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Abstract

Broadband radio waves emitted from pulsars are distorted and delayed as they propagate toward the Earth due to
interactions with the free electrons that compose the interstellar medium (ISM), with lower radio frequencies being
more impacted than higher frequencies. Multipath propagation in the ISM results in both later times of arrival for
the lower frequencies and causes the observed pulse to arrive with a broadened tail described via the pulse
broadening function. We employ the CLEAN deconvolution technique to recover the pulse broadening timescale
and by proxy the intrinsic pulse shape. This work expands upon previous descriptions of CLEAN deconvolution
used in pulse broadening analyses by parameterizing the efficacy on simulated data and developing a suite of tests
to establish which of a set of figures of merit leads to an automatic and consistent determination of the scattering
timescale and its uncertainty. We compare our algorithm to the cyclic spectroscopy method of estimating the
scattering timescale, specifically to the simulations performed in Dolch et al. (2021). We test our improved
algorithm on the highly scattered millisecond pulsar J1903+0327, showing the scattering timescale to change over
years, consistent with estimates of the refractive timescale of the pulsar.

Unified Astronomy Thesaurus concepts: Radio pulsars (1353); Interstellar medium (847); Deconvolution (1910);
Interstellar scattering (854)

1. Introduction

Radio pulsars provide unique probes of the ionized
interstellar medium (ISM) and allow us to gain insight into
its structure and variability by modeling the effects of the
delays and distortions on the emitted radio pulses as observed
at the Earth (Lorimer & Kramer 2004). While delays due to
dispersion are routinely modeled in pulsar timing experiments
(e.g., Verbiest et al. 2016), distortions due to multipath
propagation are not, and it can be difficult to do so (Shannon
& Cordes 2017). Determining the distortion level is difficult
due to both the intrinsic pulse shape and the underlying
geometry and spectrum of the turbulent medium being
unknown (Cordes et al. 1986; Cordes & Rickett 1998), and
the time- and path-dependent variations in the observed pulse
broadening function (PBF; Williamson 1972). Not only can
separating these effects yield important insights into the nature
of the ionized ISM but it can also provide proper mitigation of
pulse-profile-based impacts on pulsar arrival times used in
precision timing experiments such as low-frequency gravita-
tional-wave detectors (Stinebring 2013).

CLEAN deconvolution, originally developed for radio
interferometric imaging (Högbom 1974), was applied to radio
pulses in Bhat et al. (2003) to recover both the pulse
broadening (scattering) timescale τd and the intrinsic shape
simultaneously via the use of an assumed PBF. Unlike in
synthesis imaging where the positions of the array elements are
known while the sky brightness distribution is not, neither the

analogous PBF nor intrinsic pulse shape, respectively, are
known. Bhat et al. (2003) introduced figures of merit (FOMs)
to iteratively test trial values of τd under an assumed PBF,
demonstrating variation in the rebuilt intrinsic pulses for PSR
J1852+0031 for different PBFs and application to several other
pulsars.
We expand upon the CLEAN deconvolution algorithm

presented in Bhat et al. (2003) to prepare for automated
deployment on data sets of significantly more pulsars. In this
work, we primarily focus on the broadening effects of the ISM
and recovering τd with the intention of applying the algorithm
to the multifrequency profiles of pulsars distributed throughout
the galaxy to understand both the bulk properties of the
turbulence in the ISM and specific, unique lines of sight.
Understanding these properties informs priors on pulsar timing
arrays and other high-precision pulsar timing experiments in
which scattering biases estimates of the arrival times (Lentati
et al. 2017). This work is the first of several papers on robust
method development and deployment on real data from a larger
selection of pulsar observations.
In Section 2, we describe and expand upon the CLEAN

deconvolution method introduced by Bhat et al. (2003). In
Section 3, we perform systematic tests on simulated data,
demonstrating the level of recall in the input τd values and
quantifying our uncertainties in the estimates. We also compare
our results with the cyclic spectroscopy (CS) deconvolution
technique Demorest (2011) and discuss the trade-off of
limitations in our method with the extensive computational
complexity of the CS method. Finally, we apply our method to
PSR J1903+0327 in Section 4 and discuss our future directions
in Section 5.
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2. The CLEAN Deconvolution Algorithm

CLEAN deconvolution for radio pulsars exploits the one-
dimensional nature of pulsar profiles and differs from
traditional CLEAN approaches where the instrumental
response function is known. The analogous function in this
work, the PBF, must be assumed from a priori models. Bhat
et al. (2003) developed a method that can both determine the
pulse broadening timescale τd and recover the intrinsic pulse
from observational pulsar profile data via the employment of
the CLEAN deconvolution algorithm and FOMs. CLEAN can
be applied using different models of the PBF of the ISM,
making it a broadly encompassing method. In this work, we
assumed the PBF for the commonly used thin-screen approx-
imation for the ISM’s geometry.

