and § are indices for the
components of the field, and ¥V is a Wilson line in the
fundamental representation of SU(3) that ensures color
gauge invariance [2,59]. A sum over color indices in Eq. (2)
is implied. For a gluon, N; = N2 — 1, and

Oll/7(&) = (VP (00, )2, (&7,07,EL)| Py, a3 X)
x (Py, Py X|FS (07,070, )W (0, 00)[0),
(3)
where  F4, = 0,A% — 0,A% + gf**°ALAC is the field

strength tensor involving the gluon field A and the
Wilson lines are now in the adjoint representation of SU(3).
Throughout this Letter, we focus on the production of
unpolarized hadrons. For the fragmentation of an unpolar-
ized parton, we parametrize the correlator in Eq. (1) as

1
647[3Z122
hyh = =y ==
= D}"™4(2y,2,, P1,, P35, Py, - Py)), (4)

Tr {Ahl”z/"(zl, 22, I_Su,ﬁu)?’_}

Z
327712, P,

hyh 32 32 3 =
= Dl] Z/Q(Zl’zz,Pu,Pu’Pu : Pu)’ (5)

5ZAh1h2/g,ij(Z1, Z27P1J_’ PZJ_)

where z = z; 4 7z, is the total momentum fraction of the
dihadron and P, = P; + P,. As we will show in the next
section, the prefactor of 1/(6473z,2,) in Eq. (4) is crucial to
justifying the number density interpretation of the quark
uDiFFs [and similarly for the gluon case in Eq. (5)]. If one
instead were to use a prefactor of 1/(4z), to be in full analogy
with single-hadron fragmentation [1,59-61], the quark
uDiFFs would not retain a number density interpretation.
Indeed, the fact that the prefactors on the lhs of Egs. (4)
and (5) are needed was already recognized previously in the

context of collinear DiFFs D"""*/'(z,, z,) [28,29].

Number density mterpretatlon.—To justify that Egs. (4)
and (5) have the desired number density interpretation, we
will derive sum rules involving our uDiFFs in a parton
model framework. The proofs of the sum rules in this
section are left for Supplemental Material [62]. We focus
first on the number sum rule:

/dPSD}l,lth/i(Z],ZQ,ﬁ%L,ﬁgl,ﬁll'ﬁQL): <N(N_l)>’
(6)

where [dPS=3, Y, [ddz [y 2 dzy [d*P), [Py,
and N is the total number of hadrons produced when
the parton i fragments. Thus, (N (N — 1)) is the expect-
ation value for the total number of hadron pairs produced in
the fragmentation of i. A sum over hadron spins must be
included if either or both hadrons have nonzero spin. We
remark that the labeling of the two hadrons as (hy, h,) or
(hy, hy) is distinguishable and no factor of 1/2 is needed in
the rhs of Eq. (6). We note that the number sum rule Eq. (6)
was first derived in Ref. [29]. A crucial step in our proof is
being able to introduce the number operator

N dP dzPL dz d2 -
& / (2m)*2P; ), n, = (27:)322] ity (7)

for each hadron (j = 1 or 2). This can be achieved only by
having the specific prefactors on the lhs of Egs. (4) and (5).
Indeed, a derivation is not possible if a prefactor of
1/(4z) = 1/[4(z, + z2)] is used on the lhs of Eq. (4).
The result in Eq. (6) gives a clear interpretation for
the uDiFFs we defined in Eqgs. (4) and (5): They are
densities in the momentum fractions z; and z, and trans-
verse momenta 1_51 | and }_52 | for the number of hadron
pairs (hh,) fragmenting from a parton i. The uDiFF
Dilth/q(Z] , 22, I_S%JJ ﬁ%i’ I_))IL . I_))ZL) encodes the dihadron
fragmentation process for an unpolarized quark (y~ pro-
jection of the correlator). The number density interpretation
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also holds for the fragmentation of a longitudinally polar-
ized quark (y~y> projection) and a transversely polarized
quark (ic""ys projection). The explicit parametrization of
Eq. (1) in terms of quark and gluon uDiFFs for all parton
polarizations, as functions of (zy, z,, 13% 1 f’% I 131 I 132 1)
is given in Supplemental Material [62].

