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A B S T R A C T   

The application of compost to urban vegetable gardens presents an opportunity to recycle nutrients from the 
urban waste stream back into the human food system. However, many gardeners apply phosphorus (P) in the 
form of compost at a rate that far exceeds what crops can take up. The fate of this P—whether stored in soil, 
taken up by plants, or exported through leachate, depends on the dynamics of water, carbon (C), and nitrogen 
(N) in this agroecosystem. We developed a model representing these four currencies (C, N, P, water) in urban 
garden soils, that was parameterized and validated using data from four years of data from an experiment in 
which high or low amounts of labile manure-based compost, or recalcitrant municipal compost, are added to 
garden plots annually. We used the model to simulate the effects of longer-term (10-year) additions of labile or 
recalcitrant compost at low, medium, or high levels (based on previously reported survey data for Minneapolis- 
Saint Paul, Minnesota), tracking the fate of added N and P, as well as calculating net C sequestration. The fraction 
of compost nutrients recovered over 10 years ranged from 3 to 47% (N) and 4–67% (P) with higher efficiencies 
associated with lower input rates and for recalcitrant compost. Approximately half of added C was ultimately 
respired by soil microbes, while C sequestration from crop growth was much lower than soil respiration. This 
model provides a tool for understanding how management decisions and climate control nutrient recycling and 
loss via leachate from compost application in urban agroecosystems.   

1. Introduction 

1.1. Nutrient recycling and loss from compost in urban agriculture 

Cities are characterized as open systems, requiring importation of 
food and other resources, and producing wastes that end up in dis-
charged wastewater, landfills, or in air, water, or soil pollution (Rees and 
Wackernagel 1994). Urban sustainability ultimately requires the crea-
tion of circular economies in which waste products are converted into 
new resources (Childers et al., 2011; Burger et al., 2012). Many 
metropolitan areas are expanding composting to keep organics waste 
out of landfills while producing a useful end-product that is used in 
gardening and landscaping as a soil amendment. Food production in 
many cities has also increased in recent decades, and urban farms and 
vegetable gardens present an opportunity to recycle nutrients from food 
waste back into the human food system through compost application 
(Metson and Bennett 2015). 

While compost application in urban gardens creates the potential for 
nutrient recycling, it also creates the potential for nutrient loss to the 

environment, if only a fraction of nutrients applied to soil are recovered 
by crops. Many composts have high nitrogen (N) to phosphorus (P) ra-
tios relative to crop requirements, such that applying compost to fulfill 
crop N requirements can result in overapplication of P by 5-fold or more 
(Kleinman et al., 2007, 2011). Moreover, many urban gardeners and 
farmers apply compost at much higher levels because of perceived 
environmental benefits and lack of economic and regulatory disincen-
tives. The few available published nutrient budgets from urban agri-
culture systems indicate that compost applications result in N and 
especially P input rates that far exceed crop requirements (e.g., Smith 
2001, Cofie et al., 2003, Graefe et al., 2008, Metson and Bennet 2015, 
Wielemaker et al., 2019). Our previous work in Minneapolis-Saint Paul, 
Minnesota, documented high compost application rates and low 
nutrient use efficiencies in urban gardens (median values of 2.5% for P, 
5.0% for N) (Small et al., 2019a), with garden soils having levels of 
plant-available P far higher than recommended levels that increased 
with garden age (Small et al., 2019a), indicating buildup over time. Even 
though urban farms and gardens make up a small fraction (typically 
<1%) of urban land area, compost inputs into this small area may 
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constitute one of the largest inputs of P onto the urban landscape (Small 
et al., 2019a). If retention of excess P in the soil is low, compost inputs to 
urban gardens can lead to high rates of P export urban watersheds as 
leachate and stormwater runoff (Small et al., 2023), potentially 
contributing to eutrophication of downstream water bodies. 

Published values indicate a wide range of nutrient loss rates that are 
not always correlated with inputs at annual timescales (van de Vlasakker 
et al. 2022), suggesting complex controls on longer-term nutrient dy-
namics that are influenced by interactions among physical (e.g., soil 
characteristics, water inputs) and biological factors (e.g., microbial 
mineralization of compost, crop uptake of nutrients). A multi-currency 
ecosystem model is needed to better understand these interactions and 
to allow for simulations of sufficient temporal duration to evaluate 
long-term fate of compost-bound P. Understanding these controls on 
recycling, retention, and export of compost-derived nutrients is essential 
in order for compost-based urban agriculture to maximize ecosystem 
services while minimizing environmental consequences. 

1.2. Factors controlling the fate of compost-derived nutrients 

The source of compost is likely to be an important determinant of the 
fate of compost-derived nutrients. Compost made from yard waste and 
other municipal organic sources is commonly used in urban agriculture, 
as is compost made from animal manure (Wielemaker et al., 2019). 
Manure-based composts have been associated with high leaching rates 
of N and P (Graefe et al., 2008), likely due to high input rates combined 
with the lability of this material (Chu et al., 2007; Chang et al., 2010; 
Sandhu et al., 2019). Highly labile manure compost can result in rapid 
mineralization and loss of nutrients, whereas slower decomposing 
compost can lead to higher nutrient immobilization in soil microbial 
biomass (Aoyama and Nozawa 2012). 

Compost-bound nutrients are mineralized by microbial activity rates 
which depend on compost carbon quality (Luu et al., 2022) and envi-
ronmental conditions including soil moisture and temperature (Cam-
bardella et al., 2003; Yuste et al., 2007). Soil moisture, in turn, is 
influenced by water inputs from precipitation or irrigation, and loss 
from evapotranspiration or leachate. Soil water-holding capacity con-
trols rates of evapotranspiration and leachate and is weakly related to 
soil organic matter content (Minasny and McBratney, 2017). 

Plant-available N and P are taken up by crop roots based on crop 
growth rate and nutrient demand, and environmental conditions such as 
soil moisture (Chtouki et al., 2022). Nitrogen loss from agricultural soils 
occurs via leachate (Di and Cameron 2002) and from volatilization of 
ammonia (Xing and Zhu 2000). While P binds more tightly to soil 
minerals compared to N, loss of dissolved P does occur through leachate 
(Turner and Haygarth 2000). 

