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Abstract

Purpose: Accurate prediction of the Length of Stay (LoS) and mortality in the Intensive Care Unit (ICU)
is crucial for effective hospital management, and it can assist clinicians for real-time demand capacity
(RTDC) administration, thereby improving healthcare quality and service levels.

Methods: This paper proposes a novel one-dimensional (1D) multi-scale convolutional neural network
architecture, namely 1D-MSNet, to predict inpatients’ LoS and mortality in ICU. First, a 1D multi-scale
convolution framework is proposed to enlarge the convolutional receptive fields and enhance the
richness of the convolutional features. Following the convolutional layers, an atrous causal spatial
pyramid pooling (SPP) module is incorporated into the networks to extract high-level features. The
optimized Focal Loss (FL) function is combined with the synthetic minority over-sampling technique
(SMOTE) to mitigate the imbalanced-class issue.

Results: On the MIMIC-1V v1.0 benchmark dataset, the proposed approach achieves the optimum R-
Square and RMSE values of 0.57 and 3.61 for the LoS prediction, and the highest test accuracy of 97.73%
for the mortality prediction.

Conclusion: The proposed approach presents a superior performance in comparison with other state-of-
the-art, and it can effectively perform the LoS and mortality prediction tasks.

Keywords: SMOTE; Multi-scale convolution; Atrous causal SPP; Length of stay prediction; Mortality
prediction.

1. Introduction

Offering timely patient care while sustaining high resource utilization is a key challenge that most
hospitals currently and continuously face. In the United States, each hour of delay in the patient transfer
is related to an adjusted 3% increase in the odds of inpatient mortality [1]. From the perspective of
healthcare providers, the economic pressure to deliver effective and accessible care has reached an
unprecedented level [2]. Especially, the COVID-19 pandemic exposes and exacerbates the challenge to
healthcare systems, which have been reporting substantial challenges in assuring and expanding their
facilities’ capacity to treat patients in the past two years [3], [4]. Patients’ Length of Stay (LoS) in a
hospital is a crucial indicator for the quality of care and effective allocation of healthcare resources [5],
[6], [7]. Even with significant investments in critical care drugs, hospital healthcare resources are

usually inadequate to meet the needs of inpatients, especially in developing countries. Meanwhile,
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allocating healthcare resources to patients at high risk of death is also critical to patients’ survival.
Hospitals are under pressure to improve care efficiency and minimize costs. The two best practices,
including real-time demand capacity (RTDC) management [8] and multidisciplinary discharge-focused
rounds [9], have shown great promise. For example, RTDC predicts which and how many patients will
be discharged daily. Utilizing daily demand projections, the hospital can prioritize the current patients
who are ready for discharge. Apparently, RTDC management relies on accurate prediction of individual
patient discharges. Thereupon, there is an urgent need and realistic importance to develop new systems
that can automatically predict the LoS and mortality risk for inpatients.

The prediction of LoS is a regression task that can be performed by analyzing various physical
examination index data of patients. Even with its crucial importance, the LoS prediction for inpatients
has received less attention than the mortality prediction in the literature owing to the difficulty of this
task. In recent research, data-driven and machine learning (ML) methods have been employed for
healthcare data analysis, including risk prediction with electronic health records [10], mining signatures
from event sequences [11], and predicting patients’ LoS in hospitals [12], [15], [16], etc. Peres et al.
[12] developed a structured data-driven model to predict the individual LoS and the risk of prolonged
Intensive Care Unit (ICU) stay on a large ICU dataset from different Brazilian hospitals. Despite the
impressive performance obtained, their ensemble learning (EL) method integrates up to 8 ML models.
Integrating and managing multiple baseline models within the EL framework can increase the
complexity and memory requirements of the system. Moreover, EL models can be prone to overfitting
and underfitting if the aggregation method is too simple or too complex, or if the base models are too
strong or too weak. This can lead to overestimating or underestimating the uncertainty and variability
of the data. Therefore, if the baseline models are not properly selected and individually overfit the data,
ensemble learning models may amplify the errors [13], [14]. Turgeman et al. [15] built a regression
tree model called Cubist to predict the hospital LoS at the time of admission. However, the calculation
process of their method is complicated since it maps all the LoS cases to higher dimensional spaces.
Also, there is still room for improvement in the accuracy of the model. In another research, Alsinglawi
et al. [16] introduced a new regressor architecture named stacking regressor to predict LoS in patients
diagnosed with heart failure from electronic medical records. Their experimental results showed that
their proposed stacking regressor outperformed other methods, such as deep learning-based regressors
in their study. Although their proposed stacking regressor is a promising EL framework, the results of
the final regressor strongly depend on the initial conditions. The final regressor is sensitive to the quality
and diversity of the base models and the data, as it relies on the limitations and assumptions of the
individual models, and on the representativeness and independence of the data samples and features.
More recently, popular deep learning (DL) methods, such as convolutional neural networks (CNN) and
temporal convolution networks (TCN), have been proposed for LoS prediction tasks and achieved
positive prediction efficacy [17], [18]. Fu et al. [17] developed four DL models, and they confirmed
that the CNN outperformed other comparative candidates. Zhou et al. [19] recommended a CNN



architecture primarily comprised of fully connected (FC) and convolutional layers to predict the LoS in
heart failure patients. CNNs require a fixed input size and may lose details in the pooling layer of the
network [20], [21]. Rocheteau et al. [18] proposed an improved TCN, temporal pointwise convolution
network (TPC), for predicting LoS in the ICU. TPC combines temporal convolutional layers with
pointwise convolutions to extract temporal and inter-feature information. However, the TPC has a high
model size and may require more data storage. Moreover, the interrelationship between different
variables is prone to be ignored [46], [47]. Multi-scale convolution kernels with different convolutional
receptive fields have proven effective for many tasks [22], [23], [24], which is not considered in recent
research such as [17], [18], [25].

On another front, mortality prediction belongs to a classification problem, and ML-based methods
have also been employed to establish classification models in complex medical settings, such as the
ICU [26], [27], [28], [29]. Bao et al. [30] trained seven ML algorithms and estimated their performance
in predicting patients’ mortality or survival during hospitalization. Compared with the traditional
unregularized logistic regression method, Ruzicka et al. [31] built an XGBoost ML model to predict
patients’ mortality in hospitals. Ganapathy et al. [32] developed seven ML models, namely, Artificial
neural network (ANN), Naive Bayes (NB), Logistic regression (LR), Bayesian regression (BLR),
Binary Discriminant analysis (BDA), K-nearest neighbor (KNN), and Random Forest to predict the
mortality in patients diagnosed with oral squamous cell carcinoma. Likewise, using three ML methods,
including the ANN, support vector machine (SVM), and Random Forest, Lin et al. [28] predicted the
in-hospital mortality for ICU patients with acute kidney injury. Despite reasonably good findings
reported in the literature, the traditional ML methods also suffer from some bottlenecks, such as reliance
on hand-designed features, lack of robustness, risk of overfitting, and low accuracy. DL technique has
also been utilized for the mortality prediction task in recent decades. Caicedo-Torres et al. [33] trained
a CNN model, namely ISeeU2, to perform the mortality prediction of patients inside the ICU, and they
used the MIMIC-III dataset for evaluating models. Using the TF-IDF representation of nurse notes as
input, Khine et al. [34] introduced an ensemble CNN model to predict 30-day ICU mortality on the
MIMIC-III benchmark dataset. Based on computerized tomography (CT) image data, Roopa et al. [35]
employed several well-known architectural models like Resnet18, Resnet50, and Resnet101 to perform
the mortality prediction of lung cancer and their experimental results revealed that the CNN classifier
is better than SVM. Moreover, CNN-based DL methods have also proven to be efficient in the
references [36], [37], [38]. These research findings show the significance of associating DL methods
with clinical diagnosis and health care. However, the methods stated above ignore the serious class-
imbalance problem in patients’ mortality or survival, which can result in low accuracy of mortality
prediction. Besides, as mentioned previously, multi-scale feature representation and dilated receptive
fields that prevent information leakage during modeling processes are not considered in most previous
research. Therefore, to fill this research gap, we propose a novel one-dimensional CNN architecture,