Bhat et al. (2003) describe the CLEAN algorithm for use in
the deconvolution of radio pulsar pulses, along with the
development of five FOMs used to determine the correct
broadening timescale from a set of test values. In this section,
we discuss the algorithm both as originally described and how
the algorithm has been redeveloped for this work.

2.1. Modeling the Observed Pulse Profile

We assumed the observed pulse y(t) to result from the
convolution of the intrinsic pulse x(t), the PBF g(t), and the
instrumental response function r(t), given by

( ) ( ) ( ) ( ) ( )= Ä Äy t x t g t r t . 1

We simulated our intrinsic pulse x(t) as a normalized, single-
peaked Gaussian shape, which minimizes the asymmetry of the
rebuilt pulse. We will further discuss the limitations of this
choice in Section 2.3.1. This intrinsic pulse is by nature
noiseless, as it simulates the pulse as seen at the pulsar.

The PBF for the ISM is commonly modeled as a thin screen
(Cordes & Rickett 1998) for simplicity. The thin-screen
approximation simplifies calculations, separating the physical
turbulent processes from the geometry of the intervening gas,
and, in the case of the PBF, simplifies the form as well; the
thin-screen model works reasonably well for lines of sight with
a single overdense region. We used this model in our work,
given by

⎜ ⎟⎛⎝ ⎞⎠( ∣ ) ( ) ( )t
t t

= -g t
t

U t
1

exp , 2d
d d

where U(t) is the Heaviside step function.
Lastly, the instrumental response function, denoted as r(t),

determines the resolution of the observed data. We assumed a
delta function as an approximation for the instrumental
response function with a width of one phase bin.5

2.2. CLEAN Deconvolution

CLEAN iteratively subtracts replicated components from an
observed pulse until the residual structure falls below the rms
of the off-pulse noise. As we do not know the value of τd
a priori, this iterative subtraction process is repeated for a range
of test τd values, with the assumed correct τd chosen using
FOMs. For the purposes of the algorithm, we treat τd to be

measured in time-bin resolution units as measured across the
folded pulse’s phase with Nf total bins. We step through our
CLEAN deconvolution process below.

1. CLEAN component creation. We first identify the
location of the maximum of the deconstructed pulse
after the ith iteration, [ ( )]ºt y targmax ;i i our first
iteration begins with the originally observed pulse y0(t).
Each CLEAN component (CC) yc(t|ti) starts with a delta
function, δ(t− ti), at the location of the maximum of the
observed pulse, [ ( )]y tmax i , multiplied by the loop gain
value, γ, i.e.,

( ∣ ) { [ ( )]} ( ) ( ) ( )g d d= - º -y t t y t t t C t tmax . 3c i i i i i

Smaller loop gains result in a greater number of iterations
before the stopping criterion is met but allow for finer
intrinsic features to be resolved (Högbom 1974); in this
work, we used γ= 0.05 (as in Bhat et al. 2003).

2. Iterative subtraction off the main pulse. After we
construct yc(t|ti), we convolve the CC with the instru-
mental response function r(t) and the PBF with a given
test τd, and then subtract this shape from the ith iteration
pulse. The change in the profile at each iteration is
described as

( ) ( ) { ( ∣ ) [ ( ∣ ) ( )]} ( )tD = - Ä Äy t y t y t t g t r t , 4i i c i d

with y(ti) as the input pulse profile to the ith iteration. The
resulting subtracted profile then becomes the pulse profile
for the next CLEAN iteration so that

( ) ( ) ( )= D+y t y t . 5i i1

3. Termination of the CLEAN algorithm. The CLEAN
algorithm is terminated when the maximum of the
input pulse profile falls below the rms of the off-pulse
noise, i.e., [ ( )]  sy tmax i off . Here, σoff is calculated
using the Python package PyPulse (Lam 2017), which
calculates the off-pulse region by finding the region of
the pulse profile that best minimizes the area under the
curve.

The CLEAN algorithm above will provide the list of CCs
along with the residual noise. The CCs can be used to
reconstruct the intrinsic pulse shape, but for the purposes of this
work, our final goal was to determine τd. The algorithm can run
with any input value of τd; therefore our iterative method is
repeated with different trial τd, from which we derived FOMs
based on the reconstructed intrinsic pulse shape and the
residual noise that resulted from each trial τd.