Notably, in this agroecological system, the fates of water (soil 
moisture), organic carbon, nitrogen, and phosphorus are inter-
connected. Soil moisture depends on soil organic carbon and rates of 
transpiration by crops. Soil organic carbon depends on microbial 
mineralization rates influenced by soil moisture and nutrient availabil-
ity. Soil N and P concentrations depend on rates of microbial minerali-
zation of compost, uptake by crops, and export via leachate. Crop 
growth depends on availability of soil moisture, and N availability, 
among other factors. In order to understand recycling and retention of P 
applied as compost to urban gardens, it is therefore necessary to also 
understand the dynamics of water, carbon, and nitrogen. 

1.3. Results from empirical measurements of compost-derived nutrients in 
an urban garden 

In replicated raised bed garden plots, we found that high compost 
inputs can result in high losses of P via leachate flux (Small et al., 2018), 
and that native soils below garden plots showed P accumulation (Small 
et al., 2019b) resulting from mobilized P. However, we also found that 
compost applications targeted towards crop nutrient demand can 

maintain crop yields while minimizing nutrient loss from leachate 
(Shrestha et al., 2020). Plots receiving labile manure compost had 
higher leachate P losses compared to plots receiving inputs of more 
recalcitrant municipal compost, and a lower buildup of plant-available P 
in soils as a result of these losses (Shrestha et al., 2020). Results from 
these experiments also show that urban gardens have high evapotrans-
piration rates relative to lawns (Small et al., 2020) and that compost 
application rates can be an important control on the storage and fate of 
water in gardens (Chapman et al., 2022). 

The annual nutrient use efficiency (mass of nutrients recovered in 
crops / mass of nutrients added as compost) calculations from empirical 
measurements (Small et al., 2018; Shrestha et al., 2020) and gardener 
surveys (Small et al., 2019a) that we have previously reported provide a 
coarse but useful indicator of nutrient recycling; this metric is an overly 
simplistic representation of a dynamic system with long time lags 
resulting from a potentially large, slow-turnover pool of soil nutrients. 
Nutrients added as compost may be mineralized over a period of years, 
where they may be stored in soil, taken up by crops, or exported through 
leachate. As a result, soil nutrient availability and crop uptake in any 
given year reflects the history of inputs and environmental conditions 
experienced over a multi-year period. Dynamic models are needed to 
better understand the coupled dynamics of organic matter decomposi-
tion, crop growth, and the retention of water and nutrients in soil, that 
characterize this agroecosystem. 

1.4. Objective of the current study 

The goals of this study are to create a dynamic ecosystem model of 
water, organic C, N and P for a small-scale urban vegetable garden; to 
parameterize and validate this model using empirical data; and to use 
the model to track the fate of compost-derived P over ten years at a range 
of different compost input rates. 

We previously developed a mass-balance hydrology model that 
synthesized four years of empirical data from the experiments described 
above to simulate the effect of compost amendments on water storage, 
leachate, and evapotranspiration (Chapman et al., 2022). Simulations 
illustrated that compost-amended garden soil has a greater capacity to 
retain moisture and ultimately export relatively more water through 
evapotranspiration instead of leachate. Here, we have built upon this 
model to add sub-models representing the dynamics of N, P, and organic 
C. 

2. Materials and methods 

2.1. Experimental design and empirical data collection 

A multi-year experiment to measure the fate of compost-derived N 
and P in urban vegetable gardens began in 2017 in the campus research 
garden at the University of St. Thomas in Saint Paul, Minnesota. The 
garden includes 32 replicate raised beds measuring 4 m2 and 0.3 m deep. 
At the start of this current study, soil was homogenized across all plots. 
Each bed is divided into four subplots (1 m2) in which the following 
crops were planted and rotated annually: 1) carrots; 2) bush beans; 3) 
bell peppers; and 4) cabbage (2017) or collards (2018–2022). Each plot 
was randomly assigned to one of six soil amendment treatments (the 
four subplots within each plot received the same treatment), as 
described by Shrestha et al. (2020). Soil treatments consist of: 1) a 
control treatment in which no compost or fertilizer is added (no fertil-
izer); 2) synthetic fertilizer targeted to meet crop N and P demand 
(synthetic); 3) a higher input rate of labile manure compost targeted to 
meet crop N demand (high-input manure); 4) a lower input rate of labile 
manure compost targeted to meet crop P demand, supplemented with 
additional synthetic N fertilizer (low-input manure); 5) a higher input 
rate of recalcitrant municipal compost targeted to meet crop N demand 
(high-input municipal); and 6) a lower input rate of recalcitrant 
municipal compost targeted to meet crop P demand, supplemented with 
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additional synthetic N fertilizer (low-input municipal). Input rates of 
compost and supplemental fertilizer are described in Appendix 1. 

Response variables include harvested biomass, soil organic matter 
and plant-available nutrient concentrations (NH4–N, NO3–N, Bray P), 
leachate volume and dissolved nutrient concentrations (NH4–N, 
NO3–N, PO4-P), soil moisture, and soil respiration. Meteorological data 
are also recorded onsite. We previously published nutrient budgets from 
the first two years (2017–2018) of the experiment (Shrestha et al., 2020) 
and soil moisture and leachate volume from the first three years of the 
study (Chapman et al., 2022). Data from the first six years of the 
experiment are publicly available (Small & Shrestha 2023). 

2.2. Model currency and system boundaries 

We created a dynamic mass-balance model representing stocks and 
flows of water, organic C, N, and P in the experimental garden plots 
(Fig. 1). The system boundary was represented as one experimental 
raised-bed garden subplot, with an area of 1m2 and soil depth of 0.3 m 
(total soil volume 300 L). The simulation was run from 27 May 2017 – 25 
May 2027 (3650 days), encompassing 10 growing seasons, with a time 
step of 1 day. The model was run using Stella Architect (1.5.2) using the 
Euler integration method. 

