
Posterior predictive checking for gravitational-wave detection
with pulsar timing arrays. II. Posterior predictive distributions

and pseudo-Bayes factors

Patrick M. Meyers ,1,* Katerina Chatziioannou ,2,1,† Michele Vallisneri ,3,1,‡ and Alvin J. K. Chua 4,5,§

1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
2LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA

3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
4Department of Physics, National University of Singapore, Singapore 117551

5Department of Mathematics, National University of Singapore, Singapore 119076

(Received 11 July 2023; accepted 4 October 2023; published 6 December 2023)

The detection of nanoHertz gravitational waves through pulsar timing arrays hinges on identifying a
common stochastic process affecting all pulsars in a correlated way across the sky. In the presence of other
deterministic and stochastic processes affecting the time-of-arrival of pulses, a detection claim must be
accompanied by a detailed assessment of the various physical or phenomenological models used to
describe the data. In this study, we propose posterior predictive checks as a model-checking tool that relies
on the predictive performance of the models with regards to new data. We derive and study predictive
checks based on different components of the models, namely the Fourier coefficients of the stochastic
process, the correlation pattern, and the timing residuals. We assess the ability of our checks to identify
model misspecification in simulated datasets. We find that they can accurately flag a stochastic process
spectral shape that deviates from the common power-law model as well as a stochastic process that does not
display the expected angular correlation pattern. Posterior predictive likelihoods derived under different
assumptions about the correlation pattern can further be used to establish detection significance. In the era
of nanoHertz gravitational wave detection from different pulsar-timing datasets, such tests represent an
essential tool in assessing data consistency and supporting astrophysical inference.
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I. INTRODUCTION

Building on millisecond-pulsar observations spanning
decades, four international pulsar-timing-array (PTA) col-
laborations have recently reported varying levels of evi-
dence for a low-frequency gravitational-wave (GW)
background [1–4], which is broadly expected from the
binaries of supermassive black holes at the centers of
galaxies [5–9], but may also have been generated by
“new physics” [6,10]. The PTAs are now collaborating
to compare their estimates of the amplitude, shape, and
significance of the background [11].
All PTAs use similar data models, which typically

include a deterministic timing model characterizing the
motion of each pulsar [12,13], stochastic noise that
affects each pulsar individually (dispersion measure fluc-
tuations [14,15] and intrinsic pulsar red noise [16–18]),
a GW background common to all pulsars, as well as

measurement noise. The intrinsic pulsar noise and the
GW background are modeled phenomenologically as
finite Gaussian processes with Fourier bases functions
and power law priors [19–22], although more complex
models have been proposed [14,23,24]. Given that GW
searches rely crucially on these phenomenological models,
it is important to develop methods to identify and assess
model misspecification.
The most common model-checking approach consists of

modifying parts of a model and then comparing the ratio of
the marginal likelihoods (i.e., the Bayes factor) between
the original and modified models. However, there are two
problems with adopting the Bayes factor for this task. The
first is a problem of principle: in addition to a Bayes factor,
model comparison requires prior odds. However, it seems
very hard to assign priors to hypotheses about the very
existence of the GW background and its spectral shape, or
to the unphysical null models used to establish detection
significance. Furthermore, no set of models exhausts the
space of relevant hypotheses, which should include alter-
natives that embody known and unknown systematics;
indeed, a faithful model may be impossible to specify
formally [25]. The second problem is one of interpretation:
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even taking model comparison at face value, it remains
unclear what confidence a Bayes factor actually conveys
beyond arbitrary mappings [26,27] of Bayes factors to
degree-of-belief descriptors (“strong,” “decisive,” etc.).
Such issues aside, the central idea of model checking

through Bayesian model comparison has been thoroughly
explored and employed in PTA analyses. In the parlance of
hierarchical inference [28,29], the description of the pulsar
noise and GW background by the Gaussian-process like-
lihood and decomposition onto sinusoids is the model,
while the (complex) amplitude of each sinusoid is a
parameter of the model. The assumption that the ampli-
tudes follow a power law is the hierarchical model (or
hypermodel), and the amplitude and spectral index of the
power law are hyperparameters. In this context, the most
straightforward check involves changing elements of the
(hyper)model [30–33]. For example, Ref. [30] replaced the
power law with a truncated power law and Ref. [33]
explored the impact of the hyperparameter priors on the
marginal likelihoods. However, since the model and the
hypermodel for the stochastic processes are mainly phe-
nomenological and unlikely to be perfectly representing
reality, model comparisons between these extensions do not
have a clear interpretation.
We propose a complementary approach to assessing

model misspecification that hinges on the predictive power
of our analysis with regards to new data. In a companion
paper [34] we explore predictive tests in the context of null-
hypothesis testing with the optimal statistic [35–38]; by
contrast, this study focuses on Bayesian inference. The
main idea behind predictive tests is to use inference based
on current data to predict further data. Comparing the
prediction with future or current data then allows us to
probe different elements of the analysis. Compared to tests
based on perturbing a model and comparing the margin-
alized likelihoods, predictive tests focus naturally on
specific elements of the model or the hypermodel. For
example, predictive checks of the GW spectrum allow us to
directly assess whether specific frequency components
have been over- or underestimated. In the context of
GW analyses, such tests are a common step of estimating
the populations of binary black hole and binary neutron star
systems [39–42]. Similar posterior predictive tests have
been used on individual pulsars [43]; our study here applies
these tools to full PTA data analysis.
Following the discussion of [39] we identify three

types of predictive tests, each targeting a different element
of the analysis.

