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Abstract

Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD)
correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity,
which has two transverse polarization modes. However, more general metric theories of gravity can have additional
polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr
data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST)
correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST
correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer
either correlation signature, with Bayes factors ∼2 when comparing HD to ST correlations, and ∼1 for HD plus ST
correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and
spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast
majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-
correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately,
and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the
signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for
HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Pulsars (1306); Scalar-tensor-vector
gravity (1428)

1. Introduction

Einstein’s theory of general relativity (GR) predicts the
existence of gravitational waves (GWs) with two transverse
polarization modes that propagate at the speed of light (Eardley
et al. 1973a, 1973b). Observations by the LIGO–Virgo–Kagra
collaboration have shown that GR describes gravitational
radiation from massive freely accelerating objects in the
Universe (Abbott et al. 2016, 2023). Although these observa-
tions have shown that GR describes observational data (Abbott
et al. 2019a, 2019b, 2020, 2021a, 2021b; The LIGO Scientific

Collaboration et al. 2021), pulsar timing array (PTA) experi-
ments offer a unique opportunity to probe other possible metric
theories of gravity external to Einstein’s GR (Lee et al. 2008;
Yunes & Siemens 2013).
Modified theories of gravity are often introduced to resolve

some of the current challenges facing fundamental physics,
such as the nature of dark matter, and dark energy, and in
attempts to reconcile quantum mechanics and gravity (see, e.g.,
Berti et al. 2015 and references therein). In metric theories of
gravity, there can be up to six possible GW polarization modes
(Eardley et al. 1973a, 1973b; Will 1993). PTA searches for
non-Einsteinian polarization modes may provide evidence for
modified gravity theories by uncovering the different correla-
tion patterns associated with such modes (Chamberlin &
Siemens 2012; Yunes & Siemens 2013; Gair et al. 2015;
Cornish et al. 2018; Bernardo & Ng 2023a, 2023b, 2023c;
Afzal et al. 2023).
Millisecond pulsars (MSPs) emit radio beams from their

magnetic poles and are extremely stable rotators. They appear
to us as point sources of periodic radio bursts that arrive on
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Earth with a consistency that rivals that of atomic clocks
(Matsakis et al. 1997; Hobbs et al. 2012, 2019). Pulsar timing
experiments exploit the regularity of MSPs to search for low-
frequency (∼1–100 nHz) GWs by measuring deviations from
the expected arrival time of radio pulses (Sazhin 1978;
Detweiler 1979). Moreover, an array of these MSPs allows
us to search for correlations between deviations of times of
arrivals (TOAs) of pulses from MSP pairs (Hellings &
Downs 1983; Foster & Backer 1990).

The North American Nanohertz Observatory for Gravita-
tional Waves (NANOGrav), the European Pulsar Timing Array
(EPTA), the Chinese Pulsar Timing Array, and the Parkes
Pulsar Timing Array (PPTA) are the PTAs that possess the
most sensitive data sets capable of measuring nHz GWs.
NANOGrav, the EPTA, and the PPTA have seen strong
evidence for a common red noise process (Arzoumanian et al.
2020; Chalumeau et al. 2021; Goncharov et al. 2021). Most
recently in Agazie et al. (2023a; hereafter referred to as NG15),
NANOGrav has found compelling evidence for quadrupolar
correlations (Hellings & Downs 1983), while the EPTA and
PPTA have seen these correlations at varying levels of
significance (Antoniadis et al. 2023; Reardon et al. 2023). In
this Letter, we complement our work in NG15 by searching for
evidence for scalar-transverse (ST) correlations from the non-
Einsteinian breathing polarization mode of gravity. Previous
works have both set constraints and upper limits (Wu et al.
2022; Bernardo & Ng 2023d) as well as shown preference for
ST- (Arzoumanian et al. 2021; Chen et al. 2021, 2022) and
GW-like monopolar correlations (Arzoumanian et al. 2021).
However, Arzoumanian et al. (2021) found these correlations
were not significant as they were not robust to the solar system
ephemeris and were associated with pulsar J0030+ 0451. In
Section 2, we review the theoretical background required to
identify and search for a general transverse polarization mode
of gravity using PTAs. In Section 3, we then describe the
analyses performed, both using Bayesian and frequentist
approaches. Lastly, in Section 4, we present the evidence
for/against the existence of ST correlations.