2.3. Figures of Merit

We employed six FOMs as follows: a measure of the
positivity of the residual noise ( fr), a measure of the skewness
of the recovered intrinsic pulse (Γ), a count of the on-pulse-
region residual points below the off-pulse noise level (Nf/Nf),
a measure of the ratio of the rms of the residual noise to the off-
pulse noise rms (σoffc/σoff), a measure of the combined
positivity and skewness measure ( fc), and a count of the
number of CCs each test τd uses before the peak of the profile
falls below the noise level (Niter). All except the last were used
directly in Bhat et al. (2003), although this FOM was suggested
by the authors. These six FOMs fall into three broad categories:
figures based on the rebuilt intrinsic pulse, figures based on the
residual noise after the CLEAN algorithm terminates, and a

5 For clarity, we use the digital signal processing definition of the unit-height
sample function being δ(t) = 1 if t = 0, otherwise 0, which allows us to
multiply by a constant as in Equation (3).
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figure based on the number of CCs generated before the
algorithm terminates. We describe the FOMs grouped into
these three categories in the sections below.

In Figure 1, we see the ideal result of the use of six FOMs
and the methods for determining the “correct” τd.

2.3.1. FOM Measuring the Shape of the Rebuilt Intrinsic Pulse

We examine the CC amplitudes, Ci, and locations, ti, found
during the CLEAN process (e.g., see Equation (3)) to compute
the Γ FOM. In our simulations, we created intrinsic pulses that
are symmetric Gaussians, and therefore the correct rebuilt
pulse should always be a perfectly symmetric Gaussian if the
correct τd is used. In reality, intrinsic pulses may not be
perfectly symmetric, and we discuss these implications in
Section 5.

The Γ of the rebuilt pulses is calculated for each test τd by
computing the third standardized moment, where nc is the
number of CCs:
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The resulting Γ is ideally represented by the example in panel
(3) of Figure 1, where the sharp fall-off point represents the
general location of the correct τd.

2.3.2. FOMs Based on the Residual Noise

Three of our FOMs are built from measures of the residual
noise after the completion of the CLEAN algorithm. We will
also discuss a FOM that combines one of these FOMs
(positivity) with the Γ FOM discussed previously—this is an
important FOM as described in Bhat et al. (2003).
The residual noise is one of the end products of the CLEAN

deconvolution process. A test τd that is larger than the correct
value of τd results in a progressively larger oversubtraction, as
shown in Figure 2. If the test τd is smaller than the correct
value, it results in an unremoved noise floor in the baseline.
We can first calculate the rms of the residual noise,

[ ( ∣ )] ( )ås t= D
f =

f

N
y t

1
, 9

j

N

i joffc
1

d
2

in comparison to the rms of the off-pulse region, σoff, where this
ratio, σoffc/σoff, will grow whenever over- or undersubtraction is
performed and should otherwise approach a value of 1 for the
appropriate subtraction. We find this is roughly equivalent to the
single metric used to automatically determine τd used in Tsai
et al. (2017) for multifrequency data from 347 pulsars.
Beyond the rms, we can count the total number of residual

noise points, Nf, within a certain threshold level (we chose
3σoff) of the noise that satisfies the condition

∣ ∣ ( ) s-y y 3 . 10i off off

As seen in Figure 2, for undersubtraction we expect all of the
points to satisfy the condition and so the ratio Nf/Nf= 1, but
the ratio will drop as oversubtraction occurs.

Figure 1. Summary of FOMs used in this work, for a pulse with simulated
FWHM of 100 phase bin units, input τd = 50 phase bins, and S/N = 100. We
tested τd values ranging from 25 to 75 bin units with a step size of one bin. The
blue star in each panel indicates the location of τd = 50. Panel (1) shows the
number of data points within a 3σ level of the noise FOM, panel (2) shows the
rms FOM, panel (3) shows the skewness FOM, panel (4) shows the positivity
FOM, panel (5) shows the combined skewness and positivity FOM, and panel
(6) shows the number of iterations FOM.

Figure 2. The residual noise left over after the CLEAN algorithm terminates
for three test τd values of 10, 20, and 30 bins, where 20 is the simulated value.
These time series are representative of the residuals used to calculate multiple
FOMs. We can see the under- and oversubtraction for test τd values that are
smaller than or larger than the true τd, respectively.
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Besides these two metrics which measure deviations away
from the rms noise, we also wish to enforce nonnegativity of
the residual profile since we know pulsar signals must be above
the baseline noise. A fr FOM was defined by Bhat et al. (2003)
in terms of a sum over the Nf bins of the residual noise:6

[ ( ∣ )] ( )å
s

t= D
f =

f

f
N

y t
1

. 11
j

N

i jr
off
2

1
d

2

If Δyi(t) is Gaussian white noise with an rms equal to σoff,
then, as with the previous FOM, we would expect fr≈ 1, while
oversubtraction would force the sum to increase well beyond 1.

Bhat et al. (2003) defined the fc FOM, equally weighting the
rebuilt intrinsic pulse shape and the residual noise by

( )=
G +

f
f

2
, 12c

r

thus providing higher confidence in test τd values with
favorable values of both skewness and positivity. The typical
shape of this FOM is shown in panel (5) of Figure 1.