namely 1D-MSNet, to predict patients’ in-hospital LoS and mortality in the ICU. The pre-processing is



first implemented for the original sample data. By using the SMOTE, we enlarge the sample size of the
mortality class so that it is close to the number of samples in the survival class. Then, in the bottom
convolutional layers of the network, the 1D multi-scale convolution kernel is substituted for the single
convolution kernel to expand the convolutional receptive fields and enhance the richness of the
convolutional features. Following the bottom convolutional layers, the dilated causal SPP module,
which includes 4 parallel 1D average pooling layers concatenated by 4 parallel 1D dilated causal
convolutional layers and up-sampling layers, is incorporated into the network for extracting high-level
data features. Besides that, the traditional Focal Loss (FL) function is improved to replace the Cross-
Entropy (CE) loss function for alleviating the class-imbalance problem of samples in mortality
prediction. To sum up, the major contributions of this work can be recapitulated below.
A novel one-dimensional convolution network architecture, which we termed 1D-MSNet, is proposed
to predict patients’ in-hospital LoS and mortality in the ICU. Especially for the mortality class, the
SMOTE is utilized to synthesize new sample data for alleviating the class imbalance problem.
The 1D multi-scale convolution kernel is substituted for the single convolution kernel in the bottom
convolutional layers of the network to expand the receptive fields and enhance the richness of
convolutional features.
The dilated causal SPP module is embedded into the networks for extracting high-level data features.
The traditional FL function is optimized to replace the CE loss function to eliminate the class-imbalance
influence in mortality prediction.

The remainder of this paper is structured as follows: Section 2 primarily discusses the methodology
to predict patients’ in-hospital LoS and mortality in the ICU. Section 3 is devoted to the algorithm
experiments, and a series of experiments are conducted along with comparative analysis. Section 4

concludes this paper with a summary and recommendations for future work.

Statement of Significance

Problem or Issue Patient Length of stay (LoS) and mortality are main indicators for the
timely patient care and healthcare resource utilization. LoS and mortality
can be affected by a multitude of different factors and can vary based on
different patients’ conditions. The question is how to accurately predict LoS
and mortality based on patients medical records.

What is Already | Although there have been many data driven and machine learning
Know approaches available, most research treat both tasks as classification
problems, also, most deep learning approaches failed to prevent
information leakage during modeling processes.

What this Paper | This study proposes a novel one-dimensional CNN architecture, namely 1D-
Adds MSNet, the 1D multi-scale convolution kernel is substituted for the single
convolution kernel in the bottom convolutional layers of the network to
expand the receptive fields and enhance the richness of convolutional features.
A dilated causal causal spatial pyramid pooling (SPP) module is embedded
into the networks for extracting high-level data features. The proposed model
can be generalized for other clinical applications.




2. Methodology
2.1 Synthetic minority oversampling technique

For the sample imbalance problem, the random under-sampling (RUS) method increases the number
of samples in the minority category by randomly duplicating samples. However, it can easily result in
overfitting. By improving the RUS algorithm, Chawla et al. [39] recommended the synthetic minority
oversampling technique (SMOTE) to synthesize new samples in minority categories. SMOTE applies
an iterative search and selection approach. To synthesize new samples in minority categories, the
amount of generated samples N and the threshold value of samples among k-nearest neighbors needs to
be determined. Among them, the N refers to the sample size in the majority category, while £ depends
upon the number of samples to be synthesized. This process continues until the desired number of
samples in the minority category is generated. Concretely, the specific steps of sample data balancing
for mortality prediction are presented as follows. First, mortality sample data in the original samples
are taken as the learning set for the synthetic samples. The Euclidean distances of in-hospital mortality
samples are calculated to measure the similarity and enable newly generated samples closest to the
original data. The formulas are presented as follows.
(1
d(x,s) =

Spew =S+ (X —5) *rand(0,1) 2)

Among them, d(x,s)denotes the Euclidean distance between any two samples. S implies the newly

generated mortality sample data, S is the original in-hospital mortality (minority class) samples that are
to be oversampled, X is one of the nearest neighbors of the original mortality sample, * symbolizes dot
products of elements, and rand(0, 1) implies an arbitrary number in the interval [0, 1]. Then, a sample
is randomly chosen from the inpatient mortality class, and k-nearest neighbor samples are chosen
according to the computed Euclidean distance. Referring to the literature [40], the & value is assigned
as 5 here. Iteratively, the above steps are repeated N times for synthesizing N new inpatient mortality

samples. Algorithm 1 depicts the specific procedure of the SMOTE-based mortality sample balance.

Algorithm 1: SMOTE(k, N, T) based sample balance.
Input: The number of samples in the minority category 7, the amount of SMOTE N%,

and the number of k-nearest neighbors (Here £=5).
Output: 7 * (N/100) synthetic samples in the minority category
If N<100
then, randomize T samples in the minority category:

T=T*(N/100)
N=100

end

S[]: array for the initial samples in the minority category

Snew[]: array for the synthetic samples




X[]: K neighboring samples of the array of original minority category samples
Fori<1toT
Choose an arbitrary number between 1 and k, which is called j
dif = X[j] - S[i]
gap = arbitrary number in the interval [0, 1]
Snewli] = S[i] + gap * dif
end
Return S,

2.1. Atrous causal SPP

In a typical convolutional network architecture, the pooling layer often follows one or multiple
convolutional layers to scale down the spatial size of feature maps while decreasing the number of
training parameters and computing costs. Nevertheless, the pooling operation also makes the network
lose the information needed to detect precise relationships among object parts. To alleviate this problem,
spatial pyramid pooling [20], abbreviated as SPP, which maps local features to different dimensional
spaces and fuses them, is introduced to aggregate convolution features and gain more feature
representations with rich spatial information. For an SPP with the grid size of M*M, the size of the
convolution kernel depicted by k=k;=k., can be calculated by k,=[h/M] and k,~[w/M], where w and &
represent the width and height of an intermediate feature map, and [-] indicates the ceiling operation.
Fig. 1 depicts the structure of the classical SPP module. Note that, the classical SPP is designed for
image processing in the computer vision (CV) field. In this work, however, the tabular data are used in
our analysis instead of the image data. Therefore, the classical SPP structure is modified, and the original
two-dimensional (2D) convolution and pooling layers are replaced by the 1D ones. Besides, the atrous
causal convolution is substituted for the regular convolution in the SPP module to capture long-term
temporal dependencies while maintaining computational efficiency, considering that convolution
kernels cannot be as large as expected with the increase of parameters and computing costs. In particular,
the regular convolution kernel has the disadvantage that the spatial resolution of feature maps is halved
at each step. For this reason, the 1D atrous causal SPP module is designed in our network, and the
hyperparameter of the dilated rate is set to »=2. Compared with the traditional SPP, this optimized 1D
atrous causal SPP, namely ACSPP, increases the convolutional receptive field while reducing the

computational overhead.
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Fig. 1. The network structure of classical SPP [20].