2. Theoretical Background

In this section, we will first review the basics of GW
polarization modes in Section 2.1, and proceed to outline the
theoretical considerations needed to predict the signature of
such modes in a PTA GWB signal in Section 2.2. Finally, in
Section 2.3, we will explicitly describe the model for a general
transverse GWB signal, which we will later search for in
Section 3 using the NANOGrav 15 yr data set.

2.1. Generalized Polarization Modes in Metric Theories of
Gravity

In metric theories of gravity, there can be between two and
six independent polarization modes for GWs (Eardley et al.
1973a). These modes are the “electric” components of the
Riemann tensor R0i0j, where i and j are the spatial components.
These components were originally found by Newman &
Penrose (1962) making use of tetrad and spinor calculus.
For the purposes of this work, we assume a coordinate

system such that a null-plane GW travels along the +z-axis at
the speed of light (c), where the components of the Riemann
tensor only depend on the retarded time u= t− z/c. The
assumptions lead to the following coefficients, which depend

on combinations of the independent electric components of the
Riemann tensor:

u R u
1

6
, 1a2 0303( ) ( ) ( )Y = -

u R
i
R

1

2 2
, 1b3 0103 0203( ) ( )Y = - +

u R R iR2 , 1c4 0101 0202 0102( ) ( )Y = - + +
u R R . 1d22 0101 0202( ) ( )F = - -

We may relate these to a matrix of the GW polarization modes
by
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A Re , 3a4( ) ( )= Y+

A Im , 3b4( ) ( )= Y´

A , 3cB 22 ( )= F
A Re , 3dV1 3( ) ( )= Y
A Im , 3eV2 3( ) ( )= Y
A . 3fL 2 ( )= Y

Here, A+ and A× represent the two tensor modes of GWs, the
only two allowed by GR. The shear modes are given by AV1

and AV2, while the scalar breathing and scalar longitudinal
modes are AB and AL, respectively. Searching for the
coefficients in Equation (2) allows for a theory-independent
way to perform a test of gravity, without the need to be
concerned with the specifics of any metric theory of gravity.
We will utilize this technique in searches for a GWB
using PTAs.

2.2. Pulsar Timing and Isotropic Gravitational Wave
Background

A GW propagating through the Earth–pulsar line of sight
will induce a change in the expected time of arrival for the
pulsar’s radio pulse. These perturbations were first calculated in
the late 1970s (Sazhin 1978; Detweiler 1979) and have since
been used to predict the GWB signature. For pulsar timing, the
measured variation in the pulse TOAs can be used to calculate
GW-induced residuals, Ra

GW, of pulsar a following the relation

R dt z t , 4a

t

a
GW

0
( ) ( )ò= ¢ ¢

which is the quantity measured directly in PTAs, where za is
the GW-induced redshift. For a detailed explanation of
Equation (4), refer to Arzoumanian et al. (2021) and
Chamberlin & Siemens (2012).
The fractional energy density of the background is given to

be

f
d

d f

1

ln
, 5

c
GW

GW( )
( )

( )
r

r
W =

where ρGW is the energy of the gravitational wave, f is the
frequency, and ρc is the critical density necessary for a closed
Universe. For the purposes of this analysis, we assume the
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GWB is produced by a large number of independent, weak,
unresolvable sources isotropically distributed throughout the
sky. Hence, the correlation between the strain functions is
written as

