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ARTICLE INFO ABSTRACT

Keywords: The application of compost to urban vegetable gardens presents an opportunity to recycle nutrients from the
Compost urban waste stream back into the human food system. However, many gardeners apply phosphorus (P) in the
Model form of compost at a rate that far exceeds what crops can take up. The fate of this P—whether stored in soil,
ﬁig;c:)egzt:ystem taken up by plants, or exported through leachate, depends on the dynamics of water, carbon (C), and nitrogen
Carbon (N) in this agroecosystem. We developed a model representing these four currencies (C, N, P, water) in urban
Phosphorus garden soils, that was parameterized and validated using data from four years of data from an experiment in

which high or low amounts of labile manure-based compost, or recalcitrant municipal compost, are added to
garden plots annually. We used the model to simulate the effects of longer-term (10-year) additions of labile or
recalcitrant compost at low, medium, or high levels (based on previously reported survey data for Minneapolis-
Saint Paul, Minnesota), tracking the fate of added N and P, as well as calculating net C sequestration. The fraction
of compost nutrients recovered over 10 years ranged from 3 to 47% (N) and 4-67% (P) with higher efficiencies
associated with lower input rates and for recalcitrant compost. Approximately half of added C was ultimately
respired by soil microbes, while C sequestration from crop growth was much lower than soil respiration. This
model provides a tool for understanding how management decisions and climate control nutrient recycling and

loss via leachate from compost application in urban agroecosystems.

1. Introduction
1.1. Nutrient recycling and loss from compost in urban agriculture

Cities are characterized as open systems, requiring importation of
food and other resources, and producing wastes that end up in dis-
charged wastewater, landfills, or in air, water, or soil pollution (Rees and
Wackernagel 1994). Urban sustainability ultimately requires the crea-
tion of circular economies in which waste products are converted into
new resources (Childers et al., 2011; Burger et al., 2012). Many
metropolitan areas are expanding composting to keep organics waste
out of landfills while producing a useful end-product that is used in
gardening and landscaping as a soil amendment. Food production in
many cities has also increased in recent decades, and urban farms and
vegetable gardens present an opportunity to recycle nutrients from food
waste back into the human food system through compost application
(Metson and Bennett 2015).

While compost application in urban gardens creates the potential for
nutrient recycling, it also creates the potential for nutrient loss to the

environment, if only a fraction of nutrients applied to soil are recovered
by crops. Many composts have high nitrogen (N) to phosphorus (P) ra-
tios relative to crop requirements, such that applying compost to fulfill
crop N requirements can result in overapplication of P by 5-fold or more
(Kleinman et al., 2007, 2011). Moreover, many urban gardeners and
farmers apply compost at much higher levels because of perceived
environmental benefits and lack of economic and regulatory disincen-
tives. The few available published nutrient budgets from urban agri-
culture systems indicate that compost applications result in N and
especially P input rates that far exceed crop requirements (e.g., Smith
2001, Cofie et al., 2003, Graefe et al., 2008, Metson and Bennet 2015,
Wielemaker et al., 2019). Our previous work in Minneapolis-Saint Paul,
Minnesota, documented high compost application rates and low
nutrient use efficiencies in urban gardens (median values of 2.5% for P,
5.0% for N) (Small et al., 2019a), with garden soils having levels of
plant-available P far higher than recommended levels that increased
with garden age (Small et al., 2019a), indicating buildup over time. Even
though urban farms and gardens make up a small fraction (typically
<1%) of urban land area, compost inputs into this small area may
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constitute one of the largest inputs of P onto the urban landscape (Small
etal., 2019a). If retention of excess P in the soil is low, compost inputs to
urban gardens can lead to high rates of P export urban watersheds as
leachate and stormwater runoff (Small et al., 2023), potentially
contributing to eutrophication of downstream water bodies.

Published values indicate a wide range of nutrient loss rates that are
not always correlated with inputs at annual timescales (van de Vlasakker
et al. 2022), suggesting complex controls on longer-term nutrient dy-
namics that are influenced by interactions among physical (e.g., soil
characteristics, water inputs) and biological factors (e.g., microbial
mineralization of compost, crop uptake of nutrients). A multi-currency
ecosystem model is needed to better understand these interactions and
to allow for simulations of sufficient temporal duration to evaluate
long-term fate of compost-bound P. Understanding these controls on
recycling, retention, and export of compost-derived nutrients is essential
in order for compost-based urban agriculture to maximize ecosystem
services while minimizing environmental consequences.

1.2. Factors controlling the fate of compost-derived nutrients

The source of compost is likely to be an important determinant of the
fate of compost-derived nutrients. Compost made from yard waste and
other municipal organic sources is commonly used in urban agriculture,
as is compost made from animal manure (Wielemaker et al., 2019).
Manure-based composts have been associated with high leaching rates
of N and P (Graefe et al., 2008), likely due to high input rates combined
with the lability of this material (Chu et al., 2007; Chang et al., 2010;
Sandhu et al., 2019). Highly labile manure compost can result in rapid
mineralization and loss of nutrients, whereas slower decomposing
compost can lead to higher nutrient immobilization in soil microbial
biomass (Aoyama and Nozawa 2012).

Compost-bound nutrients are mineralized by microbial activity rates
which depend on compost carbon quality (Luu et al., 2022) and envi-
ronmental conditions including soil moisture and temperature (Cam-
bardella et al., 2003; Yuste et al., 2007). Soil moisture, in turn, is
influenced by water inputs from precipitation or irrigation, and loss
from evapotranspiration or leachate. Soil water-holding capacity con-
trols rates of evapotranspiration and leachate and is weakly related to
soil organic matter content (Minasny and McBratney, 2017).

Plant-available N and P are taken up by crop roots based on crop
growth rate and nutrient demand, and environmental conditions such as
soil moisture (Chtouki et al., 2022). Nitrogen loss from agricultural soils
occurs via leachate (Di and Cameron 2002) and from volatilization of
ammonia (Xing and Zhu 2000). While P binds more tightly to soil
minerals compared to N, loss of dissolved P does occur through leachate
(Turner and Haygarth 2000).