2.3. Proposed approach
2.3.1 1D-MSNet architecture

Motivated by the previous study [41], we propose a 1D multi-scale atrous causal SPP convolutional
network, which we termed 1D-MSNet, to predict the inpatients’ LoS and mortality in the ICU using the
patients’ clinical records. Fig. 2 demonstrates the overall architecture of the proposed 1D-MSNet. As
portrayed in Fig. 2, the network is primarily composed of two crucial modules, including the backbone
multi-scale convolutional network and an enhanced 1D atrous causal SPP module. Due to the limited
receptive field of the single-scale convolution kernel, the extracted information is relatively unitary,
which limits the performance of model prediction to a certain extent. Therefore, in this study, the multi-
scale convolution kernel is substituted for the single convolution kernel in the bottom convolutional
layers of the 1D-MSNet, to enlarge the convolutional receptive fields and enhance the richness of the
convolutional features. The multi-scale convolution operations are conducted on intermediate feature
maps with the convolution kernel (filter) sizes of 1, 3, and 5, respectively. More specifically, following
2 consecutive convolutional layers, a Batch Normalization (BN), Rectified Linear Unit (ReLU), and
1D max-pooling (MAP) layers are repeated 4 times. These operations reduce the internal covariance
shift and computational complexity of the model. Consequently, the backbone network of the proposed
1D-MSNet comprises a total of eight convolutional layers, and the number of convolution kernels is 32,
64, 128, and 64 with the sizes of 3, 5, 1, 5, 3, 5, 1, and 5, respectively. After that, connecting the bottom
multi-scale convolutional layers, the dilated causal SPP module, which includes 4 parallel 1D average
pooling layers followed by 4 parallel 1D atrous causal convolutional layers and up-sampling layers, is
embedded into the network for extracting high-level data features. It is worth noting that the atrous
convolution has a larger receptive field than the standard convolution and is more suitable for handling
long-distance dependencies. The causal convolution is a strictly time-constrained operation that is
dedicated to addressing sequence data and avoiding series information leakage from the future to the
past. Concretely, the specific descriptions of the atrous and causal operations are presented below.

(1) Atrous convolution. For a given input sequence s € R™ and filter f: {0, ..., k-1} >R, the atrous
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convolution operation £ on the sequence element x of the sequence can be written as

k-1 (3)
F) = ) [0y ai
i=0

where d represents the atrous factor, k is the filter size. x — d - i allows the network to see longer temporal

features for the same number of convolution layers.

(2)Causal convolution. The role of causal convolution can be abstracted to predict y, for a given

sequence § = {X,,X,,...,X,} and corresponding filter "' ={f,, f,,..., fx} . The formula of causal

convolution can be expressed as

K (4)
Yn = Z frXn—k+k
k=0

In this study, the parallel 1D atrous causal convolutional layers are designed to extract discriminative
features, the average pooling layers are responsible for scaling down the spatial size of the feature map
which in turn reduces the parameter number and computing costs, and the up-sampling layers aim to
increase the resolution of features so that the network can better discriminate among complicated data.
At last, a concatenated layer is used to aggregate the features output from the parallel layers, and a
flatten layer followed by a dense layer or completely linked (CL) Softmax layer is used for the
regression or classification tasks, respectively. Table 1 summarizes the major parameters of the

proposed 1D-MSNet architecture.
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Fig. 2. The architecture of the proposed 1D-MSNet.
Table 1. The major parameters of 1D-MSNet.

Layer (module) Input shape Filter number Kernel size Output shape Param number Repeated
Input layer (None, 52,1) - - (None, 32,1) - 1
Multi-scale Convld (None, 52,1) 32 3,5 (None, 52, 32) 128+5152 2
BatchNormalization (None, 52, 32) - - (None, 52,32) 128 1
MaxPoolingld (None, 52, 32) - - (None, 26, 32) - 1
Multi-scale Convld (None, 26, 32) 64 1,5 (None, 26, 64) 2112+20544 2
BatchNormalization (None,26, 64) - - (None, 26, 64) 256 1
MaxPoolingld (None, 26, 64) - - (None, 13,64) - 1
Multi-scale Convld (None,13,64) 128 3,5 (None, 13, 128) 24704+82048 2
BatchNormalization (None,13,128) - - (None, 13, 128) 512 1
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MaxPoolingld (None, 13, 64) - - (None, 7, 64) - 1
Multi-scale Convld (None,7, 128) 64 1,5 (None, 7, 64)  8256+20544 2
BatchNormalization (None, 7, 64) - - (None, 7, 64) 256 1
AvgPoolingld (None, 7, 64) - - (None, 3,64) - 4
Atrous Causal Convld (None, 3, 64) - 1, =2 (None, 3,64) 4160x4 4
Upsampling (None, 3, 64) - - (None, 6, 64) - 4
Concatenate (None, 6, 64) - - (None, 6, 256) - 1
Flatten (None, 6, 256) - - (None, 1536) - 1
Softmax/Dense (None, 1536) - - 2,1 - 1

2.3.2 Loss function

(1) Loss function of LoS prediction. In general, LoS prediction is a regression problem, and the mean
squared error (MSE) function is utilized as the loss function in our network for the LoS prediction task.
The formula of the MSE loss function can be written by

Yre1 Ve — Yi)? (5)
n

Lpred =
where yrdenotes the supervised data, i.e., true value, y}( represents the output of the networks (predicted

value), and » indicates the number of samples.
(2) Loss function of mortality prediction. By comparison, the in-hospital mortality prediction belongs
to a classification task, and the Cross-Entropy (CE) loss function is the mostly used loss function in

deep learning models, as expressed by

c ©)
Lep == ) £elog p(cl)
c=1

In Eq. (6), ¢ indexes the number of categories, p(c|x) denotes the predicted probability of a specific

sample x belonging to category c, and /is an indicator variable (If ¢ is equal to the actual category
number of the sample, then /_ =1; otherwise ¢ =0). However, the CE loss function treats the negative

and positive samples as the same weight and its performance is suboptimal when dealing with imbalance
class samples. For this reason, reference [42] recommends a Focal-Loss (FL) function which assigns
different weights for the positive and negative samples, as expressed below.

