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We analyze the world polarized deep-inelastic scattering (DIS) and semi-inclusive DIS (SIDIS) data

at low values of x < 0.1, using small-x evolution equations for the flavor singlet and nonsinglet

helicity parton distribution functions (hPDFs), which resum all powers of both αs ln
2ð1=xÞ and

αs lnð1=xÞ lnðQ2=Q2

0
Þ, with αs being the strong coupling constant. The hPDFs for quarks, antiquarks,

and gluons are extracted and evolved to lower values of x to make predictions for the future Electron-Ion

Collider (EIC). We improve on our earlier work by employing the more realistic large-Nc & Nf limit of the

revised small-x helicity evolution, and by incorporating running coupling corrections along with SIDIS

data into the fit. We find an anticorrelation between the signs of the gluon and C-even quark hPDFs, as well

as the g1 structure function. While the existing low-x polarized DIS and SIDIS data are insufficient to

constrain the initial conditions for the polarized dipole amplitudes in the helicity evolution equations, future

EIC data will allow more precise predictions for hPDFs and the g1 structure function for x values beyond

those probed at the EIC. Using the obtained hPDFs, we discuss the contributions to the proton spin from

quark and gluon spins at small x.

DOI: 10.1103/PhysRevD.108.114007

I. INTRODUCTION

A. General motivation

The proton spin puzzle has been one of the most

intriguing and profound mysteries in our understanding

of the proton structure for over three decades (for reviews,

see Refs. [1–9]). The main challenge is to determine, both

qualitatively and quantitatively, how the proton spin is

distributed among the spins and orbital angular momenta

(OAM) of its quark and gluon constituents. The question is

usually formulated in terms of spin sum rules, such as the

Jaffe-Manohar sum rule [10] (see also the Ji sum rule [11]),

that decompose the proton spin of 1=2 (in units of ℏ) into

the sum of the quark (Sq) and gluon (SG) spins and the

OAM carried by the quarks (Lq) and gluons (LG):

Sq þ Lq þ SG þ LG ¼ 1

2
: ð1Þ

Each of the contributions in Eq. (1) can, in turn, be written

as the integral of a partonic function over the longitudinal

momentum fraction x carried by the parton. For example,

SqðQ2Þ ¼ 1

2

Z
1

0

dxΔΣðx;Q2Þ; ð2aÞ

SGðQ2Þ ¼
Z

1

0

dxΔGðx;Q2Þ; ð2bÞ
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with similar expressions for the OAM contributions

[12–16], where ΔΣðx;Q2Þ is the flavor singlet combination

of the quark helicity parton distribution functions (hPDFs)

Δqðx;Q2Þ (quark flavor q), and ΔGðx;Q2Þ is the gluon

hPDF [10]. The goal of current research in the field of

proton spin physics is to determine ΔΣðx;Q2Þ, ΔGðx;Q2Þ,
Lqðx;Q2Þ, and LGðx;Q2Þ across a broad range of x and Q2

in order to quantify how much of the proton spin is carried

by the partons in different kinematic regions.

The standard way to address the proton spin puzzle is by

extracting the hPDFs Δqðx;Q2Þ and ΔGðx;Q2Þ from

experimental data using collinear factorization along with

the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) evolution equations [17–19] to relate

observables at different Q2 values. There have been a

number of very successful extractions of hPDFs over

the years within this approach [20–34]. Nevertheless, the

DGLAP-based methodology has a drawback: since the

DGLAP equations evolve PDFs in Q2, they cannot truly

predict the x dependence of PDFs. The x dependence is

greatly affected by the functional form of the PDF para-

metrization at the initial momentum scale Q2

0
, which gives

the initial conditions for the DGLAP evolution. The param-

eters are then determined by optimizing agreement between

the theoretical calculations to the experimental measure-

ments. In this way, the experimental data, in the x range

where it is available, make up for the inability of DGLAP

evolution to predict the x dependence of PDFs. Conversely,
in thex regionwhichhas not yet beenprobedexperimentally,

DGLAP-based predictions typically acquire a broad uncer-

tainty band due to extrapolation errors. This is particularly

true in the small-x region. Since no experiment, present or

future, can perform measurements down to x ¼ 0, further

theoretical input is needed to constrain the hPDFs at low x.
The benefit of small-x helicity evolution is that it makes a

genuine prediction for the hPDFs at small x given some

initial conditions at a higher x0. Due to the integrals in

Eq. (2), precise control over the behavior of hPDFs at small x
is mandatory to resolving the proton spin puzzle.

B. Proton spin at small x

The first resummation of hPDFs at small x was per-

formed in the pioneering work by Bartels, Ermolaev, and

Ryskin (BER) [35,36], who employed the infrared evolu-

tion equations (IREE) formalism from Refs. [37–41]. The

BER IREE resummed double logarithms of x—i.e., powers

of the parameter αs ln
2ð1=xÞ (with αs being the strong

coupling constant)—which is referred to as the double-

logarithmic approximation (DLA). The leading small-x
asymptotics for the flavor singlet combination of quark

hPDFs and the gluon hPDF can be written as

ΔΣðx;Q2Þ ∼ ΔGðx;Q2Þ ∼
�
1

x

�
αh

; ð3Þ

with αh being the helicity intercept. BER found αh ¼

3.66

ffiffiffiffiffiffiffiffi
αsNc

2π

q
in the pure gluon case and αh ¼ 3.45

ffiffiffiffiffiffiffiffi
αsNc

2π

q
for

Nf ¼ 4 (the numbers 3.66 and 3.45 were calculated numeri-

cally, the latter for Nc ¼ 3, withNc=Nf being the number of

quark colors/flavors). These intercepts are numerically large,

with αh > 1 for realistic coupling αs ¼ 0.2–0.3, making the

integrals (2) divergent as x → 0. One may hope that the

higher-order corrections in αs, when calculated, would lower

the intercept αh below 1, making the integrals (2) convergent.

In addition, at very small x, parton saturation corrections (see
Refs. [42–49] for reviews) are likely to significantly modify

theasymptotics (3) by slowingdown (or completely stopping)

the growth of hPDFs with decreasing x (see, e.g., [50] for the
impact of saturation effects on the unpolarized flavor non-

singlet evolution). Phenomenological applications of the

BER IREE approach were developed in Refs. [51–56].

Recently, the BER approach has been applied to the OAM

distributions as well [57].

Over the past decade, a new approach to helicity

evolution at small x has been developed [58–71] employing

the shock wave=s-channel evolution formalism originally

constructed in Refs. [72–84] for unpolarized eikonal

scattering. The main idea behind the works [58–71] is that

the subeikonal, sub-subeikonal, etc., quantities obey small-

x evolution equations similar to the eikonal ones [75–84],

resulting from an s-channel gluon (or quark) cascade. (See

Refs. [63,64,85–98] for the formalism of subeikonal and

sub-subeikonal evolution in high-energy scattering.) The

subeikonal quantities are suppressed by one power of x
compared to the eikonal ones, while sub-subeikonal quan-

tities are suppressed by two powers of x, etc.
The equations developed in Refs. [58,60,63,64,66,71]

were also derived in the DLA. Similarly to the unpolarized

evolution equations [75–84], the helicity evolution equa-

tions [58,60,63,64,71] only take on a closed form in the

large-Nc [99] and large-Nc & Nf [100] limits. In that case,

they become the evolution equations for the so-called

“polarized dipole amplitudes,” which are dipole scattering

amplitudes with an insertion of one gluon or two quark

operators at the subeikonal level into the light-cone Wilson

lines [63,64,71,92]. The earlier version of this evolution,

constructed in Refs. [58,60,63] (which we will refer to as

KPS), led to an intercept of αh ¼ 4ffiffi
3

p
ffiffiffiffiffiffiffiffi
αsNc

2π

q
≈ 2.31

ffiffiffiffiffiffiffiffi
αsNc

2π

q
in

the large-Nc limit [61,62], significantly smaller than the

intercept of αh ¼ 3.66

ffiffiffiffiffiffiffiffi
αsNc

2π

q
found by BER in the same

limit. The KPS evolution has recently been augmented [71]

by inclusion of the operators which couple what can be

interpreted as the OAM of the gluon probe (in the A− ¼ 0

light-cone gauge of the projectile) to the spin of the proton.
1

1
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suggesting this interpretation of those operators.
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The revised evolution equations, which we will refer to as

the KPS-CTT equations [58,64,71], have been solved at

large Nc both numerically [71] and analytically [101].

While the former reference found the numerical value of

the intercept to be αh ¼ 3.66

ffiffiffiffiffiffiffiffi
αsNc

2π

q
, appearing to agree with

BER, the analytic solution [101] found that the BER and

KPS-CTT intercepts at large Nc disagree in the third

decimal point. Very recently, a numerical solution of the

large-Nc & Nf version of the KPS-CTT evolution [102]

established a disagreement with BER (in the same limit) at

the 2%–3% level, with the discrepancy increasing with Nf.

While the observed differences between the two sets of

results appear to demand further theoretical investigation,

they are sufficiently small to allow one to proceed with

rigorous phenomenological applications of the KPS-CTT

evolution equations [58,60,63,64,71].

The first phenomenological application of the polarized

dipole amplitude formalism—more precisely, its KPS

version—was performed by a subset of the present authors

in Ref. [103]. In that work, a successful “proof of principle”

fit of the world polarized DIS data for x < 0.1 andQ2 > m2
c

(with mc being the charm quark mass) based solely on

small-x helicity evolution was performed. Since the analysis

of Ref. [103] was limited to DIS data, only the g1 structure
functions of the proton and neutron were extracted instead of

the individual flavor hPDFs. The impact ofDIS data from the

EIC on our ability to predict the g1 structure function at small

xwas also estimated. In addition, in order to demonstrate that

it is possible to extract the combinations Δqþðx;Q2Þ≡
Δqðx;Q2Þ þ Δqðx;Q2Þ for q ¼ u, d, s using small-x
helicity evolution, parity-violatingDISEIC pseudodatawere

utilized. We refer to Δqþðx;Q2Þ as the C-even hPDFs,

whereas the flavor nonsinglet C-odd hPDFs are similarly

defined as Δq−ðx;Q2Þ≡ Δqðx;Q2Þ − Δqðx;Q2Þ.

C. Subject of this work

In the present paper, we perform, for the first time, a

phenomenological analysis based on the KPS-CTT version

of small-x helicity evolution with several other significant

new features beyond the work of Ref. [103]. Instead of the

large-Nc limit of evolution employed in Ref. [103], we base

our analysis on the large-Nc & Nf limit. In addition to the

polarized DIS data, we also include in our analysis polarized

SIDIS data. Since the SIDIS data are sensitive to the

individual quark and antiquark helicity PDFs, Δqðx;Q2Þ
andΔqðx;Q2Þ, it is not sufficient to just use the flavor singlet
helicity evolution from Ref. [71], which only yields the

Δqþðx;Q2Þ combination [in addition to the gluon hPDF

ΔGðx;Q2Þ]. One also needs the flavor nonsinglet quark

hPDFs Δq−ðx;Q2Þ. Those are constructed using the large-

Nc, small-x helicity evolution equation for the flavor non-

singlet case from Ref. [60]. Finally, to make the calculation

more realistic and avoid the integrals (2) diverging at x → 0,

we include runningcoupling corrections into thekernel of the

evolution equations (both flavor singlet and nonsinglet). We

make the coupling run with the daughter dipole size, which

ends up effectively reducing the interceptαh forΔq
þ andΔG

below 1. (The intercept of the flavor nonsinglet hPDFs is

smaller than 1 even at fixed coupling in the realistic αs ¼
0.2–0.3 range; still, for consistency, we apply running

coupling corrections to the flavor nonsinglet helicity evolu-

tion as well.) The analysis of SIDIS data also requires input

for fragmentation functions, which are not specific to the

small-x evolution at hand; therefore, we employ the existing

JAM fragmentation functions for pions, kaons, and uniden-

tified hadrons from Ref. [34].

The paper is structured as follows: We begin in Sec. II by

outlining thepolarizeddipole amplitude formalismdeveloped

inRefs. [58,60,63,64,71] and explicitlywriting out the flavor-

singlet KPS-CTT large-Nc & Nf, DLA small-x helicity

evolution equations with running coupling corrections, along

with the flavor nonsinglet helicity evolution equation derived

in Ref. [60]. We also present the details of our numerical

methodology in solving these evolution equations. We

describe the calculation of observables (double-longitudinal

spin asymmetries) inDISandSIDIS, particularly detailing the

calculation of the polarized SIDIS cross section at small x.We

explain our analysis of the world polarized DIS and SIDIS

low-x data and describe the implementation of the KPS-CTT

evolution within the JAMBayesian Monte Carlo framework.

The results of our analysis are presented in Sec. III, which

includes plots of data versus theory, the hPDFs, and the g1
structure function, as well as an estimate of how much of the

proton spin is carried by the net spin of partons at small x. We

also conduct an EIC impact study on the aforementioned

quantities. Conclusions and an outlook are given in Sec. IV.

II. METHODOLOGY

A. Flavor singlet evolution at small x

The small-x helicity formalism in the light-cone operator

treatment (LCOT) framework along with the large-

Nc & Nf, small-x evolution equations for helicity were

revised in Ref. [71]. In the new formalism, the (DIS) g1
structure function is given by

g1ðx;Q2Þ ¼ 1

2

X

q

e2qΔq
þðx;Q2Þ; ð4Þ

where eq is the quark electric charge as a fraction of the

magnitude of the electron’s charge. The C-even quark

hPDFs in the DLA take the form [64,71]

Δqþðx;Q2Þ≡ Δqðx;Q2Þ þ Δqðx;Q2Þ

¼ −
Nc

2π3

Z
1

Λ
2=s

dz

z

Z
min ½1=zQ2;1=Λ2�

1=zs

dx2
10

x2
10

× ½Qqðx210; zsÞ þ 2G2ðx210; zsÞ�: ð5Þ
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The gluon hPDF in the DLA is [63]

ΔGðx;Q2Þ ¼ 2Nc

αsπ
2
G2

�
x2
10

¼ 1

Q2
; zs ¼ Q2

x

�
: ð6Þ

Note that the quark and gluon hPDFs Δqþ and ΔG are

expressed in terms of the impact-parameter-integrated

polarized dipole amplitudes Qq and G2, whose operator

definitions can be found in Refs. [58,64,71] and Ref. [63],

respectively. The dipole amplitudes depend on the

transverse size of the dipole x10 ¼ jx1 − x0j, where the

“polarized” (subeikonally interacting) line is located at x1,

and the unpolarized (standard) Wilson line is at x0 in the

transverse plane. The amplitudes also depend on the center-

of-mass energy squared s of the projectile-proton scatter-

ing. The dimensionless longitudinal momentum fraction z
can be thought of as the momentum fraction of the softest

of the two lines in the dipole. (However, this definition is

somewhat imprecise, and it is more accurate to think of zs
as the effective energy of the dipole-proton scattering

[58,60,70].) The momentum scale Λ denotes our infrared

(IR) cutoff and is the scale characterizing the proton. No

dipole can be larger than 1=Λ—that is, the transverse

size x10 < 1=Λ.
At small x, Eq. (4) was derived in Refs. [58,60,61].

However, the contribution of G2 to Δqþ in Eq. (5) was

recognized only recently [71]. Given that G2 is closely

related to the gluon hPDF ΔG, as follows from Eq. (6),

Eqs. (4) and (5) show that in our LCOT approach, the

contribution ofΔG to g1 comes in throughΔqþ [71,102] (see

more on this below).We have also expanded the definition of

the amplitudeQq to include dependence on the quark flavor

q ¼ u, d, s, such that we have three different amplitudesQu,

Qd, andQs for the light flavors, which is necessary, since the

quark spinor field operators are flavor dependent. The

operator definition for the three flavors is the same, but

the flavor dependence can enter through the initial condition

of the dipole amplitude evolution.

While Eq. (4) appears to correspond to the leading-order

(LO) expression in the collinear factorization approach to

polarized DIS [see, e.g., Eq. (4.5) in Ref. [104] ], in the

LCOT framework, it contains more information than that.

In collinear factorization at the next-to-leading order (NLO)

and beyond, the expression for the g1 structure function

also involves the contribution of ΔG. More precisely, one

can write [18,19,105–114]

g1ðx;Q2Þ ¼ 1

2

X

q

e2q

�
Δqþðx;Q2Þ

þ
Z

1

x

dz

z

�
ΔcqðzÞΔqþ

�
x

z
;Q2

�

þ ΔcGðzÞΔG
�
x

z
;Q2

���
; ð7Þ

with the coefficient functions ΔcqðzÞ and ΔcGðzÞ calcu-

lated order by order in perturbation theory. In the MS

scheme, the small-x, large-Nc & Nf coefficient functions

are [105] (see also [114] for the three-loop contribution,

which we do not show explicitly here)

ΔcqðzÞ ¼
αsNc

4π
ln
1

z
þ 5

12

�
αsNc

4π

�
2
�
1 − 4

Nf

Nc

�
ln3

1

z

þOðα3sÞ; ð8aÞ

ΔcGðzÞ ¼ −
αs

2π
ln
1

z
−
11

2

�
αs

4π

�
2

Ncln
3
1

z
þOðα3sÞ: ð8bÞ

Note that after the z integration in Eq. (7), the contribution

from the order-αs terms in Eq. (8) becomes of the order

αs ln
2ð1=xÞ, while the contribution from the order-α2s terms

in Eq. (8) becomes of the order ½αs ln2ð1=xÞ�2, etc.