*h f h f
f f

S f, ,
2

,

4 2
, 6g g

gg
h

2
˜ ( ˆ ) ˜ ( ˆ ) ( ) ( ˆ ˆ ) ( ) ( )d d

p
d

á W ¢ W¢ ñ =
- ¢ W W¢

¢
¢

where Sh( f ) is the one-sided power spectral density of the
GWB; related to ΩGW( f ) by

f
H

f S f
2

3
. 7hGW

2

0
2

3( ) ( ) ( )p
W =

The spectral characteristics of the GWB are often described
via the characteristic strain,

h f fS f . 8c h( ) ( ) ( )=

This quantity is useful, as it includes the effects of the number
of cycles during the GW source in-spiral throughout the
frequency band f as discussed in Taylor (2021). While
several models exist for describing the nature of hc( f ) (NG15),
in this work, we will restrict ourselves to that of a power-law
model for each polarization g such that

h f A
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a

where Ag is a dimensionless amplitude, fyr is the reference
frequency, and αg is the spectral index. Using Equations (6),
(8), and (9), we can find the cross-correlation estimator between
pulsars a and b (Chamberlin & Siemens 2012):
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where fL and fH are lower and upper frequencies and fab
g ( )G is

the overlap reduction function (ORF), which is related to the
spatial geometry of the two pulsars in relation to the Earth and
we have introduced Pg defined as
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In the above, to align with the more widely used terminology
for spectral index, we have made the reparameterization
γg= 3− 2αg.

2.3. Restriction to Transverse Modes

As discussed in Section 2.1, there exist between two and six
possible independent polarization modes for a GW in metric
theories of gravity. Calculating the effects of longitudinal
modes requires additional steps and assessments, such as
accurate knowledge of distances to the pulsars, handling the
frequency dependence of the ORF, as well as having a
significant number of pulsars at small-angular separations to
capture the unique ORF signature of such polarization modes

(Arzoumanian et al. 2021). Thus, we will restrict ourselves to
the three transverse modes, A+ A×, and AB, for the purposes of
this Letter.
Given only the transverse tensor and scalar mode, we may

generalize Equation (11) (O’Beirne et al. 2019; Arzoumanian
et al. 2021) as

S f P P
3

2
. 13ab ab abTT

TT
ST

ST( ) ( ) ( )= G + G

It is worth pointing out that the effect of dipole radiation of
binary sources in non-GR metric theories of gravity (O’Beirne
et al. 2019) is accounted for by treating the spectral index γg as
a free parameter in our statistical models.
The ORFs for the tensor-transverse (TT) and ST modes have

been calculated previously in Chamberlin & Siemens (2012)
and Gair et al. (2015),
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with ξab being the angular distance on the sky between pulsars
a and b and

k
1

2
1 cos . 15ab ab( ) ( )x= -

A plot of the transverse ORFs as a function of angular
separation is shown in Figure 1. Where ab

TTG is represented by
the more widely known Hellings and Downs (HD) curve
(Hellings & Downs 1983), and henceforth the TT mode will be
represented by HD. With this structure in hand, we may
proceed to the analysis of the NG15yr data and the
investigation of the general transverse modes.

3. Searches for a General Transverse GWB in the
NANOGrav 15 yr Data Set

In this section, we complement our previous work in NG15
by analyzing the NANOGrav 15 yr data set for statistical
significance of HD plus ST correlations. We first describe the
pulsar noise modeling in Section 3.1, and then we present the
results of the Bayesian and frequentist analyses in Sections 3.2
and 3.3, respectively. We will take an agnostic approach to the
mixing between the HD and the ST polarization modes of

Figure 1. A plot of transverse ORFs as a function of angular separation. The
blue curve describes the Hellings and Downs curve, which is produced by the
TT polarization mode, while the orange curve describes the shape of the
correlations induced by the ST polarization mode of gravity.
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gravity by allowing each mode to possess its own independent
power spectral density as suggested by Equation (13).

3.1. Noise Modeling Details

Through individual pulsar analyses, we obtain posteriors for
both the red and white noises intrinsic to each pulsar. Red noise
has more power at lower frequencies. We model the intrinsic
pulsar red noise as a power law with variable characteristic
amplitude and spectral index following Equation (12). We
model the power spectra using frequency bins from 1/Tobs to
30/Tobs to cover a frequency range in which pulsar noise
transitions from red-noise-dominated to white-noise-dominated
and for Tobs being the longest observational baseline among the
considered pulsars in the data set. The white noise is described
by three parameters: a linear scaling of TOA uncertainties,
noise added in quadrature to the TOA uncertainties, and noise
common to a given epoch at all frequency subbands. These
parameters are called EFAC, EQUAD, and ECORR, respec-
tively, and are set to their fixed values in NG15. For detailed
explanations of these parameters, refer to Agazie et al. (2023b).

