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Abstract: Predicting inpatient length of stay (LoS) is important for hospitals aiming to improve service
efficiency and enhance management capabilities. Patient medical records are strongly associated with
LoS. However, due to diverse modalities, heterogeneity, and complexity of data, it becomes challenging
to effectively leverage these heterogeneous data to put forth a predictive model that can accurately
predict LoS. To address the challenge, this study aims to establish a novel data-fusion model, termed as
DF-MdlI, to integrate heterogeneous clinical data for predicting the LoS of inpatients between hospital
discharge and admission. Multi-modal data such as demographic data, clinical notes, laboratory test
results, and medical images are utilized in our proposed methodology with individual “basic” sub-
models separately applied to each different data modality. Specifically, a convolutional neural network
(CNN) model, which we termed CRXMDL, is designed for chest X-ray (CXR) image data, two long
short-term memory networks are used to extract features from long text data, and a novel attention-
embedded 1D convolutional neural network is developed to extract useful information from numerical
data. Finally, these basic models are integrated to form a new data-fusion model (DF-MdI) for inpatient
LoS prediction. The proposed method attains the best R? and Ev4r values of 0.6039 and 0.6042 among
competitors for the LoS prediction on the Medical Information Mart for Intensive Care (MIMIC)-1V
test dataset. Empirical evidence suggests better performance compared with other state-of-the-art
(SOTA) methods, which demonstrates the effectiveness and feasibility of the proposed approach.
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1. Introduction

Hospital inpatient length of stay (LoS) is a critical indicator that not only measures the efficiency of
healthcare facilities but also aids in managing resource utilization effectively. LoS is defined as the time
duration that a patient is required to stay in a hospital or other healthcare facility for treatment. Prolonged

LoS exposes patients to potential harm associated with hospitalization, such as hospital-acquired
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infections and adverse drug reactions [1]. In the US, every single extra hour of patient’s transfer delay
is associated with an adjusted 3% increase in the likelihood of inpatient mortality [2]. From the point of
view of a healthcare provider, economic pressures to deliver efficient and accessible care are
unprecedentedly high [3]. Healthcare providers face significant economic pressures to deliver efficient
and accessible care. The COVID-19 pandemic has exacerbated these challenges to healthcare systems
[4, 5]. Consequently, controlling hospital costs and improving service efficiency have become
paramount, especially during resource-constrained situations such as the COVID-19 pandemic.
Therefore, there is both an urgent need for and practical significance in developing new systems that
can automatically predict the length of stay for inpatients.

The healthcare industry is experiencing a transformative phase of digital innovation, which has led to
an accumulation of vast patient records in clinical practice. These massive quantities of data hold the
promise of supporting a wide range of medical and healthcare applications in clinical decision support,
disease surveillance, and population health management. However, to date, most of the successful
models that learn from data in healthcare are “unimodal,” i.e., they solely focus on a single data modality,
ignoring the multi-modal nature of human perception [6]. Owing to the great potential for extracting
meaningful insights and learning essential features from data, machine learning (ML) methods offer
unprecedented opportunities to improve patient and clinical outcomes. Some notable works include a
static input-based regression tree model for LoS prediction [7], an integrated multiple Artificial Neural
Network (ANN) model for predicting LoS [8], and a Hierarchical Attention Network model for LoS and
mortality predictions [9], etc. Nevertheless, so far, most existing ML models in healthcare mainly rely
on a single data modality [6]. Though multi-modal learning has been extensively explored in the context
of audio-visual applications [10] and natural image datasets [11, 12], it has been rarely applied in the
healthcare domain [13]. Multi-modal learning in healthcare remains relatively unexplored, primarily
due to the irregular sampling and diverse formats in which patient data is stored, ranging from diagnostic
codes and laboratory results to medical imaging and unstructured texts [13, 14]. The complex and
dynamic nature of healthcare data imposes significant challenges for efficient modeling. Consequently,
LoS prediction, despite its importance, has received limited attention in the literature due to the inherent
difficulty of the task [15]. This study aims to establish a novel data-fusion model that fuses
heterogeneous clinical data to predict patient LoS. A multi-modal dataset combining demographic data,
clinical notes, laboratory test results, and medical images is used in our methodology. To maximize the
utilization of available data, different data modalities are first separately treated with the aid of

respective basic sub-models. For numerical data, a novel attention-embedded 1D convolutional neural
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network (CNN) is developed to extract meaningful features. By converting the text to sequence data,
two long short-term memory (LSTM) networks are used to predict LoS. For chest X-ray image data, a
CNN model, which we termed CRXMDL, is designed to predict the inpatient LoS, where the
InceptionResnet V2 architecture is used as the backbone and three convolution blocks comprised of 32,
16, and eight 3 x 3 filters, a max pooling (MAP) layer, a flatten layer, and a completely-linked (CL)
layer are embedded into the networks to compute specific features of CXR images. Finally, these
individual basic models are integrated to generate a new data-fusion model (DF-Mdl), in which two
fully connected layers with neuron numbers of 64 and 32 are incorporated to transform vector
dimensions, and a CL prediction layer is used to produce the final prediction of inpatient LoS.