Consequently, in the collinear factorization power counting,

the contributions from ΔcqðzÞ and ΔcGðzÞ in Eq. (7) are

NLO and beyond, allowing one to truncate the expansion at a

given order in αs determined by the accuracy of the

calculation. In our DLA small-x power counting, the leading
small-x parts of ΔcqðzÞ and ΔcGðzÞ are already included to
all orders in the powers of αs ln

2ð1=xÞ. This is precisely what
Eq. (4) accomplishes [102].While it appears to be just the LO

part of Eq. (7), the fact thatΔqþ in it is evolvedwith theDLA

small-x helicity evolution [58,60,63,64,71], resumming

powers of both αs ln
2ð1=xÞ and αs lnð1=xÞ lnðQ2=Q2

0
Þ,

implies that Eq. (4) contains both theDLADGLAPevolution

ofΔqþ, which mixes it with ΔG [by resumming the powers

of αs lnð1=xÞ lnðQ2=Q2

0
Þ], and the leading small-x parts of

the coefficient functions ΔcqðzÞ and ΔcGðzÞ, resummed to

all orders in αs ln
2ð1=xÞ, bringing the ΔG and additional

Δqþ contributions into g1, as expected from Eq. (7) (see

[102] for a more detailed discussion). The fact that all these

contributions are contained in Eq. (4), which looks much

simpler than Eq. (7), appears to suggest that we are working

in the “polarizedDIS scheme” [102] for our hPDFs (cf. [115]

for the standard DIS scheme), whereΔG does not contribute

to g1 directly, unlike the more widely used MS scheme from

Eq. (7). Other small-x calculations, such as the NLO BFKL

evolution [116,117] (in the small-x power counting), result in
the spin-independent GG anomalous dimension in the DIS

scheme [108]. This appears to be similar to our calculation

giving a polarized DIS scheme result, with the difference

between the anomalous dimensions in different schemes

being proportional to Nf [102,108].

The polarized dipole amplitudes Qq and G2, which enter

Eqs. (4)–(6), are found by solving the small-x evolution

equations. The DLA large-Nc & Nf revised evolution

equations at fixed coupling are given by Eq. (155) in

Ref. [71] (see also Refs. [58,64]). Its existing numerical

solution [102] (with fixed coupling) leads to a large
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intercept αh for the flavor singlet hPDFs and for Δqþ [see

Eq. (3) with the intercept values in the text following that

equation],making the integrals in Eq. (2) divergent as x → 0.

As we discussed above, this divergence may be regulated by

higher-order corrections and/or by the onset of saturation,

which is likely to slow down the growth of hPDFs as x → 0.

As the unpolarized small-x evolution [72–84] is single-

logarithmic, resumming powers of αs lnð1=xÞ, a consistent

inclusion of saturation effects is beyond the double-loga-

rithmic approximation employed here.While, strictly speak-

ing, phenomenology based on small-x evolution in the DLA
should work with the high intercepts found in Ref. [102], it

appears to be unphysical to perform an analysis of exper-

imental data with a formalism that would yield an infinite

amount of spin at small x. While we cannot include the

single-logarithmic [resumming powers of αs lnð1=xÞ] cor-
rections to the revised DLA evolution equations (155) from

Ref. [71], since they have not been fully calculated yet (see

Ref. [70] for the single-logarithmic corrections to the earlier

KPS evolution), we can include running-coupling correc-

tions in the DLA evolution. A similar approximation was

employed in the BER framework [53,55] and for the

spin-independent eikonal small-x evolution [118,119],

resulting in successful phenomenology.

In the DLA equations (155) from Ref. [71], the scale of

the coupling could be given by either the “parent” (x10) or
the “daughter” (x21 or x32) dipole. The running coupling

corrections to the (unrevised) KPS evolution, calculated in

Ref. [70] (along with other single-logarithmic corrections),

indicate that at DLA the coupling runs with the daughter

dipole size. For the neighbor dipole amplitudes Γ, eΓ, and
Γ2, introduced in Refs. [58,60,63,64,66,71] and also enter-

ing helicity evolution equations, the coupling runs with

the dipole size x32, which determines the next emission’s

lifetime and is integrated over in the kernel [70]. Therefore,

we proceed by running the coupling with the daughter

dipole size (or, more precisely, with the dipole size that we

integrate over in the kernel) in all the terms of the KPS-CTT

evolution. (See Refs. [120–124] for calculations and

analyses of the running coupling corrections in the unpo-

larized small-x evolution case.) The resulting running-

coupling version of the large-Nc & Nf helicity evolution

equations (155) from [71] reads

Qqðx210; zsÞ ¼ Q
ð0Þ
q ðx2

10
; zsÞ þ Nc

2π

Z
z

1=x2
10
s

dz0

z0

Z
x2
10

1=z0s

dx2
21

x2
21

αs

�
1

x2
21

�
½2eGðx2

21
; z0sÞ þ 2eΓðx2

10
; x2

21
; z0sÞ

þQqðx221; z0sÞ − Γqðx210; x221; z0sÞ þ 2Γ2ðx210; x221; z0sÞ þ 2G2ðx221; z0sÞ�

þ Nc

4π

Z
z

Λ
2=s

dz0

z0

Z
min ½x2

10
z=z0;1=Λ2�

1=z0s

dx2
21

x2
21

αs

�
1

x2
21

�
½Qqðx221; z0sÞ þ 2G2ðx221; z0sÞ�; ð9aÞ

Γqðx210; x221; z0sÞ ¼ Q
ð0Þ
q ðx2

10
; z0sÞ þ Nc

2π

Z
z0

1=x2
10
s

dz00

z00

Z
min½x2

10
;x2

21
z0=z00�

1=z00s

dx2
32

x2
32

αs

�
1

x2
32

�
½2eGðx2

32
; z00sÞ

þ2eΓðx2
10
; x2

32
; z00sÞ þQqðx232; z00sÞ − Γqðx210; x232; z00sÞ þ 2Γ2ðx210; x232; z00sÞ þ 2G2ðx232; z00sÞ�

þ Nc

4π

Z
z0

Λ
2=s

dz00

z00

Z
min ½x2

21
z0=z00;1=Λ2�

1=z00s

dx2
32

x2
32

αs

�
1

x2
32

�
½Qqðx232; z00sÞ þ 2G2ðx232; z00sÞ�; ð9bÞ

eGðx2
10
; zsÞ ¼ eGð0Þðx2

10
; zsÞ þ Nc

2π

Z
z

1=x2
10
s

dz0

z0

Z
x2
10

1=z0s

dx2
21

x2
21

αs

�
1

x2
21

��
3eGðx2

21
; z0sÞ þ eΓðx2

10
; x2

21
; z0sÞ

þ2G2ðx221; z0sÞ þ
�
2 −

Nf

2Nc

�
Γ2ðx210; x221; z0sÞ −

1

4Nc

X

q

Γqðx210; x221; z0sÞ
�

−
1

8π

Z
z

Λ
2=s

dz0

z0

Z
min ½x2

10
z=z0;1=Λ2�

max½x2
10
;1=z0s�

dx2
21

x2
21

αs

�
1

x2
21

��X

q

Qqðx221; z0sÞ þ 2NfG2ðx221; z0sÞ
�
; ð9cÞ

eΓðx2
10
; x2

21
; z0sÞ ¼ eGð0Þðx2

10
; z0sÞ þ Nc

2π

Z
z0

1=x2
10
s

dz00

z00

Z
min½x2

10
;x2

21
z0=z00�

1=z00s

dx2
32

x2
32

αs

�
1

x2
32

��
3eGðx2

32
; z00sÞ

þeΓðx2
10
; x2

32
; z00sÞ þ 2G2ðx232; z00sÞ þ

�
2 −

Nf

2Nc

�
Γ2ðx210; x232; z00sÞ −

1

4Nc

X

q

Γqðx210; x232; z00sÞ
�

−
1

8π

Z
z0x2

21
=x2

10

Λ
2=s

dz00

z00

Z
min ½x2

21
z0=z00;1=Λ2�

max½x2
10
;1=z00s�

dx2
32

x2
32

αs

�
1

x2
32

��X

q

Qqðx232; z00sÞ þ 2NfG2ðx232; z00sÞ
�
; ð9dÞ
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G2ðx210; zsÞ ¼ G
ð0Þ
2
ðx2

10
; zsÞ þ Nc

π

Z
z

Λ
2=s

dz0

z0

Z
min ½ z

z0x
2

10
; 1
Λ
2
�

max ½x2
10
; 1
z0s�

dx2
21

x2
21

αs

�
1

x2
21

�
½eGðx2

21
; z0sÞ þ 2G2ðx221; z0sÞ�; ð9eÞ

Γ2ðx210; x221; z0sÞ ¼ G
ð0Þ
2
ðx2

10
; z0sÞ þ Nc

π

Z
z0
x2
21

x2
10

Λ
2=s

dz00

z00

Z
min ½ z0

z00x
2

21
; 1
Λ
2
�

max ½x2
10
; 1

z00s�

dx2
32

x2
32

αs

�
1

x2
32

�
½eGðx2

32
; z00sÞ þ 2G2ðx232; z00sÞ�: ð9fÞ

The running coupling in Eq. (9) is given by the standard

one-loop expression,

αsðQ2Þ ¼ 12π

11Nc − 2Nf

1

lnðQ2=Λ2

QCDÞ
; ð10Þ

with ΛQCD being the QCD confinement scale. We have also

modified Eq. (9) compared to Eq. (155) in Ref. [71] in two

additional ways: first, we are now treating the momentum

scale Λ as the infrared cutoff (assuming that Λ > ΛQCD);

second, since the amplitude Qq is now flavor dependent,

we have replaced the Nf factors from Ref. [71] with flavor

sums ð
P

qÞ. Equation (9) also includes the dipole ampli-

tude eG, which is defined in Ref. [71]: as one can see from

Eqs. (4)–(6), the g1 structure function and hPDFs do not

depend on this dipole amplitude: this will affect our

analysis below. Following Refs. [58,60,63,64,66,71], we

have introduced the impact-parameter integrated “neighbor

dipole amplitudes” Γqðx210; x232; zsÞ, eΓðx2
10
; x2

32
; zsÞ, and

Γ2ðx210; x232; zsÞ for the amplitudes Qq, eG, and G2, respec-

tively, with physical dipole transverse size x10 and lifetime

∼x2
32
z. This lifetime for the neighbor dipole amplitudes

depends on the transverse size of another (adjacent) dipole,

giving rise to the “neighbor” amplitude name.

The inhomogeneous terms (initial conditions) in Eq. (9)

can be calculated at the Born level for a longitudinally

polarized massless quark target instead of the proton. This

gives [58,60,63,71]

eGð0Þðx2
10
; zsÞ ¼ Q

ð0Þ
q ðx2

10
; zsÞ

¼ α2sCF

2Nc

π

�
CF ln

zs

Λ
2
− 2 ln ðzsx2

10
Þ
�
; ð11aÞ

G
ð0Þ
2
ðx2

10
; zsÞ ¼ α2sCF

Nc

π ln
1

x10Λ
; ð11bÞ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ is the Casimir operator in the

fundamental representation of SU(Nc). These expressions

will motivate our choice of the initial conditions for our

phenomenological analysis. (While, strictly speaking, we

should have included running coupling corrections in the

expressions (11) as well, the fixed coupling form has a

sufficient variety of dependence on the relevant variables zs
and x10 to motivate a fairly broad class of initial conditions

we will implement below).

B. Flavor nonsinglet evolution at small x

As one can see from Eq. (4) in the previous subsection,

measurements of the g1 structure function in DIS off a

nucleon are only sensitive to a specific linear combination of

Δqþðx;Q2Þ. Such DIS measurements were the topic of our

previous study [103]. However, the polarized SIDIS process,

as we will see below, provides information on the individ-

ual flavor hPDFs Δqðx;Q2Þ—or, equivalently, on both

Δqþðx;Q2Þ and Δq−ðx;Q2Þ≡ Δqðx;Q2Þ − Δqðx;Q2Þ.
The above evolution equations (9) only allow us to calculate

Δqþðx;Q2Þ. To perform the polarized SIDIS data analysis,

we need to supplement them with the small-x helicity

evolution in the flavor nonsinglet channel.

A closed evolution equation at small x yielding

Δq−ðx;Q2Þ in the LCOT framework can be obtained in

the large-Nc limit, which is equivalent to the large-Nc & Nf

limit for the flavor nonsinglet helicity evolution in DLA.

(In the DLA, the flavor nonsinglet evolution is Nf-

independent, since virtual quark bubbles do not contribute.

Thus, the large-Nc and large-Nc & Nf limits are identical

for flavor nonsinglet evolution.) Employing Eq. (54b)

of [60], we write in the DLA

Δq−ðx;Q2Þ≡ Δqðx;Q2Þ − Δqðx;Q2Þ

¼ Nc

2π3

Z
1

Λ
2=s

dz

z

Z
min ½1=zQ2;1=Λ2�

1=zs

dx2
10

x2
10

×GNS
q ðx2

10
; zsÞ: ð12Þ

We see that Δq−ðx;Q2Þ only depends on one (impact-

parameter integrated) polarized dipole amplitude,

GNS
q ðx2

10
; zsÞ, for each flavor q ¼ u, d, s. The definition

of this dipole amplitude can be found in Eq. (55) of

Ref. [60]. Just as in the flavor singlet case, the nonsinglet

dipole amplitude can be determined by solving the small-x
evolution equation, which reads [60]

GNS
q ðx2

10
; zÞ ¼G

NSð0Þ
q ðx2

10
; zÞ þNc

4π

Z
z

Λ
2=s

dz0

z0

×

Z
min ½x2

10
z=z0;1=Λ2�

1=z0s

dx2
21

x2
21

αs

�
1

x2
21

�

×GNS
q ðx2

21
; z0Þ: ð13Þ
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To be consistent with the flavor-singlet evolution, we have

also inserted a running coupling into Eq. (13), modifying it

slightly compared to the fixed-coupling flavor nonsinglet

evolution equation derived in Ref. [60]. The inhomo-

geneous term in Eq. (13) can also be calculated at Born

level for a quark target [60]:

G
NSð0Þ
q ðx2

10
; zsÞ ¼ α2sC

2
F

Nc

π ln
zs

Λ
2
: ð14Þ

This expression will again motivate our choice of the flavor

nonsinglet initial conditions in phenomenology.

C. Numerical implementation of the flavor singlet

and nonsinglet evolution

Similarly to our previous works [61,67,71,102], small-x
helicity evolution equations simplify if one performs the

following change of variables:

ηðnÞ ¼
ffiffiffiffiffiffi
Nc

2π

r
ln
zðnÞs

Λ
2
; sij ¼

ffiffiffiffiffiffi
Nc

2π

r
ln

1

x2ijΛ
2
: ð15Þ

Here, zðnÞ ¼ z; z0; z00;…, while ηðnÞ ¼ η; η0; η00;…. Note

that this form, in contrast to the earlier works, removes

the factor
ffiffiffiffiffi
αs

p
from the definition of the variables η and sij,

so that the one-loop running of the coupling can be

implemented via [cf. Eq. (10)]

αsðs21Þ ¼
ffiffiffiffiffiffi
Nc

2π

r
12π

ð11Nc − 2NfÞ
1

ðs21 þ s0Þ
; ð16aÞ

s0 ¼
ffiffiffiffiffiffi
Nc

2π

r
ln

Λ
2

Λ
2

QCD

: ð16bÞ

Since we assume that Λ > ΛQCD, we have s0 > 0. As all

our dipole sizes are smaller than 1=Λ, we see that s21 > 0,

thus avoiding the Landau pole at s21 ¼ −s0 < 0 in the

coupling. (In general, having an IR cutoff for the dipole

sizes, xij < 1=Λ, implies that all sij > 0.)

Before discretizing our evolution equations, we need to

impose the starting value of x for our evolution

(cf. Ref. [103]). For z ¼ 1 and x10 ¼ 1=Q, we have the

“rapidity” variable y≡ η − s10 ¼
ffiffiffiffi
Nc

2π

q
ln 1

x
. Hence, if our

evolution starts at some value of x labeled by x0, then the

x < x0 condition implies that η − s10 >

ffiffiffiffi
Nc

2π

q
ln 1

x0
≡ y0.