Lpy = —w(1 = p(clx))® log(p(clx)) (7)
In Eq. (7), @, and & are the hyper-parameters of the weighting factor and modulating factor,

respectively. The traditional FL function is designed to handle binary issues in the field of object
detection. On the ground of this, we further modified the FL function and made it suitable for multi-
classification problems. The modified FL (MFL) function is utilized in our network for substituting the

existing CE loss function, and the formulas of the MFL function are expressed as follows.

c ®)
Lurs = = ) 0c(1 = p(el)) L log (p(cl)

c=1

w. = count(x)/count(x € c) )



‘= {1,0 = actual_category (10)
¢ 7|0, ¢ # actual_category

3. Experimental results and analysis
3.1 Experimental setup

We have conducted extensive experiments to verify the validity of the proposed approach. The
algorithms are implemented using the software of Anaconda (Python 3.6), where the widely-used
libraries, including Scikit-Learn, Keras, and Tensorflow are used and accelerated by GPU. The
algorithms are conducted on the publicly-available datasets, such as the MIMIC-IV v1.0, COVID-19,
and Kaggle benchmark datasets, to perform the LoS and mortality prediction tasks. The hardware
configuration for using the Python DL framework to implement the LoS and mortality prediction
includes AMD EPYC 7502P 32-Core Processor, 32 GB RAM, and RTX A6000 GPU, which are used

for algorithm operation.

3.2 Experiments on MIMIC-1V v1.0 dataset

The Medical Information Mart for Intensive Care (MIMIC)-IV v1.0 dataset, which was released on
June 22, 2022, focuses on expanding the data elements available for patients within MIMIC-III.
Additional data sources, such as electronic medicine administration records, are incorporated in
MIMIC-IV. It establishes a modular organization of constituent data, linking datasets with external
departments and different data modalities. Multivariate critical care data are included in the MIMIC-1V
dataset from the ICU stays for over 40,000 inpatients admitted from 2008 to 2019 [43]. All data records
were deidentified, i.e., patient identifiers are removed according to the Health Insurance Portability and
Accountability Act (HIPAA) Safe Harbor provision. Following the cohort selection procedure introduced
by [18], we extracted a set of feature variables from the MIMIC-IV dataset to predict the LoS and
mortality for the inpatients. Specifically, a total of 52 characteristic metrics, including blood, circulatory,
endocrine, infectious, injury, mental, and others, are extracted from the following tables:
ADMISSIONS, DIAGNOSIS ICD, PATIENTS, and ICDSTAYS. These tables record the patients’
clinical diagnosis and physical examination data in hospitals, and they are linked through the subject _id.
Among them, the ADMISSIONS table provides information regarding patients’ admission to the
hospital. The information available contains the admission and discharge time, demographic data, the
source of the admission, and so on. The DIAGNOSIS ICD table includes the crucial indicator
ICD_CODE, which is divided into 17 sub-categories in our work referring to the ICD9 scheme issued
by the U.S. National Center for Health Statistics. The PATIENTS table provides the inpatients’ age and
gender information, and the [CDSTAYS table gives the Intensive Care Unit (ICU) information for each
hospital admission. In this paper, we focus on two events: LoS and mortality. LOS is defined as the date
and time between admission and discharge from the hospital, which is calculated by the difference
between admission time and discharge time from the ADMISSIONS table. For the LoS prediction,
patients who died at the hospital are dropped from the data as they may bias the LoS since they were

10



never discharged alive from the hospital. Whilst mortality is depicted by the hospital expired flag
indicator in the ADMISSIONS table, which indicates the patients’ death or survival in hospitals.
Referring to the literature [52], we implemented the cohort inclusion and exclusion work for the original
data. Except for the extracted useful indicators mentioned above, the unused columns like LANGUAGE,
ADMIT_ MIN, ADMISSION LOCATION, and DOB were dropped from the original data. We also
removed unnecessary columns and verified that there were no missing values in the dataset.
Additionally, the negative indicator values, such as negative LoS caused by entry form error, were
removed as they might skew prediction results. Furthermore, the extracted categorical variables, such
as admission type, insurance type, age, ethnicity, religion, and marital status columns, were converted
into dummy/indicator variables through One-Hot encoding. Table 2 displays the representative sample
data extracted from the MIMIC-IV v1.0 database, and Table 3 summarizes the overall statistical
description of the dataset. Fig. 3 presents the distribution of inpatients’ LoS and mortality samples.

Table 2 The extracted sample data from the MIMIC-IV v1.0 database.

Subjectid  LoS Mortality Blood Circulatory Enﬁzcn ... Injury Gender Nervous Pregnancy Prenatal Respiratory
18153382 1.61458 0 1 1 0 1 1 0 0 0 2
16378267 1.74166 0 0 5 1 1 1 0 0 0 0
16378267 8.13611 0 0 0 0 20 1 0 0 0 0
16378267 4.34722 1 0 0 0 27 1 0 0 0 0
18109892 8.20763 0 0 7 3 2 0 2 0 1 1
13104913 2.80138 0 0 0 0 1 0 4 0 0
13104913 3.57847 0 0 0 0 1 0 2 0 0
15813228 6.0625 0 1 4 3 5 0 0 0 0 0
18252284 2.59444 0 0 0 0 12 1 0 0 0 0
19984875 8.92638 0 0 0 0 17 1 0 0 0 0
Table 3 Overall statistical description for the dataset.
Variables (n) Statistic Variables (n) Statistic Variables (n) Statistic
DECEASED =1 (%) 9213 (1.8)  Neuro-SICU = 1 (%) 1807 (0.3) GENDER = 1 (%) 269655 (51.8)

blood (mean (SD)) 0.17 (0.48)  Neuro-Intermediate = 1 (%) 1770 (0.3)  INS-Medicaid = 1(%) 50717 (9.7)
circulatory (mean (SD)) 0.94 (1.73)  Neuro-Stepdown =1 (%) 830 (0.2) INS-Medicare = 1(%) 170417 (32.7)

congenital (mean (SD)) 0.03 (0.19)  ICU Type INS-Other = 1(%) 299809(57.6)
digestive (mean (SD)) 0.38 (0.88) CVICU=1 (%) 11464 (2.2) Race

endocrine (mean (SD)) 0.67 (1.17) CCU=1 (%) 8330 (1.6) ETH-asian=1 (%) 24447 (4.7)
genitourinary(mean(S  0.28 (0.69) MICU =1 (%) 15732 (3.0) ETH-black=1 (%) 80137 (15.4)
infectious (mean (SD)) 0.13 (0.44) MICU-SICU =1 (%) 12528 (2.4) ETH-other=1 (%) 50770 (9.7)
injury (mean (SD)) 5.64 (6.81) SICU=1 (%) 11019 (2.1) ETH-latino=1 (%) 29740 (5.7)
mental (mean (SD)) 0.38 (0.87) TSICU =1 (%) 8552 (1.6) ETH-white =1 (%) 335849 (64.5)