2.3.3. FOM Measuring the Number of Iterations Performed

We developed this FOM to more directly measure the fit of
the reconvolved CCs' broadening tails to the broadening of the
observed pulse. As the amplitude for reconvolved CCs with
larger broadening tails is smaller than those with smaller
broadening tails (due to the normalization in Equation (2)), we
expect a general increase in the number of iterations needed to
deconvolve the observed pulse. Similarly, when reconvolved
CCs with smaller broadening tails are subtracted from a pulse
with a larger true broadening tail, more iterations will be
required. However, when the CCs are convolved with the
correct value of τd, neither under- nor oversubtraction occurs,
resulting in fewer iterations being needed. Therefore, we expect
a dip in our FOM around the correct value of τd.

2.4. Automating the Choice of the Correct τd Value

These FOMs were originally constructed to pinpoint the
correct value of τd by eye, with all previous implementations of
CLEAN using by-eye methods of determining τd. This
approach is impractical for large data sets, so we automated
this process. We found that the simple approach of computing
the numerical third derivative of each FOM with respect to τd
and finding the maximum has yielded good results, though the
exact recall depends on both the value of τd and the pulse
signal-to-noise ratio (S/N). More complicated algorithms will
be employed in future works, but the systematic error
introduced by this choice is small in comparison to other noise
sources, as shown next, so we opted to use it.

3. Automated Algorithm Performance

In this section, we will discuss the performance of our
automated CLEAN method. An in-depth description of our
redeveloped CLEAN algorithm in Python, as well as notes on

how to use the open source versions available at doi:10.5281/
zenodo.10064009, can be found in Young (2022).
We wished to robustly quantify the “correctness” of our τd

estimates in simulated data so that we could automatically
assign uncertainties to our estimates on real data. To that end,
we simulated multiple data sets with different input parameters
to determine how these will affect the recall. Ideally, as in
Dolch et al. (2021) for the CS algorithm (Demorest 2011), only
the S/N and τd of a profile should affect the recall accuracy of
our CLEAN deconvolution, though we tested several other
parameters as well.
To quantify the algorithm’s performance, we computed a

measure of the relative bias of the estimator.
Within this work, the values returned for each FOM have

been weighted based on our parameterization work on
simulated data.7 When calculating our relative biases, defined
as the fraction of the returned τd to the correct injected τd, our
relative biases are defined as

⎜ ⎟⎛⎝ ⎞⎠ ( )å t
= -

=

 
N

1
1

, 13
i

N
i

ave
runs 1 d

runs

where Nruns is the number of simulations for a given data set
and òi, for readability, is defined as a weighted average of the τd
values returned by our FOMs (all six indexed with k) for each
run (i= 1...Nruns),

( )t
=

å
å


w

w
, 14i

k k k i

k k

,

where our wk values are normalized weights, defined as
follows. We first calculated the weight by the standard

s=w 1k k
2, where σk is the standard deviation of the 60

returned values for each FOM from a given run on simulated
data—a greater spread in returned values for a given FOM
downweights its importance in the end bias measurement. In
practice, after our weights were calculated, we divided by the
sum of the weights to normalize them, though this does not
change the result in Equation (14).

3.1. Testing the Impact of S/N and τd on Recall

We first tested how CLEAN performs based on different
injected pulse S/N (20, 70, 650, 2600) and τd (1, 2, 4, 8, 16, 32,
64, 128, 256 μs) combinations. We simulated data sets using
several of the characteristics of PSRB1937+21 (the first-known
millisecond pulsar and a known scattered source) as follows;
these parameters are also shown in Table 1. PSR B1937+
21 has a spin period of 1.557 ms and an FWHM of 38.2μs
(Manchester et al. 2013). To reduce computing time, we used
different numbers of phase bins depending on the injected τd
value, as shown in Table 2; we show in the next subsection that
there is minimal impact in the recovery of τd depending on the
phase resolution of the pulses so long as the scattering tails are
resolved. For each of our runs, we tested across 100 equally
spaced τd steps between 0.5 and 1.5 times the injected τd,correct.
For each S/N–τd pair, we simulated and ran CLEAN on 60
simulated pulse profiles. We computed the weighted average6 Bhat et al. (2003) introduced a multiplicative weight of order unity but did

not specify the value. Here, we take that weight to be 1 and ignore introducing
it in the main text. They also include a Heaviside step function, UΔy. As this
only changes the overall normalization of our FOM in our simulation runs, we
ignore this in our work. It should be noted that this decision in practice makes fr
equivalent to s soffc

2
off
2 .

7 While each individual FOM described within this work is given its own
weight based on our parameterization results, due to our fc FOM being a
combined measure of Γ and fr, the performance of these two FOMs are in
practice weighted more heavily.
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bias as before but for all of the tests. We visualize the
performance of each individual FOM in Figure 4.

