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Pulsar timing arrays are sensitive to low-frequency gravitational waves (GWs), including the low-
frequency stochastic gravitational wave background (GWB), which induces correlated changes in
millisecond pulsars’ timing residuals described by the Hellings-Downs curve. Some sources of noise
can also induce correlated changes in pulsar timing residuals, albeit with different correlation signatures.
A spatial correlation that differs from Hellings-Downs could also be indicative of non-Einsteinian GW
polarizations. It is therefore crucial that we be able to characterize the spatial correlation in order to
distinguish between the GWB and sources of noise. The optimal statistic (OS) is a frequentist estimator for
the amplitude and significance of a spatially correlated signal in PTA data, and it is widely used to search
for the GWB. However, the OS cannot perfectly distinguish between different spatial correlations. In this
paper, we introduce the multiple component optimal statistic (MCOS): a generalization of the OS that
allows for multiple correlations to be simultaneously fit to the data. We use simulated data to show that this
method more accurately recovers injected spatially correlated signals, and in particular eliminates the
problem of overestimating the amplitude of correlations that are not present in the data. We also

demonstrate that this method can be used to recover multiple correlated signals.
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I. INTRODUCTION

When massive bodies such as black holes orbit each
other, they radiate away energy in the form of gravitational
waves (GWs), causing their orbit to shrink until they
coalesce. Supermassive black hole binaries (SMBHBs),
which form in galaxy mergers, emit low-frequency GWs
over many orders of magnitude in frequency as they go
from subparsec separations to coalescence. The incoherent
superposition of GWs from a cosmological population of
SMBHBs produces a stochastic GW background (GWB) in
the nanohertz frequency range (~107°-10~7 Hz) [1-3].

Pulsars are rapidly spinning neutron stars that emit radio
waves that can be observed by radio telescopes. Pulsars
have very stable spin rates, which makes them ideal for
detecting long-period gravitational waves [4—6]. In pulsar
timing arrays, pulsars essentially act as astronomical
clocks, allowing us to measure small fluctuations in
spacetime over years to decades. There are currently four
regional PTA experiments: the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [7], the
European Pulsar Timing Array (EPTA) [8], the Parkes
Pulsar Timing Array (PPTA) [9], and the Indian Pulsar
Timing Array (InPTA) [10]. All of these groups collaborate
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and share data under the umbrella of the International
Pulsar Timing Array (IPTA) [11].

The presence of GWs induces correlated changes in the
pulse times of arrival, with the correlation between two
different pulsars depending on their angular separation on
the sky according to the Hellings-Downs (HD) curve [12].
This characteristic correlation allows us to distinguish
between the GWB and other astrophysical and terrestrial
effects that could affect the pulse times of arrival of many
pulsars, such as the solar wind, instrumentation errors, a
clock error, ephemeris errors, etc. [13—15]. A correlated
signal with a correlation pattern that differs from the HD
curve could also indicate the presence of non-Einsteinian
GW polarizations [16-19].

It is therefore crucial to be able to distinguish between
different cross-correlations. One method for doing this is
using the OS, a frequentist estimator of the amplitude and
significance of a correlated stochastic process, where the
correlation function of interest is determined by specifying
the overlap reduction function (ORF) [20-22]. One limita-
tion of the OS is that for any real PTA, it is not possible to
perfectly distinguish between different ORFs. In general, the
ORFs for different cross-correlations are not orthogonal,
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with the overlap between them depending on the number of
pulsars and their sky locations [23,24]. In this paper, we
address this issue by introducing a modified version of the
OS that allows us to simultaneously search for multiple
correlated OS signals (MCOS). As we show in this paper, this
allows us to more accurately characterize the presence of
correlated signals in PTA data.

This paper is organized as follows. In Sec. II, we discuss
the OS and derive a modified version that can simulta-
neously fit multiple correlation functions. In Sec. III, we
describe the methods, signal models, and software used to
generate and analyze simulated PTA data. We generated
three types of simulated datasets: one containing a GWB
(i.e., a common-spectrum process with HD correlations),
another containing a common-spectrum process with GW-
like monopole correlations, and finally a model with both a
GWB, and GW-like monopole signal injected. In Sec. IV
we use the standard OS and our MCOS to analyze the
simulated datasets. We find that simultaneously fitting
multiple correlations using the MCOS prevents overesti-
mating the presence of correlations that are not present,
while not significantly affecting parameter estimation of
correlated signals. We also demonstrate that the MCOS
allows us to recover multiple correlated signals from the
data. We summarize the paper and discuss future work
in Sec. V.