Regarding the value of x0, it was observed in

Ref. [103], using the older (KPS) version of our helicity

evolution, that good χ2 fits of the polarized DIS data can be

obtained with x0 ¼ 0.1 (and even for slightly higher values

of x0). This is in contrast to the x0 ¼ 0.01 starting point of

the evolution [75–84] for phenomenological analyses of the

unpolarized observables (see, e.g., Refs. [118,119]). As

discussed in Sec. III A below, it was speculated in

Ref. [103] that such a discrepancy could be attributed to

the helicity evolution resumming the double-logarithmic

parameter αs ln
2ð1=xÞ while the unpolarized evolution

[77–84,125,126] resums single logarithms αs lnð1=xÞ.
This way, the resummation parameter for helicity evolution

is larger at small x, making the helicity evolution start at

larger x values. We thus put x0 ¼ 0.1 in all our analyses

below.
2

The full process of discretizing our flavor singlet and

nonsinglet evolution equations with running coupling is

detailed in Appendix A. In the end, the discretized

version of Eq. (9) written in terms of the variables in

(15) reads

Qq½i; j� ¼ Qq½i; j− 1� þQ
ð0Þ
q ½i; j�−Q

ð0Þ
q ½i; j− 1�

þΔ
2
Xj−2−y0

i0¼i

αs½i0�
�
3

2
Qq½i0; j− 1� þ 2eG½i0; j− 1� þ 2eΓ½i; i0; j− 1�− Γq½i; i0; j− 1� þ 3G2½i0; j− 1� þ 2Γ2½i; i0; j− 1�

�

þ 1

2
Δ

2
Xj−2

j0¼j−1−i

αs½iþ j0 − jþ 1�½Qq½iþ j0 − jþ 1; j0� þ 2G2½iþ j0 − jþ 1; j0��; ð17aÞ

Γq½i; k; j� ¼ Γq½i; k − 1; j − 1� þQ
ð0Þ
q ½i; j� −Q

ð0Þ
q ½i; j − 1�

þ Δ
2
Xj−2−y0

i0¼k−1

αs½i0�
�
3

2
Qq½i0; j − 1� þ 2eG½i0; j − 1� þ 2eΓ½i; i0; j − 1� − Γq½i; i0; j − 1�

þ 3G2½i0; j − 1� þ 2Γ2½i; i0; j − 1�
�
; ð17bÞ

2
Note that the x < x0 condition is applied only to our small-x helicity evolution equations. The expressions for the g1 structure

function (4) and the quark (5) and gluon (6) hPDFs remain as shown above: for x > x0 they are driven by the initial conditions/
inhomogeneous terms for our evolution (cf. Ref. [103]). The coupling in Eq. (6) runs with Q2.
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eG½i; j� ¼ eG½i; j− 1� þ eGð0Þ½i; j�− eGð0Þ½i; j− 1�

þΔ
2
Xj−2−y0

i0¼i

αs½i0�
�
3eG½i0; j− 1� þ eΓ½i; i0; j− 1� þ 2G2½i0; j− 1� þ

�
2−

Nf

2Nc

�
Γ2½i; i0; j− 1�− 1

4Nc

X

q

Γq½i; i0; j− 1�
�

−Δ
2

1

4Nc

Xj−2

j0¼j−1−i

αs½iþ j0 − jþ 1�
�X

q

Qq½iþ j0 − jþ 1; j0� þ 2NfG2½iþ j0 − jþ 1; j0�
�
; ð17cÞ

eΓ½i;k; j� ¼ eΓ½i;k− 1; j− 1� þ eGð0Þ½i; j�− eGð0Þ½i; j− 1�

þΔ
2
Xj−2−y0

i0¼k−1

αs½i0�
�
3eG½i0; j− 1� þ eΓ½i; i0; j−1� þ 2G2½i0; j−1� þ

�
2−

Nf

2Nc

�
Γ2½i; i0; j− 1�

−
1

4Nc

X

q

Γq½i; i0; j− 1�
�
; ð17dÞ

G2½i; j� ¼ G2½i; j − 1� þG
ð0Þ
2
½i; j� −G

ð0Þ
2
½i; j − 1�

þ 2Δ2
Xj−2

j0¼j−1−i

αs½iþ j0 − jþ 1�½eG½iþ j0 − jþ 1; j0� þ 2G2½iþ j0 − jþ 1; j0��; ð17eÞ

Γ2½i; k; j� ¼ Γ2½i; k − 1; j − 1� þG
ð0Þ
2
½i; j� −G

ð0Þ
2
½i; j − 1�; ð17fÞ

where the numerical step sizes are chosen such that

Δη ¼ Δs10 ¼ Δs21 ≡ Δ, and the indices are defined by

fη; s10; s21g → fj; i; kg · Δ. Equation (17) allows us to

compute the numerical solution for the flavor singlet

evolution equations (9). Note that it is only necessary to

loop over the ranges dictated by our physical assumptions,

0 ≤ i ≤ k ≤ j ≤ jmax and i < j. Furthermore, it is useful to

notice that the neighbor dipole amplitudes reduce to their

dipole-amplitude counterparts when k ¼ i—that is,

Γq½i; k ¼ i; j� ¼ Qq½i; j�; ð18aÞ

eΓ½i; k ¼ i; j� ¼ eG½i; j�; ð18bÞ

Γ2½i; k ¼ i; j� ¼ G2½i; j�: ð18cÞ

We can continue this convention and write the quark and

gluon hPDFs from Eqs. (5) and (6) in the new variables,

Δqþðx;Q2Þ ¼ −
1

π2

Z ffiffiffiffi
Nc
2π

p
ln

Q2

xΛ2

0

dη

Z
η

max ½0;η−
ffiffiffiffi
Nc
2π

p
ln1

x
�
ds10

× ½Qqðs10; ηÞ þ 2G2ðs10; ηÞ�; ð19Þ

and

ΔGðx;Q2Þ ¼ 2Nc

αsðQ2Þπ2 G2

�
s10 ¼

ffiffiffiffiffiffi
Nc

2π

r
ln
Q2

Λ
2
;

η ¼
ffiffiffiffiffiffi
Nc

2π

r
ln

Q2

xΛ2

�
; ð20Þ

where the only difference compared to ΔG from Eq. (6) is

the running coupling.

The last pieces to consider are the inhomogeneous terms.

According to the Born-level initial conditions (11), they can

be rewritten using our new logarithmic variables as

Q
ð0Þ
q ðs10; ηÞ ¼ eGð0Þðs10; ηÞ

¼ α2sCFπ

2Nc

ffiffiffiffiffiffi
2π

Nc

s
½ðCF − 2Þηþ 2s10�; ð21aÞ

G
ð0Þ
2
ðs10; ηÞ ¼

α2sCFπ

2Nc

ffiffiffiffiffiffi
2π

Nc

s
s10: ð21bÞ

Since the equations (21) are linear in η and s10, we follow
Ref. [103] and employ the linear expansion ansatz—i.e.,

Q
ð0Þ
q ðs10; ηÞ ¼ aqηþ bqs10 þ cq; ð22aÞ

eGð0Þðs10; ηÞ ¼ eaηþ ebs10 þ ec; ð22bÞ

G
ð0Þ
2
ðs10; ηÞ ¼ a2ηþ b2s10 þ c2: ð22cÞ

Thus, for the three light flavors we consider, q ¼ u, d, s,
the full set of initial conditions for the flavor singlet

evolution depends on 15 parameters au; bu; cu; ad;…; c2,
which we will fit to the data. Moreover, because the

evolution equations we are solving are linear, their solution

can be written as a linear combination of 15 “basis” dipole
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amplitudes, each of which is constructed by performing the

iterative calculation outlined above while setting one

parameter (from all the a’s, b’s, and c’s) in Eq. (22) to

be 1 and all the other parameters to 0. Furthermore, since all

hPDFs and the g1 structure function depend linearly on the

polarized dipole amplitudes, they are linear combinations

of their corresponding basis functions as well.

For example, ΔuþðxÞ can be expressed as a linear

combination of the 15 “basis hPDFs” shown in Fig. 1.

Since ΔuþðxÞ depends directly on the linear combination

Qu þ 2G2 [see Eq. (5)], onemay expect thatQu andG2 have

the largest contributions to ΔuþðxÞ at moderate x. This is
indeed the case, with the top and bottom panels in Fig. 1

having the largest-magnitude contributions toΔuþðxÞ. Some

of the other amplitudes contributemore significantly at lower

x’s, as theirmagnitudes begin to influence those ofQu and/or

G2 through evolution.At the smallest values ofx in Fig. 1, the

largest contributor is G2, followed by eG, while the contri-

butions from Qd and Qs remain small for all values of x.
A consequence of this observation, which we will return

to later, is that the sign of the g1 structure function is

influenced mainly by the sign of G2 (or, equivalently, the

FIG. 1. The u-quark hPDF, xΔuþðxÞ, constructed solely out of each basis function in the range x∈ ½10−5; 1�. The legend in each panel
shows which basis function was used for which curve. For example, the blue curve in the top panel corresponds to xΔuþðxÞ constructed
from the initial conditions Q

ð0Þ
u ¼ η and Q

ð0Þ
q ¼ eGð0Þ ¼ G

ð0Þ
2

¼ 0 for q∈ fd; sg. The evolution begins at x0 ¼ 0.1, and the coupling

constant runs with the daughter-dipole prescription specified in Eq. (A1).
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sign of ΔG) and the sign of eG. A challenge for phenom-

enology presents itself: eG is slow to grow and hence less

sensitive to available data near x ¼ x0, but it has a potentially
large effect on the small-x asymptotics. Unless we have

sufficient data from an observable that is directly sensitive to
eG, constraining that amplitude will be difficult.

Similarly to the singlet evolution, the discretization of

the nonsinglet evolution equation (13) reads (again, see

Appendix A for details)

GNS½i;j� ¼GNS½i;j−1�þGNSð0Þ½i;j�−GNSð0Þ½i;j−1�

þ1

2
Δ

2

� Xj−2−y0

i0¼i

αs½i0�GNS½i0;j−1�

þ
Xj−2

j0¼j−1−i

αs½i− jþ1þ j0�

×GNS½i− jþ1þ j0;j0�
�
: ð23Þ

The corresponding flavor nonsinglet quark hPDF is given by

Δq−ðx;Q2Þ ¼ −
1

π2

Z ffiffiffiffi
Nc
2π

p
ln

Q2

xΛ2

0

dη

×

Z
η

max ½0;η−
ffiffiffiffi
Nc
2π

p
ln1

x
�
ds10G

NSðs10; ηÞ; ð24Þ

with the integrals also discretized and evaluated numerically.

Interested readers are directed toAppendixC for a discussion

about convergence testing the numerical solutions of the

flavor (non-)singlet evolution equations and the discretized

versions of the hPDFs.

The Born-level approximation (14) is linear in the

logarithmic variables (15), so we make a linear expansion

ansatz for the inhomogeneous term in the flavor nonsinglet

evolution,

G
NSð0Þ
q ¼ aNSq ηþ bNSq s10 þ cNSq ; ð25Þ

for each of the three light flavors,q ¼ u,d, s. Thismeans that

flavor nonsinglet hPDFs can be reconstructed as a linear

combination of 9 flavor nonsinglet basis functions, generated

by setting one of the 9 parameters (aNSu ; bNSu ;…; cNSs ) to 1,

while setting all others equal to 0. Combining thiswith the 15

parameters from Eq. (22) describing the inhomogeneous

terms for the flavor singlet dipole amplitudes, we have 24

parameters (and associated basis functions) for the eight

amplitudes (Qu,Qd,Qs, eG,G2,G
NS
u ,GNS

d , andGNS
s ), which

we will fit to describe the world polarized DIS and SIDIS

experimental data at low x.

D. SIDIS cross section at small x

We will now derive a formula for the SIDIS structure

function gh
1
ðx; zÞ at small x. Using the notation of Ref. [71],

we start with the DIS structure function g1ðxÞ and write it as

g1ðx;Q2Þ ¼ −
Q2

16π2αemx

X

λ¼�
λσγ⃗

�þp⃗→Xðλ;þÞ; ð26Þ

where σ γ⃗
�þp⃗→Xðλ;ΣÞ is the total virtual-photon–proton

cross section for the proton with helicity Σ and for the

transversely polarized virtual photon with polarization λ,

and αem is the fine structure constant. The virtual-photon–

proton cross section is always inelastic at this order in αem,

as the virtual photon has to decay into a quark-antiquark

pair, with the quark and antiquark fragmenting into hadrons

in the final state.

Consider producing a hadron with a fixed value of

z≡ P · Ph=P · q, where P and q are the four-momenta

of the proton and virtual photon, respectively, while Ph is

the momentum of the detected hadron, as shown in Fig. 2.

At high energy/small x, we can work in the frame where the

proton has a large Pþ momentum component, while the

virtual photon has a large q− momentum component. Then

z ≈ P−
h=q

− is the fraction of the virtual photon’s minus

momentum carried by the produced hadron. All other

components of the hadron’s momentum are integrated over.

We then write, by analogy to Eq. (26), in the collinear

approximation [127–129]

gh
1
ðx;z;Q2Þ¼−

Q2

16π2αemx

X

λ¼�
λ

Z
d2k⊥d

2Ph⊥δ
ð2Þðzk⊥−Ph⊥Þ

×
X

q;q

dσγ⃗
�þp⃗→qþX

d2k⊥
ðλ;þÞDh=q

1
ðz;Q2Þ; ð27Þ

where k⊥ and Ph⊥ are the transverse momentum vectors

for the quark and produced hadron in Fig. 2, while

D
h=q
1

ðz;Q2Þ is the collinear fragmentation function. The

sum
P

q;q goes over the produced quarks and antiquarks.

While only quark fragmentation is depicted in Fig. 2, an

FIG. 2. The SIDIS process at small x. An incoming virtual

photon with momentum q decays into a quark-antiquark pair,

which interacts with the target proton carrying momentum P. The
quark and antiquark then fragment into hadrons, and one of these

hadrons is detected with momentum Ph.
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antiquark could instead fragment there, by reverting the

particle number flow direction on the quark line in the

diagram.

In arriving at Eq. (27), we have employed the aligned jet

configuration, dominant in DLA [58,71], in which k− ≈ q−,
such that the produced hadron carries the fraction P−

h=k
− ≈

P−
h=q

− ¼ z of the quark’s momentum. Consequently, we

assume that z is not very small, such that the hadron is

produced in the forward (virtual photon) direction/current

fragmentation region and arises from the fragmentation of

the forward-moving quark with four-momentum k in Fig. 2,
and not from the fragmentation of the antiquark, which is

separated from the quark by a large rapidity interval. This is

similar to the hybrid factorization approach to particle

production [130–132]. (The fragmentation of the antiquark

in Fig. 2 would contribute to small-z hadron production and
is neglected here, since we are interested in order-1 values

of z.) In addition, the scale in the argument of the

fragmentation function could be chosen to be k2⊥.

However, in our small-x kinematics, the typical value of

k2⊥ is not too far from Q2, allowing us to use Q2 in the

argument of D
h=q
1

ðz;Q2Þ.
Integrating Eq. (27) over k⊥ and Ph⊥, we obtain

gh
1
ðx; z; Q2Þ ¼ −

Q2

16π2αemx

X

λ¼�
λ
X

q;q

σγ⃗
�þp⃗→qþXðλ;þÞ

×D
h=q
1

ðz;Q2Þ: ð28Þ

Comparing this to Eqs. (26) and (4), we arrive at

gh
1
ðx; z; Q2Þ ¼ 1

2

X

q;q

e2qΔqðx;Q2ÞDh=q
1

ðz;Q2Þ; ð29Þ

reproducing the result in Eq. (2) of Ref. [30] (see also

Refs. [127,133,134]), derived in the collinear factorization

framework. [As we mentioned above, since quarks and

antiquarks have different fragmentation functions, the

right-hand side of Eq. (29) cannot be expressed solely in

terms of the Δqþ linear combinations of hPDFs, and the

Δq− functions will enter as well.] We conclude that the

expression (29) for the polarized SIDIS structure function

is the same in the collinear and small-x formalisms for large

z. However, we emphasize that a similar discussion to that

surrounding Eqs. (4) and (7) applies to Eq. (29) regarding

its interpretation in the LCOT framework as implicitly

including higher-order αs corrections.
3

E. Global analysis

Our goal is to describe the world data on the longitudinal

double-spin asymmetries in DIS and SIDIS at low x using

small-x helicity evolution. We start with the longitudinal

DIS asymmetry, Ak (see, e.g., Refs. [29,135]),

Ak ¼
σ↓⇑ − σ↑⇑

σ↓⇑ þ σ↑⇑
¼ DðA1 þ ηA2Þ; ð30Þ

where the arrow ↑ð↓Þ denotes the lepton spin along

(opposite to) the beam direction, and the arrow ⇑ denotes

the target polarization along the beam axis. The kinematic

variables are given by

D ¼ yð2 − yÞð2þ γ2yÞ
2ð1þ γ2Þy2 þ ð4ð1 − yÞ − γ2y2Þð1þ RÞ ; ð31aÞ

η ¼ γ
4ð1 − yÞ − γ2y2

ð2 − yÞð2þ γ2yÞ ; ð31bÞ

where y ¼ ν=E is fractional energy transfer of the lepton in

the target rest frame, γ2 ¼ 4M2x2=Q2, and R ¼ σL=σT is

the ratio of the longitudinal to transverse virtual photo-

production cross sections. When 4M2x2 ≪ Q2ðγ2 ≪ 1Þ,
we have η ≪ 1, and the virtual-photon–target asymme-

tries are

A1 ¼
g1 − γ2g2

F1

≈
g1

F1

; A2 ¼ γ
g1 þ g2

F1

≪ 1; ð32Þ

implying

Ak ≈DA1: ð33Þ

Similarly, in polarized SIDIS for the production of a hadron

h, the asymmetry Ah
1

can be expressed as (see, e.g.,

Refs. [23,30])

Ah
1
¼ gh

1
− γ2gh

2

Fh
1

≈
gh
1

Fh
1

: ð34Þ

In principle, there is another observable in the DIS/SIDIS

family that could help constrain hPDFs: parity-violating

DIS. This process is sensitive to the g
γZ
1

structure function,

which is approximately proportional to ΔΣ [136,137].