(i) The first and least explored test relies on the
hyperparameters (e.g., the GW background ampli-
tude and spectral slope). For example, the inferred
hyperparameters from one PTA dataset (say, NANO-
Grav), can be used to predict data and inference
products for another dataset (say, PPTA), which can
then be compared with the actual data and products.

We leave the detailed exploration of these to
future work.

(ii) The second test is based on the model parameters
and specifically the Gaussian-process coefficients
(i.e., the Fourier-component amplitudes). We con-
sider these coefficients under two probability dis-
tributions. Predicted coefficients are conditioned on
the hypermodel and the posterior for the hyper-
parameters given the observed data: for instance, for
a power-law background model, they would span the
range of GW signals expected given the amplitude
and spectral slope inferred from the data. Inferred
coefficients are conditioned on both the posterior of
the hyperparameters and the data: for a power-law
background model, they would span the range of
GW-induced residuals that are compatible with the
data under the power-law assumption. By comparing
predicted and inferred coefficients, we are consid-
ering whether the Fourier amplitudes actually follow
a power law with an assumed correlation pattern.

(iii) The third test examines the pulsar-timing residual
data directly through leave-one-out cross-validation
on the population of pulsars. That is, we use Np − 1
pulsars to calculate the (posterior predictive) like-
lihood of the data observed for the Nth

p pulsar. We
assess the likelihoods in the context of model
criticism, (which pulsars are not predicted well by
the model fit to the other pulsars?), and model
comparison (which model, fit to Np − 1 pulsars,
does best at predicting the residuals of the left-out
pulsar?). We further propose that a summary statistic
built from the posterior predictive likelihoods can be
used to establish detection significance, by compar-
ing its observed value to a null distribution obtained
from simulated datasets with no GW background.

We assess tests on the Gaussian process coefficients
using simulated datasets that represent different levels of
model misspecification. Simulations are based on the
times-of-arrival (TOAs) and noise parameters of the
NANOGrav 12.5-yr dataset [44] to create synthetic resid-
uals and include a GW signal. We consider (i) a dataset that
obeys our assumptions of a GW background with a power-
law spectral shape and Hellings-Downs correlations; (ii) a
dataset that breaks the power-law assumption, instead
having a truncated power-law spectral shape; and (iii) a
dataset that breaks the correlation-pattern assumption by
adding monopolar correlations. Comparing inferred and
predicted coefficients allows us to identify model misspe-
cification for both (ii) and (iii).
Switching to predictive tests with the timing residuals,

we introduce a “pseudo-Bayes factor” [45], defined as
the ratio of the posterior predictive likelihoods of the
observed data in a pulsar given all other pulsars under a
model that includes Hellings-Downs correlations and a
model that assumes no spatial correlations. We compute the
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pseudo-Bayes factor for simulated datasets that contain a
GW background and for “null” simulations with no signal.
We show that, similar to the standard drop-out factor [46],
the pseudo-Bayes factor is an indicator of Hellings-Downs
correlations in most pulsars. However, even in the presence
of a signal some pulsars show preference against Hellings-
Downs. The latter seems to be an expected feature of
PTA datasets. Finally, we compare the total pseudo-Bayes
factor, i.e., the product over all pulsars, between the
datasets with and without a GW and show that it can be
used as a detection statistic.
The rest of this article is organized as follows. In Sec. II

we summarize PTA analyses. In Sec. III we comment on
posterior predictive checks using hyperparameters. In
Secs. IV and IV we propose and test posterior predictive
checks for model parameters and timing data respectively.
In Sec. VI we conclude.

II. PULSAR TIMING ARRAY ANALYSIS

We begin with an overview of PTA analysis with an
emphasis on the modeling choices we test in the subsequent
sections. For a more detailed discussion on PTA physics
and analyses, see Refs. [47–49].

A. PTA model and likelihood

The arrival times of radio pulses are influenced by both
deterministic and stochastic processes. Deterministic
effects include the apparent and proper motion of the
pulsar, as well as its orbit in a binary. A first analysis
step fits a timing model that describes the deterministic
effects and subtracts it from the arrival times to obtain the
timing residuals δt [12,13]. Recovery of the best-fit timing
model is influenced by stochastic processes such as spin
noise [16–18]—stochastic fluctuations of the pulsar rota-
tion frequency intrinsic to each individual pulsar—and
GWs, which induce a correlated stochastic signal common
to all pulsars. For example, red noise affects (among others)
the estimate of the pulsar rotation period and its derivative.
Assuming that the effect of stochastic processes on the

timing solution is small, most PTA analyses are based on
the timing residuals δt, which we use here to denote timing
residuals for all pulsars concatenated into a single vector.
Stochastic processes are modeled in terms of their fre-
quency content, expressed through a matrix F that contains
sines and cosines of different frequencies and a vector
of amplitudes a associated with each frequency [20].1

