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Abstract: Predicting inpatient length of stay (LoS) is important for hospitals aiming to improve service 

efficiency and enhance management capabilities. Patient medical records are strongly associated with 

LoS. However, due to diverse modalities, heterogeneity, and complexity of data, it becomes challenging 

to effectively leverage these heterogeneous data to put forth a predictive model that can accurately 

predict LoS. To address the challenge, this study aims to establish a novel data-fusion model, termed as 

DF-Mdl, to integrate heterogeneous clinical data for predicting the LoS of inpatients between hospital 

discharge and admission. Multi-modal data such as demographic data, clinical notes, laboratory test 

results, and medical images are utilized in our proposed methodology with individual “basic” sub-

models separately applied to each different data modality. Specifically, a convolutional neural network 

(CNN) model, which we termed CRXMDL, is designed for chest X-ray (CXR) image data, two long 

short-term memory networks are used to extract features from long text data, and a novel attention-

embedded 1D convolutional neural network is developed to extract useful information from numerical 

data. Finally, these basic models are integrated to form a new data-fusion model (DF-Mdl) for inpatient 

LoS prediction. The proposed method attains the best R2 and EVAR values of 0.6039 and 0.6042 among 

competitors for the LoS prediction on the Medical Information Mart for Intensive Care (MIMIC)-IV 

test dataset. Empirical evidence suggests better performance compared with other state-of-the-art 

(SOTA) methods, which demonstrates the effectiveness and feasibility of the proposed approach. 

Keywords: Chest X-ray images; data-fusion model; length of stay prediction; multi-modal learning. 
 

1. Introduction 

Hospital inpatient length of stay (LoS) is a critical indicator that not only measures the efficiency of 

healthcare facilities but also aids in managing resource utilization effectively. LoS is defined as the time 

duration that a patient is required to stay in a hospital or other healthcare facility for treatment. Prolonged 

LoS exposes patients to potential harm associated with hospitalization, such as hospital-acquired 
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infections and adverse drug reactions [1]. In the US, every single extra hour of patient’s transfer delay 

is associated with an adjusted 3% increase in the likelihood of inpatient mortality [2]. From the point of 

view of a healthcare provider, economic pressures to deliver efficient and accessible care are 

unprecedentedly high [3]. Healthcare providers face significant economic pressures to deliver efficient 

and accessible care. The COVID-19 pandemic has exacerbated these challenges to healthcare systems 

[4, 5]. Consequently, controlling hospital costs and improving service efficiency have become 

paramount, especially during resource-constrained situations such as the COVID-19 pandemic. 

Therefore, there is both an urgent need for and practical significance in developing new systems that 

can automatically predict the length of stay for inpatients. 

The healthcare industry is experiencing a transformative phase of digital innovation, which has led to 

an accumulation of vast patient records in clinical practice. These massive quantities of data hold the 

promise of supporting a wide range of medical and healthcare applications in clinical decision support, 

disease surveillance, and population health management. However, to date, most of the successful 

models that learn from data in healthcare are “unimodal,” i.e., they solely focus on a single data modality, 

ignoring the multi-modal nature of human perception [6]. Owing to the great potential for extracting 

meaningful insights and learning essential features from data, machine learning (ML) methods offer 

unprecedented opportunities to improve patient and clinical outcomes. Some notable works include a 

static input-based regression tree model for LoS prediction [7], an integrated multiple Artificial Neural 

Network (ANN) model for predicting LoS [8], and a Hierarchical Attention Network model for LoS and 

mortality predictions [9], etc. Nevertheless, so far, most existing ML models in healthcare mainly rely 

on a single data modality [6]. Though multi-modal learning has been extensively explored in the context 

of audio-visual applications [10] and natural image datasets [11, 12], it has been rarely applied in the 

healthcare domain [13]. Multi-modal learning in healthcare remains relatively unexplored, primarily 

due to the irregular sampling and diverse formats in which patient data is stored, ranging from diagnostic 

codes and laboratory results to medical imaging and unstructured texts [13, 14]. The complex and 

dynamic nature of healthcare data imposes significant challenges for efficient modeling. Consequently, 

LoS prediction, despite its importance, has received limited attention in the literature due to the inherent 

difficulty of the task [15]. This study aims to establish a novel data-fusion model that fuses 

heterogeneous clinical data to predict patient LoS. A multi-modal dataset combining demographic data, 

clinical notes, laboratory test results, and medical images is used in our methodology. To maximize the 

utilization of available data, different data modalities are first separately treated with the aid of 

respective basic sub-models. For numerical data, a novel attention-embedded 1D convolutional neural 
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network (CNN) is developed to extract meaningful features. By converting the text to sequence data, 

two long short-term memory (LSTM) networks are used to predict LoS. For chest X-ray image data, a 

CNN model, which we termed CRXMDL, is designed to predict the inpatient LoS, where the 

InceptionResnet V2 architecture is used as the backbone and three convolution blocks comprised of 32, 

16, and eight 3 × 3 filters, a max pooling (MAP) layer, a flatten layer, and a completely-linked (CL) 

layer are embedded into the networks to compute specific features of CXR images. Finally, these 

individual basic models are integrated to generate a new data-fusion model (DF-Mdl), in which two 

fully connected layers with neuron numbers of 64 and 32 are incorporated to transform vector 

dimensions, and a CL prediction layer is used to produce the final prediction of inpatient LoS.  

The key contributions of this study can be briefly protocoled as follows: 

 We develop a data-fusion model that combines multiple “basic” predictive models using various 

data modalities, including clinical notes, laboratory test results, demographic information, and 

medical images to predict inpatient LoS. Notably, the LoS prediction task is approached as a 

regression problem aiming to predict the (expected) number of days a patient will stay in the 

hospital rather than assigning a patient into one of, say, two classes.  