Unfortunately, there is little to no data for g
γZ
1

in the

small-x (x < 0.1) region (see, e.g., Ref. [138]), not

allowing us to employ this observable in our analysis.

Between the two scattering processes, we have ten

unique observables: two in DIS (proton or deuteron=3He

target) and eight in SIDIS (proton or deuteron=3He target

with charged pion or kaon final states) from which in

principle we can constrain the eight polarized dipole

amplitudes [five associated with the C-even and flavor

singlet hPDFs (Qu, Qd, Qs, eG, G2), and three associated

with the flavor nonsinglet hPDFs (GNS
u , GNS

d , and GNS
s )].

3
Strictly speaking, for consistency, the fragmentation functions

D
h=q
1

ðz;Q2Þ should also be taken in the polarized DIS scheme,
but since the only presently available fragmentation functions are

given in the MS scheme, we make use of the existing extractions.
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In our formalism, the g1 and gh
1
structure functions are

calculated in terms of hPDFs using Eqs. (4) and (29),

respectively. [Note that Δq ¼ ðΔqþ þ Δq−Þ=2 and

Δq ¼ ðΔqþ − Δq−Þ=2.] This is the bridge connecting

small-x helicity evolution to the experimental data.

Fitting the hPDFs to Ak, A1, and Ah
1
at moderate x≲ 0.1

allows us to determine the initial conditions of the polarized

dipole amplitudes (22), (25). We then evolve the polarized

dipole amplitudes toward lower values of x using Eqs. (9)

and (13) to obtain hPDFs in that region, and compare with

existing data, as well as make predictions at smaller x. We

mention that the structure functions F1 and Fh
1
involve the

unpolarized PDF qðx;Q2Þ and, for the latter, the unpolar-

ized fragmentation function (FF) D
h=q
1

ðz;Q2Þ. We compute

F1 and Fh
1
up to next-to-leading order using collinear

factorization and DGLAP evolution, based on the JAM

analysis in Ref. [34]. (To be consistent, strictly speaking

one should include small-x evolution also for F1 and Fh
1
.

However, for us the results of Ref. [34] serve as a faithful

proxy of the experimental data for these structure functions.

A more comprehensive analysis that also utilizes small-x

evolution for F1 and Fh
1
is left for future work.)

Let us present a short discussion about our ability to

constrain G2 and eG, which are two important polarized

dipole amplitudes driving the small-x evolution of the

hPDFs. The polarized dipole amplitude G2 is directly

related to the gluon hPDF, per Eq. (20). However, the

observables we consider here do not directly couple to the

gluon hPDF. Instead, as we saw above, they couple only to

quark hPDFs. The dipole amplitude G2 enters the quark

hPDFsΔqþ along with the dipole amplitudeQq. Moreover,

they always enter in the same linear combination, Qq þ
2G2 for q ¼ u, d, s [see Eq. (19)]. We see that whileG2 and

Qq couple directly to the spin-dependent structure func-

tions for DIS and SIDIS, we do not have an observable (or a

linear combination of observables) in this analysis which

separately couples only to G2 or only to Qq.

What may help us to separate G2 and Qq is the fact that

these dipole amplitudes have a different preasymptotic

form. While it is established numerically that at asymp-

totically small x, both polarized dipole amplitudes G2 and

Qq are proportional to the same power of x with the same

intercept [102] and are, therefore, probably hard to dis-

tinguish, in the preasymptotic region where the asymptotic

form has not yet been reached, their contributions to the

quark hPDFs may be quite different. This can be studied by

comparing theQu andG2 basis functions for Δu
þ in Fig. 1,

shown in the top and bottom panels of that figure,

respectively. If these functions were identical, they could

be freely interchanged against each other while still

producing the same structure functions: in such a case, it

would be impossible to separate G2 and Qu from the data.

Since the contributions of different amplitudes to quark

hPDFs differ from each other, as follows from Fig. 1, these

basis contributions cannot be adjusted at one value of x
while maintaining the same value for the observables at all

other x. Therefore, we may be able to separate G2 and Qu

using the polarized DIS and SIDIS data. However, since the

Qu andG2 basis functions have similar shapes, per Fig. 1, it

might be the case that the uncertainties in the resulting

extractions of Qu and G2 will be large.

The polarized dipole amplitude eG, on the other hand, does
not couple to any of the polarized DIS or SIDIS observables

we consider here. Rather, itmixeswith other polarized dipole

amplitudes only through evolution [see Eq. (9)]. This is why

the eG basis function ofΔuþ (second from the bottompanel in

Fig. 1) appears to be vanishingly small above x > x0. The
consequence of this is that in the region of x where the

polarized DIS and SIDIS data exist, 5 × 10−3 < x < 0.1,

the eG amplitude is very small, and is therefore much less

constrained by the data than the Qq and G2 dipole ampli-

tudes. At small x, however, the eG amplitude is quite large,

second only to G2 (see Fig. 1). As we will see below, eG,
unconstrained by the existing polarized DIS and SIDIS data,

will dominate over the other polarized dipole amplitudes at

small x, adversely affecting our ability to make precise

predictions at even smaller x. Nevertheless, it is possible that
eGmight be constrained with slightly more leverage in x. We

will discuss this in Sec. III D when we explore the impact of

the future EIC data on our uncertainties.

In our global analysis, we use the JAM Bayesian

MonteCarlo framework (see, e.g., [29,139,140]) to randomly

sample (roughly 500 times) the space of 24 parametersa, b, c

fromEqs. (22) and (25)—namely, au; bu; cu; ad;…; cNSs . For

each combination of these parameters, we solve our evolution

equations (9) and (13) to determine the polarized dipole

amplitudes Qu, Qd, Qs, eG, G2, G
NS
u , GNS

d , and GNS
s . (The

actual numerical solution is facilitated by the basis functions

introduced above.) Next, using Eqs. (19) and (24), we

calculate the quark hPDFs at small x, which, via Eqs. (4)

and (29), can be used to determine the structure functions g1
and gh

1
that enter the numerator of the asymmetries Ak; A1

[Eqs. (32), (33)] and Ah
1
[Eq. (34)], respectively. The χ2

minimization procedure allows us to construct the posterior

distributions of the parameters, and the corresponding sol-

utions of our evolution equations then allow us to infer the

quark and gluon hPDFs [the latter via Eq. (20)]. We confirm

that the posterior distributions of the parameters are distrib-

uted more narrowly than the initial flat sampling and are

approximately Gaussian, indicating a convergence in their

values. These extracted quark and gluon hPDFs, and the

quantities that can be computed from them, are the main

results of our work, which we present below.

III. RESULTS

In this section, we present the results of our numerical

analysis. We will concentrate on the proton g1 structure
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function, and the quark and gluon hPDFs (along with

quantities, such as net spin, that can be computed

from them).

A. Data versus theory

Our analysis (JAMsmallx) of theworld polarizedDIS and

SIDIS data at low x utilizes measurements from SLAC

[141–145], EMC [146], SMC [147–149], COMPASS

[150–152], and HERMES [153,154] for DIS; and from

SMC [155], COMPASS [156,157], and HERMES

[158,159] for SIDIS. The data of interest fall in the

Bjorken-x range of 5 × 10−3 < x < 0.1≡ x0, and the Q2

range is 1.69 GeV2 < Q2 < 10.4 GeV2. Since x ≈Q2=s,

the minimum cut onQ2 determines the minimum accessible

x in the dataset (for a given experimental center-of-mass

energy), and conversely the maximum cut on x determines

the maximumQ2. The upper limit on x (denoted by x0) was
chosen based on our previous (DIS-only) work [103], as

(almost) the highest value of xwhich gave a good χ2 fit. This
x0 is the point where we start the small-x helicity evolution.
The fact that our small-x approach was able to describe data
up to such a high value of x could be due to the fact that,

unlike the unpolarized Balitsky-Fadin-Kuraev-Lipatov

(BFKL) [125,126], Balitsky-Kovchegov (BK) [75–78],

and Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–

Kovner (JIMWLK) [79–84] small-x evolutions, which

resum powers of αs lnð1=xÞ at the leading order, our helicity
evolution has a different (larger) resummation parameter,

αs ln
2ð1=xÞ. For αs ≈ 0.25, our resumation parameter

becomes of order 1 for x ≈ 0.1, potentially justifying our

use of x0 ¼ 0.1 as the starting point for our evolution. Note

that the value of our resummation parameter αs ln
2ð1=xÞ at

x ¼ x0 ¼ 0.1 is comparable to (and even slightly larger

than) the value of the resummation parameter αs lnð1=xÞ for
the unpolarized small-x evolution at x ¼ 0.01, which is

where the latter evolution is usually initiated in phenom-

enological analyses [118,119]. The lower limit of Q2 is set

by the charm quark mass,m2
c ¼ 1.69 GeV2. This is also the

cut placed by the JAM FF set we use [34], which has

independent functions for πþ,Kþ, hþ (π−,K−, h− are found

through charge conjugation) that we evolve through the

DGLAP equations. By analogy to [103], we choose our IR

cutoff to be Λ ¼ 1 GeV. Also, in the Q2 range specified

above, the strong coupling in Eq. (16) is taken with Nf ¼ 3

(and Nc ¼ 3).

The range of the outgoing hadron momentum fraction z
in polarized SIDIS is 0.2 < z < 1.0, and we do not place

any explicit cut on this variable. In practice, the data (after

all the appropriate cuts) generally have values of

0.4 < z < 0.6; some datasets integrate z∈ ½0.2; 1�, while
others cover z∈ ½0.2; 0.85�. After all the cuts, we are left

with 122 polarized DIS data points and 104 polarized

SIDIS data points, for a total Npts ¼ 226. The overall

χ2=Npts of our fit, based on the central theory curves, is

1.03. (We have also performed fits with cutoffs of x0 ¼
0.08 and x0 ¼ 0.05, which produced no significant change

in χ2=Npts.) The breakdown of the data by experiment,

along with our χ2=Npts for those individual datasets, is

shown in Table I for DIS and in Table II for SIDIS. The

plots of the experimental data versus our JAMsmallx theory

are shown in Fig. 3 for polarized DIS and in Fig. 4 for

polarized SIDIS. Overall, our results demonstrate very

good agreement with the existing world data.

B. Proton g1 structure function

We now examine our result for the g1 structure function
of the proton to analyze the predictive capability of our

formalism. Our calculation of g
p
1
for all replicas is given in

Fig. 5. This is the result of 500 individual fits of the

experimental data where the (quark and gluon) hPDFs were

extracted and then (the quark ones) were used to compute

g
p
1
. We color code each replica by its asymptotic sign at

small x in order to clarify the structure of the plot, as well as
to help establish correlations with the hPDFs below. While

g
p
1

is well constrained in the region where there are

experimental data (5 × 10−3 < x < 10−1), it is largely

unconstrained at smaller x. The major difficulty in

TABLE I. Summary of polarized DIS data included in the fit,

separated into A1 (left) and Ak (right), along with the χ2=Npts for

each dataset.

Dataset (A1) Target Npts χ2=Npts

SLAC (E142) [141] 3He 1 0.60

EMC [146] p 5 0.20

SMC [147,149] p 6 1.29

p 6 0.53

d 6 0.67

d 6 2.26

COMPASS [150] p 5 1.02

COMPASS [151] p 17 0.74

COMPASS [152] d 5 0.88

HERMES [153] n 2 0.73

Total 59 0.91

Dataset (Ak) Target Npts χ2=Npts

SLAC (E155) [144] p 16 1.28

d 16 1.62

SLAC (E143) [143] p 9 0.56

d 9 0.92

SLAC (E154) [142] 3He 5 1.09

HERMES [154] p 4 1.54

d 4 0.98

Total 63 1.19
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constraining g
p
1
is caused by the insensitivity of the data to

the G2 and eG amplitudes described above.

That being said, the asymptotic solution of the large-

Nc & Nf evolution equations [102] guarantees that the

small-x behavior of g
p
1
must be exponential in lnð1=xÞ. This

implies that it has to pick a sign (positive or negative) when

x → 0. Our results indicate (see Fig. 7) that, given the

existing experimental data constraining our formalism, the

asymptotic sign is likely to be picked by x ¼ 3.5 × 10−4

with 10% uncertainty, with the uncertainty decreasing to

5% at approximately x ¼ 2.5 × 10−5. Currently, 70% of the

replicas are asymptotically positive, and 30% are asymp-

totically negative. These percentages are stable as the

number of replicas increases. The primary source of

uncertainty is how low in x one must go to determine

the sign, as some replicas that appear positive may undergo

a sign change at smaller x. Interestingly, our observation of

a preference for g
p
1
to be positive at small x agrees with the

recent papers analyzing (unpolarized and polarized) DIS

structure functions using the anti–de Sitter space/conformal

field theory (AdS=CFT) correspondence [160–162] that

make an even stronger statement that g
p
1
clearly grows

positive at small x. This behavior also has implications for

the net parton spin expected at small x, as we discuss in

Sec. III C.

1. Sign of g
p
1 and quantifying numerical ambiguity

From Fig. 5 alone, one can make the qualitative

observation that indeed each replica of g
p
1
grows exponen-

tially with lnð1=xÞ, as we suggested earlier, and the color

indicates the asymptotic sign of g
p
1
for that given replica.

We mentioned in the previous section that the exponential

behavior of helicity functions in our theory makes it

difficult for a given replica to maintain a near-zero value,

and thus it must eventually choose to (rapidly) increase in

magnitude toward positive or negative values. Given the

numerical nature of our global analysis, we cannot compute

each fitted replica down to x ¼ 0 (corresponding to

ln x → −∞), so the color-coding and sign assignment is

determined by the slope of a replica at the lowest-computed

value of x: if the slope increases (decreases) as x goes to

zero, then it is considered “asymptotically” positive (neg-

ative). To balance our time and computational resources,

the results discussed in this section use replica data

computed down to xasymp ¼ 10−7.5. One may realize

potential issues with this system: a given replica may have

multiple different “asymptotic” signs depending on the

lowest computed value of x.
Any given replica is defined by its specific combination

of basis functions, and since our Bayesian analysis

samples parameters [Eq. (21)] that may be either positive

or negative, competition between basis functions can

result in nodes. Replicas with two nodes in g
p
1
ðxÞ, such

as the one illustrated in Fig. 6, can occur for linear

combinations of similar basis functions with opposite

signs, as in the top/bottom panels of Fig. 1. These changes

in sign can occur at various values of x depending on the

initial conditions, making the prediction of the asymptotic

sign dependent on what x value is used to make the

prediction.

Careful readers may have already noticed this from

Fig. 5, where there are a few red-coded replicas that appear

to be growing negative (and a blue-coded replica that

appears to be growing positive) at x ¼ 10−5. This is due to

each of these replicas having a delayed critical point

(
dg

p

1
ðxÞ

dx
¼ 0) that occurs at x < 10−5, where a different basis

function takes over the growth and the replica changes the

sign of its slope. These critical points also are connected to

the issue of ambiguity, where at a specific value of x we

may be able to measure that a replica is growing positive (or

negative) but has a magnitude that is actively negative (or

positive), leaving its asymptotic sign unconfirmed. Luckily,

investigations of these incidents show that they occur in a

statistically small portion of replicas from the perspective

of our considerably small xasymp.

TABLE II. Summary of the polarized SIDIS data on Ah
1

included in the fit, along with the χ2=Npts for each dataset.

Dataset (Ah
1
) Target Tagged hadron Npts χ2=Npts

SMC [148] p hþ 7 1.03

p h− 7 1.45

d hþ 7 0.82

d h− 7 1.49

HERMES [158] p πþ 2 2.39

p π− 2 0.01

p hþ 2 0.79

p h− 2 0.05

d πþ 2 0.47

d π− 2 1.40

d hþ 2 2.84

d h− 2 1.22

d Kþ 2 1.81

d K− 2 0.27

d Kþ þ K− 2 0.97

HERMES [159] 3He hþ 2 0.49
3He h− 2 0.29

COMPASS [156] p πþ 5 1.88

p π− 5 1.10

p Kþ 5 0.42

p K− 5 0.31

COMPASS [157] d πþ 5 0.50

d π− 5 0.78

d hþ 5 0.90

d h− 5 0.86

d Kþ 5 1.50

d K− 5 0.78

Total 104 1.01
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FIG. 4. Comparison of experimental data and fit based on our small-x theory for the double-spin asymmetry Ah
1
in polarized SIDIS on

a proton (red), deuteron (blue), and 3He (green) target for charged pion, kaon, and unidentified hadron final states.

FIG. 3. Comparison of the experimental data and the fit based on our small-x theory for the double-spin asymmetries A1 and Ak in
polarized DIS on a proton (red), deuteron (blue), and 3He (green) target.
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Since our goal is predictability at small x, we decided to

quantify the amount of ambiguity by its probability density

in x. That is, for each replica we count the smallest-x
instance of ambiguity and take note of where in x it

occurred. For example, Fig. 6 shows a replica that begins

positive (true for all replicas), and evolution drives it more

positive until it reaches a critical point, after which the

replica then grows negative. After the critical point (in the

gray region), the replica will be considered ambiguous until

it crosses g
p
1
ðx1Þ ¼ 0, and then it is considered asymptoti-

cally negative (in the blue region). Only when the sign of g
p
1

and the sign of its first derivative (as x decreases) agree can
the replica be considered asymptotically positive or neg-

ative. If we wanted to predict the asymptotic sign of the

replica based on an observation at x ¼ xpred that resides in

this (blue) region, then we would predict that this replica is

“asymptotically negative” as x → 0. However, this same

replica has a small-x critical point (around x ¼ 10−4) that

causes the sign of its slope to change; the replica observed

in the (gray) region (on the left) between the critical point

and g
p
1
ðx2Þ ¼ 0 would be considered ambiguous again.