Additionally, the presence of red noise in the original
arrival times will have shifted the best-fit timing solution
from its “true” value. We correct for this effect within a
linear approximation, with a known design matrix M of
partial derivatives mapping small changes in timing model
parameters ϵ onto changes in δt. Defining

T ¼ ½M F #; ð1Þ

b ¼
!
ϵ

a

"
; ð2Þ

the full model residuals are

r ¼ δt − Tb; ð3Þ

and under the assumption of Gaussian measurement noise
the likelihood is the Gaussian distribution

pðδtjbÞ ¼
exp ð− 1

2 r
TN−1rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2πNÞ

p : ð4Þ

For “narrowband” timing campaigns, N is a block-diagonal
noise matrix in which the dense blocks arise due to pulse
profile “jitter” noise that is correlated across arrival times
taken at different radio frequency channels during the same
observation [50]. If TOAs across the measurement band
are condensed into single TOAs, N is diagonal. In what
follows, we assumeN is characterized accurately and we do
not consider relevant mismodeling.
At this stage, the model parameters are the sine and

cosine spectral amplitudes a and the timing model correc-
tions, ϵ, though we are primarily interested in the former.
In order to separate the intrinsic pulsar noise and the
common GW, we place a Gaussian hyperprior on b in terms
of the hyperparameters Λ

pðbjΛÞ ¼
exp ð− 1

2b
TB−1bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πBÞ

p ; ð5Þ

with B ¼
!∞ 0

0 φðΛÞ

"
: ð6Þ

The top-corner entries of B express an improper prior of
infinite variance on the timing-model corrections ϵ. The
matrix φðΛÞ includes the correlation of different elements
of b via power spectra ηðΛÞ and ρðΛÞ that encode the
intrinsic pulsar noise and the GW signal, respectively.
Furthermore, GWs induce correlations in the same fre-
quency bin for different pulsars based on their angular
separation as prescribed by the Hellings-Downs curve.
Overall for each of the sine and cosine coefficient in a,

φðΛÞðai;bjÞ ¼ Γabρ2i ðΛÞδij þ η2aiðΛÞδabδij; ð7Þ

where a and b label pulsars, and i and j label frequencies.
The GW power spectrum at a given frequency is captured
by ρiðΛÞ, the Hellings-Downs curve by Γab, and the power
spectrum of the intrinsic pulsar noise associated with each
individual pulsar at each individual frequency by ηaiðΛÞ.1Time-domain approaches have also been considered [22].
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A stronger assumption is that both ηaiðΛÞ and ρiðΛÞ follow
a power law

ρ2i ðΛÞ ¼
A2
gw

12π2

$
fi
fy

%−γgw f−3y
T

; ð8Þ

η2aiðΛÞ ¼
A2
a;int

12π2

$
fi
fy

%−γa;int f−3y
T

; ð9Þ

where Agw is the amplitude of the GW background at fy,
fi ¼ i=T is the frequency of the ith bin, fy ¼ ð1 yÞ−1, and
T is the dataset duration. Throughout, we use i∈ ½1–10# for
the GW background (f ¼ 2.5–24.6 nHz) and i∈ ½1 − 30#
for the intrinsic red noise.2

Under the power-law assumption, the model hyper-
parameters Λ are the GW amplitude Agw and the spectral
index γgw, and an intrinsic pulsar noise amplitude Aa;int and
spectral index γa;int for each of theNp pulsars. The posterior
on these hyperparameters is obtained by marginalizing over
the model parameters b,

pðΛjδtÞ ¼
Z

dbpðδtjbÞpðbjΛÞpðΛÞ

¼ pðΛÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCÞ

p exp
$
−
1

2
δtTC−1δt

%
; ð10Þ

where the new covariance matrix is C≡ ðNþ TBTTÞ, and
pðΛÞ is the prior on the hyperparameters. Alternatively, the
first two terms in the integrand of Eq. (10) can be written as
a posterior, pðbjδt;ΛÞ, which is normal with mean and
covariance given respectively by

b̂ ¼ ΣTTN−1δt; ð11Þ

Σ ¼ ðTTN−1TþB−1Þ−1: ð12Þ

Given the large dimensionality (2Np þ 2 hyperpara-
meters for a typical analysis), most GW analyses estimate
the marginalized posterior on the hyperparameters Λ
through stochastic sampling, resulting in Ns samples
fΛsgNs

s¼1 drawn from their posterior,

Λs ∼ pðΛjδtÞ: ð13Þ

In Sec. III, we propose methods to assess how well the
models and assumptions of this section fit the data based on
having obtained Λs.

B. Simulated datasets

We experiment with our proposed methods by analyzing
simulated datasets. We consider a total of four datasets,
each spanning 12.9 years of data over 45 pulsars, and
produce one realization for each of those datasets.