 CXR image data are utilized in our scheme. We developed a basic model referred to as CRXMDL 

that uses the InceptionResnet V2 architecture as the backbone; and three convolution blocks, a 

MAP layer, a flatten layer, and a CL layer are embedded into the networks to predict inpatient 

LoS. 

 We convert long text blocks (in natural language) into sequence data after performing 

segmentation on them, and then design two LSTM networks to infer sequence-dependent feature 

representations. 

 We upgrade the traditional squeeze-and-excitation (SE) block used in the field of computer vision 

to a 1D SE-block and embed it with spatial attention into a 1D-CNN for numerical data-based 

feature extraction.  

The remainder of this article is organized as follows. Section 2 provides a literature review. Section 

3 presents methodology development. The overall architecture of the proposed DF-Mdl along with 

technical details are discussed in this section. Through a real-world case study, Section 4 demonstrates 

the efficacy of the proposed approach. Finally, Section 5 concludes the paper and provides some possible 

future research directions. 
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2. Related work 

Clinical practice produces large amounts of data of various types, such as clinical notes, laboratory 

test results, measurements of vital signs, and medical images [16]. The unprecedented proliferation of 

medical data has prompted substantial efforts toward the development of various data-driven models 

for LoS prediction [17]. Existing data-driven LoS models can be broadly grouped into two categories: 

classification models and regression models [18-23]. In classification models, the aim is to group the 

LoS into multiple classes, e.g., short, medium, and long stay, based on the number of days that the 

patient stays in the hospital. Thompson et al. [24] introduced the prolonged length of stay (PLOS) 

attribute as a binary nominal variable based on a given threshold and obtained attractive classification 

results. Similarly, by converting the LoS prediction to a binary classification task, Bednarski et al. [25] 

introduced a temporal convolutional network for clinical LoS prediction. Their proposed method 

outperformed other state-of-the-art (SOTA) methods, such as Gated Recurrent Unit (GRU) network and 

random forest (RF) method. Harutyunyan et al. [26] reduced the LoS prediction to a classification 

problem with 10 classes/buckets and achieved SOTA performance for forecasting LoS on the MIMIC-

III dataset. The aforecited literature indicates the usefulness of classification models in LoS prediction. 

However, several studies have revealed that the LoS distributions are highly right-skewed [9, 27, 28]. 

This skewness implies that the dataset becomes imbalanced with a limited number of cases exhibiting 

long LoS. This imbalance misleads the performance evaluation as classes of long LoS tend to be treated 

as outliers. Therefore, interpreting the LoS task as a regression problem is a more appropriate and 

informative way of balancing the dataset as it focuses on the actual number of LoS days (possibly, 

fractional) and not classes [29]. Ma et al. [27] trained three decision tree regression models, including 

bagging, AdaBoost, and RF to predict inpatients’ LoS. The bagging method achieved the best test results 

with a root mean square error (RMSE) of 0.296, R2 of 0.831, and an accuracy rate of 0.723. Using four 

ML algorithms, Hasan et al. [30] performed LoS prediction on the MIMIC-III dataset. The extreme 

gradient boosting (XGBoost) regressor produced the best results with RMSE of 1.2. and R2 of 0.86. In 

a similar study, Boff et al. [31] applied five ML algorithms to predict LoS, including multiple linear 

regression, RF, support vector regression, ridge regression, and partial least squares algorithms. The RF 

achieved top performance in their experiment with an R2 of 0.6567 and a mean absolute error (MAE) of 

3.51 days. 

Nevertheless, for both classification and regression models, the research so far has mainly focused on 

studying one type of data source only. It is expected that the integration of heterogeneous medical data 

modalities (unstructured clinical notes, laboratory test results, measurements of vital signs, demographic 
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information, etc.) has the potential to improve prediction accuracy and enhance knowledge discovery 

from the data. Indeed, Zhang et al. [32] found that integrating heterogeneous data types across electronic 

health records (EHRs) helps improve the performance of prediction models and reduce errors. In their 

model, they only combined structured data and unstructured texts. Incorporating more data modalities 

such as image data may prove helpful if each data modality contains incomplete but complementary 

information [13, 33]. By integrating four modalities of data, in particular, chest X-ray images and tabular 

data, Soenksen et al. [33] predicted whether a patient is going to be discharged within the next 48h and 

converted the LoS prediction to a binary classification problem. Although some promising performance 

was obtained and image data were used, the class imbalance problem likely had an adverse effect on the 

performance of their model. Hayat et al. [13] proposed a MedFuse model to fuse the CXR images and 

clinical time-series data. However, the LoS prediction task was not considered in their work. Besides, 

the two-stage training strategy increases the computational complexity of the model. Al-Dailami et al. 

[15] introduced a multi-scale feature fusion model for predicting LoS in ICU and extracted multiple 

data modalities, such as demographic data, medical history, lab test results, and label information. But 

the image data were not utilized in their method. To overcome this shortcoming, we establish a data-

fusion model that incorporates multiple individual predictive models using diverse data modalities such 

as clinical notes, laboratory test results, demographic information, and medical images. Section 3 

describes the specific procedure underlying our approach. 

3. Methodology 

3.1 General outline 

Compared with single modality based LoS prediction, our approach utilized multiple input sources 

to improve the prediction performance by integrating multiple heterogeneous data. Fig. 1 displays the 

overall flowchart of the proposed procedure. First, a novel data fusion architecture extracts meaningful 

patterns by fusing heterogeneous data, including text, numerical data, and CXR image data. Data pre-

processing and cleaning are performed on the extracted data. Specifically, numerical data are normalized 

before being passed into the model, and the category variables are converted into dummy/indicator 

variables via One-Hot encoding. The text data are segmented and converted into the sequence by 

implementing the Python text.Tokenizer command. As for CXR image data, they are stored in the 

MIMIC-CXR-JPG database in JPG format with structured labels, where the dimensions of CXR images 

are uniformly resized to a fixed size of 512×512 pixels for fitting the models. The pre-processed data 

are consequently fused and utilized as input for the proposed fused model. The resulting observations 

are split into training and validation sets to fit the proposed model while tuning respective hyper-
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parameters to select the best architecture, and the remaining data are used as a test set to evaluate the 

final model performance. The details of each given step are presented in subsequent sections. 