II. OPTIMAL STATISTIC

The OS is a frequentist estimator of the amplitude and
significance of the stochastic background. It only considers
the cross-correlations between two different pulsars and not
auto-correlation terms of individual pulsars. The OS is very
fast to compute compared to performing an equivalent
Bayesian analysis; however, the OS can be biased due to
covariance between individual pulsar red noise and a
common stochastic process. The noise-marginalized OS
is a hybrid Bayesian-frequentist method that marginalizes
over the pulsars’ intrinsic red noise [23]. It has been shown
that this method more accurately estimates the amplitude of
the GWB in the presence of intrinsic pulsar red noise
compared to computing the OS with fixed pulsar red noise
parameters.

One method to derive the OS is to consider fitting the
cross-correlations between pulsars to an ORF I',;, with
amplitude A” [21,22]. Let r,, be the residuals for pulsar a.
The cross-correlations between pulsars a and b, p,;,, and
their associated uncertainties, o,,, can be written as

Pab = N apta Pa'Sap Py 1y, (1)
0%y = N = (r[P3'Sp Py Spa]) " (2)
where P, is the autocovariance matrix and contain con-

tributions from white noise, intrinsic red noise, and the
common stochastic process red noise from pulsar a; and

S, = A’T',,S,;, is the cross-covariance matrix and only
considers contributions from the common stochastic proc-
ess between pulsars a and b.

We can fit the measurement cross-correlations to an
OREF. The chi-squared is given by

2 2

2 Pab —-A Fab)

= . (3)
abZa;b< Oab

where o, are the uncertainties in the cross-correlations and
contain contributions from both the common process and
intrinsic noise, as shown in [22]. The OS is the value of A2
that minimizes the chi-squared:

22 — 2abPalab/ )
Zah (Fib/aib)

The uncertainty in A? can be found through simple
propagation of errors:

@

The corresponding signal-to-noise ratio (S/N) is

4)

S/N = AT (6)

UAZ

The OS as derived above assumes the presence of only
one spatially correlated process in our data. It is possible
that PTA data could contain multiple spatially correlated
processes, e.g., a GWB and a common correlated source of
noise. As discussed in Tiburzi et al. [14], some noise
sources can produce spatially correlated signals—a clock
error appears in PTA data as a common process with
monopolar correlations between different pulsars, while an
ephemeris error produces dipolar correlations.

If more than one spatially correlated process is present,
the chi-squared becomes

2= Z (Pab - ZaArszZb> 2, (7)

ab Oab

where « indexes the different spatially correlated signals.

Minimizing the chi-squared with respect to the amplitude

squared value A2 gives

= ATBY =0, (8)
where
B
pahra
Cr = Z—Z b 9)
ab Cab
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e’
B = Z ab2 ab (10)

ab O-ah

Therefore, A2 is given by

Ai = ZB{Z/JC/}’ (11)
B

where B, is the inverse of B This is a more general form
of Eq. (4): when we generalize to multiple ORFs, the
numerator of Eq. (4) becomes C?, while the denominator
becomes B,4. The uncertainty in AZ is

6%, = Byg- (12)

III. METHODS AND SOFTWARE

In this section we describe how to construct the pulsar
timing model, including the intrinsic and common red
noise, and discuss how to retrieve the injected signals. We
based our simulated datasets on the NANOGrav 12.5-year
dataset [25], with the pulsar positions, observing spans,
cadences, and white and red noise all taken from that
dataset. In addition, we inject two different kinds of
stochastic backgrounds: one with HD correlations (i.e., a
GWB), and one with GW-like monopolar correlations.
The methods used are similar to those used in the
NANOGrav 12.5-year GWB paper [26]: below we briefly
describe them, highlighting how our methods differ from
those in [26].

A. PTA model

We model the timing residuals for a pulsar ot as
ot =Me+ Fa+n, (13)

where Me describes linear perturbations to the timing
model, Fa describes red noise, including both individual
pulsar red noise and a common stochastic process affecting
all of the pulsars, and n is the uncorrelated white noise. We
model the red noise using a Fourier series with frequencies
f=1/T,2/T,..., where T is the span of the observations,
and use a power-law model for the power spectral density

P = () e (14)

1272 \fyr

where A is the amplitude, defined at a reference frequency
of fy, = 1/(1 year), and y is the spectral index.

B. Common stochastic process

In addition to pulsar red noise and white noise, we also
include the presence of a common stochastic process. For
all types of stochastic backgrounds, we model the power

spectrum as a power law as described in Eq. (14) with
Agw =2 X 10715 and y = 13/3. The value of y corresponds
to that for a GWB made from GWs from circular SMBBHs
evolving only due to GW emission [27].