Notably, in this agroecological system, the fates of water (soil
moisture), organic carbon, nitrogen, and phosphorus are inter-
connected. Soil moisture depends on soil organic carbon and rates of
transpiration by crops. Soil organic carbon depends on microbial
mineralization rates influenced by soil moisture and nutrient availabil-
ity. Soil N and P concentrations depend on rates of microbial minerali-
zation of compost, uptake by crops, and export via leachate. Crop
growth depends on availability of soil moisture, and N availability,
among other factors. In order to understand recycling and retention of P
applied as compost to urban gardens, it is therefore necessary to also
understand the dynamics of water, carbon, and nitrogen.

1.3. Results from empirical measurements of compost-derived nutrients in
an urban garden

In replicated raised bed garden plots, we found that high compost
inputs can result in high losses of P via leachate flux (Small et al., 2018),
and that native soils below garden plots showed P accumulation (Small
et al., 2019b) resulting from mobilized P. However, we also found that
compost applications targeted towards crop nutrient demand can
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maintain crop yields while minimizing nutrient loss from leachate
(Shrestha et al., 2020). Plots receiving labile manure compost had
higher leachate P losses compared to plots receiving inputs of more
recalcitrant municipal compost, and a lower buildup of plant-available P
in soils as a result of these losses (Shrestha et al., 2020). Results from
these experiments also show that urban gardens have high evapotrans-
piration rates relative to lawns (Small et al., 2020) and that compost
application rates can be an important control on the storage and fate of
water in gardens (Chapman et al., 2022).

The annual nutrient use efficiency (mass of nutrients recovered in
crops / mass of nutrients added as compost) calculations from empirical
measurements (Small et al., 2018; Shrestha et al., 2020) and gardener
surveys (Small et al., 2019a) that we have previously reported provide a
coarse but useful indicator of nutrient recycling; this metric is an overly
simplistic representation of a dynamic system with long time lags
resulting from a potentially large, slow-turnover pool of soil nutrients.
Nutrients added as compost may be mineralized over a period of years,
where they may be stored in soil, taken up by crops, or exported through
leachate. As a result, soil nutrient availability and crop uptake in any
given year reflects the history of inputs and environmental conditions
experienced over a multi-year period. Dynamic models are needed to
better understand the coupled dynamics of organic matter decomposi-
tion, crop growth, and the retention of water and nutrients in soil, that
characterize this agroecosystem.

1.4. Objective of the current study

The goals of this study are to create a dynamic ecosystem model of
water, organic C, N and P for a small-scale urban vegetable garden; to
parameterize and validate this model using empirical data; and to use
the model to track the fate of compost-derived P over ten years at a range
of different compost input rates.

We previously developed a mass-balance hydrology model that
synthesized four years of empirical data from the experiments described
above to simulate the effect of compost amendments on water storage,
leachate, and evapotranspiration (Chapman et al., 2022). Simulations
illustrated that compost-amended garden soil has a greater capacity to
retain moisture and ultimately export relatively more water through
evapotranspiration instead of leachate. Here, we have built upon this
model to add sub-models representing the dynamics of N, P, and organic
C.

2. Materials and methods
2.1. Experimental design and empirical data collection

A multi-year experiment to measure the fate of compost-derived N
and P in urban vegetable gardens began in 2017 in the campus research
garden at the University of St. Thomas in Saint Paul, Minnesota. The
garden includes 32 replicate raised beds measuring 4 m? and 0.3 m deep.
At the start of this current study, soil was homogenized across all plots.
Each bed is divided into four subplots (1 m?) in which the following
crops were planted and rotated annually: 1) carrots; 2) bush beans; 3)
bell peppers; and 4) cabbage (2017) or collards (2018-2022). Each plot
was randomly assigned to one of six soil amendment treatments (the
four subplots within each plot received the same treatment), as
described by Shrestha et al. (2020). Soil treatments consist of: 1) a
control treatment in which no compost or fertilizer is added (no fertil-
izer); 2) synthetic fertilizer targeted to meet crop N and P demand
(synthetic); 3) a higher input rate of labile manure compost targeted to
meet crop N demand (high-input manure); 4) a lower input rate of labile
manure compost targeted to meet crop P demand, supplemented with
additional synthetic N fertilizer (low-input manure); 5) a higher input
rate of recalcitrant municipal compost targeted to meet crop N demand
(high-input municipal); and 6) a lower input rate of recalcitrant
municipal compost targeted to meet crop P demand, supplemented with
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additional synthetic N fertilizer (low-input municipal). Input rates of
compost and supplemental fertilizer are described in Appendix 1.
Response variables include harvested biomass, soil organic matter
and plant-available nutrient concentrations (NH4—N, NO3—N, Bray P),
leachate volume and dissolved nutrient concentrations (NH4—N,
NO3—N, PO4-P), soil moisture, and soil respiration. Meteorological data
are also recorded onsite. We previously published nutrient budgets from
the first two years (2017-2018) of the experiment (Shrestha et al., 2020)
and soil moisture and leachate volume from the first three years of the
study (Chapman et al., 2022). Data from the first six years of the
experiment are publicly available (Small & Shrestha 2023).

2.2. Model currency and system boundaries

We created a dynamic mass-balance model representing stocks and
flows of water, organic C, N, and P in the experimental garden plots
(Fig. 1). The system boundary was represented as one experimental
raised-bed garden subplot, with an area of 1m? and soil depth of 0.3 m
(total soil volume 300 L). The simulation was run from 27 May 2017 - 25
May 2027 (3650 days), encompassing 10 growing seasons, with a time
step of 1 day. The model was run using Stella Architect (1.5.2) using the
Euler integration method.