The key contributions of this study can be briefly protocoled as follows:

* We develop a data-fusion model that combines multiple “basic” predictive models using various
data modalities, including clinical notes, laboratory test results, demographic information, and
medical images to predict inpatient LoS. Notably, the LoS prediction task is approached as a
regression problem aiming to predict the (expected) number of days a patient will stay in the
hospital rather than assigning a patient into one of, say, two classes.

* CXR image data are utilized in our scheme. We developed a basic model referred to as CRXMDL
that uses the InceptionResnet V2 architecture as the backbone; and three convolution blocks, a
MAP layer, a flatten layer, and a CL layer are embedded into the networks to predict inpatient
LoS.

e We convert long text blocks (in natural language) into sequence data after performing
segmentation on them, and then design two LSTM networks to infer sequence-dependent feature
representations.

* We upgrade the traditional squeeze-and-excitation (SE) block used in the field of computer vision
to a 1D SE-block and embed it with spatial attention into a 1D-CNN for numerical data-based
feature extraction.

The remainder of this article is organized as follows. Section 2 provides a literature review. Section

3 presents methodology development. The overall architecture of the proposed DF-MdI along with
technical details are discussed in this section. Through a real-world case study, Section 4 demonstrates
the efficacy of the proposed approach. Finally, Section 5 concludes the paper and provides some possible

future research directions.



2. Related work

Clinical practice produces large amounts of data of various types, such as clinical notes, laboratory
test results, measurements of vital signs, and medical images [16]. The unprecedented proliferation of
medical data has prompted substantial efforts toward the development of various data-driven models
for LoS prediction [17]. Existing data-driven LoS models can be broadly grouped into two categories:
classification models and regression models [18-23]. In classification models, the aim is to group the
LoS into multiple classes, e.g., short, medium, and long stay, based on the number of days that the
patient stays in the hospital. Thompson et al. [24] introduced the prolonged length of stay (PLOS)
attribute as a binary nominal variable based on a given threshold and obtained attractive classification
results. Similarly, by converting the LoS prediction to a binary classification task, Bednarski et al. [25]
introduced a temporal convolutional network for clinical LoS prediction. Their proposed method
outperformed other state-of-the-art (SOTA) methods, such as Gated Recurrent Unit (GRU) network and
random forest (RF) method. Harutyunyan et al. [26] reduced the LoS prediction to a classification
problem with 10 classes/buckets and achieved SOTA performance for forecasting LoS on the MIMIC-
IIT dataset. The aforecited literature indicates the usefulness of classification models in LoS prediction.
However, several studies have revealed that the LoS distributions are highly right-skewed [9, 27, 28].
This skewness implies that the dataset becomes imbalanced with a limited number of cases exhibiting
long LoS. This imbalance misleads the performance evaluation as classes of long LoS tend to be treated
as outliers. Therefore, interpreting the LoS task as a regression problem is a more appropriate and
informative way of balancing the dataset as it focuses on the actual number of LoS days (possibly,
fractional) and not classes [29]. Ma et al. [27] trained three decision tree regression models, including
bagging, AdaBoost, and RF to predict inpatients’ LoS. The bagging method achieved the best test results
with a root mean square error (RMSE) of 0.296, R* of 0.831, and an accuracy rate of 0.723. Using four
ML algorithms, Hasan et al. [30] performed LoS prediction on the MIMIC-III dataset. The extreme
gradient boosting (XGBoost) regressor produced the best results with RMSE of 1.2. and R* of 0.86. In
a similar study, Boff et al. [31] applied five ML algorithms to predict LoS, including multiple linear
regression, RF, support vector regression, ridge regression, and partial least squares algorithms. The RF
achieved top performance in their experiment with an R? of 0.6567 and a mean absolute error (MAE) of
3.51 days.

Nevertheless, for both classification and regression models, the research so far has mainly focused on
studying one type of data source only. It is expected that the integration of heterogeneous medical data

modalities (unstructured clinical notes, laboratory test results, measurements of vital signs, demographic
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information, etc.) has the potential to improve prediction accuracy and enhance knowledge discovery
from the data. Indeed, Zhang et al. [32] found that integrating heterogeneous data types across electronic
health records (EHRs) helps improve the performance of prediction models and reduce errors. In their
model, they only combined structured data and unstructured texts. Incorporating more data modalities
such as image data may prove helpful if each data modality contains incomplete but complementary
information [13, 33]. By integrating four modalities of data, in particular, chest X-ray images and tabular
data, Soenksen et al. [33] predicted whether a patient is going to be discharged within the next 48h and
converted the LoS prediction to a binary classification problem. Although some promising performance
was obtained and image data were used, the class imbalance problem likely had an adverse effect on the
performance of their model. Hayat et al. [13] proposed a MedFuse model to fuse the CXR images and
clinical time-series data. However, the LoS prediction task was not considered in their work. Besides,
the two-stage training strategy increases the computational complexity of the model. Al-Dailami et al.
[15] introduced a multi-scale feature fusion model for predicting LoS in ICU and extracted multiple
data modalities, such as demographic data, medical history, lab test results, and label information. But
the image data were not utilized in their method. To overcome this shortcoming, we establish a data-
fusion model that incorporates multiple individual predictive models using diverse data modalities such
as clinical notes, laboratory test results, demographic information, and medical images. Section 3

describes the specific procedure underlying our approach.