The flowchart of LoS prediction for patients in hospitals. 
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Fig. 1. Overall flowchart of the proposed LoS prediction framework. 

3.2 Data fusion model 

We consider three different modalities, including numerical variables (demographics, medical exam, 

etc.), unstructured text data, and CXR image data. Note that the numerical variables include discrete 

and continuous data. For unstructured text data (i.e., natural language text, such as nursing 

documentation and physician notes), the word embedding technique can map words or phrases from 

vocabulary to a corresponding vector of continuous values. However, directly modeling sequential notes 

using word embedding can be time-consuming. It may be impractical since clinical notes are usually 

quite lengthy and involve multiple timestamps. Moreover, the length of different documents varies. To 

address this challenge, we use a tokenizer to implement the work segmentation for long texts, such as 

the long_title field in d_icd_procedures and d_icd_diagnoses tables, Then, the Text2Seq function is used to 

transform the text data to sequence variables. To capture the dependencies among sequence variables, 

two long short-term memory networks are designed to take the output of Text2Seq for inferring sequence-

dependent feature representations. Here, the hyper-parameter of the perceptron number is set to 4, with 

a ReLu activation function and l2 regularization. Besides, note that other categorical variables, such as 

insurance, admission type, marital status, and gender, are converted into numerical variables of model 

input dictionary by implementing the one-hot encoding. For CXR image data, we design a convolutional 

neural network model referred to as CRXMDL to train on the data using InceptionResnet V2 [34] as a 

backbone and then embed three convolution blocks comprised of 32, 16, and eight 3 × 3 filters, max 

pooling layer, flatten layer, and a fully connected layer to calculate specific features of CXR images. As 
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for numerical data, a novel attention-embedded 1D convolutional neural network (Att-1DCNN) is 

developed to predict inpatient LoS. Using 32 small filters with the size of 3, two cascaded one-

dimensional (1D) convolution layers followed by a max pooling layer are used to extract high-level 

features. In particular, an improved 1D SE-block [35] is incorporated into the network for feature 

adaptive calibration, and following the enhanced 1D SE-block, a spatial attention (SA) mechanism is 

added in the network to quantify the significance of spatial point features. In this manner, the features 

obtained by the enhanced 1D SE block and spatial attention are fused to generate the output of the Att-

1DCNN for numerical data-based LoS prediction. Finally, combining the Att-1DCNN, LSTM, and 

CRXMDL, the multiple basic models are integrated to generate a new data-fusion model, for which two 

densely connected layers with neuron numbers of 64 and 32 are embedded into the networks to change 

the vector dimensions, and a fully connected (FC) prediction layer is used for the final prediction of 

inpatient LoS.  

Due to the heavily skewed LoS distribution, the prediction task is particularly challenging. In skewed 

data, the long tail may be treated as an outlier by ML models and adversely affect the model performance 

[7, 36]. Most of the recent LoS prediction studies tend to ignore this challenge, which may lead to 

underprediction of LoS and unreliable results [36]. To train the proposed DF-Mdl, the classical mean 

squared error (MSE) loss function is not an adequate choice as its robustness relies heavily on the 

Gaussian distribution assumption on the response variable. However, the LoS distribution is typically 

right-skewed and contains outliers, in which case using a suboptimal loss function may introduce bias 

and cause large prediction errors. Therefore, to alleviate this problem, the Huber loss function is 

employed, which furnishes a robust estimation of regression models and reduces outliers’ contributions 

to the squared error loss, thereby limiting the impact on regression estimates [37]. The Huber-type 

customized loss function [38] used in our network is defined as 

𝐿𝐿(𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘) = �
(𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2,   for |𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘| ≤ 𝜃𝜃,

  
2𝜃𝜃2−𝑝𝑝

𝑝𝑝
 |𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘|𝑝𝑝 −

2 − 𝑝𝑝
𝑝𝑝

𝜃𝜃2,   otherwise.  
 

(1) 

 

Here, 𝑦𝑦�𝑘𝑘 and 𝑦𝑦𝑘𝑘 denote the predicted value and actual value, respectively, p and 𝜃𝜃 are two non-negative 

hyperparameters, where p controls the concavity and convexity of the loss function, while 𝜃𝜃 determines 

the turning point (p = 1 here). Fig. 2 displays the architecture of the proposed DF-Mdl. Below 

summarizes the core steps of the proposed algorithm: 

1. Given the raw data from different modalities, the original dataset D is pre-processed into subsets 

D={D1, D2,…, DM}, where 𝑀𝑀 is the number of total data types. For each sub-dataset 𝑫𝑫𝒎𝒎 of patient 𝑖𝑖, 

the data is denoted as 𝑫𝑫𝑖𝑖,𝑚𝑚 = �𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2, … , 𝑥𝑥𝑖𝑖,𝐿𝐿�,  where 𝑥𝑥𝑖𝑖,𝑙𝑙 denotes the extracted feature for patient 𝑖𝑖, 
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𝐿𝐿 is the total number of features in sub-dataset 𝑫𝑫𝑖𝑖,𝑚𝑚, here 𝑖𝑖 = 1,2, … ,𝑁𝑁,𝑁𝑁 is the total number of patients.  

2. Basic models H={H1, H2,…, HM} are constructed separately to extract useful information from 

each modality. For each sub-model, the corresponding output 𝑧𝑧𝑚𝑚 is obtained, which is denoted as 𝑧𝑧𝑚𝑚 =

𝐻𝐻𝑚𝑚(𝑫𝑫𝑚𝑚).  