misc (mean (SD)) 0.33 (0.75) adm-ambulatory-observation 7118 (1.4) AGE

muscular (mean (SD)) 0.22 (0.60) adm-direct-emer =1(%) 21436(4.1)  AGE-newborn = 1 (%)503817 (96.7)
neoplasms (mean (SD)) 0.14 (0.53) adm-direct-observation =1(%)19691(3.8) ~ AGE-senior=1 (%) 17126 (3.3)
nervous (mean (SD))  0.27 (0.67) adm-elective =1(%) 71928 (13.8) Marriage

pregnancy (mean (SD)) 0.09 (0.63) adm-eu-observation =1(%)  100336(19.3) MAR-divorced=1 33525 (6.4)
prenatal (mean (SD))  0.15 (0.66) adm-ew-emer =1(%) 157628(30.3) MAR-married = 1 (%) 193794 (37.2)
respiratory (mean (SD)) 0.21 (0.59) adm-observation-admit =1(%)55274 (10.6) MAR-single =1 (%) 179256 (34.4)
skin (mean (SD)) 0.09 (0.39) adm-surgical-same-day-admis40078 (7.7) MAR-unknown=1 65761 (12.6)
Neuro type (%) 4407 (0.80) adm-urgent =1(%) 47454 (9.1) MAR-widowed=1 48607 (9.3)
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Fig. 3. The distribution of LoS and mortality.

It can be observed from Fig. 3 that most LoS are under 10 days, and the mortality sample distribution
is extremely unbalanced. As seen in Fig. 3(b), the samples of the survival category (class 0) account for
the majority, while the samples of the death category (class 1) account for only a very small number.
Specifically, in a total of 520,943 rows of records, 9,213 rows are counted as mortality (see Table 3 for
the statistic level description). Thereupon, the sample distribution is extremely unbalanced, and the
number of deaths accounts for only a very small proportion. To alleviate the imbalance sample problem,
the SMOTE algorithm is first utilized to augment the minority class samples in the training dataset to
ensure a balanced distribution of positive and negative samples in the mortality prediction task.

We first perform the mortality prediction for patients in hospitals using the MIMIC-IV dataset. The
dataset is split into training and test with a ratio of 3:1. Further, 30% of samples are drawn from the
training dataset as the validation dataset. State-of-the-art methods, including the Multilayer Perceptron
(MLP) classifier, KNN, SVM, Random Forest (RF), XGBoost, light gradient boosting machine
(lightGBM), Temporal Convolutional Neural Network (TCNN), Transformer, and two-dimensional
convolutional neural networks (2D-CNN) are chosen for comparison study. More than that, as
mentioned in Section 2.1, uniformly random sampling from the interval [0, 1] is applied in SMOTE for
data augmentation. Exploring alternative probability distribution functions, we replace the original
uniform distribution in SMOTE with the half-normal function. Subsequently, we apply the 1D-MSNet
for predicting inpatient mortality. We define this approach as 1D-MSNet (halfnorm). Besides, to explore
the potential for performance enhancement through the integration of attention-based mechanisms, we
incorporate a one-dimensional SEblock [44] into the networks, which is termed the 1D-MSNet (SE),
for the comparison study on mortality prediction as well. It is worth mentioning that to ensure a fair
comparison, the hyper-parameters of the compared models are kept consistent. For example, the
adaptive moment estimation (Adam) [45] is utilized as a training optimizer of the network models, with
a learning rate of 1 x 107°, 128 mini-batch size, and 30 epochs of training. The hyper-parameter
n_estimators, which determines the number of trees in the models, is uniformly set to 70 for the tree

algorithms such as the RF, XGBoost, and lightGBM, with the class number of two, automatic
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tree_method, and the true silent. The commonly-used indicators including Accuracy (Acc), Recall (Rec),

Fl1-Score (FI), ROC-AUC, and PR-AUC are utilized to investigate the performance of mortality

prediction models. Figs. 4 and 5 depict the training performance of the proposed approach and the tested

confusion matrices of different methods.

Table 4 The mortality prediction results of different methods.

Training set (%)

Validation set (%)

Methods ; ; ; ; ; ; Time (s)
Acc Rec FI Acc Rec Fi
MLP 98.55+0.23 98.55+0.23 98.55+0.23 98.22+0.37 98.22+0.37 98.22+0.37 0:13:55
SVM 97.50+0.02 97.50+£0.02 97.49+0.01 97.45+0.03 97.45+0.03 97.45+0.03 3:20:12
KNN 98.24+1.72 98.24+1.72 98.24+1.72 97.46+1.28 97.46+1.28 97.46+1.28 3:06:50
RF 99.29+0.04 99.29+0.04 99.29+0.04 99.01£0.06 99.01£0.06 99.01+0.06 0:04:38
XGBoost 98.79+0.03 98.79+£0.03 98.79+0.03 98.59+0.02 98.59+0.02 98.59+0.02 0:04:05
LightGBM 95.56+0.13 95.56+£0.13 95.56+0.13 95.49+0.14 95.49+0.14 95.49+0.13 0:02:36
TCNN 99.02+0.01 99.02+0.01 99.02+0.01 98.65+0.03 98.65+0.03 97.51+1.17 0:17:23
Transformer 97.15+£1.42 97.16£1.46 97.15+1.42 97.11£1.00 97.09+0.93 97.11+£1.00 0:57:06
2D-CNN 98.05+1.02 98.05+£1.02 98.05+1.00 97.91+0.98 97.91+0.98 97.91+£0.98 0:36:26
I1D-MSNet(halfnorm) 99.49+0.42 99.49+0.42 99.49+0.42 98.94+0.05 98.94+0.05 98.94+0.05 0:27:14
ID-MSNet(SE) 99.26+0.24 99.26+£0.24 99.26+0.24 98.73+0.23 98.73+0.23 98.73+0.23 0:33:04
1D-MSNet 99.53+0.05 99.53+£0.05 99.53+0.05 98.91+0.01 98.91+0.01 98.91+£0.01 0:24:00
! indicates the higher is better, while ' is in the reverse.
Table 5 The mortality prediction results on the test dataset.
Test set (%)
Methods Acc' Rec' FI' ROC-AUC'  PR-AUC'
MLP 96.42+1.08 96.42+1.08 96.89+0.60 63.42+1.82 28.17+2.56
SVM 95.49+0.01 95.49+0.01 96.16+0.01 59.64+0.16 16.01+0.22
KNN 93.60+2.41 93.60+2.41 95.25+1.25 61.37+0.06 19.13+0.12
RF 97.58+0.36 97.58+0.36 97.44+0.05 56.29+0.25 23.15+0.14
XGBoost 97.76+0.01 97.76+0.01 97.64+0.01 63.94+0.25 31.37+0.47
LightGBM 90.60+0.26 90.60+0.26 93.41+0.14 54.22+0.05 8.91+0.06
TCNN 97.60+0.06 97.60+0.06 97.51+0.04 63.45+0.21 29.12+0.81
Transformer 93.26+1.25 93.26+1.25 94.82+1.65 55.65+£5.65 10.15+6.51
2D-CNN 96.40+1.31 96.40+1.31 96.74+0.85 63.27+0.41 28.48+2.14
1D-MSNet(halfnorm) 97.82+0.11 97.82+0.11 97.65+0.06 63.05+0.63 31.13+0.51
1D-MSNet(SE) 97.95+0.09 97.95+0.09 97.69+0.02 61.64+2.19 31.21+1.63
1D-MSNet 97.73+0.12 97.73+0.12 97.65+0.02 64.19+1.01 32.414+0.71
t indicates the higher is better, while * is in the reverse.
(a) 1D-MSNet (accuracy) (b) 1ID-MSNet (loss)
1.00 1 train loss
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Fig. 4. Training performance of the proposed 1D-MSNet.
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Fig. 5. The test confusion matrices of different methods.