We model two different types of stochastic process: one
with HD correlations, as is expected for a GWB; one with
spatial correlations described by a GW-like monopole
(GWMO). The ORF for HD correlations is [12,28]

_Ogp 1 (1=cosé) 1 1 —cosé
FE}P(@)—TﬂLi—f{E—Mn( > )] (15)

where TP is the HD ORF for pulsars with indices a and b,
and £ is the angular separation between them. Note that the
maximum correlation between two different pulsars (i.e.,
a # b) is 1/2: this is because the GWB induces an Earth
term and a pulsar term in each pulsar’s residuals, and only
the Earth terms are correlated. The GWMO was introduced
in [24] and the ORF takes the form

1 0w
~+—. 1

rece) -
The cross-correlation for two different pulsars is 1,/2 rather
than 1 because we are assuming the signal has two com-
ponents: an “Earth term” that is correlated and a “pulsar
term” that is uncorrelated (hence why it is described as
“GW-like”). The GWMO does not correspond to any
physical process, but it is similar to the ORF produced
by a scalar-tensor mode.

C. Simulated datasets

We use LIBSTEMPO [29] to generate our simulated
datasets. The simulated datasets are based on the
NANOGrav 12.5-year dataset [25]. We create two types
of simulated datasets. One contains a common stochastic
process with HD correlations. The second contains two
commmon stochastic processes: one with HD correlations
and another with GWMO correlations. For both, we use the
linearized timing models for the pulsars in the 12.5-year
dataset, as well as the dates and times of each observation.
We first idealize our pulsar timing residuals and then add
uncorrelated white noise equal to the measured TOA
uncertainties. We add pulsar intrinsic red noise, with the
maximum likelihood values taken from a Bayesian run of
the NANOGrav 12.5-year dataset with the values given
(see Appendix B).

D. Optimal statistic calculation

In order to compute the OS, we must specify values for
the pulsars’ intrinsic white noise and red noise. The white
noise parameters are the maximum-likelihood values from
Bayesian noise analyses where each pulsar is run indi-
vidually. The red noise parameters come from a Bayesian
analysis of all the pulsars that simultaneously fits for pulsar
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intrinsic red noise and a common uncorrelated stochastic
process. The white noise parameters are not searched
over in the Bayesian analysis and are instead fixed to
the maximum-likelihood values. We use uniform priors for
the red noise parameters, log;pA € [-20,—11] and y € [0, 7],
and the common process amplitude, log;yA,,, € [-18,—11],
while the common process 7,y is fixed to 13/3. We use
ENTERPRISE [30] and ENTERPRISE_EXTENSIONS [31] to
implement the models and compute the likelihood, and
we use Markov Chain Monte Carlo (MCMC) methods
to obtain samples from the posterior as implemented in
PTMCMCSampler [32].

We then compute the OS, using the results of the
Bayesian analysis to determine the pulsar intrinsic red
noise and common uncorrelated stochastic process. There
are two ways of doing this. The fixed-noise version com-
putes the OS at a single noise realization using the red noise
values that maximize the likelihood of the Bayesian
analysis. The noise-marginalized version pulls red noise
values from the posteriors obtained by the Bayesian
analysis in order to compute the OS at many different
noise realizations. This results in distributions for A and o.

We can compute the OS for different correlations by
using different ORFs. In addition to the HD and GWMO
ORFs given in Egs. (15) and (16), we also consider a
standard dipole ORF and monopole ORF:

ravole(g) = cos ¢, (17)

I () = 1. (18)

In Fig. 1, we plot all four ORFs used in this paper. Note that
the monopole and GWMO are both constant as a function
of angular separation, but the monopole as a value of 1
while the GWMO as a value of 1/2. This means that any
signal that fits one will also fit the other, but the inferred

| ===
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FIG. 1. Comparison between HD (blue), monopole (red),
dipole (green), and GWMO (purple) ORFs as a function of
angular separation between pulsars. The solid black line indicates
a zero amplitude correlation. Note that a GWMO has the same
functional form as the standard monopole, but a different
normalization.

TABLE 1. Match statistic M for HD, monopole, dipole, and
GW-like monopole correlations, as defined by Eq. (19), for our
simulated PTA. The monopole and GW-like monopole have
M =1 since they only differ by a normalization factor.

Correlation HD Monopole Dipole GW-like monopole
HD 1 0.255 0435 0.255
Monopole e 1 0.395 1

Dipole e e 1 0.395
GW-like monopole - - - e e 1

amplitudes will differ because the two ORFs have different
normalizations.