2.3. Hydrology submodel 

The hydrology submodel, previously described in Chapman et al. 
(2022), represents soil moisture (SM) as volume of water (L) within a 1 
m x 1 m x 0.3 m (300 L) experimental garden plot:  

dSM/dt = precipitation + supplemental irrigation - water leachate – 
evapotranspiration                                                                                  

Daily precipitation and supplemental irrigation (mm/d, or L/m2/d) 
were inputs to the model based on recorded data. Water leachate (mm/ 
d, or L/m2/d) was modeled based on the difference between modeled 
soil moisture and soil water capacity. Soil water capacity was modeled 
as a function of soil% organic matter, based on the observed relationship 
between the mean% organic matter for each soil amendment treatment 
and the maximum observed soil moisture in that treatment (R2=0.57). 
Water storage in excess of water capacity was assumed to be exported as 
leachate. 

We calculated evapotranspiration (mm/d, or L/m2/d) based on the 
Penman-Monteith equation (Zotarelli et al., 2010), using mean daily 
solar radiation, maximum and minimum relative humidity, maximum 
and minimum temperature, and mean wind speed as inputs. The 
calculated reference evapotranspiration rate (representing turfgrass) 
was converted to potential crop evapotranspiration using seasonally 

varying crop coefficients ranging from 0.55 to 1.2, with maximum 
values in the middle of the growing season (based on values reported in 
Saher et al. 2021). Potential crop evapotranspiration was multiplied by a 
correction factor, ks, that is a function of soil moisture (Zotarelli et al., 
2010), adjusting ET downward in drier soil. Between soil moisture 
values of 6% and 21%, ks increases linearly from 0 to 1. During the 
parameterization process, we adjusted calculated ET using a correction 
factor of 2 to achieve a good correspondence between modeled and 
observed soil moisture and cumulative leachate values. 

2.4. Plant growth submodel 

Crop mass-specific growth rate (kGrowth) was represented as a 
function of five variables. A crop-specific maximum growth rate 
(kmaxGrowth), soil moisture (measured_%_moisture), daily minimum 
temperature (Tmin); daily mean solar intensity (Rs); and soil plant- 
available N. For kmaxGrowth, a time series input was used to repre-
sent the annual crop rotations and values were calibrated manually to 
match observed harvest values; we used values of 0.07 d−1 for peppers, 
0.05 d−1 for beans, 0.15 d−1 for collard greens, and 0.07 d − 1 for carrots. 
Graphical functions were used to convert measured_%_moisture, Tmin, 
Rs, and soil plant-available N into index values ranging between 0 and 1, 
which were in turn multiplied by the maximum growth rate. The relative 
growth rate due to temperature (kTempGrowth) was assumed to equal 1 
at daily minimum temperatures above 15.5 ◦C, and 0 at daily minimum 
temperatures below 2.0 ◦C. The relative growth rate due to soil moisture 
was represented as ks (also used in the calculation for ET), with values of 
1 for any measured soil moisture >2.5%, and 0 for measured soil 
moisture <2.5%. The relative growth rate due to light (kLight) was 
represented by a graphical function as 1 for values >8.5 MJ/m2/d and 
0 for values <1.5 MJ/m2/d. The relative growth rate due to plant- 
available N (kNgrowth) was represented by a graphical function as 1 
for values >20 PPM, and 0 for values <1 PPM. The mass specific growth 
rate of crops was represented as:  

kGrowth = kmaxGrowth * kTempGrowth * ks * kLight * kNgrowth              

2.5. Decomposition rate submodel 

The mass-specific decomposition rate of organic matter, kDecomp, 
was a variable represented as a maximum decomposition rate (kMax-
decomp), modified by functions based on daily minimum temperature 
(Tmin) and soil moisture. The relative decomposition rate due to tem-
perature (kTempDecomp) was assumed to equal 1 at daily minimum 
temperatures above 25 ◦C, and 0 at daily minimum temperatures below 

Fig. 1. Conceptual model of garden ecosystem, representing stocks and flows of water, organic carbon, nitrogen, and phosphorus.  
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5 ◦C. The relative decomposition rate due to soil moisture (kMoistur-
eDecomp) was assumed to be equal to 1 at soil moisture values >22%, 
declining to 0 at 0% moisture. The mass specific decomposition rate of 
organic matter was represented as:  

kDecomp = kMaxdecomp * kTempDecomp * kMoistureDecomp                   

2.6. Organic carbon submodel 

Organic carbon was represented by three stocks: Crop Biomass Car-
bon (CBC), Labile Soil Organic Carbon (LSOC), and Recalcitrant Soil 
Organic Carbon (RSOC). 

CBC was modeled as:  

dCBC/dt = (planting_input_C) + (crop_growth_C) - (harvest_C) - 
(crop_C_to_soil)                                                                                    

Planting input C was represented as a small annual input (1 g C/m2) 
on June 1 of each simulation year, representing the planting of seed-
lings. Crop growth C was represented as:  

Crop growth C = Crop biomass C * kGrowth * (kmaxBiomass – Crop_Bio-
mass_C) / Crop_Biomass_C                                                                    

where kmaxBiomass represented the maximum biomass value of a given 
crop (e.g., due to shading). kmaxBiomass values were calibrated 
manually and set as 115 g C/m2 for peppers, 140 g C/m2 for beans, 360 g 
C/m2 for collards, and 500 g C/m2 for carrots. 

The Harvest C flow simulated the removal of 95% of crop biomass on 
October 15 of each simulated year. The crop C to soil flow was simulated 
as a constant fraction (kexC), 0.5% of crop growth C, representing root 
exudate flows, and the remaining 5% of crop biomass after harvest. 