In addition to pulsar-intrinsic noise, we also include a
common red noise, which is a red noise process that is shared
among all pulsars. The GWB is expected to appear as a
common red noise process that is spatially correlated across
pulsars. The common red noise process is also modeled as a
power law but uses three different overlap-reduction functions
corresponding to three different kinds of common red noise
processes: CURN, HD, and ST. The common red noise is
modeled using frequency bins from 1/Tobs to 14/Tobs
following NG15. The CURN treats the common red noise
process as spatially uncorrelated (i.e., ab ab

CURN dG = ). The HD
and ST models include additional spatial correlations, which
are shown in Figure 1 and Equations (14a) and (14b).
The upper and lower bounds of the model parameters we use

are shown below. Note that the subscript “int” refers to the
intrinsic red noise processes, while the subscript g refers to the
common red noise process (i.e., CURN, HD, or ST).

log A

log A

Uniform 20, 11 ,

Uniform 18, 11 ,

, Uniform 0, 7 . 16g

10 int

10 g

int

( )
( )
( ) ( )g g

~ - -
~ - -
~

Refer to NG15 and Agazie et al. (2023b) for a more detailed
explanation of the noise modeling adapted for the analyses of
the NANOGrav 15 yr data set.

3.2. Bayesian Analyses

Our Bayesian analyses follow Section 3.1 as well as NG15.
In short, in terms of a likelihood function, all the various noise
modelings follow from (Johnson et al. 2023)

t
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t K tp
1

det 2
exp

1

2
, 17T 1⎛

⎝
⎞
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( ∣ )
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( )d h d d
p
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where

K D F F , 18T ( )f= +

and we then use the Woodbury matrix identity to invert this
covariance matrix. We find

K D D F F D , 19T1 1 1 1 ( )Q= -- - - -

with

F D F . 20T1 1 1( ) ( )fQ = +- - -

In the above, F is a matrix with alternating columns of sine and
cosine components representing a discrete Fourier transform of
the red noise processes, D is covariance matrix for the white
noise parameters, and f is the covariance matrix of the red
noise components.
We use Bayesian analyses to compare several models of

interest via Bayes factor estimation (Figure 2), and to obtain
posterior distributions for Alog g10 and γg for HD and ST signals
(Figure 3). While we include an ST-only model in our analysis,
it is important to note that all metric theories of gravity must
include the Einsteinian polarization modes of gravity. In
Figure 2, we observe that correlated Bayesian models are
preferred over the uncorrelated model. The most favored model
is a GWB with HD correlations with a Bayes factor of 200.
When ST is modeled alongside HD, Bayes factors are
uninformative given they are on the order of unity when
compared to each correlation alone.
We can use the transitive nature of Bayes factors as a

consistency check of our results. For instance, going around the
bottom half of Figure 2 we can take the Bayes factor of ST/
CURN and multiply it by the Bayes factor of HD/ST to obtain
the Bayes factor of HD/CURN. This results in 90× 2.2= 198,
which is consistent with the Bayes factor for HD/CURN of
∼200 we obtained by directly comparing those two models.
We note that in Figure 3 when fitting for one correlation

signature both HD correlations and ST correlations are able to
explain the total signal. This agrees with the large Bayes factors
favoring these models over CURN. However, the recovered
power spectral estimates for ST are poor when modeled
alongside HD. To check the consistency of the power spectral
estimates we see that Alog 14.1710 CURN 0.13

0.12= - -
+ and

3.35CURN 0.32
0.32g = -

+ (median values with 68% credible interval).
The ST values are Alog 15.0310 ST 1.92