We can measure the overlap between different ORFs by
computing the “unweighted match statistic” [33],

Za,b#arabrizb

= ,
\/(Za.b;éarabrab) (Za,b#aF;bF;b)

(19)

where T" and I" are two different ORFs. This overlap
depends on the number of pulsars in the PTA and their sky
locations. Table I lists the match statistics for the four ORFs
considered in this paper for our simulated PTA, which is
based on the NANOGrav 12.5-year dataset.

IV. RESULTS

Here we present the results of analyzing our simulated
datasets using the standard OS calculation and the modified
MCOS. We show two types of simulations: one with an
injected GWB (i.e., a common stochastic process with HD
correlations), and one with both HD and GWMO correla-
tions. We present the recovered OS values and correspond-
ing signal-to-noise ratios (S/N) for different spatial
correlations, and compare them to the injected values.
We note the fraction of realizations with S/N >3 in
Appendix A.

We also look at how accurately the OS and MCOS
recover the amplitude of the correlated process. If a non-
negligible correlated signal is present in the data, then
the expressions for A? and o4 given in Egs. (4), (5), (11),
and (12) must be revised to include interpulsar pair
correlation [34,35]. For more details, see Appendix C.
We use the recovered A% and 632 to compute the percentile
of the injected value, assuming a Gaussian distribution,’
and compare the fraction of simulations for.

'As shown in [36], the optimal statistic actually follows a
generalized chi-squared distribution and not a Gaussian distri-
bution. In this work, we approximate the distribution as a
Gaussian, owing to the computational expense of constructing
the generalized chi-squared distribution for each simulation. This
is a reasonably good approximation, and has been used in
previous work [23,35].
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Finally, we look at how much the data preferred
models with multiple correlated signals using the Akaike
Information Criterion (AIC) [37], which is a frequentist
analog for the Bayes factor. It is given by

AIC = 2k + 22, (20)
where k is the number of model parameters (i.e., the
number of correlated signal amplitudes, or the number
of ORFs), and the chi-squared given by Eq. (3) for a single
correlated signal and Eq. (7) for multiple correlated signals
The factor of 2k acts as an Occam’s penalty for adding
more parameters to a model. We compute y> using the
maximume-likelihood red noise parameters. The relative
probability of two models is then given by

(AIC-AIC ;1)

p(AIC) =¢— = (21)
where AIC,,;, represents the minimum AIC value of all the
different models. The model with the minimum AIC will
thus be the most preferred model, with a p(AIC) = 1. Some
of the models are equally preferred, with the difference in
their AIC ~ 0.01, so we set a threshold value of p(AIC) >
0.99 to account for these cases. These results are also
presented in Appendix A.

10%
2 — njected value
= up
A 5 0.2
) L )
0 1 T T T T 00
-05 00 05 10 15 -2
A? x107%
102
=3 Monopole
5,
a
(2%
0 1 T 1 T T
-05 00 05 1.0 L5 -2 0 2 4 6 8
A? x107% S/N
1029
=3 Dipole =3 Dipole
w
=)
~
0 1 T T i T i T
-05 00 05 10 15 6 8

A? x107%

FIG. 2. Noise-marginalized OS analysis of 200 simulations
with an injected HD. We show results using HD (blue), monopole
(red), and dipole (green) ORFs. The left hand columns show the
distributions of Az, whereas the right hand columns show the S/N
histograms. The vertical blue line in the top left plot indicates the
injected value of A%y = 4 x 107, The colored dashed lines in
the S/N plots are the means of the respective ORFs. We find a
mean A% >0 and mean S /N > 0 for monopole and dipole
correlations even though neither were injected in the data.

A. HD simulation

We created 200 simulations with an injected HD which
we analyzed using the traditional OS and the MCOS. A
complete summary of the results can be found in Table II in
Appendix A. When we search for one spatial correlation at
a time, we find a S/N > 3 for HD correlations in 17% of
the simulations, but we also find S/N > 3 for monopole
and dipole correlations in 6% and 5% of the simulations,
respectively, even though there are no monopole-correlated
or dipole-correlated signals present in the datasets. In
Fig. 2, we show histograms for the recovered distributions
of A% and the S/N for HD, monopole, and dipole
correlations. On average, we recover higher S/N of HD
correlations than for monopole or dipole correlations;
however, we recover S/N > 0 for monopole and dipole
correlations in more than half of the simulations, as shown
by the dotted lines in Fig. 2.