3. Methodology
3.1 General outline

Compared with single modality based LoS prediction, our approach utilized multiple input sources
to improve the prediction performance by integrating multiple heterogeneous data. Fig. 1 displays the
overall flowchart of the proposed procedure. First, a novel data fusion architecture extracts meaningful
patterns by fusing heterogeneous data, including text, numerical data, and CXR image data. Data pre-
processing and cleaning are performed on the extracted data. Specifically, numerical data are normalized
before being passed into the model, and the category variables are converted into dummy/indicator
variables via One-Hot encoding. The text data are segmented and converted into the sequence by
implementing the Python text. Tokenizer command. As for CXR image data, they are stored in the
MIMIC-CXR-JPG database in JPG format with structured labels, where the dimensions of CXR images
are uniformly resized to a fixed size of 512Xx512 pixels for fitting the models. The pre-processed data
are consequently fused and utilized as input for the proposed fused model. The resulting observations

are split into training and validation sets to fit the proposed model while tuning respective hyper-
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parameters to select the best architecture, and the remaining data are used as a test set to evaluate the

final model performance. The details of each given step are presented in subsequent sections.
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Fig. 1. Overall flowchart of the proposed LoS prediction framework.

3.2 Data fusion model

We consider three different modalities, including numerical variables (demographics, medical exam,
etc.), unstructured text data, and CXR image data. Note that the numerical variables include discrete
and continuous data. For unstructured text data (i.e., natural language text, such as nursing
documentation and physician notes), the word embedding technique can map words or phrases from
vocabulary to a corresponding vector of continuous values. However, directly modeling sequential notes
using word embedding can be time-consuming. It may be impractical since clinical notes are usually
quite lengthy and involve multiple timestamps. Moreover, the length of different documents varies. To
address this challenge, we use a tokenizer to implement the work segmentation for long texts, such as
the long title field in d _icd procedures and d_icd diagnoses tables, Then, the Text2Seq function is used to
transform the text data to sequence variables. To capture the dependencies among sequence variables,
two long short-term memory networks are designed to take the output of Text2Seq for inferring sequence-
dependent feature representations. Here, the hyper-parameter of the perceptron number is set to 4, with
a ReLu activation function and /> regularization. Besides, note that other categorical variables, such as
insurance, admission type, marital status, and gender, are converted into numerical variables of model
input dictionary by implementing the one-hot encoding. For CXR image data, we design a convolutional
neural network model referred to as CRXMDL to train on the data using InceptionResnet V2 [34] as a
backbone and then embed three convolution blocks comprised of 32, 16, and eight 3 x 3 filters, max

pooling layer, flatten layer, and a fully connected layer to calculate specific features of CXR images. As
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for numerical data, a novel attention-embedded 1D convolutional neural network (Att-IDCNN) is
developed to predict inpatient LoS. Using 32 small filters with the size of 3, two cascaded one-
dimensional (1D) convolution layers followed by a max pooling layer are used to extract high-level
features. In particular, an improved 1D SE-block [35] is incorporated into the network for feature
adaptive calibration, and following the enhanced 1D SE-block, a spatial attention (SA) mechanism is
added in the network to quantify the significance of spatial point features. In this manner, the features
obtained by the enhanced 1D SE block and spatial attention are fused to generate the output of the Att-
IDCNN for numerical data-based LoS prediction. Finally, combining the Att-1DCNN, LSTM, and
CRXMDL, the multiple basic models are integrated to generate a new data-fusion model, for which two
densely connected layers with neuron numbers of 64 and 32 are embedded into the networks to change
the vector dimensions, and a fully connected (FC) prediction layer is used for the final prediction of
inpatient LoS.

Due to the heavily skewed LoS distribution, the prediction task is particularly challenging. In skewed
data, the long tail may be treated as an outlier by ML models and adversely affect the model performance
[7, 36]. Most of the recent LoS prediction studies tend to ignore this challenge, which may lead to
underprediction of LoS and unreliable results [36]. To train the proposed DF-Md], the classical mean
squared error (MSE) loss function is not an adequate choice as its robustness relies heavily on the
Gaussian distribution assumption on the response variable. However, the LoS distribution is typically
right-skewed and contains outliers, in which case using a suboptimal loss function may introduce bias
and cause large prediction errors. Therefore, to alleviate this problem, the Huber loss function is
employed, which furnishes a robust estimation of regression models and reduces outliers’ contributions
to the squared error loss, thereby limiting the impact on regression estimates [37]. The Huber-type

customized loss function [38] used in our network is defined as

(Vx — P1)?, for |y — Pxl <6, )
Ly —Pp) =1 20277
p

Here, 9, and y, denote the predicted value and actual value, respectively, p and 6 are two non-negative

lye — 9 p_Z—p 2 .
Yk — Yl - 64, otherwise.

hyperparameters, where p controls the concavity and convexity of the loss function, while 6 determines
the turning point (»p = 1 here). Fig. 2 displays the architecture of the proposed DF-Mdl. Below
summarizes the core steps of the proposed algorithm:

1. Given the raw data from different modalities, the original dataset D is pre-processed into subsets
D={D1, Dy,..., Dy}, where M is the number of total data types. For each sub-dataset D, of patient i,

the data 1s denoted as D;,,, = {xl-,l,xl-,z, ...,xl-,L}, where x;; denotes the extracted feature for patient i,
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L is the total number of features in sub-dataset D; ,,,, here i = 1,2, ..., N, N is the total number of patients.