Labile soil organic carbon (LSOC) was modeled as:  

dLSOC/dt = (labile_C_input) + (crop_C_to_soil_Labile) – (DOC_leacha-
te_Labile) – (labile_CO2_efflux)                                                               

Recalcitrant soil organic carbon (RSOC) was modeled as:  

dRSOC/dt = (recalcitrant_C_input) + (crop_C_to_soil_Recalcitrant) – 
(DOC_leachate_Recalcitrant) – (recalcitrant_CO2_efflux)                             

The LSOC and RSOC stocks received inputs of labile C from compost, 
represented as a time-series input function with compost inputs occur-
ring on 28 May of each simulated year. The compost%labile variable 
determined the amount of compost C inputs added to SOC Labile and 
SOC recalcitrant stocks; manure compost was set at 50% labile, and 
municipal compost was set at 25% labile. Similarly, the crop C to soil 
flow was partitioned with 10% assumed to go into labile SOC and 90% to 
recalcitrant SOC. Dissolved organic carbon (DOC) leachate was exported 
from SOC stocks, represented as the water leachate flux multiplied by 
the labile and recalcitrant DOC concentrations. Labile DOC concentra-
tion was represented as a function of the SOC Labile stock, with a 
maximum value of 200 mg C/L at labile SOC stocks > 5000 g/m2. 
Recalcitrant DOC concentration was represented as a function of the 
SOC Recalcitrant stock, with a maximum value of 10 mg C/L at recal-
citrant SOC values > 8000 g/m2. Labile CO2 efflux was represented as 
the product of kDecomp (from the decomposition rate submodel) and 
the LSOC stock. Recalcitrant CO2 efflux was represented as the product 
of kDecomp, the RSOC stock, and kRecalDecompFactor, which was set 
as 0.018. 

2.7. Nitrogen submodel 

The N submodel had four stocks: labile soil organic N (LSON), 
recalcitrant soil organic N (RSON), plant-available N, and plant N. The 
two SON stocks were modeled as:  

dLSON/dt = (compost_N_input_Labile) + (crop_N_to_soil_Labile) – 
(N_mineralization_Labile)                                                                       

and  

dRSON/dt = (compost_N_input_Recalcitrant) + (crop_N_to_soil_Recalci-
trant) – (N_mineralization_recalcitrant)                                                     

The two crop N to soil fluxes were based on the crop_C_to_soil fluxes 
described above, divided by the crop C:N ratio. Crop C:N was repre-
sented as a time-series function based on simulated crop rotations, with 
peppers having a C:N (mass ratio) value of 14, beans 10, collards 14, and 
carrots 20. Compost N input was represented as a time-series function as 
described above, and partitioned into LSON and RSON stocks based on 
the compost_%labile parameter. The N_mineralization_labile flux was 
modeled as the product of kDecomp and the LSON stock. The N_min-
eralization_recalcitrant flux was represented as the product of KDecomp, 
the RSON stock, and kRecalDecompFactor, as described above. 

The plant-available N stock was modeled as:  

dPlant-available_N/dt = (inorg_N_input) + (N_mineralization_labile) +
(N_mineralization_recalcitrant) – (gaseous_N_loss) – (N_leachate) – 
(Plant_N_uptake)                                                                                  

Inorg_N_input was a time-series input representing the addition of 
synthetic N fertilizer, which occurred as 5 inputs separated by 2-week 
intervals in each growing season in the Synthetic Fertilizer, Manure P, 
and Municipal P experimental soil input treatments. Gaseous_N_loss was 
simulated as a constant fraction of the plant-available N stock, kNgas-
loss, fit by manual calibration and set at 0.017 d − 1. N_leachate was 
calculated as the product of the water leachate flux and the leachate N 
concentration. Leachate N concentration was represented as Plant- 
available N / soil moisture. Plant_N_uptake was represented as crop_-
growth_C / crop_C:N. The plant-N stock was modeled as:  

dPlant_N/dt = (planting_N_input) + (Plant_N_uptake) – (harvest_N)            

Planting_N_input was represented as planting_C_input / crop_C:N. 
Harvest_N was represented as harvest_C / crop_C:N. 

2.8. Phosphorus submodel 

The P submodel had four stocks, labile soil organic P (LSOP), recal-
citrant soil organic P (RSOP), plant-available P, and Plant P. 

The two SOP stocks were modeled as:  

dLSOP/dt = (compost_P_input_Labile) + (Crop_P_to_soil_Labile) – 
(P_mineralization_Labile)                                                                       

and  

dRSOP/dt = (compost_P_input_Recalcitrant) + (Crop_P_to_soil_Recalci-
trant) – (P_mineralization_Recalcitrant).                                                    

Complete model equations are available in Appendix 2. An interac-
tive version of this model is available at https://exchange.iseesystems. 
com/public/gaston-small/urban-garden-mass-balance-model/index. 
html. 

Time series input data are available in Appendix 3. Meteorological 
input data from 27 May 2017–26 May 2021 was taken from direct 
measurements at the research garden, with the exception of two gaps: 
28–28 June 2018 (3 days), and 4 June-11 July 2019 (38 days). For those 
dates, meteorological parameter values were taken from the MSP airport 
(Minnesota DNR (2003)). For model days from 27 May 2021–26 May 
2025, meteorological data was taken from the same date four years 
earlier. For model days after 26 May 2025, meteorological data was 
taken from the same date eight years before. 
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2.9. Tracer N and P simulation 

We simulated the fate of compost-bound N and P added to the garden 
in year 1, over the 10-year simulation period, as if this material were an 
isotopically labeled tracer. We created a parallel stock-and-flow model 
for the tracer N and P. Flows in the tracer models were based on the 
turnover rate of the actual N and P models, so that the fraction of a stock 
moving through a given flow in the N or P submodel in a given timestep 
was equivalent to the fraction of N or P tracer moving from that same 
stock through that flow. The tracer submodel was initialized with 100 
units of N and P that were divided among labile and recalcitrant soil 
organic compartments according to the “compost%labile” parameter. 
All other stocks were initially set to 0, so that the tracer submodel tracks 
the fate of this initial pool of organic N and P . 

2.10. Model parameterization, verification and sensitivity analysis 

The model was parameterized by manually adjusting parameters 
within reasonable ranges, fitting observed data for each of the six 
experimental soil input treatments to model output for the A subplots for 
four growing seasons (2017–2020). Model output was compared to 
empirical measurements for the following variables: soil moisture, cu-
mulative leachate volume, soil CO2 flux, harvested biomass (in terms of 
C), soil% organic matter (loss-on-ignition method), plant-available N 
(NO3-N  + NH4-N-), plant-available P (Bray P), cumulative leachate N 
(NO3-N- + NH4-N-) flux, and cumulative leachate P (PO4-P) flux. Model 
parameters were adjusted iteratively until model output values followed 
temporal dynamics of observed values and magnitudes of all model 
output values were as close as possible (at least within an order of 
magnitude) of observed values. Comparisons of model output to 
empirical values are shown in Appendix 4. 