3. The outputs 𝒁𝒁 = {𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑚𝑚} from basic models are concatenated and fed into another network 

comprised of two densely connected layers with neuron numbers of 64 and 32, while a CL prediction 

layer is used for the final prediction of LoS. Table 1 depicts vital hyper-parameters in the proposed 

model. 
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Fig. 2 The overall architecture of the proposed DF-Mdl. 

Table 1. Essential hyperparameters in the proposed model.  
Layer Input shape Filter  

number 
Kernel 
Size Output Shape # of Parameters  Replications  

InputLayer (numeric) (None, 27, 1) - - (None, 27, 1) - 1 
Conv1D (None, 27, 1) 32 3 (None, 23, 32) 128+3104 2 
MaxPooling1D (None, 23, 32) - - (None, 11, 32) - 1 
GlobalAveragePooling1D (None, 11, 32) - - (None, 32) - 1 
Conv1D (None, 32, 1) 32 3 (None, 32, 1) 3 1 
sigmoid  (None, 128,128,1) - - (None, 128, 128, 1) - 1 
Multiply (None, 11, 32) 

    
- - (None, 1, 11, 32) - 1 

Add (None, 11, 32) 
    

- - (None, 1, 11, 32) - 1 
reducemax  (None, 11, 32) - - (None, 32) - 1 
reducemean  (None, 32, 1) 32 3 (None, 32, 1) 3 1 
Concatenate (None, 1, 11, 1) - - (None, 1, 11, 2) - 1 
Conv1D (None, 1, 11, 2) 

    
32 3 (None, 1, 11, 1) 3 1 

sigmoid  (None, 1, 11, 1) 
    

- - (None, 1, 11, 1) - 1 
InputLayer (text) (None, 23) - - (None, 23) - 1 
InputLayer (text) (None, 18) - - (None, 18) - 1 
Multiply (None,1 11, 32) 

    
- - (None, 1, 11, 32) - 1 

Embedding (None, 23, 32) - - (None, 1, 32) 16416+16928+192 3 
Flatten (None, 1, 11, 32) 

   
- - (None, 352) 

  
- 2 
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InputLayer (images) [(None,128,128,1)] - - [(None,128,128,1)] - 1 
LSTM (None, 23, 32) 

   
- - (None, 4) 592+592 2 

Concatenate (None, 32)  
  

- - (None, 448) - 2 
InputLayer (categorical) (None, 28) - - (None, 28) - 1 
Flatten (None, 1, 32) - - (None, 32) - 1 
Sequential (None,128,128,1) - - (None, 1) - 1 
Dense  (None, 448) - - (None, 32) 28736+2080 2 
FC  (None, 32) - - (None, 1) 33 1 

4. Case study 

To evaluate the performance of the proposed approach, we conducted an empirical study on the 

Medical Information Mart for Intensive Care (MIMIC)-IV v1.0 database. For benchmarking purposes, 

state-of-the-art LoS prediction methods were chosen for comparisons. 

4.1. Experimental setup 

The computations were primarily conducted using Python 3.7 deep learning framework utilizing 

widely used libraries, such as Keras, Scikit-learn (https://scikit-learn.org/stable/), Matplotlib, and 

Tensorflow, which are accelerated by a graphics processing unit (GPU). The hardware configuration 

used for operating the deep learning framework to perform LoS prediction was AMD EPYC 7502P 32-

Core Central Processing Unit (CPU), 32 GB memory, NVIDIA RTX A6000 graphics processing unit 

(GPU). Training, validation, and testing were all carried out in a Linux series OS. The Adam optimizer 

was selected to train the model, with a batch size of 64 and a learning rate of 1.0 × 10−3. 

4.2. MIMIC-IV v1.0 dataset 

MIMIC-IV v1.0 dataset contains medical records for over 40,000 patients admitted to the intensive 

care unit (ICU) at the Beth Israel Deaconess Medical Center (BIDMC) between 2008 and 2019 [39], 

and it contains all documentation entered for each patient throughout their interaction with the hospital. 

MIMIC-IV v1.0 dataset includes a wide range of observations through time, such as free-text notes 

composed by clinicians, medication orders, laboratory test results, procedures, demographic information, 

and diagnosis codes. In addition, MIMIC-IV v1.0 was complemented by a further data source, MIMIC-

CXR [40], which contains patients’ chest radiographs in DICOM format with free-text radiology reports. 
All data records are deidentified, i.e., patient identifiers are removed according to the Health Insurance 

Portability and Accountability Act (HIPAA) Safe Harbor provision. The data can be accessed at the 

PhysioNet website (https://physionet.org/content/mimic-iv-demo/1.0/core/) upon signing the data use 

agreement. Following the cohort selection procedure recommended by [41], we extract a set of features. 

511,741 rows of records are extracted from the tabular data of the MIMIC-IV v1.0 dataset. For chest X-

ray images, only images with ViewPositions of “PA (posteroanterior)” or “AP (anteroposterior)” are 

https://scikit/
https://physionet/
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selected. As such, 170,934 CXR images are retained. Except for CXR images, a total of 52 attributes, 

including circulatory, endocrine, blood, infectious, injury, and mental, have been extracted from the 

following tables: ADMISSIONS, DIAGNOSIS_ICD, D_DIAGNOSIS_ICD PATIENTS, ICDSTAYS, 

PROCEDURES_ICD, and D_PROCEDURES_ICD. These tables record inpatients’ demographic data 

and intensive care data at the BIDMC. For instance, the ADMISSIONS table provides information 

regarding patients’ admission to the hospital, such as admission and discharge time, demographic 

information, and the source of admission. The DIAGNOSIS_ICD table contains diagnosis category 

information, which is divided into 17 categories within the ICD9 nomenclature, and the corresponding 

category names are summarized in the D_DIAGNOSIS_ICD table. The PATIENTS table provides 

inpatients’ age and gender information, and the ICDSTAYS table contains the ICU data for each hospital 

admission. The PROCEDURES_ICD table provides the procedure code for inpatients, while 

corresponding procedure names are included in the D_PROCEDURES_ICD table. Then, data 

transformation, data cleaning, imputation of missing data, and other data preprocessing operations are 

performed on the original data. The admission and discharge times are converted into date-time type, 

which is useful for counting the days of inpatient LoS. The null values are replaced with 0, and irrelevant 

columns such as LANGUAGE, ADMIT_MIN, ADMISSION_LOCATION, and DOB are dropped from 

the original data. We also removed no longer needed columns like HADM_ID, ADMITTIME, 