Figure 3 shows p — p plots for the recovered single
component OS A? using HD, monopole, and dipole
correlations. For each simulation, we use the marginalized

chain values to calculate A% and 042, taking pulsar pair
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FIG. 3. p — p plot for the HD injected simulations with single
component OS. The horizontal axis is the percentile of each
simulation to the injected value. The vertical axis represents the
cumulative fraction of simulations that are recovered at that
particular percentile. The models shown here are HD (top left),
monopole (top right), and dipole (bottom left). If the parameters
are recovered accurately, the two quantities would be equal (black
dashed line). The curved black lines indicate the 95% confidence
intervals of the p-p plots. We find that the amplitude of HD
correlations is underestimated, while the amplitude of monopole
and dipole correlations (which are not present) are significantly
overestimated.
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cross covariance into consideration, and then compute the
percentile of the injected value for that type of correlation.
We then plot the cumulative fraction of realizations for
which the injected value is at that percentile. If the
parameters are accurately recovered, we would expect
the cumulative fraction of realizations to be equal to the
cumulative percentile. If it is not, that indicates the
parameter is being overestimated (over the central dashed
black line) or underestimated (under the central dashed
black line). We find that the amplitude of HD correlations is
underestimated, while the amplitudes of monopole and
dipole correlations (which were not injected) are overesti-
mated. The underestimation of the amplitude of HD
correlations is likely due to two factors: first, there is
covariance between the pulsars’ intrinsic red noise and
common red noise, and second, the simulations inject the
intrinsic red noise and common red noise over more
frequency components than we use to recover them.

In contrast, the MCOS more accurately recovers the
amplitude of monopole and dipole correlations. We show
the recovered distributions of A% and the S/N for models
consisting of multiple correlations in Fig. 4. The distribu-
tions for the amplitude and S/N of HD correlations are
similar to those obtained when fitting for only HD
correlations (Fig. 2, top row), but now the distributions
for the amplitude and S/N of monopole and dipole

x10%°
== Injected value
5.0 = o
=3 Monopole
a9  — | Dipole
a
A 2.5
0.0 == -.{-Ll-Lq_ 1
-0.5 0.0 0.5 1.0 1.5
A? x1072
- =1 HD
0.4 =3 Monopole
= Dipole
o
2 02
0.0 - T “ | I
-2 0 2 4 6 8
S/N

FIG. 4. MCOS analysis of 200 simulations for HD simulations
for the HD + monopole + dipole ORFs. The top figure contains
histograms of A% and the bottom figure contains histograms for
the S/N. The solid light blue line is the injected value of
A}p =4 x 107, The colored dashed lines in the S/N plots
are the means of the respective ORFs. The recovered amplitudes
and S/N for monopole and dipole correlations are centered
around zero, unlike in Fig. 2.

correlations are centered around zero. The p — p plots,
shown in Fig. 5, show the recovery of the MCOS A% We
find that MCOS analysis recovers the injected parameters
for the monopole and dipole ORFs more accurately than the
OS. The amplitude of HD correlations is slightly under-
estimated, as it was when using the OS.

Table II lists the percentage of ORFs where an S/N
greater than 3 was recovered, as well as the percentage of
cases where the particular model had the lowest AIC value
(most preferential model). In 51.5% of realizations, the
standard OS, HD ORF model had the lowest AIC value, as
expected, considering our injection has only one signal
present. The standard monopole and monopole + HD
model have nearly the same preference. We note that these
simulations include relatively low-significance HD corre-
lations, as can be seen by the fact that the HD S/N > 3 in
only 17% of simulations. But the percentage of models
with an HD S/N > 3 does not change drastically between
the individual and MCOS models. This means that it is
difficult to distinguish between different correlations.
Nevertheless, the MCOS analysis allows us to search for
the presence of spatial correlations and compute the relative
probability of different models.

B. HD + GWMO simulations

Finally, we looked at how well the MCOS could recover
multiple correlated signals. We generated 200 simulations
that contained two stochastic processes: one with HD
correlations and one with GWMO correlations. We used

1.00 - =— HD
Monopole

e

2

v
|

0.25

Cumulative percentage
o
3
|

0.00

0.00 0.25 0.50 0.75 1.00
P(A? < AZyr)

FIG.5. p — p plot for the MCOS HD injected simulations. The
amplitudes shown here are recovered using a model that
simultaneously fits for HD, monopole, and dipole correlations.
The horizontal axis is the recovered percentile of each simulation
to the injected value. The vertical axis represents the cumulative
fraction of realizations that recover the particular percentile. The
central black dashed line indicates accurate recovery, and the
upper and lower dashed black lines indicate the 95% confidence
interval. We find that the amplitudes of monopole and dipole
correlations are accurately recovered, while the amplitude of HD
correlations is underestimated.
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FIG. 6. Individual correlated signal analysis for 200 HD +
GWMO simulations. Similar to Fig. 2, histograms of A%and S /N
on the left and right hand columns respectively. From top to
bottom, the ORFs are HD (blue), monopole (red), dipole (green),
and GWMO (purple). The solid light blue line indicates the
injected OS of AZp =4x107% and AZyyo =4 x 1070,
The colored dashed lines in the S/N plots are the means of
the respective ORFs.

the same amplitude and spectral index y = 13/3 for both
processes. We summarize the results of analyzing these
simulations in Table IIT in Appendix A.