After crossing zero a second time, a prediction made at

xpred < x2 would therefore designate the replica to be

“asymptotically positive.” The smallest-x instance of ambi-

guity is thus counted in a bin at x2. In this way, each replica
is counted exactly once, and replicas that oscillate multiple

times about the g
p
1
¼ 0 axis only have their most delayed

ambiguity counted. We can define the number of replicas

that have their smallest-x instance of ambiguity in a

particular bin of x as CAðxÞ (the counts of ambiguities)

and make a histogram. The ambiguity count CAðxÞ is

normalized such that it sums to the total number of replicas

Nambig containing at least one ambiguity:

Xx0

x¼xasymp

CAðxÞ ¼ Nambig ≤ Ntot: ð35Þ

Because some replicas are always unambiguous across the

entire range of x, the ambiguity count is less than the total

number of replicas: Nambig ≤ Ntot.

Now, suppose we want to predict the asymptotic behav-

ior of g
p
1
at small x based on the behavior of the function at

some value xpred. Knowledge of the ambiguity count CAðxÞ
allows us to estimate the accuracy of this prediction by

estimating the probability that an unobserved ambiguity

remains at xasymp < x < xpred. This probability is given

by a summation as in Eq. (35), but over the truncated range

in x:

AðxpredÞ ¼
1

Nrep

Xxpred

x¼xasymp

CAðxÞ: ð36Þ

From the normalization condition (35), we see that

Eq. (36) implies that the truncated moment is normalized

at xpred ¼ x0 to the total fraction of replicas containing at

least one ambiguity:

Aðx0Þ ¼
Nambig

Nrep

: ð37Þ

From the left panel of Fig. 7, we see that the number of

smallest-x ambiguities decreases greatly as x approaches

zero. The right panel shows that we must go down to

approximately x ¼ 3.5 × 10−4, 2.5 × 10−5, and 6 × 10−7 to

capture the asymptotic sign with 10%, 5%, and 1%

uncertainty, respectively. This is strong justification that

xasymp ¼ 10−7.5 is reasonably low enough to capture the

FIG. 5. The small-x calculation of the g1 structure function of

the proton. The black curve is the mean of all the replicas, with

the green band giving the 1σ uncertainty. Red (blue) curves are

solutions that are asymptotically positive (negative).

FIG. 6. An example replica of g
p
1
ðx;Q2 ¼ 10 GeV2Þ that

demonstrates how the asymptotic sign is dependent on xpred. If

xpred resides in the red (blue) region, then the replica will be

considered asymptotically positive (negative) according to the

sign of the first derivative (for decreasing x) and its agreement

with the sign of the magnitude. If xpred resides in either gray

region, then the asymptotic sign is ambiguous due to a contra-

diction between the sign of the slope and the sign of the

magnitude.
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asymptotic sign of our replicas with low uncertainty. Due to

Eq. (37), we also know how many replicas are completely

unambiguous; since we impose our evolution to begin at

x0 ¼ 0.1, the running integral at that point quantifies the

total ratio of replicas that have at least one ambiguity.

According to the right panel of Fig. 7, approximately 50%

of replicas choose their asymptotic sign immediately as

evolution begins. Note that the data constrain the initial

condition for g
p
1
to be positive, so all completely unam-

biguous replicas are asymptotically positive.

Furthermore, splitting the replicas by their asymptotic

sign (not shown in Fig. 7) allows us to also investigate how

early (or late) the different solutions are chosen relative to

each other. We gather that ambiguously negative replicas

tend to choose their sign earlier than their positive counter-

parts, with the caveat that the majority of asymptotically

positive replicas do not have any ambiguities at all.

Approximately 75% of asymptotically positive replicas

are completely unambiguous, and the remaining 25% are

determined by x ≈ 2 × 10−5 with 5% uncertainty. Though

fewer in number, a still significant portion of replicas are

asymptotically negative, 95% of which are confirmed by

x ≈ 4.3 × 10−4. This suggests that using a lower xpred will

affect the positive-identified and negative-identified solu-

tions differently. In particular, a lower xpred is likely to

identify a greater number of asymptotically positive sol-

utions by correcting replicas that would have been mis-

identified as asymptotically negative at a higher xpred. This

asymmetric impact on positive-identified versus negative-

identified solutions can be traced back to constraints from

the data at large x, which strongly prefer g
p
1
> 0. The fact

that this positive preference persists down to small x
suggests that the polarized dipole(s) which dominate the

small-x asymptotics are partially (but not fully) constrained

by the large-x data. This will be discussed in detail in

Sec. III B 3.

We performed a similar analysis of the smallest-x
critical points of each replica (rather than the ambiguities).

On average, the smallest-x critical point occurs 4% earlier

in lnð1=xÞ than its smallest-x zero. Since the ambiguous

region of a replica is precisely the region in x between

its critical point and zero, this small 4% difference

indicates that any remaining ambiguities are quickly

resolved at small x. Thus, we conclude that, from the

perspective of Fig. 7, if we had data down to x ≈ 10−5, we

could determine the asymptotic sign of g
p
1

with high

certainty (>95%).

2. Asymptotic behavior of g
p
1

Collectively utilizing the information in Figs. 5 and 7

paints a curious picture: there are many more g
p
1
replicas

that adopt their asymptotic forms early than there are

replicas that change their signs at small x. This results in
some clustering behavior—e.g., in the left panel of Fig. 7

there is a cluster of replicas around x¼5×10−3—implying

that these replicas share similar critical points and rates of

growth. As mentioned previously, the majority of replicas

have no ambiguities and adopt their asymptotic growth

rather quickly, effectively clustering their critical points at

x ¼ x0 ≡ 0.1 (not explicitly shown). This behavior sup-

ports the idea that early adoption of asymptotic growth is

preferred, whereas replicas with late critical points are

fewer in nature. Consequently, we expect that there should

be a form of bimodality in g
p
1
between the rapidly growing

positive solutions versus the rapidly growing negative

solutions. This is a novel result, which we quantitatively

analyze below.

While Fig. 5 may appear to show the anticipated

bimodality (red versus blue curves), upon closer inspection

the values of g
p
1
are normally distributed, both at small x

(x ¼ 10−3) and very small x (x ¼ 10−7.45), as depicted in

Fig. 8. To uncover the bimodal behavior, it is necessary to

construct a new observable related to the curvature of g
p
1

which is sensitive to how quickly our evolution equations

drive the g
p
1

replicas toward the asymptotic limit. The

emphasis, therefore, is not so much on g
p
1

as on the

exponent of its power-law behavior at small x—i.e.,

g
p
1
ðxÞ ∼ x−αh . The generalized x-dependent exponent

FIG. 7. Left: histogram that counts the number of replicas with a smallest-x ambiguity at a given value of x. Right: the running sum of

the ambiguity histogram, telling us what percentage of replicas have an ambiguity below a given value of x.
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αhðxÞ can be extracted through the logarithmic derivative

of g
p
1
:

lim
x→0

g
p
1
ðxÞ≡g

pð0Þ
1

x−αhðxÞ ∴ αhðxÞ≡
1

g
p
1
ðxÞ

dg
p
1
ðxÞ

dlnð1=xÞ ; ð38Þ

where g
pð0Þ
1

¼ const. Examining the distribution of αhðxÞ
across replicas can provide complementary information to

the distribution of g
p
1
ðxÞ itself. Notably, the exponent

provides a meaningful way to scale the solutions: if they

have the same αhðxÞ, they have the same curvature,

whether the magnitude of g
p
1
ðxÞ is large or small. To

further capture the signed behavior of g
p
1
ðxÞ and distinguish

between solutions trending positive or negative at small x,
we can generalize the logarithmic derivative (38) to reflect

the sign of g
p
1
itself:

αhðxÞ ¼
1

g
p
1
ðxÞ

dg
p
1
ðxÞ

d lnð1=xÞ ⇒

Sign½gp
1
ðxÞ�αhðxÞ ¼

1

jgp
1
ðxÞj

dg
p
1
ðxÞ

d lnð1=xÞ : ð39Þ

Both the effective exponent αhðxÞ (38) and its signed

generalization (39) are shown in Fig. 9 at varying values

of x (from the same global fit that produced Fig. 5).

[We remark that if a g
p
1
replica has a delayed critical point, it

will result in a delayed zero that may cause an artificially

large ratio if g
p0
1
ðxÞ ≫ g

p
1
ðxÞ ≈ 0. In order to avoid these

statistical outliers, any replica with a ratio value outside of

5σ from the average are omitted from the results in Fig. 9.]

The distribution in the right panel at x ¼ 10−2 (blue

histogram) is skew-normal, which is expected since we

are definitively outside of the asymptotic regime. However,

at x ¼ 10−3 (yellow histogram), we already see the for-

mation of two separated peaks, one positive and one

negative. As x continues to decrease down to x ¼ 10−5

(green histogram), the two peaks become more refined as

the evolution equations predict specific curvature related to

the intercept αh [see Eq. (39)]. Without the sign depend-

ence, as displayed in the left panel of Fig. 9, as x → xasymp,

a single peak emerges that approaches the expected

asymptotic value for αh. The decreasing uncertainties are

a consequence of our small-x evolution, where the pre-

dictive power constrains the value of αhðxÞ.
From the perspective of the right panel of Fig. 9, it

appears that data sensitive to this curvature at x as large as

x ¼ 10−3 may be enough to identify which bimodal peak

g
p
1
belongs to. Unambiguously identifying this curvature

will provide us the asymptotic sign of g
p
1
as well as the

FIG. 8. Histograms counting all values of g
p
1
at x ¼ 10−3 (left) and 10−7.45 (right), displaying normal distributions centered slightly

above zero.

FIG. 9. Left: histograms utilizing Eq. (38) showing that as x decreases, the intercept αhðxÞ becomes more constrained as a

consequence of the small-x evolution equations. Right: keeping information on the sign dependence by using Eq. (39) produces bimodal

peaks at �αhðxÞ. At large x, there is no asymptotic behavior, and for smaller values of x, two refined peaks emerge.
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asymptotic sign of all the (flavor singlet and C-even)
hPDFs, as will be discussed below. The fact that such a

conclusion could be made at x ≈ 10−3 by analyzing the

curvature of g
p
1
ðxÞ, compared to x ≈ 10−5 by studying

g
p
1
ðxÞ itself (see the discussion around Fig. 7), makes the

idea of curvature a useful quantity to consider once future

low-x data are available from the EIC.

3. Origins of asymptotic behavior

To understand what differentiates the positively and

negatively growing solutions for g
p
1
displayed in Fig. 5,

we examine the polarized dipole amplitude parameters

themselves, defined in Eq. (22). We note that the exper-

imental data are only sensitive to the polarized dipole

amplitudes as a whole, and not to any specific basis

function. For example, combining Eqs. (4), (5), and (32)

shows that A1 is constructed from the dipole amplitudesQq

and G2, and any combination of parameters that recon-

structs the experimental data with good χ2 is equally valid.

An appropriate change of variables can reorganize the basis

hPDFs to increase the sensitivity to their overall sign. We

can then classify which of these parameters are most

correlated with the asymptotic sign of g
p
1
. We find enhanced

sensitivity to the asymptotic sign of g
p
1
from the linear

combinations a0 ≡ ðaþ bÞ=2 and b0 ≡ ða − bÞ=2. Then,
the dipole initial condition Gð0Þ ¼ aηþ bs10 þ c can be

written as

Gð0Þ ¼ a0ðηþ s10Þ þ b0ðη − s10Þ þ c: ð40Þ

These new basis functions are displayed in Fig. 10.

Compared to Fig. 1, the alternative parameters a0; b0 change
the shapes of the basis hPDFs. In particular, we note that this

greatly increases the separation between the a0
2
¼ 1 and

b0
2
¼ 1 basis functions at large x, where the data provide

constraints. When we bin the replicas into asymptotically

positive/negative g
p
1
at small x, we find that the parameter

with the largest difference between the solutions is ea0. The
asymptotically positive solutions preferred a negative param-

eter ea0 ¼ −1.56� 2.32, while the asymptotically negative

solutions preferred the positive ea0 ¼ 1.42� 2.34. No other

systematic differences in parameters were observed.

We can understand from the basis hPDFs shown in

Fig. 10 why asymptotically positive/negative g
p
1
correlates,

respectively, with negative/positive values of ea0, and why ea0
shows the greatest discrimination power. First, we note that

the basis hPDFs themselves are negative-definite functions

of x for positive values of the initial parameters a0, b0, c,
which is simply a consequence of the explicit minus sign in

Eq. (5). Second, we note that the hPDFs arising from

both the eGð0Þ
(with parameters ea0, eb0, ec) and G

ð0Þ
2

(with

parameters a0
2
, b0

2
, c2) initial conditions are comparably

large at small x; the a0
2
¼ 1 basis function also being

sizeable at large x, whereas the ea0 basis function only

contributes meaningfully at small x. The large-x behavior

means that the parameter a0
2
, while important for determin-

ing the small-x asymptotics, is constrained by higher-x
experimental data, and it specifically prefers negative

values: a0
2
¼ −0.98� 1.00. The origin of the different

asymptotic behaviors seen in Fig. 5 therefore appears to

be due to the dipole eG, which makes no contribution to the

basis hPDFs at larger x, and thus, the sign of ea0 evades
experimental constraints.

To test this hypothesis, we ran fits where all of the eG
initial condition parameters (ea, eb, ec) were restricted to be

either negative-definite or positive-definite, with all other

FIG. 10. Basis functions analagous to those in Fig. 1, where instead of plotting the η, s10, and 1 contributions (displayed as the curves
in Fig. 1 labeled a ¼ 1, b ¼ 1, c ¼ 1, respectively), we instead show the contributions of ηþ s10, η − s10, and 1 displayed as the curves

labeled a0 ¼ 1, b0 ¼ 1, and c0 ¼ c ¼ 1. Here, only the eG and G2 dipole amplitudes are shown.

GLOBAL ANALYSIS OF POLARIZED DIS AND SIDIS DATA … PHYS. REV. D 108, 114007 (2023)

114007-19



parameters unchanged. All g
p
1
replicas in the negative-

definite eG fit were asymptotically positive. The positive-

definite eG fit was slightly less selective but still generated a

73% majority preferring asymptotically negative g
p
1
repli-

cas (recall that the original fit in Fig. 5 had a 70% positive

preference). The results, shown in the top row of Fig. 11,

clearly demonstrate that the sign of the eG dipole amplitude

determines the small-x asymptotics of g
p
1
, as anticipated by

the basis functions in Figs. 1 and 10.

The reason eG leads to a g
p
1
that is poorly constrained at

small x can be seen directly from Eqs. (4)–(6), (9) and

Eqs. (12), (13), (29): eG does not contribute directly to any

hPDF. Whereas all the other (non-neighbor) polarized dipole

amplitudes directly enter a DIS/SIDIS observable, the effects

of eG are only felt indirectly through its impact on the

evolution of the other amplitudes. As a result, hPDFs

mediated by eG only become large at very small x (see the

top panel of Fig. 10),where there are no constraints fromdata.

While eG is the driving factor in determining the small-x

asymptotics of g
p
1
, G2 also plays a role. In fact, if eG were

removed, G2 would be the most important amplitude in

controlling the small-x asymptotics of g
p
1
. We see this

explicitly when setting the initial conditions for eG all to

zero (ea ¼ eb ¼ ec ¼ 0) and repeating the previous analysis

of now restricting the G2 initial condition parameters to be

always positive or always negative. The result, shown in the

bottom panel of Fig. 11, confirms that, although con-

strained by large-x data, G2 plays the second most

important role after eG in determining the small-x asymp-

totics of g
p
1
. The negative-definite G2 fit was 100%

selective of asymptotically positive g
p
1
replicas, while the

positive-definiteG2 fit was 96% selective of asymptotically

negative g
p
1
replicas.

Figure 11 then compactly summarizes the origin of the

asymptotic behavior seen in Fig. 5. The origin of the huge

uncertainty band at small x is due to the inability to

constrain the sign of eG from large-x data, and the overall

preference of the central curve in Fig. 5 favoring positive

solutions is due to the fact that there is an experimental

constraint which prefers G2 < 0, leading to g
p
1
> 0.