0.87= -
+ and 3.33ST 1.53

1.53g = -
+ ,

Figure 2. Bayes factors for various model comparisons between ST, HD, and
CURN. Overall, the HD model is preferred over CURN and ST. Modeling ST
alongside HD gives about equal odds over HD and ST only. All model
comparisons are agnostic with respect to the spectral index of each model.
See Section 3.1 for more details. The uncertainties are estimated using
bootstrapping and Markov model techniques of Heck et al. (2019). An ST-only
model is made for comparisons even though a metric theory must have HD
present. All Bayes factors are presented as the model at the end of an arrow
over the starting model of an arrow. For example, for the arrow pointing from
CURN to ST, the values are Bayes Factors for ST/CURN.
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while the HD values are Alog 14.2410 HD 0.56
0.18= -

+ and
3.17HD 0.61

0.51g = -
+ . We see that values for CURN and HD are

more consistent with each other. While the ST spectral
estimates do overlap with the median of the CURN spectral
estimates, we observe the 68% credible region for γST and

Alog10 ST expand over about 43% and 31% of the prior region,
respectively. Therefore, the addition of the ST correlation
yields no additional information and we see that the HD signal
in this model explains most of the total signal.

3.3. Optimal Statistic Analyses

The optimal statistic (Anholm et al. 2009; Chamberlin et al.
2015) allows for a robust and computationally inexpensive
analysis of the correlation content of a PTA data set. The
amplitude and the uncertainty of the pairwise cross correlations
are estimated by maximizing the ratio of the likelihood of the
fiducial GWB over the noise-only model. The fiducial model
contains a GWB signal along with intrinsic red and white noise
components while the noise-only model includes the intrinsic
noises and a common uncorrelated red noise process. We have
employed the noise-marginalized version of the optimal
statistic technique in which 104 random draws from the
posteriors of all of the model parameters of a CURN model are
used to estimate the required power spectra. Additionally, since
our goal is to search for a general transverse GWB signal in
which two nonorthogonal types of correlations might simulta-
neously exist in the data set, a chi-squared statistic fitting for
both HD and ST correlations is used to find the optimal
estimators of the signal-to-noise ratio (S/N) and the amplitude
of the correlated signal (Agˆ ) for each polarization mode. Note
that Agˆ differs from Ag as the former is an optimal estimator of
the latter. See Vigeland et al. (2018) and Sardesai & Vigeland
(2023) for more details.

The estimated amplitudes for single-component (SCOS) and
multicomponent (MCOS) noise-marginalized optimal statistics
are shown in Figure 4. We see that for SCOS the amplitude
reconstruction of the HD correlations is in excellent agreement
with the CURN amplitude posterior, whereas the estimated
amplitude for ST correlations is only consistent with CURN.
For MCOS, the correlations are fit for simultaneously so the
total power is split and the fit correlations are shifted toward
smaller amplitude values and less consistent with CURN.

However, the HD correlations explain most of the total CURN
signal when both correlations are present.
The S/Ns for SCOS and MCOS are shown in Figure 5. We

note that the median S/Ns for HD correlations, 5.0 and 3.5 for
SCOS and MCOS, respectively, are larger than the median S/
Ns for ST correlations, 4.6 and 3.0 for SCOS and MCOS,
respectively. The difference in median S/N values is not
significant as the medians lie within the interquartile ranges of
each other. While the S/N values are similar for HD and ST
correlations, as noted before, the consistency of the estimated
HD amplitude with CURN suggests that HD, not ST,
correlations make up most of the common red noise process.

4. Discussion

NANOGrav’s 15 yr data set shows compelling evidence for
quadrupolar HD interpulsar correlations. In this work, we
explored the possibility of deviations from the HD curve
caused by the presence of an additional ST mode.
Our Bayesian analyses show the Bayes factor for HD over

ST is ∼2, and the Bayes factor for a model with both
correlations compared to a model with just HD is ∼1. These
results are largely consistent with a similar study by Chen et al.
(2023), in which they searched NANOGrav’s 15 yr data set for
nontensorial GWBs on a similar timescale to the work
presented here. Taking the spectral parameter recovery into
account, as in Figure 3, we found each correlation, when fit for
individually, is in agreement with CURN. We also found more
informative Alog g10 and γg recovery for HD than ST, and HD
parameters show better agreement with CURN spectral
parameters when correlations are included together. The
analyses in this Letter, as well as those in Bernardo & Ng
(2023c) and Chen et al. (2023), do not rule out the possibility
of ST correlations in our data. However, our analysis also
shows no statistical need for an additional stochastic process
with ST correlations.
This is also the case for our frequentist analyses. When

fitting the interpulsar correlation data for a single correlation
signature, we find that HD correlations completely account for
the total signal due to the amplitudes consistency with CURN,
but ST correlations are only somewhat consistent. When we fit
for both correlations simultaneously, we still see that HD
correlations are able to explain most of the total signal. For the