2.3. Hydrology submodel

The hydrology submodel, previously described in Chapman et al.
(2022), represents soil moisture (SM) as volume of water (L) within a 1
mx 1 mx 0.3 m (300 L) experimental garden plot:

dSM/dt = precipitation + supplemental irrigation - water leachate —
evapotranspiration

Daily precipitation and supplemental irrigation (mm/d, or L/m?/d)
were inputs to the model based on recorded data. Water leachate (mm/
d, or L/m?/d) was modeled based on the difference between modeled
soil moisture and soil water capacity. Soil water capacity was modeled
as a function of s0il% organic matter, based on the observed relationship
between the mean% organic matter for each soil amendment treatment
and the maximum observed soil moisture in that treatment (R>=0.57).
Water storage in excess of water capacity was assumed to be exported as
leachate.

We calculated evapotranspiration (mm/d, or L/m?/d) based on the
Penman-Monteith equation (Zotarelli et al., 2010), using mean daily
solar radiation, maximum and minimum relative humidity, maximum
and minimum temperature, and mean wind speed as inputs. The
calculated reference evapotranspiration rate (representing turfgrass)
was converted to potential crop evapotranspiration using seasonally
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varying crop coefficients ranging from 0.55 to 1.2, with maximum
values in the middle of the growing season (based on values reported in
Saher et al. 2021). Potential crop evapotranspiration was multiplied by a
correction factor, kg, that is a function of soil moisture (Zotarelli et al.,
2010), adjusting ET downward in drier soil. Between soil moisture
values of 6% and 21%, ks increases linearly from O to 1. During the
parameterization process, we adjusted calculated ET using a correction
factor of 2 to achieve a good correspondence between modeled and
observed soil moisture and cumulative leachate values.

2.4. Plant growth submodel

Crop mass-specific growth rate (kGrowth) was represented as a
function of five variables. A crop-specific maximum growth rate
(kmaxGrowth), soil moisture (measured_%_moisture), daily minimum
temperature (Tmin); daily mean solar intensity (Rs); and soil plant-
available N. For kmaxGrowth, a time series input was used to repre-
sent the annual crop rotations and values were calibrated manually to
match observed harvest values; we used values of 0.07 d~* for peppers,
0.05 d~! for beans, 0.15 d ! for collard greens, and 0.07d ~ ! for carrots.
Graphical functions were used to convert measured_%_moisture, Tmin,
Rs, and soil plant-available N into index values ranging between 0 and 1,
which were in turn multiplied by the maximum growth rate. The relative
growth rate due to temperature (kTempGrowth) was assumed to equal 1
at daily minimum temperatures above 15.5 °C, and 0 at daily minimum
temperatures below 2.0 °C. The relative growth rate due to soil moisture
was represented as ks (also used in the calculation for ET), with values of
1 for any measured soil moisture >2.5%, and 0 for measured soil
moisture <2.5%. The relative growth rate due to light (kLight) was
represented by a graphical function as 1 for values >8.5 MJ/m?/d and
0 for values <1.5 MJ/m?/d. The relative growth rate due to plant-
available N (kNgrowth) was represented by a graphical function as 1
for values >20 PPV, and O for values <1 PPM. The mass specific growth
rate of crops was represented as:

kGrowth = kmaxGrowth * kTempGrowth * ks * kLight * kNgrowth

2.5. Decomposition rate submodel

The mass-specific decomposition rate of organic matter, kDecomp,
was a variable represented as a maximum decomposition rate (kMax-
decomp), modified by functions based on daily minimum temperature
(Tmin) and soil moisture. The relative decomposition rate due to tem-
perature (kTempDecomp) was assumed to equal 1 at daily minimum
temperatures above 25 °C, and 0 at daily minimum temperatures below
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Fig. 1. Conceptual model of garden ecosystem, representing stocks and flows of water, organic carbon, nitrogen, and phosphorus.
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5 °C. The relative decomposition rate due to soil moisture (kMoistur-
eDecomp) was assumed to be equal to 1 at soil moisture values >22%,
declining to 0 at 0% moisture. The mass specific decomposition rate of
organic matter was represented as:

kDecomp = kMaxdecomp * kTempDecomp * kMoistureDecomp

2.6. Organic carbon submodel

Organic carbon was represented by three stocks: Crop Biomass Car-
bon (CBC), Labile Soil Organic Carbon (LSOC), and Recalcitrant Soil
Organic Carbon (RSOC).

CBC was modeled as:

dCBC/dt = (planting_input_C) + (crop_growth_C) - (harvest_C) -
(crop_C_to_soil)

Planting input C was represented as a small annual input (1 g C/m?)
on June 1 of each simulation year, representing the planting of seed-
lings. Crop growth C was represented as:

Crop growth C = Crop biomass C * kGrowth * (kmaxBiomass — Crop_Bio-
mass_C) / Crop_Biomass_C

where kmaxBiomass represented the maximum biomass value of a given
crop (e.g., due to shading). kmaxBiomass values were calibrated
manually and set as 115 g C/m? for peppers, 140 g C/m? for beans, 360 g
C/m? for collards, and 500 g C/m? for carrots.

The Harvest C flow simulated the removal of 95% of crop biomass on
October 15 of each simulated year. The crop C to soil flow was simulated
as a constant fraction (kexC), 0.5% of crop growth C, representing root
exudate flows, and the remaining 5% of crop biomass after harvest.