We can also derive a momentum sum rule involving
uDiFFs and TMD FFs:

1=z, - i - - - N
ZA dzl/dzPule:"hZ/ (21,20, P11, P51, Py - Pyy)

=(1 —Zz)D?Z/i(Zz,ﬁ%L)- (8)

If either or both hadrons have nonzero spin, then a sum over
the spin of /; must be included on the lhs of Eq. (8) [and
Eq. (9) below]. Note that one can identify the ratio of the

uDiFF to the TMD FF, D!"/i(z, z, B? B3 P, -
P, 1)/ D?/ i(Zz, P 1), as a conditional number density in
the momentum (z;, B, 1) for h; fragmenting from i given
h, has fragmented from i with momentum (12,1?)2 1)
Further integrating Eq. (8) over f’z | yields

1Z'> l/ /’lz/l
/ dzy 2DV (21, 22) = (1 = 22)D"'(z2).  (9)
hy

The momentum sum rule Eq. (9) was first put forth in
Refs. [11,14]. We also mention that the study of DiFFs has
a close connection to double PDFs (DPDFs), where two
partons emerge from a single nucleon. Indeed, an analo-
gous sum rule to Eq. (9) exists for DPDFs, as was derived
in Refs. [63,64]. The quantum field-theoretic derivation
of the sum rule Eq. (8) at the unintegrated (transverse-
momentum-dependent) operator level [from which Eq. (9)
follows immediately] is a new aspect presented here for the
first time.

One can readily generalize to n-hadron (n > 1) frag-
mentation in a way that retains a number density inter-
pretation:

1 S
Tr|Alhit/a({z.} 1P, -
Tier e T A e (P
hity D D =
= D{ / /q({zi}n’ {P%J_}n’ {Pi1 - PjJ_}n)’ (10)
z

S Alhtalaii( L1 1P
2P;(16ﬂ3)n_121.-.2n 1 ({Zl}n{ zL}n)
hitn/ D D D
= D923 AP Y AP Piu b, (11)

where z=z,+--+z,, P, =P+ +Pm {h }n_hl iy,

{_Z_zi}nzzl_z-'-vim {PiL}JEPJL u» {Pu}n —Pu,
P, AP P}, =P -Py,... Py Py Py Pu,---
Py, -P,,, etc. The correlators Athih/i({z;}, {P; },) are

the natural extensions of Egs. (2) and (3) to n hadrons, i.e.,
the final state is now |Py, ..., P,;X). The corresponding
number sum rule reads

[ aps, D) - <:r=[_;w— 0). (2)

where [ dPS, denotes the n-hadron version of [ dPS and
we have abbreviated the arguments of the FF. Interestingly,
the evolution of collinear n-hadron FFs was already studied
some time ago [12,13], as well as more recently in
Refs. [49,50], but no correlator definition was presented.

Connection to phenomenology.—In order to analyze
measurements of dihadron observables, it becomes conven-
ient to change to the dihadron frame [20,23]. In addition to
P,, we also introduce the relative momentum R =
(P; — P,)/2. The individual hadrons have masses M,
and M,, while the invariant mass (squared) of the dihadron
is M7 = P3. Along with z, we form the variable ¢ =
(z1 - zz) /z. The hadron momenta P, and P, can then be
witten as P, =[(M3+2)/(1+¢)P;).(140)/2) Py K]
and P, = (M} +R7)/((1-)Py), (1 -¢)/2)P;, —Ry).
Note that one readily finds Ry = ((1—¢2)/4)M3—
(1 =¢)/2)M? — ((1 +¢)/2)M3. Because of this change
of reference frames, one naturally thinks of uDiFFs
as now depending on (z,( ,/?T,E%,l;r-ﬁr) rather than
(21.22. P11 P31 Py Py ).