2. Basic models H={Hi, H>,..., Hu} are constructed separately to extract useful information from

each modality. For each sub-model, the corresponding output z,, is obtained, which is denoted as z,, =

Hp (D).

3. The outputs Z = {z,, z, ..., Z,, } from basic models are concatenated and fed into another network

comprised of two densely connected layers with neuron numbers of 64 and 32, while a CL prediction

layer is used for the final prediction of LoS. Table 1 depicts vital hyper-parameters in the proposed

model.
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Fig. 2 The overall architecture of the proposed DF-MdI.

Table 1. Essential hyperparameters in the proposed model.

Layer Input shape Elljrtr?lr)er I;Z?el Output Shape # of Parameters  Replications
InputLayer (numeric) (None, 27, 1) - - (None, 27, 1) - 1
ConvlD (None, 27, 1) 32 3 (None, 23, 32) 128+3104 2
MaxPooling1 D (None, 23, 32) - - (None, 11, 32) - 1
GlobalAveragePooling1 D (None, 11, 32) - - (None, 32) - 1
ConvlD (None, 32, 1) 32 3 (None, 32, 1) 3 1
sigmoid (None, 128,128,1) - - (None, 128,128, 1) - 1
Multiply (None, 11, 32) - (None, 1, 11, 32) - 1
Add (None, 11, 32) - - (None, 1, 11, 32) - 1
reducemax (None, 11, 32) - - (None, 32) - 1
reducemean (None, 32, 1) 32 3 (None, 32, 1) 3 1
Concatenate (None, 1, 11, 1) - - (None, 1, 11, 2) - 1
ConvlD (None, 1, 11,2) 32 3 (None, 1, 11, 1) 3 1
sigmoid (None, 1, 11,1) - - (None, 1, 11, 1) 1
InputLayer (text) (None, 23) - - (None, 23) - 1
InputLayer (text) (None, 18) - - (None, 18) - 1
Multiply (None,1 11,32) - - (None, 1, 11, 32) - 1
Embedding (None, 23, 32) - - (None, 1, 32) 16416+16928+192 3
Flatten (None, 1, 11, 32) - - (None, 352) - 2



InputLayer (images) [(None,128,128,1)] - - [(None,128,128,1)] 1
LSTM (None, 23, 32) - - (None, 4) 592+592 2
Concatenate (None, 32) - - (None, 448) 2
InputLayer (categorical) (None, 28) - - (None, 28) 1
Flatten (None, 1, 32) - - (None, 32) 1
Sequential (None,128,128,1) - - (None, 1) - 1
Dense (None, 448) - - (None, 32) 28736+2080 2
FC (None, 32) - - (None, 1) 33 1

4. Case study
To evaluate the performance of the proposed approach, we conducted an empirical study on the
Medical Information Mart for Intensive Care (MIMIC)-IV v1.0 database. For benchmarking purposes,

state-of-the-art LoS prediction methods were chosen for comparisons.

4.1. Experimental setup

The computations were primarily conducted using Python 3.7 deep learning framework utilizing
widely used libraries, such as Keras, Scikit-learn (https://scikit-learn.org/stable/), Matplotlib, and
Tensorflow, which are accelerated by a graphics processing unit (GPU). The hardware configuration
used for operating the deep learning framework to perform LoS prediction was AMD EPYC 7502P 32-
Core Central Processing Unit (CPU), 32 GB memory, NVIDIA RTX A6000 graphics processing unit
(GPU). Training, validation, and testing were all carried out in a Linux series OS. The Adam optimizer

was selected to train the model, with a batch size of 64 and a learning rate of 1.0 x 107>,

4.2. MIMIC-1V v1.0 dataset

MIMIC-IV v1.0 dataset contains medical records for over 40,000 patients admitted to the intensive
care unit (ICU) at the Beth Israel Deaconess Medical Center (BIDMC) between 2008 and 2019 [39],
and it contains all documentation entered for each patient throughout their interaction with the hospital.
MIMIC-IV v1.0 dataset includes a wide range of observations through time, such as free-text notes
composed by clinicians, medication orders, laboratory test results, procedures, demographic information,
and diagnosis codes. In addition, MIMIC-IV v1.0 was complemented by a further data source, MIMIC-
CXR [40], which contains patients’ chest radiographs in DICOM format with free-text radiology reports.
All data records are deidentified, i.e., patient identifiers are removed according to the Health Insurance
Portability and Accountability Act (HIPAA) Safe Harbor provision. The data can be accessed at the
PhysioNet website (https://physionet.org/content/mimic-iv-demo/1.0/core/) upon signing the data use
agreement. Following the cohort selection procedure recommended by [41], we extract a set of features.
511,741 rows of records are extracted from the tabular data of the MIMIC-1V v1.0 dataset. For chest X-