Labile soil organic carbon (LSOC) was modeled as:

dLSOC/dt = (labile_C_input) + (crop_C_to_soil_Labile) — (DOC_leacha-
te_Labile) — (labile_CO,_efflux)

Recalcitrant soil organic carbon (RSOC) was modeled as:

dRSOC/dt = (recalcitrant_C_input) + (crop_C_to_soil_Recalcitrant) —

(DOC_leachate_Recalcitrant) — (recalcitrant_CO,_efflux)

The LSOC and RSOC stocks received inputs of labile C from compost,
represented as a time-series input function with compost inputs occur-
ring on 28 May of each simulated year. The compost%labile variable
determined the amount of compost C inputs added to SOC Labile and
SOC recalcitrant stocks; manure compost was set at 50% labile, and
municipal compost was set at 25% labile. Similarly, the crop C to soil
flow was partitioned with 10% assumed to go into labile SOC and 90% to
recalcitrant SOC. Dissolved organic carbon (DOC) leachate was exported
from SOC stocks, represented as the water leachate flux multiplied by
the labile and recalcitrant DOC concentrations. Labile DOC concentra-
tion was represented as a function of the SOC Labile stock, with a
maximum value of 200 mg C/L at labile SOC stocks > 5000 g/m?
Recalcitrant DOC concentration was represented as a function of the
SOC Recalcitrant stock, with a maximum value of 10 mg C/L at recal-
citrant SOC values > 8000 g/m?. Labile CO, efflux was represented as
the product of kDecomp (from the decomposition rate submodel) and
the LSOC stock. Recalcitrant CO; efflux was represented as the product
of kDecomp, the RSOC stock, and kRecalDecompFactor, which was set
as 0.018.

2.7. Nitrogen submodel

The N submodel had four stocks: labile soil organic N (LSON),
recalcitrant soil organic N (RSON), plant-available N, and plant N. The
two SON stocks were modeled as:
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dLSON/dt = (compost_N_input_Labile) + (crop_N_to_soil_Labile) —
(N_mineralization_Labile)

and

dRSON/dt = (compost_N_input_Recalcitrant) + (crop_N_to_soil_Recalci-
trant) — (N_mineralization_recalcitrant)

The two crop N to soil fluxes were based on the crop_C_to_soil fluxes
described above, divided by the crop C:N ratio. Crop C:N was repre-
sented as a time-series function based on simulated crop rotations, with
peppers having a C:N (mass ratio) value of 14, beans 10, collards 14, and
carrots 20. Compost N input was represented as a time-series function as
described above, and partitioned into LSON and RSON stocks based on
the compost_%labile parameter. The N_mineralization_labile flux was
modeled as the product of kDecomp and the LSON stock. The N_min-
eralization_recalcitrant flux was represented as the product of KDecomp,
the RSON stock, and kRecalDecompFactor, as described above.

The plant-available N stock was modeled as:

dPlant-available_N/dt = (inorg_N_input) + (N_mineralization_labile) +
(N_mineralization_recalcitrant) — (gaseous_N_loss) — (N_leachate) —
(Plant_N_uptake)

Inorg N_input was a time-series input representing the addition of
synthetic N fertilizer, which occurred as 5 inputs separated by 2-week
intervals in each growing season in the Synthetic Fertilizer, Manure P,
and Municipal P experimental soil input treatments. Gaseous_N_loss was
simulated as a constant fraction of the plant-available N stock, kNgas-
loss, fit by manual calibration and set at 0.017 d ~ 1. N_leachate was
calculated as the product of the water leachate flux and the leachate N
concentration. Leachate N concentration was represented as Plant-
available N / soil moisture. Plant N_uptake was represented as crop_-
growth_C / crop_C:N. The plant-N stock was modeled as:

dPlant_N/dt = (planting_N_input) + (Plant_N_uptake) — (harvest_N)

Planting N_input was represented as planting C_input / crop_C:N.
Harvest_N was represented as harvest_C / crop_C:N.

2.8. Phosphorus submodel

The P submodel had four stocks, labile soil organic P (LSOP), recal-
citrant soil organic P (RSOP), plant-available P, and Plant P.
The two SOP stocks were modeled as:

dLSOP/dt = (compost_P_input_Labile) + (Crop_P_to_soil_Labile) —
(P_mineralization_Labile)

and

dRSOP/dt = (compost_P_input_Recalcitrant) 4+ (Crop_P_to_soil_Recalci-
trant) — (P_mineralization_Recalcitrant).

Complete model equations are available in Appendix 2. An interac-
tive version of this model is available at https://exchange.iseesystems.
com/public/gaston-small/urban-garden-mass-balance-model/index.
html.

Time series input data are available in Appendix 3. Meteorological
input data from 27 May 2017-26 May 2021 was taken from direct
measurements at the research garden, with the exception of two gaps:
28-28 June 2018 (3 days), and 4 June-11 July 2019 (38 days). For those
dates, meteorological parameter values were taken from the MSP airport
(Minnesota DNR (2003)). For model days from 27 May 2021-26 May
2025, meteorological data was taken from the same date four years
earlier. For model days after 26 May 2025, meteorological data was
taken from the same date eight years before.
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2.9. Tracer N and P simulation

We simulated the fate of compost-bound N and P added to the garden
in year 1, over the 10-year simulation period, as if this material were an
isotopically labeled tracer. We created a parallel stock-and-flow model
for the tracer N and P. Flows in the tracer models were based on the
turnover rate of the actual N and P models, so that the fraction of a stock
moving through a given flow in the N or P submodel in a given timestep
was equivalent to the fraction of N or P tracer moving from that same
stock through that flow. The tracer submodel was initialized with 100
units of N and P that were divided among labile and recalcitrant soil
organic compartments according to the “compost%labile” parameter.
All other stocks were initially set to 0, so that the tracer submodel tracks
the fate of this initial pool of organic N and P .

2.10. Model parameterization, verification and sensitivity analysis

The model was parameterized by manually adjusting parameters
within reasonable ranges, fitting observed data for each of the six
experimental soil input treatments to model output for the A subplots for
four growing seasons (2017-2020). Model output was compared to
empirical measurements for the following variables: soil moisture, cu-
mulative leachate volume, soil CO5 flux, harvested biomass (in terms of
C), so0il% organic matter (loss-on-ignition method), plant-available N
(NO3-N + NH4-N.), plant-available P (Bray P), cumulative leachate N
(NO3-N. + NH34-N.) flux, and cumulative leachate P (PO4-P) flux. Model
parameters were adjusted iteratively until model output values followed
temporal dynamics of observed values and magnitudes of all model
output values were as close as possible (at least within an order of
magnitude) of observed values. Comparisons of model output to
empirical values are shown in Appendix 4.