(i) HELLINGSDOWNS-POWERLAW: Constructed in accor-
dance with the assumptions described in Sec. II A,
this dataset contains a GW signal described by a
power law with log10 Agw ¼ −14 and γgw ¼ 13=3,
see Eq. (8). The Hellings-Downs correlations are
detectable with an optimal-statistic signal-to-noise
ratio (SNR) of 5.5.

(ii) HELLINGSDOWNS-TURNOVER: Constructed to test
the power-law assumption, this dataset contains a
GW signal described by the broken power law

ρ2ðfÞ¼
A2
gw

12π2

$
f
fyr

%−γgw
!
1þ

$
fb
f

%
κ
"−1f−3y

T
; ð14Þ

with γgw¼13=3, log10 Agw ¼ −13.5, fb ¼ 7.9 nHz,
and κ ¼ 26=3.3 The optimal statistic SNR is 4.4.

(iii) HELLINGSDOWNSMONOPOLE-POWERLAW: The
third dataset focuses on spatial correlations and
includes a power-law GW signal with log10 Agw ¼
−14 and γgw ¼ 13=3 as well as a stochastic process
with log10 Am ¼ −14.3 and γm ¼ 13=3 that induces
monopolar correlations across the pulsars (Γab ¼ 1).
The optimal-statistic SNR is 6.4

(iv) NOGRAVITATIONALWAVE: Finally, we consider a
dataset without any common process between the
pulsars, setting Agw ¼ 0.

Hyperparameters for the intrinsic pulsar noise are
chosen from the posteriors of the NANOGrav 12.5-yr
dataset [44,51]. We simulate data by first drawing from
the posterior distribution on the intrinsic pulsar noises
Asim
a;int; γ

sim
a;int ∼ pðAa;int; γa;intjδtNG12.5Þ. The GW parameters

are specified independently and listed above, thus com-
pleting the list of simulated hyperparameters Λsim. We then
draw Gaussian process coefficients as asim ∼ pðajΛsimÞ
and set the timing parameters ϵsim ¼ 0. Finally, we draw
simulated timing residuals from the Gaussian likelihood,
δtsim ∼ pðδtjbsimÞ.
Each dataset δtsim is analyzed with the standard model

that assumes a GW signal with a power-law spectrum.
The only quantity that the predictive tests rely on is
pðΛjδtsimÞ, i.e., the posterior for the hyperparameters,
which we estimate through stochastic sampling with
ENTERPRISE [52]. For computational efficiency, we ignore

2We use 10 frequencies for the GW background as opposed to
the 5 frequencies used in [46] because we have injected a signal
that is stronger than the common process observed in that
analysis.

3This value is chosen for illustrative purposes, as it produces a
noticeable turnover at low frequencies. It does not correspond to a
specific astrophysical scenario.

4This SNR is calculated assuming only Hellings-Downs
correlations.
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Hellings-Downs correlations during sampling as the pos-
terior for the hyperparameters is dominated by the auto-
correlation terms [53–56].

III. PREDICTIVE CHECKS ON
HYPERPARAMETERS

The most straightforward posterior predictive test per-
forms comparisons directly at the level of the hyper-
parameters Λ. In practise, this entails analyzing subsets
of the data, for example by splitting the data of one PTA
into two parts, or by analyzing data from one PTA only. The
inferred GW amplitude and spectral slope are then used to
predict the properties of the remaining data. However,
given that current datasets are merely on the brink of
making detections, splitting the data on one PTAwill likely
yield two uninformative datasets.
Such predictive tests are related to consistency tests

that directly contrast results across different PTAs, for
example the posterior comparisons between EPTA, PPTA,
and NANOGrav [57]. That comparison used the
Mahalanobis distance [58] for the σ deviations between
two > 1-dimensional distributions, and found at most a
2.6σ deviation between different PTAs. We do not consider
such tests in this study any further, instead leaving them to
future work.

IV. PREDICTIVE CHECKS ON MODEL
PARAMETERS

The second posterior predictive test is based on the
model parameters, and specifically the Gaussian process
coefficients a. The comparison of the predicted and the
inferred coefficients allows us to evaluate the power-law
assumption of Eqs. (8) and (9), as well as the assumption
that the spatial correlations between pulsars follows the
Hellings-Downs curve.
The inferred Gaussian-process coefficients are simply

the inferred coefficients of the data. Stated differently, they
are the Gaussian-process coefficients conditioned on the
observed residuals, under the hypermodel prior. Given
the full posterior for model and hypermodel parameters
pðΛ;bjδtÞ, Eq. (10) marginalizes over the parameters b to
obtain the posterior for the hyperparameters. Here we
instead marginalize over the hyperparameters (and the
timing-model parameters) to obtain the posterior for the
Gaussian-process coefficients of the stochastic processes,

pinfðajδtÞ ¼
Z

dΛdϵpða; ϵjΛ; δtÞpðΛjδtÞ: ð15Þ

The first term in the integral is the posterior on b ¼ ½ϵ; a#
conditioned on both the timing residuals (i.e., the data δt)
and the hyperparameters Λ. In other words, pinfðajδtÞ is
the posterior of the Gaussian-process coefficients under
the hyperprior assumption that the observed data are

subject to a common stochastic process and (optionally)
Hellings-Downs-induced correlations from the inferred
GW background.5