ray images, only images with ViewPositions of “PA (posteroanterior)” or “AP (anteroposterior)” are
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selected. As such, 170,934 CXR images are retained. Except for CXR images, a total of 52 attributes,
including circulatory, endocrine, blood, infectious, injury, and mental, have been extracted from the
following tables: ADMISSIONS, DIAGNOSIS ICD, D DIAGNOSIS ICD PATIENTS, ICDSTAYS,
PROCEDURES ICD, and D PROCEDURES ICD. These tables record inpatients’ demographic data
and intensive care data at the BIDMC. For instance, the ADMISSIONS table provides information
regarding patients’ admission to the hospital, such as admission and discharge time, demographic
information, and the source of admission. The DIAGNOSIS ICD table contains diagnosis category
information, which is divided into 17 categories within the ICD9 nomenclature, and the corresponding
category names are summarized in the D DIAGNOSIS ICD table. The PATIENTS table provides
inpatients’ age and gender information, and the ICDSTAY'S table contains the ICU data for each hospital
admission. The PROCEDURES ICD table provides the procedure code for inpatients, while
corresponding procedure names are included in the D PROCEDURES ICD table. Then, data
transformation, data cleaning, imputation of missing data, and other data preprocessing operations are
performed on the original data. The admission and discharge times are converted into date-time type,
which is useful for counting the days of inpatient LoS. The null values are replaced with 0, and irrelevant
columns such as LANGUAGE, ADMIT MIN, ADMISSION LOCATION, and DOB are dropped from
the original data. We also removed no longer needed columns like HADM ID, ADMITTIME,
DISCHTIME, EDREGTIME, and EDOUTTIME, and verified that there were no missing values in the
dataset. Besides, the negative indicator values or outliers, such as negative LoS initiated by entry form
error, were removed as they could skew prediction results. Beyond that, to accelerate model training
and testing, we adjusted the dimensions of the CXR images so that all CXR images were uniformly
resized to a fixed size of 512X512 pixels. Fig. 3 presents a flow diagram of preparing data on the MIMIC
IV v1.0 database. Some representative observations extracted from the MIMIC-IV v1.0 database are

summarized in Table 2.
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Fig. 3 Flow diagram of preparing the data in the MIMIC 1V dataset.

Table 2 A representative sample from the MIMIC-IV v1.0 database.

Subject id LoS Blood Circulatory Digestive Endocrin Ini] ur Nervou Pregnancy Prenatal Respiratory Gender
15124376 2.8541 0 0 0 0 2 2 0 0 1
11303384 2.0166 0 6 0 0 1 0 0 0 0 0
14689001 4.4548 0 3 0 1 2 1 0 1 0 0
14095761 1.5277 2 1 0 4 3 2 0 0 0 1
14095761 3.7437 1 1 1 3 1 2 0 0 0 1
11798821 4.6055 0 0 0 0 17 0 0 0 0 0
11212657 2.9201 0 0 0 0 2 0 0 0 0 0
17649604 2.9965 1 2 1 2 3 0 0 1 0 1
17649604 4.6041 1 6 1 2 3 0 0 0 2 1
16665229 11.975 0 0 0 0 18 0 0 0 0 1
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Fig. 4. The LoS distribution and median LoS by diagnosis category.
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The LoS of each inpatient is defined as the time difference in days measured between hospital
discharge and admission. Fig. 4(a) shows the distribution of inpatient LoS in the MIMIC-1V v1.0 dataset,
while Fig. 4(b) displays the distribution of median LoS by diagnosis category. From Fig. 4(a), it can be
seen that most LoS is under 10 days, and the median LoS is relatively large for some diagnosis categories,
including infectious, blood, congenital, and skin, as shown in Fig. 4(b). Using the data-fusion model
proposed in Section 3.2, we perform LoS prediction on the MIMIC-IV v1.0 dataset, and the usual
splitting method into training, validation, and test sets refers to the tags provided in the MIMIC-CAR-
2.0.0-SPLIT table. The frequently used metrics are employed to calibrate the models, and the specific

calculation process and the results are described in subsequent sections.

4.3. Performance metrics

To evaluate the prediction accuracy of the proposed approach, four performance metrics including
the mean absolute error (MAE), the root mean squared error (RMSE), the coefficient of determination
R-squared (R?), and the explained variance (Ev4r) score are used to facilitate the comparison with

benchmark methods:

1 n

MAE:gZWi—}A’H 2)

i=1
1% 3
RMSE = |-y (v =51 ©

i=1
RY=1-) i =902/ ) 0= ) @

i=0 i=1

©

Eyar =1 —Var(y; — 9;)/Var(y;)
where y; and y; stand for the actual value and predicted value, respectively, n denotes the number of
predicted samples, and Var(-) is the (empirical) variance operator that calculates the sample variance of
a dataset. For both the Ev4r and R’, the ideal value is equal to 1, while greater values are worse for the

indicators of MAE and RMSE.

4.4. Results

As described in Section 3.2, the proposed multimodal fusion model is used for LoS prediction on the
MIMIC-IV v1.0 dataset. Fig. 5 shows the training performance of the proposed model. From Fig. 5, it
can be seen that the validation accuracy of the proposed approach exceeds 0.6 after training for 30
epochs, indicating a solid performance of the proposed approach for LoS prediction. To demonstrate

the superiority of the proposed model, six popular methods, including multilayer perceptron (MLP),
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SVM, random forest (RF), extreme gradient boosting (XGBoost), VGG-style CNN (V-CNN), and one-
dimensional convolutional neural network (1D-CNN), were selected for comparison purposes. Some
hyperparameter settings include a mini-batch size set to 64, a learning rate of 1.0 x 1073, 30 epochs of
training, and the Adam optimizer [42]. Tables 3 and 4 summarize the performance of different methods
for LoS prediction. Further, to detect the potential presence of statistically significant differences among

the methods studied, we applied the well-known Friedman test [43, 44]. After being ranked, the

performance results on test data of different methods are presented in Table 4.
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Fig. 5. The training performance of the proposed approach.