Tables 4 and 5 demonstrate the mortality prediction results of different methods. From Table 4 it
can be seen that the proposed approach outperforms the well-known methods on the experimental
datasets. After 30 epochs of training, the 1D-MSNet has realized a 98.91% validation accuracy, which
is higher than other compared methods except for the Random Forest and 1D-MSNet (halfnorm).
However, the Random Forest is an ensemble learning (EL) classifier comprised of multiple decision
tree algorithms. Notably, the 1 D-MSNet (halfnorm) exhibits comparable performance as the 1D-MSNet.
While the distributions differ, the synthetic samples generated by SMOTE maintain the essential
patterns and characteristics of the minority class. The large size of the dataset potentially contributes to
achieving consistent performance across different distributions, ensuring a balanced augmentation
effect. It is also observed that the accuracy of the 1D-MSNet (SE) is close to but slightly worse than
that of the proposed method, while the 1D-MSNet (SE) method consumes more time. Especially, as
shown in Table 5, the proposed 1D-MSNet outperforms other compared methods and realizes the
highest test ROC-AUC and PR-AUC of 64.19% and 32.41%, respectively. On the test set, the proposed

1D-MSNet architecture achieves top performance relative to other state-of-the-art methods, which
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reveals the outstanding capability of the proposed approach for the mortality prediction task. It can also
be observed from Figs. 4 and 5. The 1D-MSNet has attained an impressive training performance, and
the tested confusion matrix results of the proposed approach are better than that of other compared
methods. Besides, it is essential to emphasize that the training time consumption of the 1D-MSNet is
24 minutes, which is less than the average time consumed by the comparison methods of 53 minutes.
In contrast, other well-known methods, such as SVM and KNN, take over 3 hours for model training.
Therefore, based on the experimental findings, it can be assumed that the 1D-MSNet has presented
competitive advantages in both the accuracy and efficiency for the mortality prediction task. The crucial
explanation for the substantial effects of the proposed method is that the SMOTE-based data
augmentation alleviates the imbalance sample problem. In place of the regular convolution, the multi-
scale convolution kernel used in the bottom convolutional layers helps the model extract high-level
features and enhance the richness of the convolutional features. Moreover, the enhanced 1D SPP module,
featuring atrous and causal convolutions, expands the convolutional receptive field while minimizing
computational burden. Simultaneously, this refined 1D SPP module mitigates information loss
compared to conventional pooling operations, leading to enhanced model accuracy. Beyond that, the
MFL function applied in the network further mitigates the influence of unbalanced samples and
enhances the model performance. By contrast, the other methods are frequently-used ML algorithms or
single neural networks. Though various optimization and parameter tuning operations are conducted,
these methods do not attain desired results. As a consequence, the proposed method achieves the best
performance in the comparative experiment of mortality prediction.

Subsequently, we carried out the LoS prediction experiment on the MIMIC-IV v1.0 dataset, and a
total of 511,741 rows of records were extracted for the LoS prediction task. Similarly, in addition to
preserving 30% of samples from the training dataset as the validation dataset, the training and test sets
are split with a ratio of 3:1. To measure the prediction performance of the LoS prediction models, the
root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R’ or R-

Square), and explained variance (Ey4r) are chosen as performance metrics, which can be expressed as

& (an
MAE =5 1y~

=1

o (12)
RMSE = |3 (i = 9,)?

i=1

N N (13)
RZ=1-"0i=90%/ ) 0= )
i=1 i=1

Eyag = 1= var(y; = 9 /var(yy) (14)

where y, and y, represent the actual and predicted values, respectively. var(-) signifies the variance

function. It is essential to emphasize that for both the Eyuz and R?, the ideal value is 1, while the bigger
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value is worse for the MAE and RMSE metrics.

Table 6 LoS prediction accuracy of different methods.

LoS prediction accuracy on the validation set LoS prediction accuracy on the test set

Models ; ; = T ; ; 3 . Time (s)
MAE RMSE R Eyur MAE RMSE R Eyar

MLP 2.35+0.11 5.46+1.05 0.46+0.07 0.46+0.07 2.83+0.69 4.77+0.91 0.36+0.14 0.41+£0.18 0:12:36

SVM 2.25+0.10 6.11+1.02 0.33+0.05 0.34+0.04 2.61+0.86 4.87+£1.26 0.34+0.03 0.43+0.11 5:14:53

KNN 2.52+0.11 5.94+1.05 0.37+£0.07 0.37+0.06 2.64+0.58 4.69+0.73 0.39+0.18 0.44+0.26 0:13:09

RF 2.53+0.11 5.85+1.07 0.39+0.07 0.39+0.07 2.87+0.75 5.17£1.09 0.26+0.22 0.28+0.23 0:05:36

XGBoost  2.35+0.09 5.43+1.08 0.47+£0.07 0.47+£0.07 2.75+0.63 4.69+0.84 0.39+£0.16 0.41+0.17 0:02:30
LightGBM 2.36+0.08 5.42+1.07 0.47+0.07 0.47+0.07 2.69+0.68 4.69+1.06 0.39+0.06 0.41+0.07 0:02:32
TCNN 2.58+0.02 6.74+0.01 0.35+£0.01 0.35+0.01 2.10+0.06 3.65+0.02 0.29+0.01 0.29+0.01 0:05:34
2D-CNN  2.81+0.44 4.82+1.72 0.40+£0.01 0.44+0.05 2.62+0.33 4.63+0.37 0.40+£0.08 0.44+0.14 0:17:11
1D-MSNet 2.17+0.27 2.78+0.27 0.50+0.11 0.52+0.13 2.42+0.10 3.61+0.14 0.57+£0.12 0.59+0.21 0:11:23
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Fig. 6. The RMSE and R-Square of the 1D-MSNet.