We used three independent datasets from B subplots (which used a
different crop rotation, with beans grown in 2017, collards in 2018,
carrots in 2019, and peppers in 2020) for model verification. Compost
input values and crop parameters for the model were updated accord-
ingly, and we compared observed values with model output for har-
vested biomass C, cumulative N leachate, and cumulative P leachate to
assess model performance. Model verification results are shown in Ap-
pendix 5. Model fit was assessed by comparing magnitude and temporal
dynamics of model output and observed values, comparing relative
difference across experimental treatments, and evaluating the corre-
spondence between model output and observed values using Model II
regression using the ‘lmodel2’ package in R.

A sensitivity analysis was conducted following the procedure out-
lined in Jgrgensen and Bendoricchio (2001), in which 18 model pa-
rameters were adjusted to either 50% lower, 10% lower, 10% greater, or
50% greater than original values, and the model was run for the 10 year
simulation period. The relative change in eight different cumulative
model output variables (evapotranspiration, leachate volume, harvest C,
COs, flux, N use efficiency, N leachate, P use efficiency, P leachate) was
calculated. Results of the sensitivity analysis are shown in Appendix 6.

2.11. 10-year simulations

We used the model to simulate the long-term (10-year) dynamics of
applying labile manure-based compost or recalcitrant municipal
compost, at either low, medium, or high levels. These input rates are
based on documented compost input rates for gardeners in the
Minneapolis-St. Paul metropolitan area, reported by Small et al.
(2019a), with low input rates corresponding to 25th percentile, medium
input rates corresponding to median, and high input corresponding to
75th percentile. We also include a simulation of no soil amendments
over 10 years. We report cumulative mass balance of N, P, and C for each
of these seven scenarios. We also simulate concentrations of
plant-available N and P over time, and we use the tracer submodel to
track the fate of N and P from compost added at the start of the
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experiment.
3. Results
3.1. Model calibration and verification

The model was generally successful in approximating observed
values, representing differences among treatments, and seasonal and
interannual trends for most variables (Appendix 4) while adhering to the
constraints of mass balance for four different currencies. As previously
reported (Chapman et al., 2022), modeled values for soil moisture
(Appendix 4.1) and leachate volume (Appendix 4.2) tracked observed
data for the various treatments across most years. Modeled soil respi-
ration values reflected observations of higher rates from the labile
manure compost early in the growing season, with modeled estimates
within 1 g C/m?/d of most observations (Appendix 4.3). Modeled crop
yields represented the lower values typically observed in the no fertilizer
treatment, and most modeled values are within 100 g/m?/y of observed
values (Appendix 4.4). The model captured interannual trends in soil
organic matter across most treatments, including the decline in soil OM
in the no fertilizer treatment and buildup in the high input municipal
compost treatment (Appendix 4.5). Plant-available N (NO3 + NHy)
showed seasonal spikes and declines that were represented in model
output, although the magnitude of observed peaks often exceeded model
predictions (Appendix 4.6). The model tracked observed values for
plant-available P closely for some treatments (low input municipal
compost, high input manure compost), while underpredicting values for
high-input municipal compost and overpredicting values for no fertil-
izer, synthetic, and low-input manure treatments (Appendix 4.7).
Modeled seasonal cumulative N leachate fluxes tracked observed values
closely for 2017 and 2018, while underpredicting values for the
following two years (Appendix 4.8). Modeled seasonal cumulative P
leachate fluxes track observed values closely for some treatment-year
combinations (e.g., 2017 synthetic, 2019 high-input manure, 2020
no-fertilizer, 2020 low-input manure, 2020 synthetic) while over-
predicting some (e.g., 2018 and 2019 values for no fertilizer, synthetic,
low-input municipal, and low-input manure treatments) and under-
predicting others (2020 values for low-input municipal and high-input
manure N). Modeled P leachate showed less among-treatment varia-
tion compared to observed values, but did reflect the relative differences
among compost treatments, showing higher P leachate from the
high-input labile manure compost compared to other organic amend-
ments (Appendix 4.7).

In the independent verification dataset, the model correctly pre-
dicted lower crop harvest values in the no fertilizer treatment compared
to other treatments. Model predictions for crop yields were somewhat
lower compared to observed values for beans, collards, and peppers, but
model predictions exceeded observed values for carrots. For years 1-4,
cumulative harvest biomass ranged from 75 to 86% of observed values
(Appendix 5.1). The model closely predicted leachate N fluxes for years
1 and 2, but under-represented N fluxes in years 3 and 4. Model pre-
dictions of cumulative N leachate fluxes from the first four growing
seasons ranged from 2 to 67% lower compared to observed values
(Appendix 5.2). Modeled leachate P fluxes tracked observed values in
seasonal accumulation curves for five of the six experimental treat-
ments. Modeled cumulative P leachate across the first for four growing
seasons ranged from 54% lower to 57% greater than observed values for
the four compost input treatments and the no fertilizer treatment.
However, model predictions for P leachate loss from the synthetic fer-
tilizer treatment was five-fold greater than observed values (Appendix
5.3).