The predicted coefficients instead are only conditioned
on the hyperparameter posterior, and not on the data
directly:

ppreðajδtÞ ¼
Z

dΛdϵpða; ϵjΛÞpðΛjδtÞ

¼
Z

dΛpðajΛÞpðΛjδtÞ: ð16Þ

Compared to Eq. (15), the first term in the integral is not
conditioned on δt.
The various terms in the integrands of Eqs. (15) and (16)

can be computed as follows. The hyperparameter posterior
pðΛjδtÞ is obtained by stochastic sampling via the analysis
described in Sec. II. The Gaussian-process coefficients
conditioned on the hyperparameters are, by definition,
given by a simplification of Eq. (5)

pðajΛÞ ¼
exp ð− 1

2 a
Tφ−1ðΛÞaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πφðΛÞÞ

p : ð17Þ

The Gaussian-process coefficients and timing parameters
conditioned on the hyperparameters and the data are

pða; ϵjΛ; δtÞ ¼ pðδtja; ϵ;ΛÞpða; ϵjΛÞ
pðδtjΛÞ ¼ N ðb̂;ΣÞ; ð18Þ

where in the first equality we have used Bayes’ theorem
andN ðb̂;ΣÞ indicates a normal distribution with mean and
covariance given by Eqs. (11) and (12).
To construct the predicted coefficients we sample

Eq. (16) by first drawing Λs ∼ pðΛjδtÞ, then using the
sample Λs to construct φsðΛÞ and draw from Eq. (17). The
amplitude of these coefficients should, on average, be
consistent with the assumed power-law model.6 To con-
struct the inferred coefficients we sample Eq. (15) by first
drawing Λs ∼ pðΛjδtÞ, then using the sample Λs to con-
struct φsðΛÞ, b̂s, and Σs and draw from Eq. (18). The
amplitude of the inferred coefficients has a power-law
hyperprior, but is also conditioned on the data and can thus
deviate from a pure power law.
Besides the assumption of a power-law common process,

we can further use the inferred and predicted distributions

5In certain cases, stochastic sampling might yield the full
posterior pðb;ΛjδtÞ, in which case pðajδtÞ can be obtained by
marginalizing over Λ and ϵ. This is typically not the case for PTA
analyses that sample from the marginalized posterior of Eq. (10),
we therefore have to reconstruct pðajδtÞ using Eq. (15).

6This is true if γ for the power-law model is fixed. If the
spectral index is sampled over then the power reconstructed from
an individual draw for a will, on average, be consistent with a
power law associated with the γ for that specific draw.
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to test the nature of the spatial correlations. Both Eqs. (17)
and (18) depend on φðΛÞ, whose nondiagonal terms encode
the inter-pulsar correlations. We can therefore evaluate the
inferred and predicted distributions by assuming a correla-
tion pattern, such as Hellings-Downs or monopolar corre-
lations. On average, the predicted coefficients will have the
assumed correlation pattern. The inferred coefficients will
have a correlation pattern informed by the data, but subject
to the hyperprior of a power-law common process with the
assumed correlation pattern. A discrepancy between these
predicted and inferred distributions would signal that the
assumed pattern is not consistent with the data. In this work,
we focus on visual discrepancies that can be seen from the
figures, however, one could also consider constructing
associated p-values [34].

A. Intrinsic noise model

We begin by applying the above methodology to pulsar
intrinsic noise, which is modeled with Eq. (9). The relevant
model parameters are the sine and cosine amplitudes
associated with each frequency, aðsÞi;a and aðcÞi;a respectively
for pulsar a and frequency bin i. Specifically, we use
Eqs. (17) and (18) to draw from the inferred and predicted
distribution of the intrinsic noise in pulsar a and frequency
bin i and then obtain the total power as the square-sum of
the sine and cosine components,

η2ai ¼
1

2

nh
aðsÞi;a

i
2 þ

h
aðcÞi;a

i
2
o
: ð19Þ

Each of aðsÞi;a and aðcÞi;a is normally distributed according to
the intrinsic-pulsar-noise power spectrum, Eq. (17), so the
total power at each frequency follows a χ2 distribution with
2 degrees of freedom for a given Λs.
Results for a representative pulsar are shown in Fig. 1

using the HELLINGSDOWNS-POWERLAW simulated dataset.
We show inferred (blue) and predicted (orange) spectra as a
function of frequency. For reference, we also show the
injected and maximum a posteriori spectrum. The inferred
power is only significantly constrained away from zero at the
fourth frequency bin, while the predicted power are wider. In
most bins, the inferred and predicted distributions have
comparable width (given the logarithmic scale on the y axis),
suggesting that the data are not strongly informative. The
inferred and predicted distributions overlap for all frequen-
cies, as expected since the simulated dataset includes
intrinsic noise that obeys the power-law assumption.