Figure 3. (Left) Bayesian probability posterior distributions of Alog g10 and γg from an HD correlated model (blue) and an ST correlated model (orange) showing the
1σ/2σ/3σ credible regions. Plotted for comparison are CURN (gray) posterior distributions for Alog g10 and γg parameters. Each correlated signal is able to explain the
total signal. (Right) Bayesian probability posterior distributions of Alog g10 and γg for HD (blue) and ST (orange) from an HD+ST correlated model showing 1σ/2σ/
3σ credible regions. Plotted for comparison are CURN (gray) posterior distributions for Alog g10 and γg parameters. The plots suggest that the posterior distribution for
ST is uninformative and HD adequately describes the total signal recovered by CURN.
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S/N, we find that the median values for HD correlations are
larger than ST correlations, but are similar and lie within
interquartile ranges.

Einsteinian polarization modes with HD correlations are
present in all metric theories of gravity. Thus, even though we
do not find a convincing Bayes factor favoring only HD
correlations over only ST correlations and they have similar S/
N values in our frequentist analyses, there is no metric theory
that predicts only ST GWs. Metric theories do allow ST
correlations to be present alongside HD correlations, but we did
not find strong evidence in favor of HD plus ST correlations
over only HD correlations. In addition, we no longer report
higher S/Ns and Bayes factors for ST correlations as we did in
Arzoumanian et al. (2021). We have seen a larger increase in
favor of HD correlations than ST correlations in both S/Ns and
Bayes factors. These changes are consistent with simulations in
Arzoumanian et al. (2021) and, with no evidence indicating
otherwise, we expect this trend to continue with additional data.

We also performed dropout analysis tests, similar to what
was done in Arzoumanian et al. (2021), to determine if
particular pulsars play a role in the observed ST significance.
We found that J0030+ 0451 and J0613−0200 are responsible
for a majority of the ST significance. When we remove these
two pulsars from the analysis, we find that the Bayes factor for
HD/CURN increases to ∼600, while the Bayes factor for ST/
CURN is reduced to ∼30. We suspect improved noise

modeling (as used in Falxa et al. 2023 and Agazie et al.
2023b) on these and other pulsars will shed some light on this,
and we leave this for future work.
Other recent work (Allen & Romano 2023; Allen 2023) has

shown that the HD correlation signature has a cosmic variance,
and accounting for the cosmic variance improves the ability to
see correlations for the GWB in noisy data (Bernardo &
Ng 2023e). While searches have included cosmic variance
(Bernardo & Ng 2022, 2023b, 2023e, 2023f), this concept is
not addressed within this manuscript. It introduces another
aspect to consider when searching for the GWB as we will also
need to account for the variance of the HD curve. Impacts of
the cosmic variance will be considered in future work.
Future prospects for performing tests of gravity using PTA

data are compelling. Large observational baselines as well as
the addition of more MSPs to the observing array will enable
more robust and sensitive searches for additional GW
polarization modes. In addition to PTAs, future experiments
in other regions of the GW frequency spectrum may also
provide insight into alternative polarizations. Callister et al.
(2017) and Wang & Han (2021) have shown the capabilities to
make detections of alternative GW polarizations in their
respective parameter spaces.
In this work, we reported on one test of gravity in which we

searched for evidence for an ST polarization mode. While we
did not find substantial evidence for or against this mode, the
situation may change in the future due to the nature of the PTA
data sets. It is also important to note that a number of the
observed pulsars are dominated by white and intrinsic red noise
processes, which could be suppressing a GW-sourced signal.
For the case of a GWB, as we obtain more data on these
pulsars, we will be able to provide more definitive answers
about the possibility of the existence or absence of additional
polarization modes of gravity.
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