Nevertheless, the form of the number sum rule in Eq. (6)
allows us to generalize the idea of uDiFFs as number
densities to any set of variables we choose. Consider
making a change of variables from (zl,zz,I;I l,f’z 1) to
(w x, Y, Z) where we understand w and x to be scalars and

Y and Z to be two-dimensional vectors. Then Eq. (6)
implies

DIl 1 72727 . 7)
= j‘D?]hZ/i(ZleZaﬁ%J_,ﬁ%J_aﬁlJ. : Igu) (13)

is a number density in (w,x, }7, Z) where J =
|0(z1,zz,131l,13u)/6(w,x, 17, Z)| is the Jacobian for the
change of variables from (zy, z,, Py, ﬁ2l) to (w, x, Y, Z)
Substituting Eq. (4) or (5) into the rhs of Eq. (13) then gives
an operator definition of Di”hZ/i(w,x, 17222172) In
addition, integrating over one or more of the variables
(w,x,Y,Z) will define a DiFF that is a number density in
the remaining variables.

For example if we change variables from (11,12,P1 1
P2 1) to (z,¢, kT,RT), as is typically done when deriving
factorization theorems used in phenomenology, then
J = 73/2. Thus,
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D}lllhz/lI(Z’ C’ ]_C%, 132 ’ ]_('T . iéT)
Z - -
=~ Tr[AM"/9(z),2,, Py . Py )y 14
3272(1-0%) [ (21522, P11y Pay)r7] (14)

is a number density in (z, ¢, I?T, ﬁT) [where we made use of
212, = 22(1 = ¢%)/4], and similarly for the gluon case.
Note that the arguments of the correlator on the rhs
can be replaced with z() =z(1+¢)/2 and 131(2)¢ =

—z(1 £ O)kyp/2 £ Ry.

We emphasize the distinction between our prefactor of
z/[3223(1 = £?)] in Eq. (14) and the prefactor of 1/(4z)
used by BBJR. The latter does not allow for the uDiFFs to
retain a number density interpretation. The explicit para-
metrization of Eq. (1) in terms of quark and gluon uDiFFs

for all parton polarizations, as functions of (z, ¢, l_éT, ﬁT), is
given in Supplemental Material [62].

The functions of interest in experimental measurements
are the extDiFFs, which we define by changing variables
from (zy,25, P11, P>1) to (2,8, kp,Ry) (as above) and
integrating over I;T. In the quark sector, two twist-2
Dirac projections survive [16,20]:

< k D D —
m/dszTr[Ahth/q(ZhZz,Pu,Pu)}’ }
— Di’lhz/‘1<z,§, ]—é%), (15)
z - I
m/dszTr[Ahth/q(leZz,Pu,Pu)lo’ 75}
€lR) -
= _%H;{hlhd({(z,g, R%), (16)
h

where ¢/ = ¢~/ with €}> = 1. One should understand the
lhs of Egs. (15) and (16) as giving an operator definition of
the extDiFFs where the integration over l?T has been
explicitly carried out on the correlator in Eq. (1). In this
case, we consider these objects within full QCD. We note
that if one instead changes variables from (z;, z,, 131 I 132 1)
to (z1, 22, I:T, ﬁT), integrating over I;T and R; leads to the
collinear DiFF Dq"hZ/ ?(z1,25), and the associated correlator
matches that in Refs. [28,29]. We emphasize the existence of
Hfh’hZ/ 1(z,¢, 13%), which is not present for fragmentation
into a single hadron. This function has become important in
the extraction of the transversity PDFs, which couple to it in
dihadron observables [32,35,36,39,41,45,48,57,58]. The
gluon extDiFFs are given in Supplemental Material [62].
Experimental measurements of dihadron observables
are usually differential in (z, M},) and integrated over (.
The relevant DiFFs are then dependent on (z, M},) [20,22—
25,27]. We change variables from (z;,z,, I_ﬁu, Igu) to
(z,¢, %T,Mh, ¢r,), where ¢p is the azimuthal angle

of Ry. The Jacobian is J =72}(1-¢%)/8. Using our

aforementioned prescription, we can define a DiFF that
is a number density in (z, M},):