B. GW-background model

We now turn our attention to arguably the most impor-
tant part of the analysis: the GW background. Detection of
the GW background hinges on establishing that the data
follow the Hellings-Downs correlation pattern, while the
astrophysical interpretation of the signal relies on its

spectral shape, specifically the amplitude and slope of
the assumed power law [30,59–61]. Below we apply
posterior predictive checks to assess both elements.

1. GW power spectrum of individual pulsars

While the GW background has a single power spectrum
across all pulsars as in Eq. (8), the exact realization in each
pulsar is unique,7 and this results in different Gaussian
process coefficients. We therefore begin by considering the
inferred and predicted GW power in individual pulsars.
Figure 2 shows power spectra (left) and power distributions
for frequency bins of interest (right) for an “informative”
pulsar with detectable GW power in some bins. The top
panels show results for the HELLINGSDOWNS-POWERLAW
dataset, while the bottom panels correspond to
HELLINGSDOWNS-TURNOVER. Both datasets are analyzed
with the same GWmodel, hence the maximum a posteriori
draw and the predicted spectra are power laws.
The posterior predictive test proceeds as follows. First,

we analyze the data assuming a power-law model and
(inevitably) infer power-law parameters that fit the data as
well as possible. The predicted spectra are draws from this
inferred power law. The maximum a posteriori draw is
essentially the power-law model’s best attempt to match the
true spectrum. Second, the inferred spectra are the power
in the data inferred under a GW spectrum prior that is the
inferred power-law posterior. The final inferred spectra are
thus a combination of the data and the prior. For informative
pulsars, in a few of the frequency bins the data dominate
over the power-law prior. For uninformative pulsars, on the
other hand, the inferred spectra would be consistent with the
power law imposed by the prior in all bins.

FIG. 1. Intrinsic pulsar noise power, η2ak from Eq. (9), as a
function of frequency fk (bottom x-axis, k index on the top
x-axis) for B1937þ 21 for the HELLINGSDOWNS-POWERLAW
simulated dataset. Sample predicted power spectra are shown in
orange. The blue violins show the posterior for the inferred power
at each frequency, which is a combination of the data
and the power-law prior. For reference, we plot the injected
and maximum a posteriori power-law spectra in red dot-dashed
and black dashed lines respectively.

7This is in part, but not solely, due to the “pulsar term” that
Hellings-Downs correlations do not capture.
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Indeed, in Fig. 2 the 1st–2nd (top) and 3rd–6th
(bottom) frequency bins have inferred spectra that are
constrained away from zero. The inferred spectra in these
bins are narrower than the predicted ones, suggesting
informative data. In the top panel the inferred and predicted
spectra fully overlap since the model matches the simulated
spectrum. In the bottom panel, however, the inferred
spectra are systematically higher than the predicted ones.
Moreover, the 1st–2nd bins are consistent with zero, which
is in tension with expectations from a power law.
This behavior is due to the fact that the injection follows
a power law with a turnover, which the GW power-law
model cannot fully match, as manifest in the maximum
a posteriori draw. The inferred spectra are therefore
dominated by the data and reveal a tension with the
predicted spectra.
Though not explicitly plotted, we have verified that for

uninformative pulsars, i.e., pulsars with high intrinsic noise
with no detectable GW power, the inferred and predicted
distributions are nearly identical. This suggests that the
total inference is dominated by the prior.

2. Total GW power spectrum

In order to obtain an estimate of the total GW power
spectrum, we use the optimal statistic [35–37], which is

based on the timing residuals from all pulsars. The optimal
statistic gives a noise-weighted average of the cross-
correlation between pulsar pairs, and therefore allows us
to synthesize the inferred or predicted coefficients from
different pulsars into a single estimate of the GW back-
ground amplitude. Since we are testing the GW model, we
reconstruct the optimal statistic using only the GW con-
tribution to the timing residuals and ignore the timing
model and intrinsic pulsar noise parts.
We obtain draws for the Gaussian process coefficients as

of the GW background through Eqs. (15) or (16) as
applicable, and construct timing residuals δts ¼ Fas.
We then use the optimal statistic to compute inter-pulsar
cross-correlations ξsab;k and GW background amplitude As

gw

for each frequency bin k.8 For a pair of pulsars a and b,
the former is

ξab;k ¼
δtTaD−1

a Φ̃gw
ab;kD

−1
b δtb

trðD−1
a Φ̃gw

ab;kD
−1
b Φ̃gw

ba;iÞ
; ð20Þ

σ2ab;k ¼ ½trðD−1
a Φ̃gw

ab;kD
−1
b Φ̃gw

ba;iÞ#−1; ð21Þ

FIG. 2. GW power spectrum, ρ2k from Eq. (8), as a function of the frequency fk (left) and power distributions for select frequency bins
(right) for an “informative” pulsar, J1909–3744, for the HELLINGSDOWNS-POWERLAW (top) and the HELLINGSDOWNS-TURNOVER
(bottom) dataset. In the left panels, sample predicted power spectra are shown in orange and blue violins show the posterior for the
inferred power at each frequency. For reference, we plot the injected and maximum a posteriori spectra in red dot-dashed and black
dashed lines respectively. In the right panels, we show histograms of the inferred and predicted power for the 1st and 3rd bins, along with
a fit to a χ2 distribution with two degrees of freedom. In the top panels, we find agreement between the predicted and inferred spectra for
the data-informed frequency bins, i.e., the ones constrained away from zero. In the bottom panel, data-informed bins contain
systematically higher power than the prediction, as expected from the injected spectra.