3.2. Results of sensitivity analysis

We examined the sensitivity of eight response variables across the
different submodels to changes in parameter values (Appendix 6).
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Cumulative ET was sensitive to field capacity, with a 50% decrease in
field capacity resulting in a 92% decrease in ET. Cumulative ET was also
sensitive to large changes in ks, which describes the relationship be-
tween soil moisture and ET. These same two parameters also control
cumulative leachate: a 10% decrease in field capacity leads to a 40%
increase in cumulative leachate, and a 10% decrease in ks results in an
11% increase in cumulative leachate. Cumulative harvest C shows
sensitivity to 12 of the parameters tested across five of the different
submodels, illustrating the interconnections among model currencies.
This term showed highest sensitivity to field capacity, kLight, and
kTempDecomp. Cumulative CO2 flux showed highest sensitivity to field
capacity, all three of the decomposition rate submodel parameters (with
highest sensitivity to kTempDecomp), as well as kRecalDecompFactor.
Cumulative NUE and Cumulative N leachate responded to all of the
parameters with the exception of the Phosphorus Submodel. These
metrics showed largest responses to field capacity and ks (Hydrology
Submodel), kLight (Plant Growth Submodel), and kTempDecomp
(Decomposition Rate Submodel). Similarly, cumulative PUE was most
sensitive to field capacity (Hydrology Submodel), kLight (Plant Growth
Submodel), and kTempDecomp (Decomposition Rate Submodel). Cu-
mulative P leachate was highly sensitive to field capacity and ks (Hy-
drology Submodel) and kPleachate (Phosphorus submodel), and showed
small effects of nearly every other parameter, reflecting the many in-
direct connections throughout the model.

3.3. Results of 10-year input simulations

Plant-available N showed a characteristic seasonal buildup and
drawdown (Fig. 1), peaking in late summer, approximately 100 days
following annual compost application. The no-input scenario had the
lowest levels of plant-available N, typically below 10 PPM. Low inputs of
either municipal or manure compost generally reached 20 PPM, and
higher compost inputs led to concentrations of plant-available N that
were an order of magnitude higher (Fig. 2).

Plant-available P showed little to no seasonal signal, but medium and
high inputs of compost resulted in steady long-term increases. For the
no-input scenario, plant-available P concentration decreased from an
initial value of 71 PPM to 48 PPM after ten years (Fig. 3). Low inputs of
compost resulted in plant-available P stabilizing around 75 PPM (for
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manure compost) to 90 PPM (municipal compost), while medium input
levels resulted in sustained increases leading to concentrations around
160 PPM (manure compost) to 230 PPM (municipal compost) after a
decade of inputs. High input rates led to steep increases in plant-
available P, exceeding concentrations of 800 PPM (Fig. 3).

Over the 10-year simulation, N input ranged from 0 g N/m? in the no-
input scenario, to 5500 g N/m? in the high-input scenarios (Table 1). For
the no-input scenario, total N recovery was 121 g N/m?, while leachate
N loss totaled 19 g N/m?2. For the recalcitrant municipal compost, N
recovery ranged from 157 g N/m? in the low-input scenario to 167 g N/
m? in the high-input scenario, resulting in N use efficiency values of 40%
(low input), 11% (medium input), and 3% (high input). Leachate N loss
ranged from 19 g N/m? in the low-input scenario to 78 g N/m? in the
high-input scenario. For labile manure compost, N recovery ranged from
164 g N/m? in the low-input scenario to 167 g N/m? in the high-input
scenario, with N-use efficiencies ranging from 3 to 41%. Leachate N
loss ranged from 48 g N/m? in the low-input scenario to 201 g N/m? in
the high-input scenario (Table 1).

In the no-input scenario, over the 10 year simulation, 24 g P/m? were
recovered as harvested crops, and 6 g P/m? were exported as leachate.
With the addition of recalcitrant municipal compost, P inputs ranged
from 56 to 764 g P/m?, and P recovery ranged from 32 to 34 g P/m?,
resulting in P use efficiency values ranging from 4 to 57%. Leachate P
loss ranged from 11 to 128 g P/m> With the addition of labile manure
compost, P inputs ranged from 69 to 948 g P/m? and P recovery was
33-34 g P/m?, resulting in P use efficiency values ranging from 4 to
48%. Leachate P loss values were approximately twice as high compared
to the same input levels of recalcitrant municipal compost, ranging from
23t0221 g P/m? (Table 1).

Carbon inputs ranged from 6200 to 85,800 g C/m? (recalcitrant
municipal compost) and 12,200-167,800 g C/m? (labile manure
compost) over ten years. Microbial respiration accounted for the fate of
between one-third and two-thirds of organic carbon inputs, generating
3700-27,500 g C/m? (recalcitrant municipal compost) and 800-87,500
g C/m? (labile manure compost) as CO, emissions over ten years
(Table 1). Carbon uptake by crop was significantly lower than CO,
emissions from soil respiration, averaging 2400 g C/m? over 10 years.

Plant-available N
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Fig. 2. Plant-available N (PPM) for the seven scenarios across the ten-year simulation period.
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Fig. 3. Plant-available P (PPM) for the seven scenarios across the ten-year simulation period.
Table 1
Compost characteristics and mass balance for nitrogen, phosphorus, and carbon over the 10-year simulation.
Compost type none municipal municipal municipal manure manure manure
Input level none low medium high low medium high
Compost C:N - 15.6 15.6 15.6 30.5 30.5 30.5
Compost N:P - 7.2 7.2 7.2 5.8 5.8 5.8
Compost% labile - 25 25 25 50 50 50
N input (g/m>/10y) 0 400 1400 5500 400 1400 5500
Harvest N (g/m2/10y) 121 158 166 167 164 167 167
N leachate (g/m?/10y) 19 33 78 154 48 120 201
N-use efficiency (%) 40 11 3 41 12 3
P input (g/m?/10y) 0 56 194 764 69 241 948
Harvest P (g/m>/10y) 24 32 34 34 33 34 34
P leachate (g/m>/10y) 6 11 38 128 23 92 221
P-use efficiency (%) 57 17 4 48 14 4
C input (g/m2/10y) 0 6200 21,800 85,800 12,200 42,700 167,800
CO,, flux (g/m>/10y) 2000 3700 8200 27,500 8000 23,200 87,500
Harvest C (g/m2/10y) 1800 2300 2400 2500 2400 2500 2500

3.4. Results of N and P tracer simulation

Of the N in soil organic matter at the start of the experiment, a
maximum of 33% was recovered in harvested biomass in the no-input
treatment, with minimum values of 5-6% in the high compost input
treatments (Fig. 4). Most of this recovery occurred during the first three
growing seasons. Cumulative leachate losses ranged from 3% (municipal
compost-low input) to 9% (manure compost-medium input), with
nearly all of losses occurring during the first three years (Fig. 5). The no-
input treatment lost a larger fraction of initial soil organic N (5%) than
did any of the municipal compost treatments.