We choose our S/N–τd values in the same way as Dolch
et al. (2021) to more directly compare our CLEAN deconvolu-
tion method with the CS algorithm. While the pulse profiles
used for CLEAN deconvolution algorithms are created by
folding filterbank data, CS uses raw voltage data to compute a
folded cyclic spectrum, and is later deconvolved to recover an
impulse response function using amplitude and phase informa-
tion, making the latter more computationally intensive (though
assuming no specific PBF). These methods are therefore
difficult to directly compare, but we can expect to see improved
performance for both methods as either S/N or τd increase.

Indeed, after running our simulations, we see this expected
behavior in Figure 3, where darker colors indicate better
recovery of τd, which matches what is seen in Dolch et al.
(2021) for CS. The numerical values shown in Figure 3 are in
terms of the percentage of the correct τd, given by òave.

We can further compare the performance of CS and our
CLEAN deconvolution more quantitatively by finding how our
algorithm’s performance changes as a function of S/N and τd
as compared to CS. Dolch et al. (2021) performed an
unweighted linear regression on their performance data with
respect to S/N and τd, finding their cyclic merit quantity
improves in performance equally when S/N or τd is increased.
Following suit, we find the slope of our algorithm’s
performance with respect to S/N and τd via linear regression
in the form of Equation (16) in Dolch et al. (2021):

( ) ( ) ( ) ( )b t g= + +log log log S N C. 1510 ave 10 d 10

After fitting our òave values, as in Figure 3, we found a slope
ratio (γ/β) of 0.7, compared to ∼1 for CS. Therefore, unlike
CS, CLEAN’s performance improves more strongly in the τd
dimension than in the S/N dimension. While this may seem to
imply that CLEAN will overtake CS in its accuracy for
sufficiently large τd and fixed S/N, both methods are bounded
by scattering τd P, the pulse period, and so in practice the
observable τd is limited.

In Figure 4, we show how well each FOM performs, with
each panel showing the recovery over the full range of S/N–τd
pairs. Smaller dots indicate smaller relative biases, and thus a
more accurate performance. Poor performance from one FOM
will impact our averaged recall if an unweighted average is
employed, therefore we used these results to implement
weights for our FOMs. We see that, in general, the performance
of each FOM improved with higher S/N or τd like the average,
though not all behave equally. For example, the Nf/Nf and
σoffc/σoff appear to perform better at somewhat lower τd than
the other FOMs. While the skewness Γ does not perform as

well at the high S/N–τd end, it does perform marginally better
than the previously mentioned two FOMs. Our method of
weighting these FOMs using the variance of the returned
relative biases results in a moderate performance increase for
lower values of S/N–τd, and up to 20% at large values of
S/N–τd when compared to an unweighted approach. This
method in practice allows us to weight our Nf/Nf and σoffc/σoff
FOMs more heavily at values of S/N–τd where we see better
performance in Figure 4.

3.2. Testing Secondary Parameter Contributions to Recall
Error

While we assumed the main contributors to the effectiveness
of our algorithm to be our primary parameters, S/N and τd, we
wanted to ensure that secondary parameters were not
significant contributors to our recall error. We created a
small-scale parameterization set via simulation of a base pulse
profile with τd= 256 bins and S/N= 2600. We chose very
large values for both τd and S/N as the method was able to
reliably recall the correct τd for large τd and S/N values (see
Section 3.2). This set was used to determine how the number of
bins in our observation, the FWHM of the intrinsic pulse, and
the user-defined step size and range of the test τd array affected
the algorithm’s performance. Additionally, our previous data
set assumed an intrinsic pulse with similar parameters to B1937
+21 only. Therefore, an additional motivation for probing
these secondary parameters was to determine if we could
extrapolate our results to observations of other pulsars with
varying FWHMs and numbers of phase bins.
For these parameterization runs we used the base values

shown in the second column of Table 2 and iterated over the
values shown in the third column. We ran 20 simulations for
each variation, which gave insight into these parameters’
contribution to our recall and allowed for exploration into the
expected larger contributions of τd and S/N to the recall error.
As many pulse profiles are recorded with a different number

of phase bins (see, e.g., Lorimer et al. 1997), we tested to see
how the phase resolution of the observation affected our recall.
We simulated data sets with Nf ranging from 128 to 2048. In
Figure 5, we see good agreement between the ranges of
individual recall values returned for each phase bin number
tested (green circles) and the averages (green squares) varying
within only 1% across our tested values when employing our
FOM weights found for S/N= 2600 and τd= 256. Thus, the
minor variations in the average recalls could be explained by
our limited number of runs resulting in incomplete coverage of
the algorithm’s performance. Therefore, within this limited
number of performed simulations and phase bins tested, we
assume that the number of phase bins in the observed pulse
profile is not a large contributor to our total recall.
Results of testing how the FWHM of the intrinsic pulse

affected our recall are shown in Figure 6, and reveal a large,
though not unexpected, range in òave between the FWHMs
tested. As the FWHM increases, the pulse takes up an
increasing fraction of the number of bins in the pulse profile,
thus making the CLEAN cutoff criterion of falling below the
off-pulse noise level less effective. This result agrees with the
findings of Jones et al. (2013), where they found the CS
method to be less effective on wider pulses. We have tested the
efficacy of our CLEAN algorithm over a large range of
FWHMs, including values much larger than the average
FWHM of known pulsars. Based on current values available