. 1 [
D" (2. M) =M / A =)D (LR (17)

For completeness, we also write down our definition of
hyhy/i
HTI 112/1(Z’Mh):

HT{hlhz/i(Z’ Mh)

T 1 ﬁ h i >3
=M / dc |M—T|<1 —HM (2, ¢ R, (18)
h

-1

Given the number density interpretation of our DiFFs,
one can compute expectation values for the ensemble of all
(hihy) pairs in the fragmentation of a parton i. As
mentioned, two of the main variables that dihadron mea-
surements are sensitive to are z and M. The expectation
value of an arbitrary function O(z, M) of these variables
can then be calculated as

<o(z,Mh)>hlhz/i=/dszhO(z,Mh)D’f'h2/i(z,Mh). (19)

For example, one could compute the average value of z or
of M, for 7~ pairs produced from the fragmentation of

an unpolarized quark. The DiFF D""/'(z M,) can be
extracted directly from experiment, e.g., using the cross
section do/dzdM, for eTe™ — (hhy)X measured by
Belle [51]. Our definition of uDiFFs allows us to establish

a clear physical meaning for D}]"hZ/ '(z, M), which has been
absent thus far in the literature.

Actually, calculating the leading-order cross section for
do/dzdM,, for eTe” — (h hy)X serves as another verifi-
cation of the number density interpretation of our new

definition of D"™/'(z,M,). Starting from PYPIdc/
&3P d3P,, the result takes the form

do . ;
T &yDI™ (2, M) (20)
For i = g, 6{ = 4ra3,N e2/(3s), which is the partonic
cross section for eTe™ — y — gg, where a.,, is the fine
structure constant and /s is the center-of-mass energy of
the eTe™ pair. A sum over quarks and antiquarks is
then needed on the rhs of Eq. (20). For i=y,
69 =[(a2G3) /(5767 {[m2s* (N2~ 1)}/ (s — m3,)2}, which
is the partonic cross section for ete™ - H — gg (H
being the Higgs boson) using an effective H—g—g
coupling [65-67], a, is the strong coupling, G is the
Fermi constant, and m, (mp) is the mass of the electron
(Higgs). A factor of 2 is now needed on the rhs of Eq. (20),
since both gluons have the ability to fragment into the
dihadron.
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FIG. 1. Example diagrams of the (a) homogeneous and
(b) inhomogeneous terms for the evolution of the extDiFF

DIl ¢ RS

The structure of Eq. (20) is exactly what one expects if

Dll”hZ/ '(z,M}) is to be interpreted as a number density,
i.e., the differential cross section equals the partonic cross
section times the DiFF. We have also explicitly confirmed
this feature for other sets of variables, including
do/dzdz, and do/dzd{d®R; involving D}"/'(z,z,)
and D}l"hZ/ i(z, ¢, ﬁ%) respectively.

Evolution of extended DiFFs.—Since the extDiFFs in
Egs. (15) and (16) (and their gluon analogs) are the objects
that enter most directly in existing phenomenological
studies of dihadron observables, it is important to derive
their evolution equations for our definition. Here, we
analyze the O(a,) perturbative corrections to the dihadron
fragmentation correlator, similar to what is done for the
single-hadron case—see, e.g., Ref. [2], Sec. 12.10. The
evolution of the DiFF correlator in Eq. (1) has two pieces: a
“homogeneous term” involving only DiFFs [an example
graph is given in Fig. 1(a)] and an “inhomogeneous term”
involving single-hadron FFs [an example graph is given in
Fig. 1(b)]. We have explicitly checked that the inhomo-
geneous term for the evolution of D},”hZ/ i(z, Z, f?%) is not
ultraviolet divergent (see Supplemental Material [62])
and, therefore, does not contribute to the evolution of
extDiFFs. The same conclusion was reached in Ref. [30].
However, this inhomogeneous term is needed to derive the

full evolution for the collinear DiFFs D}l”hZ/ i(zl,zz)
[12,13,15,26,28,29,49,50]. We also remark that, for
extDiFFs, inhomogeneous diagrams will contribute at
O(a?) and higher orders of evolution. '