[ ] EN) [ ]
40 b
. . 20
= ] E 35 .
£ £

0 5 10 15 20 5 0 5 0 5 10 5 i 5 E =
Actual Actual
50 4
 Aciual 35 4 _— Actual
Predicted Predicted
40 1 30 4
i; 30 f: 251
g & 20
_S: 20 g} 15
= =
L k!
104 10 4
ol AL il il g
o |Ill|,..hl..lil.llm.l.ll\. ..|.l||,|\I.H..|II|I\.|‘.‘I H{TAmIITH
0 20 a0 60 80 100 °% 20 40 60 80 100
Sample index Sample index
(a) LoS prediction on validation set (b) LoS prediction on test set

Fig. 7. The tested accuracy of the proposed approach.
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Table 6 presents the LoS prediction accuracy of different methods on the validation and test sets, and
the tested RMSE and R-Square of the proposed approach are portrayed in Fig. 6. Meanwhile, Fig. 7
depicts the partial prediction samples of LoS on the validation and test sets using scatter and bar plots.
From Table 6 it can be visualized that the 1D-MSNet has realized the MAE of 2.17 and 2.42, and the
RMSE of2.78 and 3.61 on the validation and test sets, which are the optimum values of all the algorithms.
Besides, for the R-Square indicator, the proposed approach has attained the greatest values of 0.50 and
0.57 on the validation and test sets, which is superior to other compared methods. The proposed
approach has also presented a competitive advantage in computation time, which is lower than the
average time consumption of the comparison methods. In addition, except for some singularities, the
bar charts of the predicted value are basically consistent with that of the actual values, as seen in Fig. 7.
The scatter and bar charts of the prediction results also depict the effectiveness and feasibility of the
proposed method. Depending upon the experimental analysis, it can be assumed that the 1D-MSNet has
outperformed other state-of-the-art methods and delivers impressive efficiency for the LoS prediction
task. Furthermore, we have also conducted a performance survey of the proposed method compared
with the results reported in the literature, as shown in Table 7. Table 7 reveals that the proposed approach
has delivered a comparable result on the MIMIC-IV datasets, which is superior to that of most existing
methods. Consequently, the comparative analysis results indicate the competitive advantages of the
proposed approach for LoS prediction.

Table 7 Comparison results with recent literature [46].

ID References Year Description R*! RMSE'
1  Zimmerman et al. [48] 2006 Mean 0.00 7.23
2 Zimmerman et al. [48] 2006 Median -0.14 7.71
3 Harutyunyan et al. [49] 2019 LSTM 0.28 6.61
4  Harutyunyan et al. [49] 2019 Multi-Channel LSTM (MC-LSTM) 0.26 6.20
5  Vaswani et al. [50] 2017 Transformer 0.27 6.18
6  Rocheteau et al. [18] 2021 Temporal Pointwise Convolution (TPC) 0.54 4.90
o Temporal Dilated Separable Convolution with
7 Al-Dailami etal. [46] 2022 Context-Aware Feature Fusion (TDSC-CAFF) 0.64 4.30
8  This study 2023 1D-MSNet 0.57 3.61

3.3 Experiments on other benchmark datasets

To verify the generalization ability of the proposed scheme, we further implemented the mortality
risk and LoS prediction experiments on additional two benchmark datasets, including the COVID-19
[51] and Kaggle benchmark datasets (https://www.kaggle.com/datasets/aayushchou/hospital-length-of-
stay-dataset-microsoft), respectively. The COVID-19 dataset contains the demographics and clinic
diagnosis information of 4,711 patients with confirmed COVID-19 infections. Each patient has a total
of 85 features in the dataset, such as age, severity, myocardial infraction (MI), and diabetes mellitus
simple (DM simple), etc. It is worth noting that different types of populations are included in the dataset,
so this study is not limited to a similar type of patients, and it is generalized towards a larger group of
population. Tables 8 and 9 summarize the mortality prediction results of different methods on the

COVID-19 dataset. From Table 9 it can be seen that the proposed 1D-MSNet has achieved the highest
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test F'1-Score of 80.24% on the COVID-19 dataset except that of the Random Forest and XGboost
ensemble learning algorithms. Particularly, the proposed method realizes the test ROC-AUC of 74.99%,

which is the best value of all the compared methods.

Table 8 Mortality prediction of different methods on the COVID-19 dataset.

Training set (%) Validation set (%) )
Methods Ace' Rec' FI' Acc' Rec' FI' Time (s)
MLP 74.51£2.31 74.514£2.31 75.67£1.98 73.09+1.46 73.09+1.46 74.78+1.36 0:00:02
SVM 75.56+0.01 75.56+0.01 65.96+0.01 78.06+0.13 78.06+0.13 69.31+0.07 0:00:03
KNN 83.78+3.49 83.78+3.49 80.73+4.47 77.09+0.25 77.09+0.25 72.09+0.03 0:00:02
RF 89.72+0.77 89.72+0.77 89.14+0.84 83.15+0.93 83.15+0.93 81.38+1.41 0:00:02
XGBoost 89.84+1.46 89.84+1.46 89.14+1.53 84.00+0.36 84.00+0.36 82.34+0.71 0:00:03
LightGBM 74.75+3.93 74.75+3.93 72.58+4.69 78.30+2.79 78.30+2.79 75.25+3.54 0:00:02
TCNN 81.55+0.57 81.55+0.57 80.79+0.22 82.90+1.70 82.90+1.70 82.11+1.21 0:00:41
Transformer 76.09+£0.69 76.09+£0.69 68.79+3.35 79.39+0.61 79.39+£0.61 73.03£0.34 0:03:24
2D-CNN 77.54+1.41 77.54+x1.41 71.17£295 79.27+0.73 79.27+0.73 73.26+1.58 0:01:17
1D-MSNet 81.67+1.26 81.67+1.26 80.83+1.09 81.81+0.24 81.81+0.24 80.94+0.30 0:01:37

Table 9 The mortality prediction on the COVID-19 test dataset.
Test set (%)

Methods Acc' Rec' FI’ ROC-AUC' __ PR-AUC’
MLP 73.83+1.27 73.83+1.27 75.02+1.10 70.62+0.85 35.79+0.88
SVM 76.09+0.07 76.09+0.07 66.37+0.17 51.11+0.14 33.12+0.66
KNN 76.23+0.71 76.23+0.71 71.31+0.99 56.31+1.16 21.40+2.87
RF 83.45+0.63 83.45+0.63 82.03+0.76 71.28+1.11 43.55£1.50
XGBoost 83.73+0.01 83.73+0.01 82.50+0.16 72.26+0.59 44.20+0.23
LightGBM 79.60+1.73 79.60+1.73 74.51+3.61 59.53+3.95 37.63+1.89
TCNN 81.82+2.79 81.82+2.79 79.34+1.30 66.58+2.54 39.96+1.04
Transformer 77.08+1.98 77.08+1.98 70.84+4.01 55.49+4.85 25.23+£7.20
2D-CNN 77.86+1.06 77.86+1.06 71.46+2.45 56.11+2.57 30.85+4.08
1D-MSNet 80.97+1.63 80.97+1.63 80.24+1.43 74.99+2.89 41.28+0.65

The LoS prediction experiment is further implemented on the Kaggle benchmark dataset, where 100k
data points on patients admitted into hospital, indicators of their health condition, and how long they
were admitted in the hospital are included. This dataset was open sourced by Microsoft. It is useful for
predicting LoS as a regression task and 27 features are contained in this dataset. Table 10 displays the
LoS prediction results of different methods on the Kaggle benchmark dataset. As seen in Table 10, the
proposed 1D-MSNet has achieved the highest Ey4z of 0.85 on the validation and test sets, respectively.
It also achieves favorable results for the remaining metrics. To conclude, the test results reveal that the
proposed 1D-MSNet has showcased remarkable performance across additional benchmark datasets,
which demonstrates the validity and feasibility of the proposed approach compared with other state-of-

the-art methods.
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Table 10 LoS prediction on the Kaggle benchmark dataset.