Knowing now that the dipole amplitude eG controls the

small-x asymptotics of g
p
1
gives us powerful insight into the

FIG. 11. Comparing the effects eG and G2 have on the overall sign of g
p
1
ðxÞ at small x. Top row: the priors are restricted so that (left)

eG ≤ 0 and (right) eG ≥ 0. Bottom row: the priors are restricted so that (left) G2 < eG ¼ 0 and (right) G2 > eG ¼ 0. All other parameters

initially are randomly sampled just as they were in the fit shown in Fig. 5. We see that controlling the sign of eG strongly influences the

sign of g
p
1
, and that the sign of G2 will also influence the sign of g

p
1
.
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hPDF correlations which characterize the fits. Comparing

Eqs. (4), (5), and (6), we can draw the conclusion that at

asymptotically small x, these quantities are simply related by

g
p
1
ðxÞ ∝ ΔqþðxÞ ∼ −ðQq þ 2G2Þ → −eG; ð41aÞ

ΔGðxÞ ∼G2 →
eG; ð41bÞ

where the last step in each line represents the fact that the

evolution ofQq andG2 is driven by eG [see Eq. (9)]. At small

x, the two hPDFs Δqþ and ΔG are both driven by the same

polarized dipole amplitude eG, but they have opposite signs.
Since g

p
1
is proportional to Δqþ (weighted by quark electric

charge squared and summed over flavors), it follows that if

the quark hPDFs for all flavors have the same sign, then at

small x, g
p
1
will have the same sign as the quark hPDFs and

the opposite sign to the gluon hPDF. These anticipated (anti)

correlations among the hPDFs are shown in Fig. 12, where

we plot only Δuþ and ΔG for brevity. Note that the color

coding used for the replicas in Fig. 12 indicates the ultimate

asymptotic sign of g
p
1
, not the hPDF itself. That is, an hPDF

replica is colored red (blue) if the corresponding g
p
1
replica is

asymptotically positive (negative). The fact that the asymp-

totic signs of Δqþ and ΔG are, respectively, correlated and

anticorrelated to the sign of g
p
1
at small x is a robust, novel

prediction of the small-x helicity evolution framework.
4,5

Thus, in order to better predict the asymptotic signs of g
p
1
,

Δqþ and ΔG, we need to better constrain the polarized

dipole amplitude eG. One option is data from the future EIC,

discussed in Sec. III D. We also outline several additional

ways in Sec. III E.

C. Extracted helicity PDFs and calculation of net

parton spin and axial-vector charges at small x

Our results for the hPDFs are shown in Fig. 13. Since our

small-x analysis is only valid for x < x0 ¼ 0.1, we restrict

the plots to that region. As with the g
p
1
structure function

shown in Fig. 5, the hPDFs themselves also exhibit broad

uncertainty bands at small x.
6
The uncertainty bands for all

four hPDFs span zero below x≲ 10−3, indicating that the

hPDFs in that region may be positive, negative, or con-

sistent with zero. By far the largest uncertainty is seen in

ΔG, which, unlike Δqþ, is not directly sensitive to

inclusive DIS constraints on g
p
1
[Eq. (4)]. As shown in

Figs. 11 and 12, the large uncertainty in ΔG is due to the

lack of sufficient constraints on the dipole amplitudes eG
and G2 that dominate both Δqþ and ΔG at small x. This
conclusion is further supported by the left panel of Fig. 13,

where Δuþ, Δdþ, and Δsþ exhibit approximately the same

error band below x ≈ 10−4. At larger x, where the hPDF

behavior is driven more by the Qq dipole amplitudes, we

can observe flavor separation between the three quarks. The

uncertainty of the Δsþ distribution then becomes much

larger than that for Δuþ and Δdþ, most likely due to the

limited SIDIS kaon data. The similar error bands at small x

for Δuþ, Δdþ, and Δsþ are in contrast to markedly distinct

error bands for Δu−, Δd−, and Δs−, shown in the right

panel of Fig. 13, which exhibit significant flavor separation

even down to small x. Recall that the flavor nonsinglet

hPDFs are driven by a different polarized dipole amplitude,

FIG. 12. Color-coding the hPDF replicas according to the asympotic sign of g
p
1
shows that there is a novel correlation: at small x, quark

hPDFs (left) have the same sign as g
p
1
(only Δuþ is shown), while the gluon hPDF (right) has the opposite sign to g

p
1
.

4
We note that no such relationship is exhibited by the non-

singlet hPDFs. When attempting the same strategy of color-
coding the nonsinglet hPDFs (not shown) according to the
asymptotic sign of the proton SIDIS structure function g

p→h
1

,
no correlations could be identified.

5
We note that in Ref. [32], a connection was found at small x

between ΔGðx;Q2Þ and the logQ2 derivative of g1ðx;Q2Þ:
ΔGðx;Q2Þ ≈ −∂g1ðx;Q2Þ=∂ lnQ2. Our result, however, demon-
strates anticorrelation of the signs of ΔGðx;Q2Þ and g

p
1
ðx;Q2Þ

[and not of the logQ2 derivative of g
p
1
ðx;Q2Þ]. In addition, we note

that the calculation in Ref. [32] was in a DGLAP-based NLO
perturbative QCD framework, while our calculation involves the
all-order DLA-resummed coefficient functions [see the discussion
around Eq. (7)].

6
Note that in Fig. 13, we plot x mutliplied by hPDF on the

vertical axis: this explains why the error bands in Fig. 13 appear
to be smaller than those in Fig. 16, with the latter showing g

p
1
not

multiplied by x.
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GNS [see Eq. (12)], which is sensitive to flavor separation

through the SIDIS data. As a result of the different

evolution, the xΔq− distributions converge quickly to zero

at small x, unlike the xΔqþ distributions, due to the smaller

intercept at small x (see also Appendix B). The similarity of

the error bands forΔuþ,Δdþ, andΔsþ appears to be driven

by the error band of the polarized dipole amplitude G2,

which affects all quark flavors in the same way, per

Eq. (19). Consequently, additional input which can better

constrain eG and/or G2 may well reduce this uncertainty by

forcing the hPDFs to choose a definite sign at small x. We

discuss possible strategies to achieve this in Sec. III E.

One feature of note in our hPDFs from Fig. 13 is that

Δsþ and ΔG are much larger in magnitude than the same

hPDFs obtained in the JAM framework using the DGLAP-

based approach [30,33,34]. In particular, our extracted Δsþ

distribution is below zero at about the 1σ level at x ≈ 10−2.

This is to be compared with Fig. 6 of Ref. [33], which

exhibits a Δsþ consistent with zero across the entire

considered range 5 × 10−3 ≤ x ≤ 0.9. Note that the global

analyses conducted in Refs. [30,33,34] are quite different

from the one we present here—e.g., they use DGLAP

evolution within collinear factorization, include data across

the full range of x, and in some cases impose SU(2) and

SU(3) flavor symmetries. Nevertheless, it is a valuable

cross-check to see whether zero strangeness polarization is

consistent with our results as well. To that end, we have

separately refit the data, setting the strangeness polarization

identically to zero: Δsþðx;Q2Þ ¼ Δs−ðx;Q2Þ ¼ 0. The

overall quality χ2=Npts ¼ 1.04 of the zero-strangeness fit

is slightly worse than the quality χ2=Npts ¼ 1.03 of the

default fit, with the asymmetries Ah
1
from tagged kaon

SIDIS being the most affected by the change. For that

subset of the data, the quality of fit degraded from

χ2=Npts ¼ 0.81 in the default fit to χ2=Npts ¼ 1.05 in the

zero-strangeness fit. This marginal degradation of the fit

quality is consistent with the 1σ departure ofΔsþ from zero

preferred by the default fit in Fig. 13, with the tagged kaon

data only accounting for 26=226 data points in total.

Therefore, we conclude that small Δsþ is indeed consistent

with our formalism, and that there is a real (but weak)

preference from the data for nonzero Δsþ at x ∼ 0.01

within our small-x framework.

Next, we address the contribution to the proton spin and

axial-vector charges from small x. The flavor singlet quark
helicity distribution is given by

ΔΣðx;Q2Þ≡ Δuþðx;Q2Þ þ Δdþðx;Q2Þ
þ Δsþðx;Q2Þ ð42Þ

for the light flavors considered in this work. Using the

hPDFs in Fig. 13, we show xΔΣðx;Q2Þ in Fig. 14. Again,

the uncertainty band at small x based on current exper-

imental data is rather wide, spanning zero so that the sign of

ΔΣ is uncertain.

From ΔΣðx;Q2Þ and ΔGðx;Q2Þ, we can determine how

much net parton spin [see Eq. (2)] resides at small x by

computing truncated moments of the distributions. We can

similarly determine the small-x contributions to the triplet

gA and octet a8 axial-vector charges from truncated

moments of the appropriate linear combinations of quark

FIG. 13. Left: C-even hPDFs xΔuþ (red), xΔdþ (blue), xΔsþ (orange), and xΔG (green) extracted from existing low-x experimental

data. Right: same as left panel, but for the flavor nonsinglet C-odd hPDFs xΔu− (red), xΔd− (blue), and xΔs− (orange).

FIG. 14. Quark flavor singlet helicity distribution xΔΣðx;Q2Þ
calculated from hPDFs extracted from existing low-x experi-

mental data.
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hPDFs. Focusing on the x region 10−5 ≤ x ≤ 10−1 of our

analysis, we consider the following truncated moments:

�
1

2
ΔΣþ ΔG

�

½xmaxðminÞ�
≡

Z
x2

x1

dx

�
1

2
ΔΣþ ΔG

�
ðx;Q2Þ;

ð43aÞ

gA½xmaxðminÞ� ≡

Z
x2

x1

dx gAðx;Q2Þ

≡

Z
x2

x1

dx½Δuþðx;Q2Þ − Δdþðx;Q2Þ�; ð43bÞ

a8½xmaxðminÞ� ≡

Z
x2

x1

dx a8ðx;Q2Þ

≡

Z
x2

x1

dx½Δuþðx;Q2Þ þ Δdþðx;Q2Þ

− 2Δsþðx;Q2Þ�: ð43cÞ

Here we consider two representations of the truncated

moments: either as a function of the upper limit xmax with

fixed lower limit 10−5, or as a function of the lower limit

xmin with fixed upper limit 0.1. That is, in the notation of

Eq. (43), we have ðx1; x2Þ ¼ ð10−5; xmaxÞ for ½xmax� and
ðx1; x2Þ ¼ ðxmin; 0.1Þ for ½xmin�. We have also dropped the

Q2 dependence of the truncated moments on the left-hand

side of Eq. (43) for brevity.

Both ½xmax� and ½xmin� representations of the truncated

moments are plotted in Fig. 15. From the truncated moment

of the total parton helicity ð1
2
ΔΣþ ΔGÞ½xmaxðminÞ�, we con-

clude that, despite the sizable uncertainties, the amount of

the proton spin coming from the net spin of small-x partons
could be quite large. The outer bounds of these truncated

moments also allow for the possibility that the net quark

and gluon spin contained within the small-x region may be

even more significant than what has been computed at

large x. We observe that, despite the wide error bands in

FIG. 15. Truncated moments of ð1
2
ΔΣþ ΔGÞðx;Q2Þ, gAðx;Q2Þ, and a8ðx;Q2Þ, defined in Eq. (43), versus xmax (left) and xmin (right)

at Q2 ¼ 10 GeV2.
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ΔGðx;Q2Þ and ΔΣðx;Q2Þ separately, the error in the

truncated moment ð1
2
ΔΣþ ΔGÞ is narrower than if the

two were uncorrelated. Because of the replica-by-replica

anticorrelation betweenΔqþðx;Q2Þ and ΔGðx;Q2Þ seen in
Fig. 12, there is a systematic cancellation between them,

resulting in a truncated moment ð1
2
ΔΣþ ΔGÞ which skews

net negative and is more tightly constrained than either

ΔΣðx;Q2Þ or ΔGðx;Q2Þ alone. In addition, the nonzero

slope of ð1
2
ΔΣþ ΔGÞ½xmax� as one approaches xmax ¼ 10−5

indicates that this truncated moment has not fully saturated

at that point in x. In contrast, the small-x contribution to gA
and a8 appears to saturate around x ¼ 10−4, giving a finite,

non-negligible contribution from small-x partons.

Taken at face value, our formalism strikingly predicts a

negative contribution to the proton spin from the net spin of

small-x partons even when accounting for the 1σ error band.
In this scenario favored by our default fit, a significant

positive contribution from orbital angular momentumwould

be needed to satisfy the Jaffe-Manohar sum rule (1).

Interestingly, similar observations have been made in using

AdS=CFT to analyze g
p
1
[160–163]. We also predict that

approximately 15%–21% of the known value of gA and

12%–77% of the known value of a8 are generated from

partons with 10−5 ≤ x ≤ 10−1, where the values of the

moments over the full range x∈ ½0; 1� are known from

neutron and hyperon β decays [24]: gA ¼ 1.269ð3Þ and

a8 ¼ 0.586ð31Þ.
However, we caution the reader that our small-x analysis

is strongly dependent on the large-x initial conditions to our
evolution, and that the error bands shown throughout this

work are strictly statistical in nature. These are an accurate

representation of the uncertainty coming from the exper-

imental data and from the Monte Carlo sampling pro-

cedure, but in particular they do not reflect the systematic

bias that comes from omitting large-x data that cannot be

captured in this formalism. Combining our small-x evolu-

tion equations with external input from large x can there-

fore possibly result in large, systematic changes to the

extracted hPDFs beyond the 1σ statistical error bands. This

suggests that an appropriate matching procedure onto

hPDFs extracted from a large-x, DGLAP-based analysis

like JAM [30,33,34] will be crucial to determining the

proton spin budget. Moreover, since JAM found both

viable positive ΔGðx;Q2Þ and negative ΔGðx;Q2Þ solu-

tions [33,34], the predictions for the small-x truncated

moments may even depend on which large-x solution is

chosen for the matching. Indeed, as we show in Fig. 18

below, matching to the positive gluon hPDF solution could

lead to a substantially different outcome for ΔGðx;Q2Þ,
deviating beyond the 1σ error band over a significant range

of x. Clearly a rigorous implementation of such a matching

will be an important aspect of future analyses; a first

attempt is detailed in Sec. III E below. Having emphasized

this vital caveat, we summarize our results for the small-x

truncated moments of ð1
2
ΔΣþ ΔGÞðx;Q2Þ, gAðx;Q2Þ, and

a8ðx;Q2Þ over the small-x window x∈ ½10−5; 0.1� for

Q2 ¼ 10 GeV2:

Z
0.1

10
−5

dx

�
1

2
ΔΣþ ΔG

�
ðxÞ ¼ −0.64� 0.60; ð44aÞ

Z
0.1

10−5
dx gAðxÞ ¼ 0.23� 0.04; ð44bÞ

Z
0.1

10−5
dx a8ðxÞ ¼ 0.26� 0.19: ð44cÞ

D. Impact of EIC data on g
p
1

In order to study the impact of lower x measurements on

our ability to predict the behavior of g
p
1
and the hPDFs at even

smaller x, we utilized EIC pseudodata for the kinematic

region of 10−4<x< 10−1 and 1.69GeV2<Q2<50GeV2.

The EIC will be capable of going lower in x by reaching

higher Q2, but we do not expect our formalism to be

applicable for arbitrarily large Q2 (DGLAP resummation

is needed to fully describe the Q2 dependence). For DIS on

the proton, the pseudodata were at center-of-mass energiesffiffiffi
s

p ¼ f29; 45; 63; 141g GeV with an integrated luminosity

of 100 fb−1, while for the deuteron and 3He beams the

pseudodata spanned
ffiffiffi
s

p ¼ f29; 66; 89g GeV with 10 fb−1

integrated luminosity. These are consistent with the EIC

detector design of the Yellow Report, including 2% point-to-

point uncorrelated systematic uncertainties [9]. For SIDIS on

a proton, the pseudodata were at
ffiffiffi
s

p ¼ 141 GeV, alsowith a

2% systematic uncertainty [164]. In our earlier work [103],

we had relied on parity-violating DIS pseudodata in order to

disentangle the three light quark C-even hPDFs Δqþ. With

the inclusion of SIDIS data, that is no longer necessary. The

EIC could provide such data [9], and it would serve as an

additional constraint in the future, but we do not consider its

impact in the present analysis.

Our current extrapolation of g
p
1
covers a wide range of

possibilities at small x, so we generate the pseudodata

based on three scenarios for g
p
1
that are consistent with

present data: (1) the mean of the asymptotically positive

replicas (“high g1”), (2) the mean of the asymptotically

negative replicas (“low g1”), and (3) the mean of a fit where

g
p
1
was constrained to have jgp

1
j < 100 at x ¼ 10−4 (“mid

g1”). These three options have qualitatively distinct behav-

iors, and comparing them should inform us if the impact of

the EIC is dependent on the precise small-x asymptotics of

g
p
1
. The results are shown in Fig. 16. We find a dramatic

decrease in uncertainties for all three scenarios, even in the

extrapolated region of x < 10−4. In Fig. 17, we plot the

relative uncertainty of g
p
1

compared to that of a JAM

DGLAP-based extraction in Ref. [165] using EIC pseudo-

data. The results confirm the observation above that, when
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using the genuine predictability of the small-x helicity

evolution, control over uncertainties is maintained as we

extrapolate to smaller x. In contrast, since the DGLAP-

based fit must use an ad hoc parametrization of the x
dependence, it cannot maintain control over the uncertain-

ties into the extrapolation region.

E. Imposing additional constraints

While future data from the EIC is a promising way to

resolve the issue of sizeable uncertainties in our extracted

hPDFs at small x, it is worth considering other options that
might be more immediately accessible. Ideally, these

constraints would enter in the form of existing data or as

theoretical constraints on the initial conditions.