Table 1
Automated Algorithm Simulation Parameters

Parameter Value

Spin period 1.557 ms
Pulse FWHM 38.2 μs
Nf for τd = 1, 2, 4 μs 2048
Nf for τd = 8, 16, 32 μs 1024
Nf for τd = 64, 128, 256 μs 512
Test τd range (0.5τd,correct–1.5τd,correct)
Number of steps in test τd array 100
S/N 20, 70, 650, 2600
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on the ATNF Pulsar Catalogue (Manchester et al. 2005) for
around 2250 pulsars, 82% have FWHM values of one-sixteenth
of the number of phase bins or less, 93% have FWHM values
of one-eighth of the number of phase bins or less, and only one
pulsar, J1806−1920, has an FWHM greater than half of the
number of phase bins. While the values available are not all
encompassing because FWHM is a radio-frequency-dependent
parameter, the ranges that we choose to parameterize our
algorithm over encompass the vast majority of known pulsars
with FWHM measurements available in the ATNF Catalogue.

In Figure 7, we see the contribution of the number of steps
or, interchangeably, the step size of the test τd array to our
recall error. We included in this analysis a correction factor of
Δτd/2, the largest base error induced due to large step sizes
resulting in the correct τd not being directly tested. For
example, if the correct τd is 10.5 μs, and our test τd array only
samples every Δτd= 1 μs, an error of 0.5 μs will be
introduced; thus, we subtracted this factor of Δτd/2 from our
òave to more conservatively estimate our uncertainties. The
relative biases returned vary within 10%, therefore we
concluded that the number of steps in the test τd array was
not a large contributor to the overall recall error. Note that there
is less than a 2% change to the recall between 50 and 200 steps,
meaning that we can further decrease computation time without
large impacts to our recall by decreasing the number of test τd
values.

Finally, we parameterized the contribution of the range of
test τd iterated over to our recall. In Figure 8, we can see that

ranges which barely included the correct τd (first bar) result in
poor performance, as expected. This results from the shapes of
the FOMs not being fully covered over the correct injected τd.
Other ranges that include the correct τd have recalls within less
than 5% of each other, even when the ranges iterated over are
much larger. Therefore, while more computationally intensive,
we recommend running CLEAN over a large range of τd values
to ensure the best estimate is chosen.
With the results of these runs, we see that these secondary

effects have some small impact at large S/N and τd, but
otherwise the most prominent influences on the recall of
CLEAN deconvolution are the S/N and τd of the data. While
there are some variations in the average recall for each of the
parameters we tested, the average recalls varied within 10% or
less for most tests, with the notable exceptions of large
FWHMs and test τd ranges that barely include the correct value
of τd—both as expected. We also conclude that for many
typical pulse profile shapes and sizes there will not be a large
effect on the recall with secondary parameters within the ranges
tested in this work.

4. Applying CLEAN to PSR J1903+0327

To demonstrate the efficacy of our algorithm, we tested
CLEAN on real data from the pulsar J1903+0327. PSR J1903
+0327 is a millisecond pulsar with a spin period of 2.15 μs and
a dispersion measure of 297 pc cm−3. The pulsar also has a
solar-mass companion and might be part of a hierarchical triple
system (Champion et al. 2008). PSR J1903+0327 has been
monitored by pulsar timing array collaborations such as the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav; Arzoumanian et al. 2021) in the effort
to detect low-frequency gravitational waves. While these
collaborations self-select for pulsars with low amounts of
pulse broadening (narrower pulses have higher timing preci-
sion), PSR J1903+0327 has some of the most prominent
scattering in these data sets, with the broadening tail visible by
eye. With over a decade of timing data on this pulsar, we
analyzed the lowest-radio-frequency pulses in the NANOGrav
12.5 yr data set over time, where broadening is the strongest, to
investigate if variations in τd are detectable by our algorithm.
Note that the only currently published values for broadening

measurements of PSR J1903+0327 come from Geiger & Lam
(2022), where values were obtained by convolving Gaussians
of fixed width with an exponential broadening function of
variable width and comparing to the observed pulses
(McKinnon 2014). We find values of τd which roughly agree
with these results of ∼250 μs at 1200MHz.
We created six summed profiles on which to deploy our