For collinear PDFs and FFs [e.g., f/" (x) and D"'(z)],
evolution is a perturbative process for the 1 — 2 splitting of
a parton and is independent of the target (in the case of
PDFs) or final state (in the case of FFs)—see, e.g., Ref. [2],
Secs. 9.3.1 and 12.9. This observation, along with the
structure of the correlator in Eq. (1), the fact that the

extDiFFs are obtained by integrating over I:T, and the
conclusion that only the homogeneous term contributes to
their evolution, makes clear that the splitting functions for
extDiFFs will be the same as those for a parton fragmenting
into a single hadron. The final result reads

oD"Mli(z,¢, R )
oln y?

Ldw (2 .5
e Z/ WDhIhZ/l (;7C7 R%’ﬂ) Pi—)i/(w)’ (21)
i Z

where D = D, or Hi and P;_;(w) are the unpolarized
timelike splitting kernels [68] when D = D, or the trans-
versely polarized splitting kernels [69] when D = H{'. We

note from Eqs. (17) and (18) it is clear that D"">/'(z, M},)

and H fh'hZ/ i(z, M) obey the same evolution equations as

Eq. (21), since the ¢ dependence there is not altered in the
evolution.

Evolution equations for extDiFFs were previously
derived in Ref. [30] (and commented on in Ref. [31]).
No correlator was explicitly given, though, preventing us
from unambiguously comparing to those results. We will
instead emphasize that the prefactor used to parametrize the
dihadron correlator in terms of DiFFs does affect the
evolution kernel. For example, if on the lhs of Eq. (4) a
prefactor of 1/(4z) is used [instead of 1/(6473z,2,)], then
the integrand of Eq. (21) would not have the 1/w factor. We
also mention that the evolution of D""/(z,,z,) was
derived in Refs. [15,26,28,29] at leading order and recently
in Refs. [49,50] at next-to-leading order. We briefly discuss
in Supplemental Material [62] how, starting from extDiFFs,
one can reproduce the leading-order result.

Conclusions.—We have introduced a new quantum field-
theoretic definition for fully unintegrated dihadron frag-
mentation functions, as well as a generalized version for
n-hadron fragmentation, that retains a number density
interpretation. We have justified this by proving certain
number and momentum sum rules. Moreover, we have
developed a simple prescription for how to define operators
for uDiFFs that are number densities in any variables of
interest. In particular, we established a clear physical
meaning for the function Di’lhz/ ‘(z.M}) as a number
density in (z,M)), which was not possible with prior
definitions in the literature. The definitions in Eqgs. (4)
and (5) will also be beneficial as the starting point for
possible factorization theorems beyond leading order for
processes involving uDiFFs and extDiFFs. In addition, we
derived the O(a,) evolution equations for our extDiFFs.

With DiFFs now rigorously established as number den-
sities through this Letter, one can achieve a deeper under-
standing of hadronic structure through phenomenological
extractions of extDiFFs. Indeed, there are electron-positron
annihilation dihadron cross section data [51] available
sensitive to Di" hafi (z,M},), as well as several measurements
of dihadron transverse single-spin asymmetries sensitive to

H™ "2/1(z, M) in electron-positron annihilation [52], semi-
inclusive deep-inelastic scattering [53,54], and proton-
proton collisions [55,56]. A simultaneous global analysis
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in our framework of all the aforementioned data can be
found in Refs. [57,58].
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