DISCHTIME, EDREGTIME, and EDOUTTIME, and verified that there were no missing values in the 

dataset. Besides, the negative indicator values or outliers, such as negative LoS initiated by entry form 

error, were removed as they could skew prediction results. Beyond that, to accelerate model training 

and testing, we adjusted the dimensions of the CXR images so that all CXR images were uniformly 

resized to a fixed size of 512×512 pixels. Fig. 3 presents a flow diagram of preparing data on the MIMIC 

IV v1.0 database. Some representative observations extracted from the MIMIC-IV v1.0 database are 

summarized in Table 2. 
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Fig. 3 Flow diagram of preparing the data in the MIMIC IV dataset. 

 
Table 2 A representative sample from the MIMIC-IV v1.0 database. 

Subject_id LoS Blood Circulatory Digestive Endocrin
e ... Injur

y 
Nervou

s Pregnancy Prenatal Respiratory Gender 

15124376 2.8541
 

0 0 0 0 ... 2 0 2 0 0 1 
11303384 2.0166

 
0 6 0 0 ... 1 0 0 0 0 0 

14689001 4.4548
 

0 3 0 1 ... 2 1 0 1 0 0 
14095761 1.5277

 
2 1 0 4 ... 3 2 0 0 0 1 

14095761 3.7437
 

1 1 1 3  1 2 0 0 0 1 
11798821 4.6055

 
0 0 0 0  17 0 0 0 0 0 

11212657 2.9201
 

0 0 0 0 ... 2 0 0 0 0 0 
17649604 2.9965

 
1 2 1 2 ... 3 0 0 1 0 1 

17649604 4.6041
 

1 6 1 2 ... 3 0 0 0 2 1 
16665229 11.975

 
0 0 0 0 ... 18 0 0 0 0 1 

 

   
                  (a) Distribution of inpatient LoS                        (b) Median LoS by diagnosis category 

Fig. 4. The LoS distribution and median LoS by diagnosis category. 
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The LoS of each inpatient is defined as the time difference in days measured between hospital 

discharge and admission. Fig. 4(a) shows the distribution of inpatient LoS in the MIMIC-IV v1.0 dataset, 

while Fig. 4(b) displays the distribution of median LoS by diagnosis category. From Fig. 4(a), it can be 

seen that most LoS is under 10 days, and the median LoS is relatively large for some diagnosis categories, 

including infectious, blood, congenital, and skin, as shown in Fig. 4(b). Using the data-fusion model 

proposed in Section 3.2, we perform LoS prediction on the MIMIC-IV v1.0 dataset, and the usual 

splitting method into training, validation, and test sets refers to the tags provided in the MIMIC-CAR-

2.0.0-SPLIT table. The frequently used metrics are employed to calibrate the models, and the specific 

calculation process and the results are described in subsequent sections. 

4.3. Performance metrics 

To evaluate the prediction accuracy of the proposed approach, four performance metrics including 

the mean absolute error (MAE), the root mean squared error (RMSE), the coefficient of determination 

R-squared (R2), and the explained variance (EVAR) score are used to facilitate the comparison with 

benchmark methods: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 (2) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 −
𝑛𝑛

𝑖𝑖=1

𝑦𝑦�𝑖𝑖)2 
(3) 

 

𝑅𝑅2 = 1 −�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=0

/�(𝑦𝑦𝑖𝑖 − 𝑦̄𝑦)2
𝑛𝑛

𝑖𝑖=1

 (4) 
 

𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉 = 1 − Var(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)/Var(𝑦𝑦𝑖𝑖) (5) 
 

where 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 stand for the actual value and predicted value, respectively, n denotes the number of 

predicted samples, and Var(∙) is the (empirical) variance operator that calculates the sample variance of 

a dataset. For both the EVAR and R2, the ideal value is equal to 1, while greater values are worse for the 

indicators of MAE and RMSE. 

4.4. Results 

As described in Section 3.2, the proposed multimodal fusion model is used for LoS prediction on the 

MIMIC-IV v1.0 dataset. Fig. 5 shows the training performance of the proposed model. From Fig. 5, it 

can be seen that the validation accuracy of the proposed approach exceeds 0.6 after training for 30 

epochs, indicating a solid performance of the proposed approach for LoS prediction. To demonstrate 

the superiority of the proposed model, six popular methods, including multilayer perceptron (MLP), 
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SVM, random forest (RF), extreme gradient boosting (XGBoost), VGG-style CNN (V-CNN), and one-

dimensional convolutional neural network (1D-CNN), were selected for comparison purposes. Some 

hyperparameter settings include a mini-batch size set to 64, a learning rate of 1.0 × 10−3, 30 epochs of 

training, and the Adam optimizer [42]. Tables 3 and 4 summarize the performance of different methods 

for LoS prediction. Further, to detect the potential presence of statistically significant differences among 

the methods studied, we applied the well-known Friedman test [43, 44]. After being ranked, the 

performance results on test data of different methods are presented in Table 4. 

        
Fig. 5. The training performance of the proposed approach. 