We used three independent datasets from B subplots (which used a 
different crop rotation, with beans grown in 2017, collards in 2018, 
carrots in 2019, and peppers in 2020) for model verification. Compost 
input values and crop parameters for the model were updated accord-
ingly, and we compared observed values with model output for har-
vested biomass C, cumulative N leachate, and cumulative P leachate to 
assess model performance. Model verification results are shown in Ap-
pendix 5. Model fit was assessed by comparing magnitude and temporal 
dynamics of model output and observed values, comparing relative 
difference across experimental treatments, and evaluating the corre-
spondence between model output and observed values using Model II 
regression using the ‘lmodel2’ package in R. 

A sensitivity analysis was conducted following the procedure out-
lined in Jørgensen and Bendoricchio (2001), in which 18 model pa-
rameters were adjusted to either 50% lower, 10% lower, 10% greater, or 
50% greater than original values, and the model was run for the 10 year 
simulation period. The relative change in eight different cumulative 
model output variables (evapotranspiration, leachate volume, harvest C, 
CO2 flux, N use efficiency, N leachate, P use efficiency, P leachate) was 
calculated. Results of the sensitivity analysis are shown in Appendix 6. 

2.11. 10-year simulations 

We used the model to simulate the long-term (10-year) dynamics of 
applying labile manure-based compost or recalcitrant municipal 
compost, at either low, medium, or high levels. These input rates are 
based on documented compost input rates for gardeners in the 
Minneapolis-St. Paul metropolitan area, reported by Small et al. 
(2019a), with low input rates corresponding to 25th percentile, medium 
input rates corresponding to median, and high input corresponding to 
75th percentile. We also include a simulation of no soil amendments 
over 10 years. We report cumulative mass balance of N, P, and C for each 
of these seven scenarios. We also simulate concentrations of 
plant-available N and P over time, and we use the tracer submodel to 
track the fate of N and P from compost added at the start of the 

experiment. 

3. Results 

3.1. Model calibration and verification 

The model was generally successful in approximating observed 
values, representing differences among treatments, and seasonal and 
interannual trends for most variables (Appendix 4) while adhering to the 
constraints of mass balance for four different currencies. As previously 
reported (Chapman et al., 2022), modeled values for soil moisture 
(Appendix 4.1) and leachate volume (Appendix 4.2) tracked observed 
data for the various treatments across most years. Modeled soil respi-
ration values reflected observations of higher rates from the labile 
manure compost early in the growing season, with modeled estimates 
within 1 g C/m2/d of most observations (Appendix 4.3). Modeled crop 
yields represented the lower values typically observed in the no fertilizer 
treatment, and most modeled values are within 100 g/m2/y of observed 
values (Appendix 4.4). The model captured interannual trends in soil 
organic matter across most treatments, including the decline in soil OM 
in the no fertilizer treatment and buildup in the high input municipal 
compost treatment (Appendix 4.5). Plant-available N (NO3 + NH4) 
showed seasonal spikes and declines that were represented in model 
output, although the magnitude of observed peaks often exceeded model 
predictions (Appendix 4.6). The model tracked observed values for 
plant-available P closely for some treatments (low input municipal 
compost, high input manure compost), while underpredicting values for 
high-input municipal compost and overpredicting values for no fertil-
izer, synthetic, and low-input manure treatments (Appendix 4.7). 
Modeled seasonal cumulative N leachate fluxes tracked observed values 
closely for 2017 and 2018, while underpredicting values for the 
following two years (Appendix 4.8). Modeled seasonal cumulative P 
leachate fluxes track observed values closely for some treatment-year 
combinations (e.g., 2017 synthetic, 2019 high-input manure, 2020 
no-fertilizer, 2020 low-input manure, 2020 synthetic) while over-
predicting some (e.g., 2018 and 2019 values for no fertilizer, synthetic, 
low-input municipal, and low-input manure treatments) and under-
predicting others (2020 values for low-input municipal and high-input 
manure N). Modeled P leachate showed less among-treatment varia-
tion compared to observed values, but did reflect the relative differences 
among compost treatments, showing higher P leachate from the 
high-input labile manure compost compared to other organic amend-
ments (Appendix 4.7). 

In the independent verification dataset, the model correctly pre-
dicted lower crop harvest values in the no fertilizer treatment compared 
to other treatments. Model predictions for crop yields were somewhat 
lower compared to observed values for beans, collards, and peppers, but 
model predictions exceeded observed values for carrots. For years 1–4, 
cumulative harvest biomass ranged from 75 to 86% of observed values 
(Appendix 5.1). The model closely predicted leachate N fluxes for years 
1 and 2, but under-represented N fluxes in years 3 and 4. Model pre-
dictions of cumulative N leachate fluxes from the first four growing 
seasons ranged from 2 to 67% lower compared to observed values 
(Appendix 5.2). Modeled leachate P fluxes tracked observed values in 
seasonal accumulation curves for five of the six experimental treat-
ments. Modeled cumulative P leachate across the first for four growing 
seasons ranged from 54% lower to 57% greater than observed values for 
the four compost input treatments and the no fertilizer treatment. 
However, model predictions for P leachate loss from the synthetic fer-
tilizer treatment was five-fold greater than observed values (Appendix 
5.3). 