The hPDF with the largest uncertainty that we have

extracted is ΔGðx;Q2Þ, as demonstrated in Fig. 13, so we

explored a few options to constrain it. The first such

constraint is positivity, which is the statement that the

number densities for positive- and negative-helicity partons

are positive. In particular, for gluons this leads to

jΔGðx;Q2Þj < Gðx;Q2Þ; ð45Þ

where Gðx;Q2Þ is the unpolarized gluon PDF. (We will set

aside issues as to whether Eq. (45) is strictly satisfied under

(MS) renormalization [166–168].) We impose this con-

straint by checking the value of ΔGðx;Q2Þ in the region

x < x0 ¼ 0.1 and punishing the χ2 of the fit if the positivity

constraint is violated. Unfortunately, by the time our

evolution begins, our baseline fit for ΔGðx;Q2Þ and the

JAM DGLAP-based Gðx;Q2Þ [33,34] are of comparable

size. The latter grows much faster at small x than our

extraction for ΔGðx;Q2Þ, causing the positivity constraint

to have a negligible effect. This is perhaps not surprising,

given that at small x the unpolarized gluon distribution

Gðx;Q2Þ is eikonal, while ΔGðx;Q2Þ is subeikonal, and

hence, suppressed by a power of x.
Another constraint on ΔGðx;Q2Þ that we explored was a

preliminary matching onto the (large-x) JAM DGLAP-

based extraction of ΔGðx;Q2Þ in Refs. [33,34]—in par-

ticular, the SU(3)+positivity scenario. The result is shown

in Fig. 18; the red box is bounded by 10−1.3 < x < 10−1

and 0.05 < ΔGðx;Q2Þ < 0.2. The motivation is that any

complete description of ΔGðx;Q2Þ should agree with

DGLAP extractions in this region. The matching is

performed in a simple way, by choosing an intermediate

region in x and forcing our fit of ΔGðx;Q2Þ to qualitatively
agree with the JAM DGLAP-based extraction. This is done

in a similar way to the positivity constraint described

above, whereby we punish the χ2 whenever ΔGðx;Q2Þ

FIG. 16. Extraction of g
p
1
from the current low-x experimental

data (green, same as Fig. 5) and with EIC pseudodata generated

from the mean of the asymptotically positive g
p
1
replicas (red), the

mean of the asymptotically negative g
p
1
replicas (blue), and the

mean of replicas restricted such that jgp
1
j < 100 at x ¼ 10−4

(magenta).

FIG. 17. Relative uncertainty for both this work (red) and a

JAM DGLAP-based extraction [165] (blue) for EIC impact

studies using the high-g
p
1
scenario. Dotted lines denote extrapo-

lating beyond the lowest x for which pseudodata were generated.

For this work, pseudodata were generated down to x ¼ 10−4. For

the JAM DGLAP-based fit, pseudodata were generated down to

x ¼ 2 × 10−4 [165].

FIG. 18. The result of matching onto theΔGðxÞ extraction from
DGLAP [33,34] at intermediate x. The green band is our baseline
fit. The blue band is the result of matching. The light red square is

the region where we enforce matching.
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strays outside of the matching region (red rectangle in

Fig. 18). This constraint causes our extracted ΔGðx;Q2Þ to
take on mostly positive values at small x, seemingly

changing sign from our original extraction. However, note

that while the baseline extraction uncertainty band grew

negative for large x, there were still a significant number of

replicas (with good χ2) that grew positive at large x and

overlapped with the red region. Forcing ΔGðx;Q2Þ to pass

through that area then preferentially selects those replicas.

Consequently, the whole uncertainty band for ΔGðx;Q2Þ
remains shifted upward even in the small-x region. Given

that g
p
1
ðx;Q2Þ ∝ −ΔGðx;Q2Þ [see Eq. (41)], the matching

constraint leads to a quantitative change to the distribution

of g
p
1

replicas: they are now 40% positive and 60%

negative. As we emphasized previously, input on hPDFs

from large x can have a significant effect on predictions

made at small x, motivating future work into a more

rigorous matching to DGLAP-based hPDF fits.

Furthermore, the issue with constraining eG could be

alleviated by a more rigorous way of handling the starting

point of evolution x0. In this work, we chose x0 ¼ 0.1 and

then used experimental data to fit initial conditions for the

polarized dipole amplitudes in order to obtain the correct

starting values for all of the extracted hPDFs. Only after

these starting values have been determined do we then

evolve the distributions in a region dominated by our double-

logarithmic resummation. In reality, evolution in x begins at
x ¼ 1, but it is subleading, with the dominant contribution at

large x given by DGLAP-driven large-x dynamics. The

method of matched asymptotic expansions [169,170] sug-

gests that we start the evolution at x0 ¼ 1, include the

DGLAP contributions, but subtract the double-counting of

logarithms that are present in both resummations. By

starting evolution earlier, eG might become more sensitive

to the data. As discussed at the end of Sec. II E, the challenge

in constraining eG stems from the fact that it has a small

magnitude in the region where there are measurements (see

Fig. 1). The magnitude of the eG contribution to Δuþ is so

small at larger x partly because eG enters only through

evolution, and evolution is delayed until x0 ¼ 0.1. If x0 ¼ 1,
eG will start growing sooner, and it might then have a large

enough contribution to be sensitive to the experimental data.

Moreover, perhaps the most direct way to constrainΔG is

to include in the analysis an observable directly sensitive to it.

(Recall that in the polarized DIS and SIDIS processes

considered here, the contribution from the gluon hPDF is

suppressed by a factor of αs.) Two possibilities, which have

been used in DGLAP-based extractions [23,26,27,33,34],

are jet and hadron production in polarized proton-proton

collisions. The numerator of the double-longitudinal spin

asymmetryALL in p⃗þ p⃗ collisions takes the following form:

σ↓⇑ − σ↑⇑ ¼
X

a;b

Δfa=A ⊗ fb=B ⊗ σab; ð46Þ

where Δf is the parton hPDF for either the quarks or gluon,

aðbÞ is the parton coming from proton AðBÞ, and σab is the
partonic cross section of parton a interacting with parton b.
For hadron production, Eq. (46) needs also to be con-

voluted with the D1 FF. More work is needed to derive

an analogue of Eq. (46) in the KPS-CTT small-x evolution

framework, and initial developments can be found in

Ref. [98].

Lastly, in the future, it will also be interesting to attempt

to constrain the large-x behavior of the hPDFs by direct

matching onto nonperturbative calculations from lattice

QCD. Such matching in the vicinity of x ∼ 0.1 is actually

feasible for the double-logarithmic helicity evolution,

unlike for the case of single-logarithmic unpolarized

small-x evolution, which would require reliable lattice data

down to much smaller x. In addition, recently a new

approach to determining the initial conditions for small-x
evolution by starting at the level of the proton wave

function has been developed in Ref. [171]. While that

work was done in the context of unpolarized small-x
evolution, it is possible that it could be extended to the

polarized case, helping us constrain the initial conditions

for helicity evolution at hand.

IV. CONCLUSIONS

In this paper, we have presented the first phenomeno-

logical implementation of the KPS-CTT theoretical frame-

work [58,64,71] for the evolution of hPDFs. This work

represents a significant improvement over our previous

study [103] by utilizing the revised evolution equations

instead of the original KPS equations. On top of that, we

have adopted the large-Nc & Nf limit, which enables a

more realistic description of the physics, now including

quarks in addition to gluons. Another key advancement of

this research is an expansion of our analysis beyond just

polarized DIS data by also incorporating polarized semi-

inclusive DIS measurements. This allowed us to extract

both the C-even and C-odd quark hPDFs Δqþ and Δq−,
along with the gluon hPDF ΔG. To extract Δq− we had to,

for the first time, implement the numeric solution for the

KPS evolution of the nonsinglet hPDFs. Moreover, we

have included running coupling corrections in the evolution

of Δqþ, Δq−, and ΔG, which is another feature of the

analysis that makes our approach more rigorous.

Through the application of the JAM Bayesian

Monte Carlo framework, we have successfully described

all available polarized DIS and SIDIS data below the

threshold x0 ¼ 0.1, achieving a very good fit with

χ2=Npts ¼ 1.03. However, when attempting to extend our

predictions to lower values of x, the uncertainty associated

with our results was found to be substantial. This large

uncertainty arises from the inherent insensitivity of the data

to the polarized dipole amplitudes G2 and eG. To address

this challenge, we discussed several potential future
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improvements, among which investigating jet or hadron

production in longitudinally polarized proton-proton colli-

sions emerges as a promising medium-term solution.

However, more theoretical developments are desirable in

the short term, where one must identify the observables

which can be expressed in terms of the polarized dipole

amplitudes G2 and eG.
Another issue which needs to be clarified in the medium

term is the impact of the axial anomaly on the g1 structure
function and hPDFs at small x. The role of the axial

anomaly in the polarized structure functions, originally

pointed out in Refs. [10,172,173], has been recently

revisited in Refs. [174–177]. The effect appears to be

distinct from the DLA of BER and KPS-CTT evolution.

Developing the corresponding phenomenology is left for

future work.

Based on current experimental data, we find that there

could be significant negative net spin, as well as non-

negligible contributions to the triplet and octet axial-vector

charges, coming from small-x partons. However, there are

large uncertainties in our estimates, including unaccounted-

for systematics in matching onto large-x DGLAP-based

fits, which will be important to implement in future work.

Nevertheless, in such a scenario (negative net parton spin),

significant OAM would be needed to satisfy the (Jaffe-

Manohar) spin sum rule. The inclusion of EIC data in the

long term would greatly enhance our understanding of

hPDFs, as our impact study showed, and enable more

precise statements about the distribution of (spin and

orbital) angular momentum within the proton.
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APPENDIX A: DISCRETIZATION OF THE

FLAVOR SINGLET AND NONSINGLET

EVOLUTION EQUATIONS

In this appendix, we present the process of discretizing

Eqs. (9) and (13) in order to perform the computation to

obtain their numerical solutions. In addition, we implement

the constraints corresponding to the fact that the starting

point of our evolution is at x ¼ x0 < 1. See the discussion

above Eq. (17) for more detail.

We start with the flavor singlet case. Imposing the

η − s10 > y0, η
0 − s21 > y0, η

00 − s32 > y0 constraints with

y0 ¼
ffiffiffiffi
Nc

2π

q
ln 1

x0
, we rewrite Eq. (9) in terms of the variables

(15) as

Qqðs10; ηÞ ¼ Q
ð0Þ
q ðs10; ηÞ þ

Z
η

s10þy0

dη0
Z

η0−y0

s10

ds21αsðs21Þ½Qqðs21; η0Þ þ 2eGðs21; η0Þ þ 2eΓðs10; s21; η0Þ

− Γqðs10; s21; η0Þ þ 2G2ðs21; η0Þ þ 2Γ2ðs10; s21; η0Þ�

þ 1

2

Z
η

y0

dη0
Z

η0−y0

max½0;s10þη0−η�
ds21αsðs21Þ½Qqðs21; η0Þ þ 2G2ðs21; η0Þ�; ðA1aÞ

Γqðs10; s21; η0Þ ¼ Q
ð0Þ
q ðs10; η0Þ þ

Z
η0

s10þy0

dη00
Z

η00−y0

max½s10;s21−η0þη00�
ds32αsðs32Þ½Qqðs32; η00Þ þ 2eGðs32; η00Þ

þ 2eΓðs10; s32; η00Þ − Γqðs10; s32; η00Þ þ 2G2ðs32; η00Þ þ 2Γ2ðs10; s32; η00Þ�

þ 1

2

Z
η0

y0

dη00
Z

η00−y0

max½0;s21þη00−η0�
ds32αsðs32Þ½Qqðs32; η00Þ þ 2G2ðs32; η00Þ�; ðA1bÞ

GLOBAL ANALYSIS OF POLARIZED DIS AND SIDIS DATA … PHYS. REV. D 108, 114007 (2023)

114007-27



eGðs10; ηÞ ¼ eGð0Þðs10; ηÞ þ
Z

η

s10þy0

dη0
Z

η0−y0

s10

ds21αsðs21Þ
�
3eGðs21; η0Þ þ eΓðs10; s21; η0Þ

þ 2G2ðs21; η0Þ þ
�
2 −

Nf

2Nc

�
Γ2ðs10; s21; η0Þ −

1

4Nc

X

q

Γqðs10; s21; η0Þ
�

−
1

4Nc

Z
η

y0

dη0
Z

min½s10;η0−y0�

max½0;s10þη0−η�
ds21αsðs21Þ

�X

q

Qqðs21; η0Þ þ 2NfG2ðs21; η0Þ
�
; ðA1cÞ

eΓðs10; s21; η0Þ ¼ eGð0Þðs10; η0Þ þ
Z

η0

s10þy0

dη00
Z

η00−y0

max½s10;s21−η0þη00�
ds32αsðs32Þ

�
3eGðs32; η00Þ þ eΓðs10; s32; η00Þ

þ 2G2ðs32; η00Þ þ
�
2 −

Nf

2Nc

�
Γ2ðs10; s32; η00Þ −

1

4Nc

X

q

Γqðs10; s32; η00Þ
�

−
1

4Nc

Z
η0þs10−s21

y0

dη00
Z

min½s10;η00−y0�

max½0;s21þη00−η0�
ds32αsðs32Þ

�X

q

Qqðs32; η00Þ þ 2NfG2ðs32; η00Þ
�
; ðA1dÞ

G2ðs10; ηÞ ¼ G
ð0Þ
2
ðs10; ηÞ þ 2

Z
η

y0

dη0
Z

min½s10;η0−y0�

max½0;s10þη0−η�
ds21αsðs21Þ½eGðs21; η0Þ þ 2G2ðs21; η0Þ�; ðA1eÞ

Γ2ðs10; s21; η0Þ ¼ G
ð0Þ
2
ðs10; η0Þ þ 2

Z
η0þs10−s21

y0

dη00
Z

min½s10;η00−y0�

max½0;s21þη00−η0�
ds32αsðs32Þ½eGðs32; η00Þ þ 2G2ðs32; η00Þ�: ðA1fÞ

Following Refs. [67,71,102], the evolution equations (A1) can be iterated more optimally by considering the recursive form

of their Riemann sums. To do so, we begin by writing Eqs. (A1a), (A1c), and (A1e) as the first-order Taylor expansions

in η—e.g.,

Qqðs10; ηþ ΔÞ ¼ Qqðs10; ηÞ þ Δ
∂

∂η
Qqðs10; ηÞ þOðΔ2Þ; ðA2Þ

and Eqs. (A1b), (A1d), and (A1f) as the first-order Taylor expansions in η0 and s21—e.g.,

Γqðs10; s21 þ Δ; η0 þ ΔÞ ¼ Γqðs10; s21; η0Þ þ Δ
∂

∂η0
Γqðs10; s21; η0Þ þ Δ

∂

∂s21
Γqðs10; s21; η0Þ þOðΔ2Þ: ðA3Þ

The expansions for other (neighbor) dipole amplitudes are similar. Note that the transverse sizes in neighbor dipoles are

always ordered such that x32 < x21 < x10, which implies that s32 > s21 > s10. Neglecting order-Δ2 terms for small step

sizes Δ ≪ 1, Eq. (A1) can be written as

Qqðs10; ηþ ΔÞ ¼ Qqðs10; ηÞ þQ
ð0Þ
q ðs10; ηþ ΔÞ −Q

ð0Þ
q ðs10; ηÞ

þ Δ

Z
η−y0

s10

ds21αsðs21Þ
�
3

2
Qqðs21; ηÞ þ 2eGðs21; ηÞ þ 2eΓðs10; s21; ηÞ

− Γqðs10; s21; ηÞ þ 3G2ðs21; ηÞ þ 2Γ2ðs10; s21; ηÞ
�

þ 1

2
Δ

Z
η

η−s10

dη0αsðs10 þ η0 − ηÞ½Qqðs10 þ η0 − η; η0Þ þ 2G2ðs10 þ η0 − η; η0Þ�; ðA4aÞ

Γqðs10; s21 þ Δ; η0 þ ΔÞ ¼ Qqðs10; ηÞ þQ
ð0Þ
q ðs10; ηþ ΔÞ −Q

ð0Þ
q ðs10; ηÞ

þ Δ

Z
η0−y0

s21

ds32αsðs32Þ
�
3

2
Qqðs32; η0Þ þ 2eGðs32; η0Þ

þ 2eΓðs10; s32; η0Þ − Γqðs10; s32; η0Þ þ 3G2ðs32; η0Þ þ 2Γ2ðs10; s32; η0Þ
�
; ðA4bÞ
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eGðs10;ηþΔÞ ¼ eGðs10;ηÞþ eGð0Þðs10;ηþΔÞ− G̃ð0Þðs10;ηÞ

þΔ

Z
η−y0

s10

ds21αsðs21Þ
�
3eG½i0; j− 1� þ eΓðs10; s21;ηÞ

þ 2G2ðs21;ηÞþ
�
2−

Nf

2Nc

�
Γ2ðs10; s21;ηÞ−

1

4Nc

X

q

Γqðs10; s21;ηÞ
�

−Δ
1

4Nc

Z
η

η−s10

dη0αsðs10þ η0 − ηÞ
�X

q

Qqðs10þ η0 − η;η0Þþ 2NfG2ðs10þ η0− η;η0Þ
�
; ðA4cÞ

eΓðs10; s21 þ Δ; η0 þ ΔÞ ¼ eΓðs10; s21; η0Þ þ eGð0Þðs10; η0 þ ΔÞ − eGð0Þðs10; η0Þ

þ Δ

Z
η0−y0

s21

ds32αsðs32Þ
�
3eGðs32; η0Þ þ eΓðs10; s32; η0Þ

þ 2G2ðs32; η0Þ þ
�
2 −

Nf

2Nc

�
Γ2ðs10; s32; η0Þ −

1

4Nc

X

q

Γqðs10; s32; η0Þ
�
; ðA4dÞ

G2ðs10; ηþ ΔÞ ¼ G2ðs10; ηÞ þ G
ð0Þ
2
ðs10; ηþ ΔÞ −G

ð0Þ
2
ðs10; ηÞ

þ 2Δ

Z
η

η−s10

dη0αsðs10 þ η0 − ηÞ½eGðs10 þ η0 − η; η0Þ þ 2G2ðs10 þ η0 − η; η0Þ�; ðA4eÞ

Γ2ðs10; s21 þ Δ; η0 þ ΔÞ ¼ Γ2ðs10; s21; η0Þ þ G
ð0Þ
2
ðs10; η0 þ ΔÞ − G

ð0Þ
2
ðs10; η0Þ: ðA4fÞ

Next, we discretize the remaining integrals via a left-hand

Riemann sum in order to be able to iteratively compute the

amplitudes at higher rapidities η, which are required for the

calculation of hPDFs and the g1 structure function at small

x. This step is most conveniently performed once we make

the change of variables fη; s10; s21g → fj; i; kg · Δ. At the
end, Eq. (A4) reduces to the discretized Eq. (17) in the

main text.