CLEAN algorithm, with one profile corresponding to each
year from 2012 to 2017 in our data set. We restricted the
frequency band for each observation to 10 MHz centered at
1200MHz to mitigate any additional broadening introduced

Table 2
Secondary Parameters Tested

Parameter Base Value Values

Number of phase bins 256 {128, 256, 512, 1024, 2048}
FWHM fN1

8
[ 1

64
, 1

32
, , , ,1

16
1
8

1
4

1
2
]Nf

Range of τd (0.5 τd,correct–1.5 τd,correct) (0.1 τd,correct–τd,correct), (0.1 τd,correct–2.0 τd,correct),
(0.4 τd,correct–1.6τd,correct), (0.5 τd,correct–1.5 τd,correct)

Number of steps in τd array 100 [10, 20, 50, 100, 200]

Figure 3. Average recall relative biases for CLEAN deconvolution in the same
style as Figure 5 from Dolch et al. (2021). This plot gives an overview of the
performance of the CLEAN algorithm by returning the average size of the
biases with each S/N and τd pair. As smaller biases indicate better
performance, CLEAN performs better on simulated data with larger values
of both S/N and τd.
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when frequency-averaging the pulses together. Each summed
profile consists of 12 monthly observations summed via cross-
correlation. Cross-correlation is used to ensure the peaks of
our profiles are properly aligned in time before they are
summed, resulting in the highest possible S/N of the summed
profile. This process was performed iteratively, with each new

profile being cross-correlated with and then added to the
summed profile.
The refractive timescale of PSR J1903+0327 is estimated to

be between 1 and 2 yr (Geiger & Lam 2022). Therefore,
summing across 1 yr of observations is consistent with the PBF
remaining unchanged across this time span. To further increase

Figure 4. Overview of the relative performance for each FOM. Smaller circles indicate smaller biases or better performance of the FOMs on simulated data. These
fractional averages were computed as described in Equation (13), with òi being composed of the τd returned by only one FOM instead of a weighted sum of all
returned τd values. These values are labeled as òFOM in this plot. In general, we see better performance for higher values of τd and S/N. Interestingly, the Nf/Nf and
σoffc/σoff FOMs appear to perform better than the fr and the Γ FOMs, which were highlighted in the Bhat et al. (2003) paper.

Figure 5. Results of parameterization runs with changing number of phase
bins. The y-axis shows the fractional average relative bias size across 20
simulations for each bin value. The average recall error is denoted by the fully
opaque green squares connected by the dashed line. The lighter circles indicate
the recall error from each run. The average biases range within 1%.

Figure 6. Results of parameterization runs with changing values of the FWHM
of the intrinsic pulse, as a fraction of the number of phase bins. We see for
FWHMs less than a quarter, the relative bias changes less than 1%, with the
òave change still under 40% for the FWHM being half the number of phase bins.
This effect has been seen with the CS approach as well.
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the S/N values for each profile, we used different Savitzky–
Golay filters to smooth the resulting summed profile to the
desired S/N level. In Figure 9, we see an example of this
summed and smoothed pulse profile.

For our time-series analysis, we used two different filtering
techniques, both employing a Savitzky–Golay filter using a
polynomial of order zero to fit the profiles, using a filter
window size necessary to achieve an S/N of 70 and using a
filter window of 5% of the number of bins in pulse profile, in
this case 2048 bins, to achieve a higher S/N. We chose to
create a time series at two different levels of S/N to showcase
the dependence of the algorithm’s performance on S/N. We
also chose to weight our FOMs using the weights found for
S/N= 70 and τd= 256 μs for both time series. We iterated
through test τd values ranging from 100 to 500 bins for each
run, with a step size of one bin. We can see the results of these
runs in Figures 10 and 11, where we converted our returned τd
values into units of microseconds.

We see what is expected in the FOMs for these time series:
greater precision and more visibly apparent points of slope

change for the high-S/N FOMs. Looking at Figures 12 and 13,
we can see examples of how higher S/N results in sharper
points of change in the FOMs, thus making choosing the
correct τd a more precise process. While this is true for all
FOMs presented here, this difference can be seen most
explicitly in the σoffc/σoff FOM (panel (2)), where there is a
noticeable location where the slope begins increasing in our
larger-S/N FOMs versus our lower-S/N FOMs, where there is
a more gradual increase in the slope of the σoffc/σoff FOM,
making the correct τd more difficult to pinpoint. This increased
sharpness of the points of change of our FOMs translated into
greater accuracy and better agreement across our FOMs, which
can be seen reflected in the tighter clusters around the average
returned τd values in our time series.
We also note some interesting results of this time-series

analysis, particularly the dip in 2015, followed by a drastic
increase the following year. However, coupled with the unusual
scattering indices measured in Geiger & Lam (2022), it is clear

Figure 7. Results of parameterization runs with changing numbers of steps in
the test τd ranges. Although there is some range in the average errors returned,
all values agree within ≈10%.