Table 3 Comparison of different methods on the training set.

Models Lo? prediction accuracy o‘n the training set '
MAE RMSE R*! Evir' Time (h:m:s)

SVM 4.7965+0.1029 9.1562+0.0986 0.2333+0.0008 0.3063+0.0129 3:32:29
MLP 4.6935+0.0580 7.5337+0.1695 0.4809+0.0349 0.4809+0.0316 0:09:40
RF 4.4583+0.4331 7.7830+0.6892 0.4460+0.1161 0.4472+0.1154 0:05:22
XGBoost 4.4523+0.1096 7.3646+0.1800 0.5040+0.0355 0.5043+0.0345 0:03:30
V-CNN 4.5856+0.0704 7.7921+0.0174 0.4447+0.0025 0.4474+0.0007 0:19:17
1D-CNN 4.6845+0.0207 8.0269+0.3666 0.4107+0.0684 0.4114+0.0685 0:11:23
Proposed method 4.2869+0.1085 7.1066+0.0532 0.5438+0.0068 0.5442+0.0031 0:11:42

! indicates the higher is better, while ' is in the reverse.

Table 4 Comparison of different methods on the test set.

LoS prediction accuracy on the test set

Models VAE" RMSE' = o Average rank
SVM 4.2208+0.0493 (6)  6.2714+0.0146 (7) 0.1822+0.1462 (7) 0.3104+0.1532 (6) 6.50
MLP 4.2267+0.4696 (7)  5.9387+0.9289 (6) 0.2667+0.0683 (6) 0.2732+0.0067 (7) 6.50
RF 3.6029+1.2172 (2)  5.3722+2.2683 (2) 0.3999+0.2118 (4) 0.4229+0.2464 (4) 3.00
XGBoost 3.7359+0.1278 (3)  5.2653+0.2089 (1) 0.4236+0.0670 (2) 0.4325+0.0619 (2) 2.00
V-CNN 3.5692+0.7810 (1)  5.4056+0.6650 (3) 0.3925+0.1587 (5) 0.4267+0.1465 (3) 3.00
ID-CNN 4.0150+0.2825 (5)  5.6920+0.2679 (5) 0.4024+0.0975 (3) 0.4190+0.0815 (5) 4.50
Proposed method 3.8682+0.2107 (4)  5.5311+£0.2810 (4) 0.6039+0.0412 (1) 0.6042+0.0377 (1) 2.50
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From Tables 3 and 4 it can be seen that the proposed approach attains the R? of 0.5438 and 0.6039,
and the Evar of 0.5442 and 0.6042 on the training set and the test set, respectively, which are the best
values when compared with other algorithms. As for RMSE, the proposed approach attains 7.1066 and
5.5311 on the training set and the test set, respectively, which outperforms most competitors, except for
the methods of RF and XGBoost. Both RF and XGBoost are ensemble learning (EL) methods comprised
of multiple decision tree algorithms (70 in our situation). Furthermore, we applied the Friedman

statistical test to compare the average ranking of different methods. Let rji be the ranking of the i-th

method on the j-th metric, and thus the average ranking can be calculated by

1 .
__E 6
Ri_N 'rjl ()
]

where N denotes the number of measure indicators. The null hypothesis of the Friedman test is that the
performance of the compared algorithms is the same, i.e., there is no distinguishable difference amongst

the methods. Mathematically, the Friedman test statistic is expressed as

(N -1Dx? (7)
CON(k—1) —xZ

Here, Fr follows the Fisher-Snedecor F' distribution with degrees of freedom -1 and (k-1)(N-1), k

Fp

represents the number of compared methods, and x# is computed as

k(k + 1)2
QLR-=—

i

12N
k(k+1)

(8)

xE =

There are a total of 7 algorithms evaluated using 4 different metrics in the experiments to compare,
and thus the k£ and N are assigned as 7 and 4, respectively. With the degrees of freedom of 4-1 and (k-
1)(N-1), the critical value of F(k-1,(k-1)(N-1)) is obtained as F(6,18)=2.66 referring to the probability
distribution table (test size a=0.05). Consequently, since the observed Fr = 9.0 is greater than 2.66, the
null hypothesis of the Friedman test is rejected suggesting a statistically significant difference between
the algorithms exists. Based on pairwise comparisons, the proposed approach has outperformed all the
methods compared except for the ensemble learning method of XGBoost. Even though the most
prominent methods were adopted, the proposed approach has produced competitive advantages for the
prediction of inpatient LoS. The LoS prediction accuracy metrics RMSE and Eva4r for different methods
on the training set and test set are depicted in Fig. 6. Fig. 7 displays a comparison between the predicted

values using our proposed approach and the actual values (left) as well as their respective distributions

(right).
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Fig. 7. Prediction performance of the proposed approach.