Crops recovered between 8% (high input manure compost) to 33%
(no-input) of the initial P in soil organic matter, with this cumulative
amount increasing steadily over the ten-year simulation (Fig. 6). For
low, medium, and high input rates of municipal compost, <1% of the
initial organic P was exported as leachate, compared to 8% in the no-
input treatment. Manure compost yielded larger relative export as
leachate, with 39% of this pool lost as leachate over a decade in the high-
input manure compost treatment. Losses continued at a fairly steady rate
over the simulated ten-year period (Fig. 7).

4. Discussion
4.1. Evaluation of model performance

While numerous other models of soil organic matter and biogeo-
chemistry have been developed for grassland and conventional agri-
cultural systems (e.g., Campbell and Paustian 2015, Berardi et al.,
2020), our model focuses on the dynamics of small scale urban vegetable
gardens with specific focus on compost inputs, using 5+ years of
empirical data. We note that similar datasets are now being collected in
other urban gardens in different parts of the world (e.g., Sieczko et al.,
2022), which will allow for further verification and improvement of this
model, and in turn, the model can facilitate cross-site comparisons. The
one-day time step in this model differs from the monthly time step in
many other soil models (Campbell and Paustian 2015), providing tem-
poral resolution needed to simulate individual rain events. The model is
of moderate complexity, potentially allowing for use by a variety of
stakeholders across different outdoor urban agriculture systems.

The model was generally able to represent the coupled dynamics of
water, carbon, nitrogen, and phosphorus, in urban garden
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Fig. 5. Percent of N in soil organic matter at beginning of experiment that is ultimately exported as leachate.

agroecosystems. Although we have an extensive amount of empirical
data from six years of measurements (Small & Shrestha 2023), this
ecosystem model synthesizes these data and allows for additional in-
sights into system behavior, by examining additional input scenarios,
examining longer-term trajectories, and following the fate of initial in-
puts to the system.

While it overrepresented the accumulation and leachate flux of P
from the synthetic fertilizer treatment, the model was closer to observed
values for the four compost amendment treatments. Moreover, there are
several reasons why observed values are imperfect comparisons. Sto-
chastic factors such as insect herbivory affected observed crop yields in

ways that were not represented in the model. The model assumes ho-
mogeneity of fluxes over the 1m? area, and of stocks between soil depths
of 0-30 cm, but spatial heterogeneity certainly influences observed
readings. The 128 lysimeters collected leachate from just over 1% of
garden area, so any pooling of water or other non-uniform flows would
bias the observed leachate data. Extrapolation is also a potential source
of error for soil respiration, as here we are using fluxes measured from
short-term (3 min) observations to estimate daily rates needed for the
model’s 1 day dt. Biweekly samples collected for soil nutrients and
organic matter represented the top 10 cm of the soil column, and soil
moisture is also measured at 10 cm, whereas the model represents the
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Fig. 7. Percent of P in soil organic matter at beginning of experiment that is ultimately exported as leachate.

top 30 cm, so any differences in chemistry of deeper soil layers would be
perceived as error. Empirical data are lacking for some other potentially
important fluxes (e.g., dissolved organic C, N, and P in leachate; gaseous
N losses). Nevertheless, the model typically captured temporal trends
and differences among treatments, representing observed values within
a factor of two in most cases.

4.2. Coupled dynamics of model currencies

While the research questions underlying this study focus on the fate
of P, the dynamics of this element are dependent upon the fate of the

other model currencies. The previously published hydrology submodel
(Chapman et al., 2022) illustrates how soil organic matter levels affect
the capacity for water retention in the soil, and ultimately controls the
fraction of water exported via evapotranspiration vs. leachate. Here, we
show more fully the interconnections among these sub-models, as
illustrated by the sensitivity analysis showing how the fate of P is
affected by parameter values across all submodels, and particularly
strongly controlled by hydrologic parameters (Appendix 6.2). Soil
moisture is an important control on both organic matter decomposition
and crop growth, affecting the supply and demand, respectively, of
plant-available N and P. Compost inputs and plant root exudates
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contribute organic matter to soils, while microbial decomposition con-
sumes organic carbon and makes N and P available for plants. Because N
is the limiting nutrient for crop growth, N-availability in turn affects
plant biomass and plant uptake of P. Plants are effectively "competing"
with leachate for the pool of plant-available N and P, and the magnitude
of plant uptake and leachate can be similar in high-input scenarios, as
our empirical data have previously shown (Small et al., 2018). The
timing and frequency of intense rain events is therefore an important
control on nutrient export via leachate, and it is notable that climate
scenarios predict increases in rainfall during spring and fall (Easterling
et al.,, 2017) and an increase in magnitude of extreme precipitation
events (Hayhoe et al., 2010).

4.3. Effects of management decisions on nutrient recycling and loss

Management decisions made by gardeners—especially input rates of
nutrients as compost or inorganic fertilizer-are the most important
driver of nutrient dynamics. Many urban gardeners apply high levels of
compost year after year, adding P at levels far higher than crops can use
(Small et al., 2019a). Because P is relatively immobile, much of this
excess is stored in the soil, but eventually the capacity of garden soil to
hold additional P becomes diminished, as has been seen in a 150-year
empirical study of manure amendments to farm plots in the United
Kingdom (Heckrath et al., 1995). Not only does the mass of N and P
applied affect storage and export, but the lability of these inputs is also
an important control on the fate of these nutrients. The addition of nu-
trients in recalcitrant municipal compost results in a slower release of
nutrients to the plant-available pool, resulting in lower losses to leachate
and a higher fraction of nutrients ultimately recovered by crops.