When we analyze the simulations for a single correla-
tion, we find S/N > 3 for HD correlations in 27% of
simulations and for GWMO in 56% of simulations. As
shown in Fig. 6, we recover the GWMO signal with higher
mean S/N than the HD signal. We note that the correlation
coefficient for HD correlations is less than the correlation
coefficient for GWMO correlations for all angular separa-
tions (except for zero), which is why the OS recovers the
GWMO signal with a higher S/N than the HD signal—
even though the HD and GWMO signals have the same
amplitude, the GWMO signal has significantly more power
in the cross-correlations than the HD signal. We also
recover a dipole signal with S/N > 3 in 21% of simulations
even though no such signal has been injected.

Figure 7 shows p-p plots for HD, monopole, dipole, and
GWMO correlations. Since the data contain both HD and
GWMO-correlated processes, but we are only fitting one
process at a time, both signals are being incorrectly
associated with a single correlation, resulting in inaccurate
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FIG. 7. The p — p plots of the HD + GWMO simulations for
the individual analysis of (clockwise from top-left) HD, standard
monopole, GWMO, and dipole. The horizontal axis is the
recovered percentile of each simulation to the injected value,
and the vertical axis is the cumulative fraction of realizations that
recover the particular percentile. If the percentiles are recovered
accurately, the two quantities would be equal (central dashed
line). The upper and lower dashed black lines indicate the
95% confidence interval. Since we are only fitting for one type
of correlation, but multiple correlated signals are present in the
data, we are not able to accurately recover the amplitudes of the
HD or monopole signals. We also overestimate the amplitude of
dipole correlations, which are not present.

1029
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FIG. 8. HD and GWMO multiple correlated signal analysis for

200 HD + GWMO simulations. Similar to Fig. 2, histograms of
the A% and S/N on the left and right hand columns respectively.
The solid light blue line indicates the injected OS of
Al = Alwmo = 4 x 10730, The colored dashed lines in the
S/N plots are the means of the respective ORFs.
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FIG. 9. The p — p plots for the MCOS analysis of the HD +
GWMO injections. The left figure depicts the HD + GWMO +
DI model, and the right figure shows the HD + GWMO model.
The horizontal axis is the recovered percentile of each simulation
to the injected value, and the vertical axis is the cumulative
fraction of realizations that recover the particular percentile. The
central black dashed line indicates perfectly accurate recovery of
percentiles, while the upper and lower black dashed lines indicate
the 95% confidence intervals. We are able to more accurately
recover the amplitude of HD and GWMO correlations using the
MCOS, although the amplitudes of both are underestimated. We
also note that including dipole correlations in the model does not
bias parameter estimation of the other signals, and we accurately
recover that no dipolar signal is present.

parameter estimation. When we fit to HD correlations
only, this results in a significant overestimate of the HD-
correlated amplitude. When we fit to GWMO correlations
only, the amplitude estimate is not as affected, but the
uncertainty is underestimated. We also see that the ampli-
tude of a dipolar process is overestimated, even though one
is not present.

When we use the MCOS, we find that we are able to more
accurately recover the amplitudes of all the correlated
processes. Figure 8 shows the recovered amplitudes and
S/N, while Fig. 9 shows p — p plots for the recovered
amplitudes. When fitting for both HD and GWMO signals,
the amplitudes are more accurately recovered than when
fitting for only one signal at a time, although the amplitudes
are slightly underestimated. This is possibly because of
covariance between the pulsar noise and the common signals.
We also find that when we include dipole correlations in our
model, we accurately recover that no dipole signal is present,
and the addition of the dipole signal does not affect the
recovery of either the HD and GWMO signals.

V. CONCLUSIONS

In this paper, we present a generalization of the OS that
can simultaneously search for multiple correlated signals.
As we have shown, this allows us to better distinguish
between different spatial correlations. For a real PTA,
the ORFs corresponding to different correlations are not
orthogonal as shown in Table I. The overlap between them
can lead to nonzero S/N recovery of noninjected signals. It
is also useful in cases where multiple correlated signals,

e.g., a GWB and correlated noise, are present in the data.
We have also performed model selection by computing the
AIC, which acts as a pseudo-Bayes factor.