From Fig. 6 it can be visualized that the Ev4r values of the proposed method are the highest while the
training RMSE is the lowest, which reveals the efficacy of the proposed method. Also, as shown in Fig.
7, except for some isolated cases, the plotted predicted values approximately coincide with the actual
ones, and their distributions are very close, indicating the effectiveness of the proposed approach. On
the other hand, the runtime of the proposed approach for 30 epochs of training is around 11 minutes,
which is lower than the average runtime of competing methods. Thus, it can be concluded that the
proposed approach exhibits competitive advantages in accuracy and efficiency relative to other state-
of-the-art methods at predicting LoS. Moreover, we compared the performance of our methods to the
results reported in the existing literature, as shown in Table 5. From Table 5 it can be seen that the
proposed approach is on par and even outperforms most of the existing methods on the MIMIC-IV v1.0

dataset.
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Table 5 Comparison results with recent literature [15].

# References Year Description RMSE' R

1  Zimmerman et al. [45] 2006 Mean 7.23 0.00
2 Zimmerman et al. [45] 2006 Median 7.71 -0.14
3 Harutyunyan et al. [26] 2019 LSTM 6.61 0.28
4  Harutyunyan et al. [26] 2019 Multi-Channel LSTM (MC-LSTM) 6.20 0.26
5 Vaswani et al. [46] 2017 Transformer 6.18 0.27
6 Rocheteauetal. [41] 2021 Temporal Pointwise Convolution (TPC) 4.90 0.54

S Temporal Dilated Separable Convolution with

7 Al-Dailami etal. [15] 2022 Context-Aware Feature Fusion (TDSC-CAFF) 4.30 0.64
8  This study 2023 Data-Fusion Model (DF-Mdl) 5.53 0.60

4.5. Ablation study

An ablation study is further performed for our model to analyze the efficacy of the fused dataset. In
the first ablation experiment, we estimate the effect of the CRXMDL using chest X-ray images to predict
LoS. To this end, we remove the CRXMDL from the framework and use the model without X-ray
images fed to perform LoS prediction. We notice a significant decrease in the test accuracy of the ablated
model, where the MAE and RMSE increase to 4.3861 and 5.8599 (increase of 0.5179 and 0.3288), and
the R? and Ev4r drop to 0.5554 and 0.5570 (decrease by 0.0485 and 0.0472), respectively. Though the
efficacy of this ablated model is still better than that of the competing methods, it suffers a notable
decline compared with that of the “full” DF-MdI. This ablation experiment demonstrates that removing
the CRXMDL significantly impacts the performance relative to the aggregated CRXMDL of the
proposed approach. In the second ablation experiment, we remove the newly added modules from the
proposed DF-MdI architecture. Initially, we remove the optimized 1D SE block from the network to
investigate the performance of the proposed approach. We notice a minor decrease in the result of the
ablated model, where the test MAE and RMSE of the ablated model increase to 4.1525 and 5.7031
(increase of 0.2843 and 0.1720), respectively. Subsequently, the entire attention mechanism, including
the enhanced 1D SE-block and SA module, is removed from the network. A significant drop in accuracy
occurs in this ablation model. The test R? and Eyar drop to 0.5514 and 0.5549 (decrease of 0.0525 and
0.0493), and the test MAE and RMSE rise to 4.1254 and 5.8861 (increase of 0.2572 and 0.355),
respectively. This ablation experiment demonstrates that removing the attention mechanism has a
significant impact on the performance compared to the enhanced 1D SE-block and SA module
integrated into the proposed approach. Moreover, in the third ablation experiment, we investigate the
performance and complexity of the model using the simple MSE loss function in place of the proposed
loss function. We notice a significant decrease in the test accuracy of the ablated model, where R? and
Evardrop to 0.5482 and 0.5485 (both decreased by 0.0557), while the MAE and RMSE increase to 4.3677
and 5.9072 (increase of 0.4995 and 0.3761), respectively. Further, the runtime of the ablated model is
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12 minutes and is very close to that of the proposed method, which indicates that there is no increase in
the complexity of the model using the proposed loss function. Thus, this ablation experiment
demonstrates that using the customized loss function improves the performance of the model without

increasing computational complexity. Table 6 summarizes the comparison results of the ablation

experiments.
Table 6 The comparison results of ablation experiments.
) LoS prediction accuracy on the training set ~ LoS prediction accuracy on the test set  Time
Ablation approach ; ; n N ; ; : ; .
MAE' RMSE' R Evir MAE' RMSE' R Evsr (h:m:s)
Delete CRXMDL 43362 7.1641 0.5364 0.5390 43861 5.8599 0.5554  0.5570 0:01:23

Delete 1D SE-block 4.2439 72273  0.5282  0.5299 4.1525 5.7031 0.5789  0.5805 0:11:44
Delete SE+SAmodule  4.1788 7.1400  0.5396  0.5409 4.1254 5.8861 0.5514  0.5549 0:11:41

Replace the customized A,
loss function with MSE 43001 7.1823  0.5341  0.5342 43677 59072  0.5482  0.5485 0:12:00