 
Table 3 Comparison of different methods on the training set. 

Models 
LoS prediction accuracy on the training set  

Time (h:m:s) MAE↓ RMSE↓ R2↑ EVAR
↑ 

SVM 4.7965±0.1029 9.1562±0.0986 0.2333±0.0008 0.3063±0.0129 3:32:29 
MLP 4.6935±0.0580 7.5337±0.1695 0.4809±0.0349 0.4809±0.0316 0:09:40 
RF 4.4583±0.4331 7.7830±0.6892 0.4460±0.1161 0.4472±0.1154 0:05:22 
XGBoost 4.4523±0.1096 7.3646±0.1800 0.5040±0.0355 0.5043±0.0345 0:03:30 
V-CNN 4.5856±0.0704 7.7921±0.0174 0.4447±0.0025 0.4474±0.0007 0:19:17 
1D-CNN 4.6845±0.0207 8.0269±0.3666 0.4107±0.0684 0.4114±0.0685 0:11:23 
Proposed method 4.2869±0.1085 7.1066±0.0532 0.5438±0.0068 0.5442±0.0031 0:11:42 

↑ indicates the higher is better, while ↓ is in the reverse. 

 

Table 4 Comparison of different methods on the test set. 

Models 
 LoS prediction accuracy on the test set 

Average rank  MAE↓ RMSE↓ R2↑ EVAR
↑ 

SVM  4.2208±0.0493 (6) 6.2714±0.0146 (7) 0.1822±0.1462 (7) 0.3104±0.1532 (6) 6.50 
MLP  4.2267±0.4696 (7) 5.9387±0.9289 (6) 0.2667±0.0683 (6) 0.2732±0.0067 (7) 6.50 
RF  3.6029±1.2172 (2) 5.3722±2.2683 (2) 0.3999±0.2118 (4) 0.4229±0.2464 (4) 3.00 
XGBoost  3.7359±0.1278 (3) 5.2653±0.2089 (1) 0.4236±0.0670 (2) 0.4325±0.0619 (2) 2.00 
V-CNN  3.5692±0.7810 (1) 5.4056±0.6650 (3) 0.3925±0.1587 (5) 0.4267±0.1465 (3) 3.00 
1D-CNN  4.0150±0.2825 (5) 5.6920±0.2679 (5) 0.4024±0.0975 (3) 0.4190±0.0815 (5) 4.50 
Proposed method  3.8682±0.2107 (4) 5.5311±0.2810 (4) 0.6039±0.0412 (1) 0.6042±0.0377 (1) 2.50 
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From Tables 3 and 4 it can be seen that the proposed approach attains the R2 of 0.5438 and 0.6039, 

and the EVAR of 0.5442 and 0.6042 on the training set and the test set, respectively, which are the best 

values when compared with other algorithms. As for RMSE, the proposed approach attains 7.1066 and 

5.5311 on the training set and the test set, respectively, which outperforms most competitors, except for 

the methods of RF and XGBoost. Both RF and XGBoost are ensemble learning (EL) methods comprised 

of multiple decision tree algorithms (70 in our situation). Furthermore, we applied the Friedman 

statistical test to compare the average ranking of different methods. Let 𝑟𝑟𝑗𝑗𝑖𝑖 be the ranking of the i-th 

method on the j-th metric, and thus the average ranking can be calculated by  

𝑅𝑅𝑖𝑖 =
1
𝑁𝑁
�𝑟𝑟𝑗𝑗𝑖𝑖

𝑗𝑗

 (6) 
 

where N denotes the number of measure indicators. The null hypothesis of the Friedman test is that the 

performance of the compared algorithms is the same, i.e., there is no distinguishable difference amongst 

the methods. Mathematically, the Friedman test statistic is expressed as 

𝐹𝐹𝐹𝐹 =
(𝑁𝑁 − 1)𝑥𝑥𝐹𝐹2

𝑁𝑁(𝑘𝑘 − 1) − 𝑥𝑥𝐹𝐹2
. (7) 

 
Here, FF follows the Fisher-Snedecor F distribution with degrees of freedom k-1 and (k-1)(N-1), k 

represents the number of compared methods, and 𝑥𝑥𝐹𝐹2 is computed as 

𝑥𝑥𝐹𝐹2 =
12𝑁𝑁

𝑘𝑘(𝑘𝑘 + 1) ��𝑅𝑅𝑖𝑖2 −
𝑘𝑘(𝑘𝑘 + 1)2

4
𝑖𝑖

�. (8) 

 

There are a total of 7 algorithms evaluated using 4 different metrics in the experiments to compare, 

and thus the k and N are assigned as 7 and 4, respectively. With the degrees of freedom of k-1 and (k-

1)(N-1), the critical value of F(k-1,(k-1)(N-1)) is obtained as F(6,18)=2.66 referring to the probability 

distribution table (test size α=0.05). Consequently, since the observed 𝐹𝐹�𝐹𝐹 = 9.0 is greater than 2.66, the 

null hypothesis of the Friedman test is rejected suggesting a statistically significant difference between 

the algorithms exists. Based on pairwise comparisons, the proposed approach has outperformed all the 

methods compared except for the ensemble learning method of XGBoost. Even though the most 

prominent methods were adopted, the proposed approach has produced competitive advantages for the 

prediction of inpatient LoS. The LoS prediction accuracy metrics RMSE and EVAR for different methods 

on the training set and test set are depicted in Fig. 6. Fig. 7 displays a comparison between the predicted 

values using our proposed approach and the actual values (left) as well as their respective distributions 

(right). 
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Fig. 6. The RMSE and EVAR comparison of different methods. 

 

    
Fig. 7. Prediction performance of the proposed approach. 

From Fig. 6 it can be visualized that the EVAR values of the proposed method are the highest while the 

training RMSE is the lowest, which reveals the efficacy of the proposed method. Also, as shown in Fig. 