We have tested this method using two simulated datasets.
The first contained a stochastic signal with HD correlations.
When fitting only a single correlation, we found that we
overestimated the presence of correlations that were not
present, but using the MCOS eliminated this problem. We
also generated simulated datasets that contained both HD
and GWMO-correlated signals. We demonstrated that the
MCOS allows both signals to be recovered while ruling out
any noninjected signals.

In this paper, we have considered four types of corre-
lations: HD, monopole, dipole, and GWMO. This method
can be used with any number and type of correlations. In
the NANOGrav 15-year gravitational wave background
search [38], the MCOS was used to search for evidence of
monopolar or dipolar processes, which could be associated
with correlated noise sources such as clock errors or
ephemeris errors [15,39,40], and to do a model-independent
reconstruction of the correlations using Legendre polyno-
mials [41]. It was also used in the search of the NANOGrav
15-year dataset for evidence of non-Einsteinian polariza-
tions [42]. The modular nature of the MCOS makes it a
valuable tool for characterizing the nature of correlations in
PTA datasets.
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APPENDIX A: SIMULATION RESULTS

This appendix contains the results of the MCOS analysis
on the HD (Table II), and HD + GWMO (Table III)
simulations. The middle three columns refer to the per-
centage of realizations where the ORF listed in the top row
had a S/N greater than or equal to three. The last column
shows the percentage of realizations where the particular
model listed was the most favored, with a p(AIC) = 1.
Since certain realizations had AIC values very similar to
one another, implying that more than one model was
equally favored, we have set our p(AIC) threshold to 0.99.
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TABLE II. Summary of results of GWB simulations.

% of Simulations with S/N > 3
Model HD Monopole Dipole % of Simulations with p(AIC) > 0.99
HD only 17.5% e 40%
Monopole only e 7% o 18%
Dipole only e e 5% 14%
HD -+ monopole 16.5% 2% e 15.5%
HD + dipole 16% o 1% 8.5%
Monopole + dipole e 3% 2% 1%
HD —+ monopole + dipole 14.5% 2% 0.5% 5%
TABLE III.  Summary of results of simulations with both GWB and GWMO stochastic processes.

% of Simulations with S/N > 3

Model HD GWMO MO % of Simulations with p(AIC) > 0.99
HD 27.5% e 13.5%
GWMO r 53.5% 39%
Dipole 21% 7.5%
Monopole e e 53.5% 39%
HD + GWMO + Dipole 10.5% 44% 18.5%
HD + Monopole + Dipole  10.5% 44% 18.5%
HD + GWMO 13.5% 48% ‘e 19.5%
HD + Monopole 13.5% .. 48% 19.5%
HD -+ Dipole 16.5% 10% 2.5%
GWMO + Dipole 46.5% 0%

APPENDIX B: PULSAR RED NOISE
PARAMETERS

Our simulated datasets include intrinsic red noise in each
pulsar. We model the red noise with a power-law power

spectrum P(f) = %(L)_V yr? (as shown in Equation (14).

fyr

The values of A and y used for each pulsar are listed in
Table IV, and are based on the noise properties of the
NANOGrav 12.5-year dataset.

TABLE IV. Pulsar red noise parameters A and y used in our
simulated datasets.

Pulsar log g A injected y injected
B1855 + 09 —14.3053 5.5879
B1937 + 21 —13.4731 3.6189
B1953 +29 —12.7813 1.1485
J0023 4- 0923 —13.2146 0.2572
J0030 + 0451 —14.8837 5.1835
J0340 + 4130 —17.2031 0.3121
JO613 — 0200 —17.8287 6.9765
J0636 + 5128 -16.6117 0.4274
J0645 4 5158 —19.3925 6.2542
JO740 + 6620 —18.3882 0.8377

(Table continued)

TABLE 1V. (Continued)

Pulsar log;p A injected y injected
J0931 — 1902 —-19.3076 3.1884
J1012 4 5307 —-12.7970 0.9968
J1024 - 0719 —-17.2779 2.5507
J1125 4+ 7819 —12.4459 1.5990
J1453 4+ 1902 —18.9550 4.9088
J1455 - 3330 —19.2175 6.2343
J1600 — 3053 —13.3480 0.0627
J1614 — 2230 —19.8669 2.5180
J1640 + 2224 —-16.3220 5.6796
J1643 — 1224 —12.2480 1.1554
J1713 + 0747 —14.0354 0.3368
J1738 + 0333 —19.5594 5.2048
J1741 + 1351 —14.3474 1.9857
J1744 — 1134 —13.3903 1.5453
J1747 — 4036 —12.7570 3.5500
J1832 — 0836 —13.1021 1.6074
J1853 + 1303 —13.3632 1.3637
J1903 + 0327 —12.2570 1.8621
J1909 — 3744 —13.9843 1.7386
J1910 + 1256 —16.0932 2.6105
J1911 + 1347 —13.4836 1.7034
J1918 — 0642 —-19.7173 4.0390
J1923 + 2515 —17.7267 1.7844
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TABLE 1V. (Continued)