This study 4.2869 7.1066  0.5438  0.5442 3.8682 5.5311 0.6039  0.6042 0:11:49

4.6. Parameter Finetuning

In this section, we further study the effect of parameter finetuning on the proposed model. We finetune
the essential hyperparameters, including the mini-batch size and the learning rate in the Adam optimizer
and random search, based on cosine decay. The range of the mini-batch size hyperparameter is set as
(IB))E {512, 256, 128, 64, 32, 16}. The initial learning rate is set as (Iry) = 0.001, which drops to the
minimum value of 0 following the cosine decay, i.e., the learning rate changes periodically according to

the cosine function. The formula is expressed as follows

Ir, = 0.5 - Iry(1 + cos(s - 1/S)) ®
where [y is the initial learning rate, s refers to the current step, and S is the number of steps in which
the learning rate decays to 0. We train our model using hyperparameters from these sets for 30 epochs
on the publicly available MIMIC-IV v1.0 dataset with default splits. Fig. 8(a) plots the cosine descent
curve of the learning rate. The prediction performance of the proposed method with different
hyperparameter settings is summarized in Table 7, while Fig. 8(b) shows the changes in the RMSE metric.
From Table 7, we can observe that a minor improvement is obtained when the mini-batch size is assigned
as 512 along with the dynamic learning rate implemented by cosine decay. The MAE and RMSE on the
test set drop to 3.7718 and 5.4183, which are a decrease of 0.0964 and 0.1128, respectively, compared
to those before finetuning. Also, the R? and Eyurrise to 0.6198 and 0.6260, i.e., an increase of 0.0159
and 0.0218, respectively, over the proposed method before finetuning. Other parameter settings do not
lead to better effects. Therefore, these experimental results demonstrate that parameter finetuning can
lead to slight improvements.
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Fig. 8. Fine-tuning of learning rate and mini-batch size hyperparameters.

Table 7 The fine-tuning performance of the proposed approach.

Batch- LoS prediction accuracy on the training set LoS prediction accuracy on the test set Time

sizes MAE'  RMSE'  R* Evar MAE'  RMSE'  R* Ep' (M)
512 4.7631 8.0859 0.4095 0.4118 3.7718 5.4183 0.6198  0.6260 0:03:11
256 4.4664 7.1420 0.5393 0.5398 4.1088 5.6779 0.5826 0.5891 0:04:30
128 3.2901 4.6877 0.8015 0.8085 4.3601 5.7473 0.5723 0.5799 0:07:12
64 3.8645 5.6198 0.7147 0.7147 3.9988 59151 0.5470 0.5471 0:12:57
32 4.2196 6.9706 0.5612 0.5612 4.6905 6.3410 0.4794 0.4904 0:25:04
16 42817 7.0775 0.5476 0.5476 4.0982 5.7648 0.5697 0.5714 0:48:55

5. Discussion and conclusions

LoS prediction is a crucial task for hospitals to achieve and maintain resource efficiency and high
level of treatment quality. Clinical practices in hospitals have generated diverse data modalities,
including but not limited to, vitals, medical images, laboratory test results, clinical notes, etc. Utilizing
this information effectively in a unified model can lead to more efficient resource allocation, higher
diagnostic/prognostic accuracy, and better informed clinical decision making. For example, knowing
the LoS days for a prospective patient would aid hospitals in predicting limitations in bed availability
and also would allow hospitals to prioritize certain diagnostic testing in anticipation that a patient would
otherwise have an extended hospital stay. To this end, this study proposed a novel data-fusion model to
integrate heterogeneous clinical data for predicting inpatient LoS. Multi-modal data are utilized as part
of the proposed method with the sub-models (basic models) established for individual data modalities.
Specifically, a novel attention-embedded 1D convolutional neural network is developed to predict
inpatient LoS using numerical data. By converting the text to sequence data, two long short-term
memory networks are used for text-based LoS prediction. As for CXR image data, a convolutional
neural network model, which we termed CRXMDL, is designed to predict LoS. Finally, these basic

models are integrated to generate a unified data-fusion model, where two fully connected layers with
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the neuron numbers of 64 and 32 are incorporated to change the vector dimensions, and a CL prediction
layer is used for the final prediction of inpatient LoS. Experimental findings demonstrate the superiority
of the proposed approach compared to other state-of-the-art methods. As the experimental materials
used in this work are publicly accessible datasets with deidentified patient health information, this study
poses neither privacy nor confidentiality concerns for the patients the data were collected from. Since
the model solely relies on clinical variables, the risk of potential ethical concerns such as systematic
biases are also reduced allowing for implementing the model across various public health organizations.

In our experiments, the proposed method has produced attractive results and proven to be promising.
However, it is essential to recognize that the approach has certain limitations, leaving room for
enhancements and refinement. First, the three predictive sub-models can be further enhanced by
introducing more complex but efficient structures like octave convolution, spatial pyramid pooling,
dilated and causal convolutions, etc. In our future work, we intend to explore other promising
architectures to improve model performance. Second, despite promising performance, it is worth noting
that the issue of LoS data skewness still requires more investigation. A potential solution is to combine
statistical approaches that take the skewness into account. Incorporating such methods could further
enhance the model’s capability of better quantifying the statistical uncertainty associated with LoS
prediction in lieu of the point prediction discussed in this paper. Lastly, due to concerns about
transparency, accountability, and the perceived “black box” nature of deep learning algorithms,
healthcare stakeholders, including clinicians, administrators, and patients, may express reservations
about adopting deep learning techniques. We will focus on improving the transparency of models,
increasing diversity in training data, and implementing fairness-aware techniques to make models more
robust and interpretable, thereby fostering trust between medical professionals and algorithmic
recommendations. In addition, we are committed to delivering a roadmap for future improvement that
not only meets technical standards but also addresses emerging challenges in terms of legal compliance,

ease of use, transferability, stability, safety, and security.
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