7, except for some isolated cases, the plotted predicted values approximately coincide with the actual 

ones, and their distributions are very close, indicating the effectiveness of the proposed approach. On 

the other hand, the runtime of the proposed approach for 30 epochs of training is around 11 minutes, 

which is lower than the average runtime of competing methods. Thus, it can be concluded that the 

proposed approach exhibits competitive advantages in accuracy and efficiency relative to other state-

of-the-art methods at predicting LoS. Moreover, we compared the performance of our methods to the 

results reported in the existing literature, as shown in Table 5. From Table 5 it can be seen that the 

proposed approach is on par and even outperforms most of the existing methods on the MIMIC-IV v1.0 

dataset.  
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Table 5 Comparison results with recent literature [15]. 
# References Year Description RMSE↓ R2↑ 
1 Zimmerman et al. [45] 2006 Mean 7.23 0.00 
2 Zimmerman et al. [45] 2006 Median 7.71 -0.14 
3 Harutyunyan et al. [26]  2019 LSTM 6.61 0.28 
4 Harutyunyan et al. [26]  2019 Multi-Channel LSTM (MC-LSTM) 6.20 0.26 
5 Vaswani et al. [46] 2017 Transformer 6.18 0.27 
6 Rocheteau et al. [41] 2021 Temporal Pointwise Convolution (TPC) 4.90 0.54 

7 Al-Dailami et al. [15] 2022 Temporal Dilated Separable Convolution with 
Context-Aware Feature Fusion (TDSC-CAFF) 4.30 0.64 

8 This study 2023 Data-Fusion Model (DF-Mdl) 5.53 0.60 

4.5. Ablation study 

An ablation study is further performed for our model to analyze the efficacy of the fused dataset. In 

the first ablation experiment, we estimate the effect of the CRXMDL using chest X-ray images to predict 

LoS. To this end, we remove the CRXMDL from the framework and use the model without X-ray 

images fed to perform LoS prediction. We notice a significant decrease in the test accuracy of the ablated 

model, where the MAE and RMSE increase to 4.3861 and 5.8599 (increase of 0.5179 and 0.3288), and 

the R2 and EVAR drop to 0.5554 and 0.5570 (decrease by 0.0485 and 0.0472), respectively. Though the 

efficacy of this ablated model is still better than that of the competing methods, it suffers a notable 

decline compared with that of the “full” DF-Mdl. This ablation experiment demonstrates that removing 

the CRXMDL significantly impacts the performance relative to the aggregated CRXMDL of the 

proposed approach. In the second ablation experiment, we remove the newly added modules from the 

proposed DF-Mdl architecture. Initially, we remove the optimized 1D SE block from the network to 

investigate the performance of the proposed approach. We notice a minor decrease in the result of the 

ablated model, where the test MAE and RMSE of the ablated model increase to 4.1525 and 5.7031 

(increase of 0.2843 and 0.1720), respectively. Subsequently, the entire attention mechanism, including 

the enhanced 1D SE-block and SA module, is removed from the network. A significant drop in accuracy 

occurs in this ablation model. The test R2 and EVAR drop to 0.5514 and 0.5549 (decrease of 0.0525 and 

0.0493), and the test MAE and RMSE rise to 4.1254 and 5.8861 (increase of 0.2572 and 0.355), 

respectively. This ablation experiment demonstrates that removing the attention mechanism has a 

significant impact on the performance compared to the enhanced 1D SE-block and SA module 

integrated into the proposed approach. Moreover, in the third ablation experiment, we investigate the 

performance and complexity of the model using the simple MSE loss function in place of the proposed 

loss function. We notice a significant decrease in the test accuracy of the ablated model, where R2 and 

EVAR drop to 0.5482 and 0.5485 (both decreased by 0.0557), while the MAE and RMSE increase to 4.3677 

and 5.9072 (increase of 0.4995 and 0.3761), respectively. Further, the runtime of the ablated model is 
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12 minutes and is very close to that of the proposed method, which indicates that there is no increase in 

the complexity of the model using the proposed loss function. Thus, this ablation experiment 

demonstrates that using the customized loss function improves the performance of the model without 

increasing computational complexity. Table 6 summarizes the comparison results of the ablation 

experiments.  

Table 6 The comparison results of ablation experiments. 

Ablation approach 
LoS prediction accuracy on the training set  LoS prediction accuracy on the test set Time 

(h:m:s) MAE↓ RMSE↓ R2↑ EVAR
↑  MAE↓ RMSE↓ R2↑ EVAR

↑ 
Delete CRXMDL 4.3362 7.1641 0.5364 0.5390  4.3861 5.8599 0.5554 0.5570 0:01:23 
Delete 1D SE-block 4.2439 7.2273 0.5282 0.5299  4.1525 5.7031 0.5789 0.5805 0:11:44 
Delete SE+SA module 4.1788 7.1400 0.5396 0.5409  4.1254 5.8861 0.5514 0.5549 0:11:41 
Replace the customized 
loss function with MSE 4.3001 7.1823 0.5341 0.5342  4.3677 5.9072 0.5482 0.5485 0:12:00 

This study  4.2869 7.1066 0.5438 0.5442  3.8682 5.5311 0.6039 0.6042 0:11:49 

4.6. Parameter Finetuning 

   In this section, we further study the effect of parameter finetuning on the proposed model. We finetune 

the essential hyperparameters, including the mini-batch size and the learning rate in the Adam optimizer 

and random search, based on cosine decay. The range of the mini-batch size hyperparameter is set as 

(|B|)∈{512, 256, 128, 64, 32, 16}. The initial learning rate is set as (𝑙𝑙𝑟𝑟0) = 0.001, which drops to the 

minimum value of 0 following the cosine decay, i.e., the learning rate changes periodically according to 

the cosine function. The formula is expressed as follows 

𝑙𝑙𝑟𝑟𝑠𝑠 = 0.5 · 𝑙𝑙𝑟𝑟0(1 + cos( 𝑠𝑠 ⋅ 𝜋𝜋/𝑆𝑆)) (9) 
 

where 𝑙𝑙𝑟𝑟0 is the initial learning rate, s refers to the current step, and S is the number of steps in which 

the learning rate decays to 0. We train our model using hyperparameters from these sets for 30 epochs 

on the publicly available MIMIC-IV v1.0 dataset with default splits. Fig. 8(a) plots the cosine descent 

curve of the learning rate. The prediction performance of the proposed method with different 

hyperparameter settings is summarized in Table 7, while Fig. 8(b) shows the changes in the RMSE metric. 