Pulsar log;y A injected y injected
J1944 + 0907 —13.2678 1.2939
J2010 — 1323 —18.9887 0.8175
J2017 + 0603 —17.8317 1.9894
J2033 + 1734 —17.3183 3.8762
J2043 + 1711 —17.5979 2.8240
J2145 — 0750 —12.9290 1.2728
J2214 + 3000 —16.9390 4.6045
J2229 + 2643 —17.4349 6.1385
J2234 + 0611 —13.5827 3.6588
J2234 + 0944 —18.1712 0.7777
12302 + 4442 —14.7765 2.8715
J2317 + 1439 —18.1829 6.5325

APPENDIX C: INCORPORATING PAIR
COVARIANCE INTO THE OS AND MCOS

In the weak-signal regime, our pulsar pair cross-
correlations p,;, and their associated uncertainties 6, as
described in Egs. (1) and (2), are given by [21-23,43,44]

Pa = Napta Pa'SapPy 'ty =13 Qupry,  (C1)

62, =Ny = (t[P3'Sp Py 'Spal) ' (C2)

where P, is the autocovariance matrix of pulsar a, S,;, =
Aéwrabsab is the cross-covariance matrix between pulsars

a and b, and Q,, = N, P;'S,,P;'. The autocorrelation
matrices P, contain contributions from white noise, intrin-
sic red noise, and the common process red noise, while the
cross-correlation matrices S, only considers contributions
from the common process. The definition of the cross-
correlation uncertainties o, in Eq. (C2) is only valid in the
weak-signal regime and does not include correlations
between different pairs of pulsars arising from the fact
that some of the pulsar pairs will have pulsars in common
(e.g., the correlations p,;, and p,. both have the pulsar a in
common).

If a significant correlated signal is present, then o, is an
underestimate of the cross-correlation uncertainties. When
we consider the covariances between different pairs of
pulsars, our uncertainties ¢,, must include an extra term
for inter-pulsar pair covariances. For two pulsar pairs ab
and cd [35],

Zived = PavPea) = Pav) Pea) (C3)
= tr[QbaSachdeb]
+ tr[QbaSadecScb]' (C4)

Note that X, ., is dependent on the ORF and amplitude of
the common process, due to the contributions from S,;.

For the standard single component OS,

S ped = AéURNFacrdbtr[QbaSacchSdb]

+ AéURNFadrcbtr[QbasadecScb]a (CS)

where I is the ORF for the correlation, and A2y is the
amplitude of the common uncorrelated red noise found
from a Bayesian analysis. We chose to use the amplitude of
the common uncorrelated red noise here instead of the
amplitude of the correlated process because it. When we
include pair covariance, the expressions for the OS and its
variance become

Az Zab Ldrdb (anbscd)_lpcd
Zab cdrab (Eah cd) chd
1

2
GAZ = |:Zah,cdrub(227s,€d)_lr"d:|

For the MCOS, we generalize Eqs. (C6) and (C7) to
allow for arrays of A% and I':

Sub - SabruhA - Subzrl A2

(Co)

(C7)

(C8)

where i is the index of the ORF. To obtain the amplitudes of
the correlated signals Af, we first calculate the MCOS
values neglecting pair covariance using Eq. (11). If any of
the values for A% are negative, we set it equal to zero. We
then set A? to be equal to a weighted fraction of the
common uncorrelated red noise amplitude,

AMCOS i
72 .
Z jAMCOS J

Then the MCOS covariance matrix becomes

A% = A%JURN (C9)

EMCOS

ab,ed <ZA12F£10> <ZA?FZb>tr[QbaSachdeb]
i J
+ <ZA12FZd> <ZA; ¢b>

X tr[QpaSaaQacSen s

then, as we did in Sec. II, we can replace the 62, with our
new covariance ZMC9% and construct our new MCOS B and
C matrices

(C10)

CF = Zpab [ZMCOS]-17 (C11)
ab,cd
B = T, [EMCOS]ITY, (C12)
ab.cd
Ay =) BCP, (C13)
p
a}ﬁ = B,,. (C14)
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