8This “per-frequency” optimal statistic as compared to the most
common summed-over-frequencies version is studied in [62].
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where no summation is implied. In the above equations we
have defined Φ̃gw

ab;k ¼ Fa;kφ̃
gw
ab;kF

T
b;k where

φ̃gw
ab;k ¼ Γab

1

12π2
f−3y
T

; ð22Þ

is a GW-only normalized version of Eq. (7). The subscripts
in Fa;k denote that it is evaluated at the times for which
pulsar a has data and for only frequency k. The matrix
Da ¼ ½CðΛÞ#ðai;ajÞ is the autocorrelation block for pulsar a
of the marginalized covariance matrix used in Eq. (10), and
depends on the hyperparameters Λ. It represents the total
noise autocorrelation for pulsar a from both uncorrelated
and correlated processes. The normalization in Eq. (22) is
chosen such that ξab;k is an estimator for the GW back-
ground in each frequency bin.
Given ξab;k we construct a bin-by-bin estimator for the

GW background obtained through a weighted average
across all pulsar pairs,

ξk ¼
P

abξab;kσ
−2
ab;kP

abσ
−2
ab;k

; ð23Þ

σ2k ¼
!X

ab

σ−2ab;k

"−1
: ð24Þ

These equations assume independent frequency bins and
pair correlations, which is not strictly true [62]. In the weak-
GW limit, the frequency bins and paired correlations are
approximately uncorrelated, but for strong signals such as
those that we inject here the covariances between pair
correlations become significant [62–67]. We nevertheless
ignore them in this work for the sake of computational
efficiency. Including them would broaden the green and
blue violins for both the spectral and correlation recon-
structions in Figs. 3 and 5 [62].
Figure 3 shows the total GW spectrum (left) and power

distributions for select bins (right) for the HELLINGSDOWNS-
POWERLAW (top) and HELLINGSDOWNS-TURNOVER (bot-
tom) datasets. We present the same inferred, predicted,
maximum a posteriori, and injected spectra as in Fig. 2.
Additionally, we calculate Eqs. (23) and (24) directly using
the original simulated data and obtain an estimate that is
informed solely by the data without assumptions about the
GW spectral shape. The various spectra represent the optimal
statistic calculated on the predicted, inferred, and simulated
data for the same set of posterior samples drawn from
pðΛjδtÞ. For the inferred and predicted case, the hyper-
parameters are used to construct the GW coefficients as and
Da, while for the data, the hyperparameters are only needed
in the construction of Da. The predicted estimate

FIG. 3. Total GW power spectrum, ξk from Eq. (23), as a function of frequency fk (left) and total power distributions for select bins
(right) for the HELLINGSDOWNS-POWERLAW (top) and HELLINGSDOWNS-TURNOVER (bottom) datasets. In the left panels we show the
inferred (blue left violins) and predicted (orange lines) distributions using the single-frequency optimal statistic. The injected and
maximum a posteriori power-law spectra are shown in red dot-dashed and black dashed lines respectively. Right green violins show the
power as inferred directly from the data without conditioning on a power-law spectrum. In the right panels, we show histograms of the
inferred and predicted power for the 1st and 3rd bins, along with a fit to a χ2 distribution with two degrees of freedom. Inferred and
predicted spectra are consistent in the top panel. However, the inferred power in the 1st and 2nd frequency bins in the bottom panel is
lower than what predicted under the power-law model.
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corresponds to power-law spectra whose amplitude and
slope have been inferred by the data. The inferred estimate
is a combination of data and prior: it corresponds to the GW
spectrum as observed by all pulsars and under the
assumption of a power law. Thus, the predicted estimate
will always follow a power law, while the inferred estimate
will shift the spectra as close to a power law as the data allow.
Starting with the top panel of Fig. 3 and the

HELLINGSDOWNS-POWERLAW dataset, we find that the
predicted and inferred data on average overlap with some
scatter. In places where the data contain higher power than
the injected power law, e.g., 6th and 7th frequency bins, the
inferred estimate is wider and shifted down toward the
power law. In some cases, such as the 9th and 10th bins,
what looks like a GW detection from the data turns out to
be insignificant when estimated in the context of the power-
law model. Despite these, for the most informative 1st, 2nd,
and 3rd bins, the observed data fully agree with the power-
law model as expected.
Moving to the bottom panel of Fig. 3 and the