3.2. Results of sensitivity analysis 

We examined the sensitivity of eight response variables across the 
different submodels to changes in parameter values (Appendix 6). 
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Cumulative ET was sensitive to field capacity, with a 50% decrease in 
field capacity resulting in a 92% decrease in ET. Cumulative ET was also 
sensitive to large changes in ks, which describes the relationship be-
tween soil moisture and ET. These same two parameters also control 
cumulative leachate: a 10% decrease in field capacity leads to a 40% 
increase in cumulative leachate, and a 10% decrease in ks results in an 
11% increase in cumulative leachate. Cumulative harvest C shows 
sensitivity to 12 of the parameters tested across five of the different 
submodels, illustrating the interconnections among model currencies. 
This term showed highest sensitivity to field capacity, kLight, and 
kTempDecomp. Cumulative CO2 flux showed highest sensitivity to field 
capacity, all three of the decomposition rate submodel parameters (with 
highest sensitivity to kTempDecomp), as well as kRecalDecompFactor. 
Cumulative NUE and Cumulative N leachate responded to all of the 
parameters with the exception of the Phosphorus Submodel. These 
metrics showed largest responses to field capacity and ks (Hydrology 
Submodel), kLight (Plant Growth Submodel), and kTempDecomp 
(Decomposition Rate Submodel). Similarly, cumulative PUE was most 
sensitive to field capacity (Hydrology Submodel), kLight (Plant Growth 
Submodel), and kTempDecomp (Decomposition Rate Submodel). Cu-
mulative P leachate was highly sensitive to field capacity and ks (Hy-
drology Submodel) and kPleachate (Phosphorus submodel), and showed 
small effects of nearly every other parameter, reflecting the many in-
direct connections throughout the model. 

3.3. Results of 10-year input simulations 

Plant-available N showed a characteristic seasonal buildup and 
drawdown (Fig. 1), peaking in late summer, approximately 100 days 
following annual compost application. The no-input scenario had the 
lowest levels of plant-available N, typically below 10 PPM. Low inputs of 
either municipal or manure compost generally reached 20 PPM, and 
higher compost inputs led to concentrations of plant-available N that 
were an order of magnitude higher (Fig. 2). 

Plant-available P showed little to no seasonal signal, but medium and 
high inputs of compost resulted in steady long-term increases. For the 
no-input scenario, plant-available P concentration decreased from an 
initial value of 71 PPM to 48 PPM after ten years (Fig. 3). Low inputs of 
compost resulted in plant-available P stabilizing around 75 PPM (for 

manure compost) to 90 PPM (municipal compost), while medium input 
levels resulted in sustained increases leading to concentrations around 
160 PPM (manure compost) to 230 PPM (municipal compost) after a 
decade of inputs. High input rates led to steep increases in plant- 
available P, exceeding concentrations of 800 PPM (Fig. 3). 

Over the 10-year simulation, N input ranged from 0 g N/m2 in the no- 
input scenario, to 5500 g N/m2 in the high-input scenarios (Table 1). For 
the no-input scenario, total N recovery was 121 g N/m2, while leachate 
N loss totaled 19 g N/m2. For the recalcitrant municipal compost, N 
recovery ranged from 157 g N/m2 in the low-input scenario to 167 g N/ 
m2 in the high-input scenario, resulting in N use efficiency values of 40% 
(low input), 11% (medium input), and 3% (high input). Leachate N loss 
ranged from 19 g N/m2 in the low-input scenario to 78 g N/m2 in the 
high-input scenario. For labile manure compost, N recovery ranged from 
164 g N/m2 in the low-input scenario to 167 g N/m2 in the high-input 
scenario, with N-use efficiencies ranging from 3 to 41%. Leachate N 
loss ranged from 48 g N/m2 in the low-input scenario to 201 g N/m2 in 
the high-input scenario (Table 1). 

In the no-input scenario, over the 10 year simulation, 24 g P/m2 were 
recovered as harvested crops, and 6 g P/m2 were exported as leachate. 
With the addition of recalcitrant municipal compost, P inputs ranged 
from 56 to 764 g P/m2, and P recovery ranged from 32 to 34 g P/m2, 
resulting in P use efficiency values ranging from 4 to 57%. Leachate P 
loss ranged from 11 to 128 g P/m2. With the addition of labile manure 
compost, P inputs ranged from 69 to 948 g P/m2, and P recovery was 
33–34 g P/m2, resulting in P use efficiency values ranging from 4 to 
48%. Leachate P loss values were approximately twice as high compared 
to the same input levels of recalcitrant municipal compost, ranging from 
23 to 221 g P/m2 (Table 1). 

Carbon inputs ranged from 6200 to 85,800 g C/m2 (recalcitrant 
municipal compost) and 12,200–167,800 g C/m2 (labile manure 
compost) over ten years. Microbial respiration accounted for the fate of 
between one-third and two-thirds of organic carbon inputs, generating 
3700–27,500 g C/m2 (recalcitrant municipal compost) and 800–87,500 
g C/m2 (labile manure compost) as CO2 emissions over ten years 
(Table 1). Carbon uptake by crop was significantly lower than CO2 
emissions from soil respiration, averaging 2400 g C/m2 over 10 years. 

Fig. 2. Plant-available N (PPM) for the seven scenarios across the ten-year simulation period.  
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3.4. Results of N and P tracer simulation 

Of the N in soil organic matter at the start of the experiment, a 
maximum of 33% was recovered in harvested biomass in the no-input 
treatment, with minimum values of 5–6% in the high compost input 
treatments (Fig. 4). Most of this recovery occurred during the first three 
growing seasons. Cumulative leachate losses ranged from 3% (municipal 
compost–low input) to 9% (manure compost–medium input), with 
nearly all of losses occurring during the first three years (Fig. 5). The no- 
input treatment lost a larger fraction of initial soil organic N (5%) than 
did any of the municipal compost treatments. 

Crops recovered between 8% (high input manure compost) to 33% 
(no-input) of the initial P in soil organic matter, with this cumulative 
amount increasing steadily over the ten-year simulation (Fig. 6). For 
low, medium, and high input rates of municipal compost, <1% of the 
initial organic P was exported as leachate, compared to 8% in the no- 
input treatment. Manure compost yielded larger relative export as 
leachate, with 39% of this pool lost as leachate over a decade in the high- 
input manure compost treatment. Losses continued at a fairly steady rate 
over the simulated ten-year period (Fig. 7). 

4. Discussion 

4.1. Evaluation of model performance 

While numerous other models of soil organic matter and biogeo-
chemistry have been developed for grassland and conventional agri-
cultural systems (e.g., Campbell and Paustian 2015, Berardi et al., 
2020), our model focuses on the dynamics of small scale urban vegetable 
gardens with specific focus on compost inputs, using 5+ years of 
empirical data. We note that similar datasets are now being collected in 
other urban gardens in different parts of the world (e.g., Sieczko et al., 
2022), which will allow for further verification and improvement of this 
model, and in turn, the model can facilitate cross-site comparisons. The 
one-day time step in this model differs from the monthly time step in 
many other soil models (Campbell and Paustian 2015), providing tem-
poral resolution needed to simulate individual rain events. The model is 
of moderate complexity, potentially allowing for use by a variety of 
stakeholders across different outdoor urban agriculture systems. 