Figure 8. Results of parameterization runs with changing ranges of test τd
iterated over. We see that as long as the correct τd is included within the range
of test τd iterated over, the range of test τd was not a large contributor to the
overall recall error.

Figure 9. Summed and smoothed pulse profile for PSR J1903+0327 at
1200 MHz from NANOGrav observations during 2014.

Figure 10. Time series for PSR J1903+0327 from 2012 to 2017 using
NANOGrav data. This time series is constructed using a Savitzky–Golay filter
with a window filter size chosen to obtain an S/N of around 70.
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that an exponential PBF is not supported along this line of sight
and a more complex model is necessary (A. Geiger et al. 2024,
in preparation). Nonetheless, we have shown via this analysis
that not only does our CLEAN algorithm perform as expected
on observational radio data for pulsar J1903+0327 given our set
of assumptions, but also that employment of this algorithm holds
potential for scientific insight into the ever-changing ISM.

5. Future Work and Conclusions

Within this work, we discussed our motivations, reimplemen-
ted CLEAN deconvolution as presented in Bhat et al. (2003),

developed weights for our FOMs, discussed the results and
products of our implementation of CLEAN, our para-
meterization work, and results on observational data of PSR
J1903+0327. Through our parameterization work, we have
concluded that our replicated CLEAN algorithm works as
expected: the main factors that influence the recall of the
algorithm are the S/N and τd of the pulse profile, and higher
values of S/N and τd result in better recall. We have produced
an algorithm that we can confidently deploy on larger sets of
observational data within the parameterization bounds
described in this work. To that end, we have presented a
brief analysis of PSR J1903+0327 at two S/N levels and
discussed our findings, showing that our methods prove to be
effective on observational data from idealized radio pulsar
observations, and can thus provide insight into the time
dependence on pulse broadening timescales for similar pulsars
via automatic deployment.
Significant future work is required to improve the robustness

of this updated technique in estimating the scattering timescale
for realistic PBFs and multicomponent pulse profiles, making it
more applicable to a larger range of pulsars and providing
greater insight beyond a simple measure of the scattering
timescale. Moving forward, we aim to further develop our
CLEAN algorithm into a broadly applicable tool, focusing on
improving upon or removing the need for several simplifica-
tions used within this paper's method, primarily the assumption
of intrinsically symmetric, single-peak pulse profiles. We will
also deploy our algorithm on the data set used in Bhat et al.
(2004), the follow-up to the original CLEAN method
introductory paper, and on additional large-scale data sets
(e.g., Stovall et al. 2015; Bilous et al. 2020). Using these data
sets, we will use our CLEAN algorithm to provide measure-
ments of τd across multiple frequencies along many lines of
sight. This will give us greater insight into both the

Figure 11. Time series for PSR J1903+0327 from 2012 to 2017 using
NANOGrav data. This time series is constructed using a Savitzky–Golay filter
with a window filter size of 5% of the length of the observation.

Figure 12. Normalized FOMs for PSR J1903+0327 at 1200 MHz from 2016
at S/N = 70. We see a tight grouping for the returned τd values for each FOM,
with a mean value of τd = 360.3 μs and an error of 10% based on our
simulation runs.

Figure 13. Normalized FOMs for PSR J1903+0327 at 1200 MHz from 2016
for high-S/N values achieved by using a Savitzky–Golay filter with a window
size of 5% of the length of the observation. We see an even tighter grouping for
the returned τd values for each FOM than compared to the lower-S/N FOM,
with a mean value of τd = 369.3 μs and an error between 2% and 10% based
on our simulation runs.
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composition of the ISM and the intrinsic emission of radio
pulsars.

Within this work, we have extensively tested our algorithm’s
performance on simulated pulses broadened using a thin-screen
model of the ISM for our PBF. Future work will entail testing
the effects of different PBFs, namely PBFs based on thick and
uniform medium ISM models, on the performance of our
algorithm. In addition, while our third derivative method for
determining the intrinsic τd from our FOMs works well given
high levels of S/N and large τd values, this may not hold for
low τd values and low levels of S/N as the FOMs are not as
smooth. Therefore, we will work on improving our automation
efforts via the implementation of machine learning, thus
allowing our recall rates to better reflect the performance of
the algorithm.

We have greatly simplified radio pulsar emission by
assuming symmetric Gaussian intrinsic pulses. However,
perfectly symmetric pulses are uncommon in radio pulsars
(e.g., Bilous et al. 2016). Should the intrinsic pulse be
nonsymmetric, our Γ FOM will either be completely ineffective
or lead to incorrect values of τd being chosen. Therefore, we
must further probe the effects of nonsymmetry on our FOM,
and develop new FOMs that do not rely on assumed symmetry.
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