The slow release of organic P in this garden ecosystem coupled with
the capacity of soil to retain this excess P results in a long potential time
lag that decouples relationships between inputs and outputs. Model
results show that, at realistic compost input levels (50th and 75th
percentile application rates from Small et al., 2019a), plant-available P
accumulates in the soil faster than it can be taken up by crops. This
model output corresponds with the empirical relationship between
garden age and soil P documented in Small et al. (2019a). Previous
empirical studies have found that there is little or no relationship be-
tween compost P inputs and soil P leachate at short timescales (van de
Vlasakker et al. 2022) and that the dominant short-term fate of excess
compost-derived P is soil storage rather than leachate export (Shrestha
et al., 2020). The model output from the simulated tracer study provides
insight into the longer-term fate of this P. Compost-derived P still con-
tributes to crop uptake and leachate a decade after the compost was
originally added to the garden (Fig. 6, Fig. 7), and generates nearly as
much leachate between years 6-10 as it does in the first five years. By
contrast, compost-derived N is mostly taken up by crops or exported via
leachate within three years of compost addition (Fig. 4, Fig. 5). Ulti-
mately, this “legacy P” (sensu Sharpley et al., 2013) exceeds capacity for
soil retention, and P lost through runoff may be an important contrib-
utor to eutrophication in freshwater ecosystems. A previous spatial
model (Small et al., 2023) showed that compost applied to vegetable
gardens across an urban landscape may account for a large fraction of
total urban P runoff, but the results of this model, which assumes
steady-state dynamics, were highly sensitive to soil P retention, which is
a dynamic property. The results of the current model simulations pro-
vide new insight into the temporal dynamics that ultimately determines
what fraction of P applied as compost is recycled into crops, stored
indefinitely, or exported as leachate or runoff.

While the application of compost to gardens is considered to be
generally considered to be a beneficial reuse of nutrients bound in
organic waste, the model results illustrate that a small fraction of
compost-derived N and P are ultimately recovered by crops. Between
5-25% of N is recovered by crops within a decade (Fig. 3), and 8-30% of
P is ultimately recycled (Fig. 5). Higher compost inputs invariably result
in lower recovery efficiency, and at high compost inputs, a larger mass of
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N and P are ultimately lost as leachate (Fig. 5, Fig. 7) than are recovered
by crops (Fig. 4, Fig. 6). These results underscore tradeoffs among po-
tential ecosystem services that may be desired for urban gardens such as
serving as a sink for recycled nutrients, maximizing crop yield, and
improving water quality through infiltration. Such tradeoffs are not
inevitable, however: our previous empirical results (Shrestha et al.,
2020), as well as the results of this model, show that targeting compost
application rates to crop nutrient demand maintains high crop yields
while resulting in relatively high nutrient use efficiency and low nutrient
leachate export. Our intention is that this model can help inform
stakeholder decisions in optimizing desired ecosystem services from
urban agriculture.

Irrigation is another garden management decision that can have
important implications for the fate of P within the garden agro-
ecosystem. Because some urban gardeners have limited or no access to
municipal water (Wortman and Taylor Lovell 2013), it is likely that
there is a wide range of irrigation practices. We previously showed that
evapotranspiration is the dominant fate of water inputs from irrigation
(Chapman et al., 2022), but even if evapotranspiration is not contrib-
uting directly to leachate, keeping soil moisture at higher levels likely
reduces capacity for water retention from a significant rain event, ulti-
mately leading to higher leachate fluxes of water and associated nutri-
ents. Higher soil moisture levels also increase rates of organic matter
decomposition and crop growth, ultimately increasing rates of many of
the flows in the garden agroecosystem.

Our model also allows us to explore the potential contribution of
urban gardens as C sinks, potentially offsetting some of the high C
emissions from combustion of fossil-fuel in cities. The model results
illustrate some of the nuance in C offset calculations, as results depend
on which fluxes are considered. While high compost inputs does lead to
accumulation of organic C, about half of this total is ultimately respired,
contributing CO2 back to the atmosphere. Crop growth is a sink for C,
but plant CO, uptake removes only around one-tenth of the mass of C
respired by soil microbes, and much of the C in harvested crops will
ultimate be consumed and respired by humans. Over ten years, a garden
receiving high compost inputs could accumulate (after accounting for
respiration losses) approximately 40 kg C/m? (147 kg COo/m?). By
comparison, the net C sequestration of a single urban tree is 300-2500
kg CO2/10y (Pataki et al., 2006), so on an areal basis, high-input gardens
may have 5-50% of the C sequestration potential of an urban tree.
However, C mitigation by urban greenspace remains much smaller in
magnitude compared to anthropogenic emissions (Strohbach et al.,
2012)

5. Conclusions

Whether composting coupled with urban agriculture can be scaled to
recycle a significant amount of nutrients from organic waste back into
the human food system depends on the stoichiometric balance between
limiting and non-limiting nutrients, and the dynamic conditions in
garden soil that control whether these nutrients are stored, taken up by
crops, or lost to the environment. This model is an attempt to better
understand these dynamics, through simulating the coupled biogeo-
chemical cycling of C, N, P, and water in an urban agroecosystem. While
experimental data have indicated that high input compost addition to
urban gardens results in a long-term build-up and export of P, the
temporal dynamics of this process has been obscured in empirical
snapshots. The amount of P leaching from garden soils into urban water
flow paths ultimately depends on the capacity of soil to retain excess P,
which is a dynamic process. This model provides insight into the phys-
ical, chemical, and biological factors that control this process, and
provides a tool to predict how compost input rates may control the
fraction of nutrients recycled vs. exported at decadal timescales. These
findings underscore the need for consideration of mass balance con-
straints in expanding urban organics waste recycling programs.
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