The model was generally able to represent the coupled dynamics of 
water, carbon, nitrogen, and phosphorus, in urban garden 

Fig. 3. Plant-available P (PPM) for the seven scenarios across the ten-year simulation period.  

Table 1 
Compost characteristics and mass balance for nitrogen, phosphorus, and carbon over the 10-year simulation.  

Compost type none municipal municipal municipal manure manure manure 
Input level none low medium high low medium high 

Compost C:N – 15.6 15.6 15.6 30.5 30.5 30.5 
Compost N:P – 7.2 7.2 7.2 5.8 5.8 5.8 
Compost% labile – 25 25 25 50 50 50 
N input (g/m2/10y) 0 400 1400 5500 400 1400 5500 
Harvest N (g/m2/10y) 121 158 166 167 164 167 167 
N leachate (g/m2/10y) 19 33 78 154 48 120 201 
N-use efficiency (%)  40 11 3 41 12 3 
P input (g/m2/10y) 0 56 194 764 69 241 948 
Harvest P (g/m2/10y) 24 32 34 34 33 34 34 
P leachate (g/m2/10y) 6 11 38 128 23 92 221 
P-use efficiency (%)  57 17 4 48 14 4 
C input (g/m2/10y) 0 6200 21,800 85,800 12,200 42,700 167,800 
CO2 flux (g/m2/10y) 2000 3700 8200 27,500 8000 23,200 87,500 
Harvest C (g/m2/10y) 1800 2300 2400 2500 2400 2500 2500  
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agroecosystems. Although we have an extensive amount of empirical 
data from six years of measurements (Small & Shrestha 2023), this 
ecosystem model synthesizes these data and allows for additional in-
sights into system behavior, by examining additional input scenarios, 
examining longer-term trajectories, and following the fate of initial in-
puts to the system. 

While it overrepresented the accumulation and leachate flux of P 
from the synthetic fertilizer treatment, the model was closer to observed 
values for the four compost amendment treatments. Moreover, there are 
several reasons why observed values are imperfect comparisons. Sto-
chastic factors such as insect herbivory affected observed crop yields in 

ways that were not represented in the model. The model assumes ho-
mogeneity of fluxes over the 1m2 area, and of stocks between soil depths 
of 0–30 cm, but spatial heterogeneity certainly influences observed 
readings. The 128 lysimeters collected leachate from just over 1% of 
garden area, so any pooling of water or other non-uniform flows would 
bias the observed leachate data. Extrapolation is also a potential source 
of error for soil respiration, as here we are using fluxes measured from 
short-term (3 min) observations to estimate daily rates needed for the 
model’s 1 day dt. Biweekly samples collected for soil nutrients and 
organic matter represented the top 10 cm of the soil column, and soil 
moisture is also measured at 10 cm, whereas the model represents the 

Fig. 4. Percent of N in soil organic matter at beginning of experiment that is ultimately removed as harvested biomass.  

Fig. 5. Percent of N in soil organic matter at beginning of experiment that is ultimately exported as leachate.  
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top 30 cm, so any differences in chemistry of deeper soil layers would be 
perceived as error. Empirical data are lacking for some other potentially 
important fluxes (e.g., dissolved organic C, N, and P in leachate; gaseous 
N losses). Nevertheless, the model typically captured temporal trends 
and differences among treatments, representing observed values within 
a factor of two in most cases. 

4.2. Coupled dynamics of model currencies 

While the research questions underlying this study focus on the fate 
of P, the dynamics of this element are dependent upon the fate of the 

other model currencies. The previously published hydrology submodel 
(Chapman et al., 2022) illustrates how soil organic matter levels affect 
the capacity for water retention in the soil, and ultimately controls the 
fraction of water exported via evapotranspiration vs. leachate. Here, we 
show more fully the interconnections among these sub-models, as 
illustrated by the sensitivity analysis showing how the fate of P is 
affected by parameter values across all submodels, and particularly 
strongly controlled by hydrologic parameters (Appendix 6.2). Soil 
moisture is an important control on both organic matter decomposition 
and crop growth, affecting the supply and demand, respectively, of 
plant-available N and P. Compost inputs and plant root exudates 

Fig. 6. Percent of P in soil organic matter at beginning of experiment that is ultimately removed as harvested biomass.  

Fig. 7. Percent of P in soil organic matter at beginning of experiment that is ultimately exported as leachate.  
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contribute organic matter to soils, while microbial decomposition con-
sumes organic carbon and makes N and P available for plants. Because N 
is the limiting nutrient for crop growth, N-availability in turn affects 
plant biomass and plant uptake of P. Plants are effectively "competing" 
with leachate for the pool of plant-available N and P, and the magnitude 
of plant uptake and leachate can be similar in high-input scenarios, as 
our empirical data have previously shown (Small et al., 2018). The 
timing and frequency of intense rain events is therefore an important 
control on nutrient export via leachate, and it is notable that climate 
scenarios predict increases in rainfall during spring and fall (Easterling 
et al., 2017) and an increase in magnitude of extreme precipitation 
events (Hayhoe et al., 2010). 

4.3. Effects of management decisions on nutrient recycling and loss 

Management decisions made by gardeners—especially input rates of 
nutrients as compost or inorganic fertilizer–are the most important 
driver of nutrient dynamics. Many urban gardeners apply high levels of 
compost year after year, adding P at levels far higher than crops can use 
(Small et al., 2019a). Because P is relatively immobile, much of this 
excess is stored in the soil, but eventually the capacity of garden soil to 
hold additional P becomes diminished, as has been seen in a 150-year 
empirical study of manure amendments to farm plots in the United 
Kingdom (Heckrath et al., 1995). Not only does the mass of N and P 
applied affect storage and export, but the lability of these inputs is also 
an important control on the fate of these nutrients. The addition of nu-
trients in recalcitrant municipal compost results in a slower release of 
nutrients to the plant-available pool, resulting in lower losses to leachate 
and a higher fraction of nutrients ultimately recovered by crops. 