LoS prediction accuracy on the validation set LoS prediction accuracy on the test set

Models - P rusE! . R Evie'  MAE'  RMSE'  R® Bt me(s)
MLP 0.7120.11 0.96£0.06 0.830.02 0.8340.01 0.72£0.10 0.9740.04 0.83£0.02 0.83+0.01 0:00:14
SVM 0.8740.01 1.1840.01 0.75:0.01 0.76:£0.01 0.8740.01 1.1840.01 0.75:0.01 0.76£0.01 0:09:39
KNN 1.0240.07 143011 0.6420.04 0.66+0.05 1.0240.06 1.43£0.11 0.63£0.05 0.66£0.05 0:00:18
RF 0.68+0.01 0.96£0.01 0.84+0.01 0.84+0.01 0.6940.01 0.9740.01 0.83+0.01 0.83+0.01 0:00:01

XGBoost  0.69+0.20 0.92+0.33 0.84+0.12 0.85+0.06 0.69+0.20 0.92+0.32 0.84+0.12 0.85+0.07 0:00:01
LightGBM 0.75+0.25 0.99+0.30 0.82+0.12 0.824+0.12 1.00+0.24 0.75+0.28 0.82+0.13 0.82+0.13 0:00:01
TCNN 0.69+0.04 0.94+0.03 0.85+0.02 0.85+0.01 0.69+0.04 0.92+0.03 0.84+0.01 0.84+0.01 0:01:27
Transformer 0.76+0.01 1.01+0.05 0.80+0.01 0.81+0.02 0.80+0.01 1.08+0.01 0.78+0.01 0.78+0.01 0:06:04

2D-CNN  0.83%+0.07 1.02+0.20 0.81+0.03 0.83+0.02 0.83+0.07 1.02+0.08 0.81+0.03 0.83+0.02 0:01:49
ID-MSNet 0.67+0.09 0.93+0.04 0.85+0.02 0.85+0.01 0.67+0.09 0.93+0.03 0.84+0.02 0.85+0.02 0:02:55

3.4 Ablation study

To analyze the efficacy of the proposed method, we implement the ablation study on the model,
where we analyze the behavior of multi-scale filters, SPP module, and atrous causal convolutions on
the MIMIC-IV dataset for the LoS prediction task. In the first ablation experiment, we remove the multi-
scale filters and uniformly use the filter size of 3 to replace the original filter sizes of 1, 3, and 5 for
investigating the model performance. We observe a minor decrease in the result of the ablated model,
where the R-Square value drops to 0.47 (decreased by 0.03) and 0.44 (decreased by 0.13) on the
validation set and test set, respectively. Although the ablation model still outperforms the baseline
models, it suffers a notable decline relative to the proposed 1D-MSNet architecture. Subsequently, we
conduct the second ablation experiment and remove the ACSPP module from the network. A significant
drop in accuracy occurs on the ablation model and its R-Square drops to 0.33 (decreased by 0.16) and
0.17 (decreased by 0.40) on the validation and test sets. Also, the RMSE value rises to 6.08 (increased
by 3.30) and 5.47 (increased by 1.86), respectively. This ablation experiment demonstrates that
removing the ACSPP module leads to a notable negative influence on the model accuracy. Further, we
evaluate the effect of the atrous and causal convolutions in the ACSPP module. To do so, we remove
the atrous and causal convolutions and only use the traditional SPP module to incorporate into the
network for comparing models. We notice a decrease in the efficiency where the validation R-Square
drops to 0.44 (decreased by 0.06) and the test R-Square drops to 0.39 (decreased by 0.18). This
ablation experiment reveals that removing the atrous and causal convolutions has a significant
influence on the performance in comparison with the aggregated ACSPP module of the proposed
approach. Table 11 displays the ablation experiment results.

Table 11 Comparison results of ablation experiments.

LoS prediction accuracy on validation set LoS prediction accuracy on test set
MAE'  RMSE'  R*' Evar' MAE'  RMSE'  R* Evar'

Ablation approach

Delete multi-scale
filters

Delete ACSPP module 2.64+0.21 6.08+1.01 0.33+0.05 0.34+0.05 3.23+0.89 5.47+1.36 0.17+£0.05 0.17+0.03
Delete atrous causal  2.55+0.13 5.58+0.96 0.44+0.05 0.45+0.06 2.94+0.80 4.67+0.88 0.39+0.14 0.39+0.13
This study 2.17+£0.27 2.78+0.27 0.50+£0.11 0.52+0.13 2.42+0.10 3.61+0.14 0.57+0.12 0.59+0.21

2.39+0.28 5.43+1.42 0.47+0.14 0.47+0.13 2.70+0.47 4.47+0.73 0.44+0.17 0.45+0.17
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4. Conclusions

Estimating the inpatient’s LoS and mortality is a challenging daily task for doctors in the healthcare
field. To address the challenge, this study proposes a novel one-dimensional CNN architecture, namely
1D-MSNet, to predict patients’ status: in-hospital LoS and mortality in the ICU, and generate a state-
of-the-art performance for both tasks. In the bottom convolutional layers of the proposed network
architecture, the 1D multi-scale convolution kernel is substituted for the single convolution kernel to
enlarge the convolutional receptive fields and enhance the richness of the convolutional features.
Following the bottom convolutional layers, the atrous causal SPP, which includes 4 parallel 1D average
pooling layers concatenated by 4 parallel 1D atrous causal convolutional layers and up-sampling layers,
is incorporated into the network for extracting deep-level features. It is noteworthy that the atrous
convolution is used to expand the convolutional receptive fields and address long-distance dependencies.
Causal convolution is dedicated to handling sequence data and avoiding series information leakage from
the future to the past. Besides that, the MFL function is in place of the traditional CE loss function for
alleviating the imbalanced-class problem in mortality prediction. The proposed approach is evaluated
using publicly accessible databases for LoS and mortality prediction tasks. Experimental results reveal
that the proposed 1D-MSNet consistently shows competitive performance on both tasks across a wide
range of datasets. We believe that the observed strong and consistent performance is indicative of the
underlying robustness of our approach and highlights the potential practical applicability of our method
across real-world scenarios. Moreover, by tackling the data imbalance issue, the proposed framework
has the potential to mitigate bias.

The integration of ML into healthcare practice and clinical applications holds the potential to yield
substantial improvements to the healthcare sector. Nevertheless, building an appropriate DL model is a
challenging task due to the dynamic nature, complex model interactions, and variations in real-world
problems and data. Moreover, the lack of core understanding turns DL methods into black-box machines
that hamper development, which may also raise ethical challenges that need to be seriously considered.
In our future work, we will focus on integrating enhanced explainability techniques to make DL models
more robust and interpretable, thereby fostering trust between medical professionals and algorithmic

recommendations.
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