The numerical implementation of the flavor nonsinglet

evolution equation (13) parallels that of the flavor singlet

evolution considered above. We use the variable change

from Eq. (15) and also require that the flavor nonsinglet

evolution start at x ¼ x0, such that η − s10 ≈

ffiffiffiffi
Nc

2π

q
ln 1

x
>

ffiffiffiffi
Nc

2π

q
ln 1

x0
≡ y0. Implementing these modifications in

Eq. (13) gives us the following evolution for GNS:

GNSðs10;ηÞ¼GNSð0Þðs10;ηÞþ
1

2

Z
η

y0

dη0

×

Z
η0−y0

max½0;s10−ηþη0�
ds21αsðs21ÞGNSðs21;η0Þ: ðA5Þ

The process of discretizing the nonsinglet evolution is

mostly similar to that of the singlet evolution. First, we

produce a recursion relation using the first-order Taylor

expansion, simplify it, and discretize it using the left-

handed Riemann sum. Differentiating Eq. (A5) yields

∂

∂η
GNSðs10; ηÞ ¼

∂

∂η
GNSð0Þðs10; ηÞ

þ 1

2

Z
η−y0

s10

ds21αsðs21ÞGNSðs21; ηÞ

þ 1

2

Z
η

η−s10

dη0αsðs10 − ηþ η0Þ

×GNSðs10 − ηþ η0; η0Þ; ðA6Þ

where we have also employed the s10 > 0, η − s10 > y0
conditions. Using the Taylor expansion in η, cf. Eq. (A2), we

obtain a recursive form of our flavor nonsinglet evolution:

GNSðs10; ηÞ ¼ GNSðs10; η − ΔηÞ þ GNSð0Þðs10; ηÞ
−GNSð0Þðs10; η − ΔηÞ

þ 1

2
Δη

Z
η−y0

s10

ds21αsðs21ÞGNSðs21; ηÞ

þ 1

2
Δη

Z
η

η−s10

dη0αsðs10 − ηþ η0Þ

×GNSðs10 − ηþ η0; η0Þ: ðA7Þ

In order to have a numerical solution consistent with the

flavor singlet numerical evolution, we again define Δη ¼
Δs≡ Δ. We also index our numerics in the same way as in

the flavor singlet case, fη; η0; s10; s21g → fj; j0; i; i0g · Δ.
Ultimately, Eq. (A7) yields the discretized Eq. (23) in the

main text.
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APPENDIX B: ANALYTIC CROSS-CHECK

OF THE NUMERICAL SOLUTION FOR THE

FLAVOR NONSINGLET EVOLUTION

Finding an analytic solution for the large-Nc flavor

nonsinglet evolution equation that enforces all of our

physical assumptions and includes running coupling is,

unfortunately, outside the scope of this paper. However, an

analytic solution does exist for the large-Nc evolution

equations with fixed coupling [60], which ignores the

1=Λ IR cutoff on the transverse size of the dipoles. We

can perform a limited cross-check by modifying our

numerical solution to use a fixed coupling αs ¼ 0.3, and

expand our domain of s10 by removing the IR dipole size

cutoff, x21 < 1=Λ, employed in Eq. (13). Since the dipole

size constraint is enforced by the relation s10 > 0, we refer to

the analytic cross-check regime as the all-s10 (�s) regime.

The revised evolution equation becomes [cf. Eq. (A5)]

GNS
�sðs10;ηÞ¼G

NSð0Þ
�s ðs10;ηÞ

þαs

2

Z
η

0

dη0
Z

η0−y0

s10−ηþη0
ds21G

NS
�sðs21;η0Þ; ðB1Þ

where relaxing the sij > 0 constraint has extended the

lower limits of the η0 and s21 integrals. As expected,

changing the phase space of the evolution equation had

an effect on our numerical solution, with the discretized

flavor nonsinglet equation now being

GNS
�s ½i; j� ¼ GNS

�s ½i; j − 1� þ G
NSð0Þ
�s ½i; j� −G

NSð0Þ
�s ½i; j − 1�

þ αs

2
Δ

2

� Xj−2−y0

i0¼i

GNS
�s ½i0; j − 1�

þ
Xj−2

j0¼0

GNS
�s ½i − jþ 1þ j0; j0�

�
; ðB2Þ

where the notable modifications compared to Eq. (23)

are the factoring out of the fixed coupling αs in front of

the sum and the different starting point j0 ¼ 0 of the

summation.

We can solve the all-s10 evolution equation analytically

using Laplace-Mellin transforms (cf. Ref. [60]). To enforce

the small-x assumption on our conjugate variables, we

define the forward and inverse transforms

GNS
�sðs10;ηÞ¼

Z
dω

2πi
eωη

Z
dλ

2πi
eðη−s10−y0ÞλGNS

�sðω;λÞ; ðB3aÞ

GNS
�sðω; λÞ; ¼

Z
∞

0

dðη − s10 − y0Þe−λðη−s10−y0Þ

×

Z
∞

0

dηe−ωηGNS
�sðs10; ηÞ: ðB3bÞ

In Mellin space, the solution presents itself just as it did in

Ref. [60],

GNS
�sðω; λÞ ¼

ωλ

λ −
αs
2ω

1

ω
G

NSð0Þ
�s ðω; λÞ: ðB4Þ

This is convenient, since we only have three distinct initial

conditions: G
NSð0Þ
�s ¼ η; s10; 1. First, we will evaluate the

nonsinglet evolution beginning with the constant contri-

bution, G
NSð0Þ
�s ðη; s10Þ ¼ 1.

G
NSð0Þ
�s ðω;λÞ ¼

Z
∞

0

dðη− s10− y0Þe−λðη−s10−y0Þ
Z

∞

0

dηe−ωη

¼ 1

ωλ
: ðB5Þ

Plugging this into the evolution equation leads to another

contour integral with a pole at λ ¼ α=ð2ωÞ, which is

evaluated via the residue theorem to give

GNS
�sðη; s10Þ ¼

Z
dω

2πi
eωη

Z
dλ

2πi
eðη−s10−y0Þλ

1

λ −
αs
2ω

1

ω

¼
Z

dω

2πi
eωηþ

αs
2ω
ðη−s10−y0Þ 1

ω
: ðB6Þ

Now we can Taylor-expand the singular (∼1=ω) part of the
exponential, use the residue theorem, and simplify the

result, obtaining

GNS
�sðη; s10Þ ¼

Z
dω

2πi
eωη

X∞

n¼0

1

n!

�
αsðη − s10 − y0Þ

2ω

�
n 1

ω

¼
X∞

n¼0

1

ðn!Þ2
�
αs

2
ηðη − s10 − y0Þ

�
n

: ðB7Þ

This infinite sum is equivalent to the modified Bessel

function of the first kind, ImðzÞ at m ¼ 0,

GNS;1
�s ðη; s10Þ ¼ I0ð

ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηðη − s10 − y0Þ

p
Þ: ðB8Þ

This process is repeated for the η initial condition,

G
NSð0Þ
�s ðη; s10Þ ¼ η, giving

G
NSð0Þ
�s ðω;λÞ¼

Z
∞

0

dðη−s10−y0Þe−λðη−s10−y0Þ
Z

∞

0

dηe−ωηη

¼ 1

ω2λ
: ðB9Þ

This contour integral has the same pole at λ ¼ αs=ð2ωÞ,
resulting in a similar integral,

GNS
�sðη; s10Þ ¼

Z
dω

2πi
eωηþ

α
2ω
ðη−s10−y0Þ 1

ω2
: ðB10Þ
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We use the same Taylor expansion and the above expres-

sion for the ω contour integral to obtain

GNS
�sðη; s10Þ ¼

Z
dω

2πi
eωη

X∞

n¼0

1

n!

�
αsðη − s10 − y0Þ

2

�
n 1

ωnþ2

¼ η
X∞

n¼0

1

ðn!Þðnþ 1Þ!

×

�
αs

2
ηðη − s10 − y0Þ

�
n

: ðB11Þ

This, too, is proportional to a modified Bessel function

of the first kind, now for m ¼ 1. The solution is then

rewritten as

G
NS;η
�s ðη;s10Þ

¼ 1
ffiffiffiffiffi
αs

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2η

η− s10−y0

s
I1ð

ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηðη− s10−y0Þ

p
Þ: ðB12Þ

Lastly, we must solve for the initial condition term

GNS
�sðη;s10Þ¼s10. Noting that s10¼η−ðη−s10−y0Þ−y0,

G
NSð0Þ
�s ðω; λÞ ¼

Z
∞

0

dðη − s10 − y0Þe−λðη−s10−y0Þ

×

Z
∞

0

dη e−ωηðη − ðη − s10 − y0Þ − y0Þ

¼ λ − ω − y0ωλ

ðωλÞ2 : ðB13Þ

In this case, we have two poles: λ ¼ 0, αs=ð2ωÞ.
Conveniently, there are no poles in ω at λ ¼ 0, so that

particular integral vanishes.Moving forward with the other λ

pole, we write

GNS
�sðη;s10Þ¼

Z
dω

2πi
eωη

Z
dλ

2πi
eðη−s10−y0Þλ

ωλ

λ−
αs
2ω

×
1

ω

λ−ω−y0ωλ

ðωλÞ2

¼
Z

dω

2πi
eωηþ

αs
2ω
ðη−s10−y0Þ

�
1

ω2
−
2

αs
−
y0

ω

�
: ðB14Þ

This equation is a linear combination of the two other

contributions we derived, plus a new term. This new term

can be evaluated in the same way as the previous two. We

obtain the following result for the s10 contribution:

G
NS;s10
�s ðη; s10Þ ¼

1
ffiffiffiffiffi
αs

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2η

η − s10 − y0

s
I1ð

ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηðη − s10 − y0Þ

p
Þ − 1

ffiffiffiffiffi
αs

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðη − s10 − y0Þ

η

s

I1ð
ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηðη − s10 − y0Þ

p
Þ

− y0I0ð
ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηðη − s10 − y0Þ

p
Þ: ðB15Þ

In the end, we arrive at an analytic solution for the flavor nonsinglet evolution equation in the all-s10 regime,

GNS
�sðη; s10Þ ¼ aNSG

NS;η
�s þ bNSG

NS;s10
�s þ cNSGNS;1

�s

¼ aNS
1
ffiffiffiffiffi
αs

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2η

η − s10 − y0

s
I1

	 ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηðη − s10 − y0Þ

p 

þ bNS

ffiffiffiffiffi
αs

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2η

η − s10 − y0

s
I1

	 ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηðη − s10 − y0Þ

p 


−
bNS
ffiffiffiffiffi
αs

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðη − s10 − y0Þ

η

s

I1

	 ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηðη − s10 − y0Þ

p 

− bNSy0I0

	 ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηðη − s10 − y0Þ

p 


þ cNSI0

	 ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηðη − s10 − y0Þ

p 

: ðB16Þ

The first place to start our comparisons would be the

dipole amplitudes themselves. There are three properties of

the flavor nonsinglet dipole amplitudes that we can use to

cross-check the numerical solution: the general shape of the

amplitudes, a sign change in the s10 contributions due to

the positive starting point and negative growth, and the

asymptotic behavior at small x. The last property is also

useful for checking the implementation of our hPDF

calculation, since the dipole amplitudes and hPDFs should

have the same asymptotics.

We show in Fig. 19 high-resolution (small step size)

numerical solutions of the polarized dipole amplitudes, as

functions of η for a fixed s10, compared to their analytic

counterparts. The general shape and growth of the flavor

nonsinglet amplitudes (see the left panels in Fig. 19)

shows a good agreement between the numerical and

GLOBAL ANALYSIS OF POLARIZED DIS AND SIDIS DATA … PHYS. REV. D 108, 114007 (2023)

114007-31



analytic solutions with a reasonably small step size of

Δη ¼ Δs10 ¼ Δ ¼ 0.03. One can see that the analytic

solution grows in magnitude slightly faster than the

numeric solution. The logarithm of the absolute value of

the dipole amplitudes, plotted in the right panels of Fig. 19,

reveals further quantitative agreement, where we see that

the numerical intercept αh converges to within 1.4% of the

analytic solution. The logarithmic scale also allows us to

compare the two solutions’ large-x (low-η) behaviors using
the location of the sign change (the cusp) in the bNS

contribution (the middle-right panel of Fig. 19). The lower

the fixed s10 value, the lower the sign change. We see in

Fig. 19 that when s10 ¼ const ¼ 0.3, the sign changes

coincide just above η ¼ 2.5, implying that our numerical

solution is equally valid as x → x0. Furthermore, we can

delay the sign change by increasing s10 for these plots, and

that will allow us to to determine the necessary resolution

for retaining agreement as x becomes small. This test is given

by the left-hand panel of Fig. 20, which informs us that a

resolution of Δη ¼ Δs10 ¼ Δ < 0.06 will retain analytic

agreement at the dipole amplitude level. We routinely use

Δ ≤ 0.025 for our numerics and global analysis.

The polarized dipole amplitude-level agreement gives us

confidence to compare how each solution impacts our

observables Δq−. We employ the plots on the right-hand

panel of Fig. 20 to extract the intercept of the ln jΔu−j basis
functions and confirm that the hPDFs asymptotics given by

the analytic and numerical dipole amplitudes match within

1% and are consistent with the intercept that was computed

at the dipole amplitude level. This completes the cross-

check of our numerical solution for the flavor nonsinglet

evolution equations.

FIG. 19. GNSðs10; ηÞ (left) and log jGNSðs10; ηÞj (right) plotted as functions of η for a fixed value of s10 ¼ 0.3. The large-η behavior

corresponds to the small-x behavior, and this allows us to see how and when our numerical solution deviates from the analytic. The

absolute value of the logarithm allows us to investigate the sign change (the cusp), and the slope of the logarithmic plot will give us a

dipole amplitude-level intercept.
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APPENDIX C: CONVERGENCE TESTING

OF NUMERICAL SOLUTIONS

The discretization defined in Appendix A is very useful

for solving complicated integral equations which are very

difficult if not impossible to solve analytically. The

numerical solution is rather straightforward to derive, but

it has the same faults as any discrete function—namely, the

fact that the accuracy of a numerical solution is dependent

on the resolution—i.e., the step size. In our case, we have

two different variables to work with (η, s10), which results

in a two-dimensional grid (G½i; j�) for our numerical

solution to compute. To simplify the discretization, we

defined the step sizes for η and s10 to be the same,

Δη ¼ Δs10 ≡ Δ. The requirement we impose on our

numerical solution to confirm its validity is that as the

step size decreases, the computed values should converge

to a single output.

We have tested each of our flavor singlet basis functions

(Fig. 1) as well as the flavor nonsinglet basis functions

(not shown). However, the results can be summarized

by their subsequent implementation in calculating the

hPDFs ΔqþðxÞ and Δq−ðxÞ. The left-hand panel of

Fig. 21 shows xΔuþðxÞ for a “test state” of initial

conditions. We define a test state simply as any replica

that has been confirmed to fit data with χ2=Npts ≈ 1. This

hPDF was plotted multiple times for varying step sizes, and

it is clear that as the step size decreases, the solutions

converge to a single output.

The same convergence test was conducted on xΔq−ðxÞ
and is displayed in the right panel of Fig. 21. In this

FIG. 20. Left: a plot of (the logarithm of) the s10 contribution to G
NS
u (parametrized by bNSu ) as a function of η. Each color represents a

different fixed value of s10. The location of the sign change in the amplitude, indicated by the cusp, appears to vary with s10. Smaller step

sizes lead to convergence of the sign change between the analytic and numeric solutions, and Δη ¼ Δs10 ¼ Δ < 0.06 retains small-x

agreement. Right: a plot of (the logarithm of) each Δu− basis function (parametrized by aNSu , bNSu , and cNSu ) as a function of logðxÞ. Each
plot depicts the asymptotic agreement between the numeric and analytic solutions, as well as a measure of the intercept αh.
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case, there is also an analytic solution, as discussed in

Appendix B. We find not only a convergence of the

numerical solution to a single output as Δ becomes smaller,

but also that the converged output is exactly that of

the analytic solution. We note here that Fig. 21 is a

demonstration of the convergence. The results discussed

in Sec. III were computed using much higher resolu-

tions, Δ ≈ 0.02.
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