The slow release of organic P in this garden ecosystem coupled with 
the capacity of soil to retain this excess P results in a long potential time 
lag that decouples relationships between inputs and outputs. Model 
results show that, at realistic compost input levels (50th and 75th 
percentile application rates from Small et al., 2019a), plant-available P 
accumulates in the soil faster than it can be taken up by crops. This 
model output corresponds with the empirical relationship between 
garden age and soil P documented in Small et al. (2019a). Previous 
empirical studies have found that there is little or no relationship be-
tween compost P inputs and soil P leachate at short timescales (van de 
Vlasakker et al. 2022) and that the dominant short-term fate of excess 
compost-derived P is soil storage rather than leachate export (Shrestha 
et al., 2020). The model output from the simulated tracer study provides 
insight into the longer-term fate of this P. Compost-derived P still con-
tributes to crop uptake and leachate a decade after the compost was 
originally added to the garden (Fig. 6, Fig. 7), and generates nearly as 
much leachate between years 6–10 as it does in the first five years. By 
contrast, compost-derived N is mostly taken up by crops or exported via 
leachate within three years of compost addition (Fig. 4, Fig. 5). Ulti-
mately, this “legacy P” (sensu Sharpley et al., 2013) exceeds capacity for 
soil retention, and P lost through runoff may be an important contrib-
utor to eutrophication in freshwater ecosystems. A previous spatial 
model (Small et al., 2023) showed that compost applied to vegetable 
gardens across an urban landscape may account for a large fraction of 
total urban P runoff, but the results of this model, which assumes 
steady-state dynamics, were highly sensitive to soil P retention, which is 
a dynamic property. The results of the current model simulations pro-
vide new insight into the temporal dynamics that ultimately determines 
what fraction of P applied as compost is recycled into crops, stored 
indefinitely, or exported as leachate or runoff. 

While the application of compost to gardens is considered to be 
generally considered to be a beneficial reuse of nutrients bound in 
organic waste, the model results illustrate that a small fraction of 
compost-derived N and P are ultimately recovered by crops. Between 
5–25% of N is recovered by crops within a decade (Fig. 3), and 8–30% of 
P is ultimately recycled (Fig. 5). Higher compost inputs invariably result 
in lower recovery efficiency, and at high compost inputs, a larger mass of 

N and P are ultimately lost as leachate (Fig. 5, Fig. 7) than are recovered 
by crops (Fig. 4, Fig. 6). These results underscore tradeoffs among po-
tential ecosystem services that may be desired for urban gardens such as 
serving as a sink for recycled nutrients, maximizing crop yield, and 
improving water quality through infiltration. Such tradeoffs are not 
inevitable, however: our previous empirical results (Shrestha et al., 
2020), as well as the results of this model, show that targeting compost 
application rates to crop nutrient demand maintains high crop yields 
while resulting in relatively high nutrient use efficiency and low nutrient 
leachate export. Our intention is that this model can help inform 
stakeholder decisions in optimizing desired ecosystem services from 
urban agriculture. 

Irrigation is another garden management decision that can have 
important implications for the fate of P within the garden agro-
ecosystem. Because some urban gardeners have limited or no access to 
municipal water (Wortman and Taylor Lovell 2013), it is likely that 
there is a wide range of irrigation practices. We previously showed that 
evapotranspiration is the dominant fate of water inputs from irrigation 
(Chapman et al., 2022), but even if evapotranspiration is not contrib-
uting directly to leachate, keeping soil moisture at higher levels likely 
reduces capacity for water retention from a significant rain event, ulti-
mately leading to higher leachate fluxes of water and associated nutri-
ents. Higher soil moisture levels also increase rates of organic matter 
decomposition and crop growth, ultimately increasing rates of many of 
the flows in the garden agroecosystem. 

Our model also allows us to explore the potential contribution of 
urban gardens as C sinks, potentially offsetting some of the high C 
emissions from combustion of fossil-fuel in cities. The model results 
illustrate some of the nuance in C offset calculations, as results depend 
on which fluxes are considered. While high compost inputs does lead to 
accumulation of organic C, about half of this total is ultimately respired, 
contributing CO2 back to the atmosphere. Crop growth is a sink for C, 
but plant CO2 uptake removes only around one-tenth of the mass of C 
respired by soil microbes, and much of the C in harvested crops will 
ultimate be consumed and respired by humans. Over ten years, a garden 
receiving high compost inputs could accumulate (after accounting for 
respiration losses) approximately 40 kg C/m2 (147 kg CO2/m2). By 
comparison, the net C sequestration of a single urban tree is 300–2500 
kg CO2/10y (Pataki et al., 2006), so on an areal basis, high-input gardens 
may have 5–50% of the C sequestration potential of an urban tree. 
However, C mitigation by urban greenspace remains much smaller in 
magnitude compared to anthropogenic emissions (Strohbach et al., 
2012) 

5. Conclusions 

Whether composting coupled with urban agriculture can be scaled to 
recycle a significant amount of nutrients from organic waste back into 
the human food system depends on the stoichiometric balance between 
limiting and non-limiting nutrients, and the dynamic conditions in 
garden soil that control whether these nutrients are stored, taken up by 
crops, or lost to the environment. This model is an attempt to better 
understand these dynamics, through simulating the coupled biogeo-
chemical cycling of C, N, P, and water in an urban agroecosystem. While 
experimental data have indicated that high input compost addition to 
urban gardens results in a long-term build-up and export of P, the 
temporal dynamics of this process has been obscured in empirical 
snapshots. The amount of P leaching from garden soils into urban water 
flow paths ultimately depends on the capacity of soil to retain excess P, 
which is a dynamic process. This model provides insight into the phys-
ical, chemical, and biological factors that control this process, and 
provides a tool to predict how compost input rates may control the 
fraction of nutrients recycled vs. exported at decadal timescales. These 
findings underscore the need for consideration of mass balance con-
straints in expanding urban organics waste recycling programs. 
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