From Table 7, we can observe that a minor improvement is obtained when the mini-batch size is assigned 

as 512 along with the dynamic learning rate implemented by cosine decay. The MAE and RMSE on the 

test set drop to 3.7718 and 5.4183, which are a decrease of 0.0964 and 0.1128, respectively, compared 

to those before finetuning. Also, the R2 and EVAR rise to 0.6198 and 0.6260, i.e., an increase of 0.0159 

and 0.0218, respectively, over the proposed method before finetuning. Other parameter settings do not 

lead to better effects. Therefore, these experimental results demonstrate that parameter finetuning can 

lead to slight improvements. 
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       (a) Descent curve of learning rate                   (b) RMSE under different batch size level 

Fig. 8. Fine-tuning of learning rate and mini-batch size hyperparameters. 

Table 7 The fine-tuning performance of the proposed approach. 
Batch-
sizes 

LoS prediction accuracy on the training set  LoS prediction accuracy on the test set Time 
(h:m:s) MAE↓ RMSE↓ R2↑ EVAR

↑  MAE↓ RMSE↓ R2↑ EVAR
↑ 

512 4.7631 8.0859 0.4095 0.4118  3.7718 5.4183 0.6198 0.6260 0:03:11 
256 4.4664 7.1420 0.5393 0.5398  4.1088 5.6779 0.5826 0.5891 0:04:30 
128 3.2901 4.6877 0.8015 0.8085  4.3601 5.7473 0.5723 0.5799 0:07:12 
64 3.8645 5.6198 0.7147 0.7147  3.9988 5.9151 0.5470 0.5471 0:12:57 
32 4.2196 6.9706 0.5612 0.5612  4.6905 6.3410 0.4794 0.4904 0:25:04 
16 4.2817 7.0775 0.5476 0.5476  4.0982 5.7648 0.5697 0.5714 0:48:55 

5. Discussion and conclusions 

LoS prediction is a crucial task for hospitals to achieve and maintain resource efficiency and high 

level of treatment quality. Clinical practices in hospitals have generated diverse data modalities, 

including but not limited to, vitals, medical images, laboratory test results, clinical notes, etc. Utilizing 

this information effectively in a unified model can lead to more efficient resource allocation, higher 

diagnostic/prognostic accuracy, and better informed clinical decision making. For example, knowing 

the LoS days for a prospective patient would aid hospitals in predicting limitations in bed availability 

and also would allow hospitals to prioritize certain diagnostic testing in anticipation that a patient would 

otherwise have an extended hospital stay. To this end, this study proposed a novel data-fusion model to 

integrate heterogeneous clinical data for predicting inpatient LoS. Multi-modal data are utilized as part 

of the proposed method with the sub-models (basic models) established for individual data modalities. 

Specifically, a novel attention-embedded 1D convolutional neural network is developed to predict 

inpatient LoS using numerical data. By converting the text to sequence data, two long short-term 

memory networks are used for text-based LoS prediction. As for CXR image data, a convolutional 

neural network model, which we termed CRXMDL, is designed to predict LoS. Finally, these basic 

models are integrated to generate a unified data-fusion model, where two fully connected layers with 
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the neuron numbers of 64 and 32 are incorporated to change the vector dimensions, and a CL prediction 

layer is used for the final prediction of inpatient LoS. Experimental findings demonstrate the superiority 

of the proposed approach compared to other state-of-the-art methods. As the experimental materials 

used in this work are publicly accessible datasets with deidentified patient health information, this study 

poses neither privacy nor confidentiality concerns for the patients the data were collected from. Since 

the model solely relies on clinical variables, the risk of potential ethical concerns such as systematic 

biases are also reduced allowing for implementing the model across various public health organizations. 

In our experiments, the proposed method has produced attractive results and proven to be promising. 

However, it is essential to recognize that the approach has certain limitations, leaving room for 

enhancements and refinement. First, the three predictive sub-models can be further enhanced by 

introducing more complex but efficient structures like octave convolution, spatial pyramid pooling, 

dilated and causal convolutions, etc. In our future work, we intend to explore other promising 

architectures to improve model performance. Second, despite promising performance, it is worth noting 

that the issue of LoS data skewness still requires more investigation. A potential solution is to combine 

statistical approaches that take the skewness into account. Incorporating such methods could further 

enhance the model’s capability of better quantifying the statistical uncertainty associated with LoS 

prediction in lieu of the point prediction discussed in this paper. Lastly, due to concerns about 

transparency, accountability, and the perceived “black box” nature of deep learning algorithms, 

healthcare stakeholders, including clinicians, administrators, and patients, may express reservations 

about adopting deep learning techniques. We will focus on improving the transparency of models, 

increasing diversity in training data, and implementing fairness-aware techniques to make models more 

robust and interpretable, thereby fostering trust between medical professionals and algorithmic 

recommendations. In addition, we are committed to delivering a roadmap for future improvement that 

not only meets technical standards but also addresses emerging challenges in terms of legal compliance, 

ease of use, transferability, stability, safety, and security. 
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