HELLINGSDOWNS-TURNOVER dataset, the spectra compari-
son is drastically different. The most significant bins are
now the 3rd, 4th, and 5th ones as expected from the injected
spectrum shape. These bins agree with the predicted
distribution, suggesting that they largely drive the inference
of the power-law amplitude. However, the 1st and 2nd bins
are consistent with no GW power and are systematically
lower than the power-law model prediction. As expected,
the inferred distribution is shifted upward compared to the
data-only distribution, attempting to match the power-law
model. However, the data place strong upper limits on the
GW power in those bins and the tension between the
predicted and inferred distributions is apparent.
Beyond the full distributions shown in Fig. 3, we compare

the various spectra estimates on a draw-by-draw basis
in Fig. 4. We show a scatter plot of ξ1 for 300 posterior
draws from the HELLINGSDOWNS-POWERLAW (top) and
HELLINGSDOWNS-TURNOVER (bottom) datasets. The x-axis
shows the value calculated on the measured data, while the
y-axis shows the predicted and inferred ξ1. In the top panel,
inferred draws are narrower than predicted draws and stay
close to the x − y line, an outcome of the fact that the data are
very informative in this bin. In the bottom panel the inferred
draws are more weakly correlated with the data draws, and
shifted upward due to the power-law prior. Additionally, the
bulk of the predicted draws overlap with the inferred ones in
the top panel, which we expect because the model used for
the predicted draws matches the injected model. In the
bottom panel the predicted draws have a larger tail toward
higher values, as the power-lawmodel overestimates the GW
power in this frequency bin.

3. Spatial correlations

The predicted and inferred data can also be compared to
assess consistency with the Hellings-Downs correlation

pattern. We correlate data between pulsars using the full
frequency band version of Eq. (20), i.e., we use the full φgw

ab
instead of φgw

ab;k, so we drop the subscript k and write ξab.
Additionally, since the Hellings-Downs model is already
built in to the optimal statistic, we divide Eq. (20) by
Γab and Eq. (21) by Γ2

ab. We denote these “normalized”
correlations with ξ̃ab ≡ ξab=Γab. Finally, we collect the
ξ̃ab’s into 8 bins (each containing approximately the same
number of pulsar pairs) based on the pair angular separation
θab through an inverse noise weighted average.
Results are shown in Fig. 5 for the data, inferred, and

predicted distributions. The top panel corresponds to the
HELLINGSDOWNS-POWERLAW dataset, while the bottom
panel to HELLINGSDOWNSMONOPOLE-POWERLAW. In the
top panel, the inferred and predicted distributions overlap,
to within expected scatter. In the bottom panel, although the
distributions overlap for any given angular bin, the pre-
dicted distributions are systematically shifted downward.
This is because the inferred distributions contain a monop-
ole, while the predicted ones are solely based on Hellings-
Downs correlations.

FIG. 4. Scatter plot comparison of the power in the first
frequency bin for the data only vs. the predicted (orange) and
inferred (blue) power for the HELLINGSDOWNS-POWERLAW (top)
and HELLINGSDOWNS-TURNOVER (bottom) datasets. Each point
is a draw from the distributions shown in Fig. 3. In the top panel
the bulk of the predicted and inferred draws overlap, while the
inferred draws follows the x − y lines as expected from highly
informative data. In the bottom panel, the predicted draws
overestimate the GW power.
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4. Comparing spectrum and correlations mismodeling

The above tests demonstrate that spectral and spatial
correlations mismodeling can be identified by their corre-
sponding predictive tests. Though the spectrum and the
correlation pattern of a stochastic process are separate
elements of the GW model, it is not clear they are fully
independent. This is because the pulsars are not uniformly
distributed in the sky and the signal periods are comparable
to the observation time. It is therefore possible that mis-
modeling in one element of the GW model appears in the
test for another. To test for such mismodeling “leakage,”
we investigate whether using a Hellings-Downs model on
the HELLINGSDOWNSMONOPOLE-POWERLAW dataset can
result in spectral mismodeling, and whether using a
power-law model on the HELLINGSDOWNS-TURNOVER data-
set can result in correlation mismodelling.
Figure 6 shows the posterior predictive comparison for

the spectrum of HELLINGSDOWNSMONOPOLE-POWERLAW
(top) and the spatial correlations of HELLINGSDOWNS-
TURNOVER (bottom). The top panel shows largely consis-
tent inferred and predicted spectra distributions, suggesting
that a mismodeling of the spatial correlations, i.e., assum-
ing Hellings-Downs when the data also contain a

monopole, does not strongly impact spectral characteriza-
tion. This is likely due to the fact that spectral characteri-
zation is dominated by autocorrelations, at least for weak
signals such as the ones considered here. The bottom panel
shows that the predicted correlations are systematically
lower than the inferred ones, which exhibit signs of a
monopole, i.e. a constant upward shift. This suggests that a
spectrum mismodeling can affect the inferred correlations
pattern. Indeed, a misestimated GW power spectrum will
affect the pulsar noise weighting in the optimal-statistic
calculation, especially for informative pulsars with low
intrinsic noise.

V. PREDICTIVE CHECKS ON TIMING
RESIDUALS

The final posterior predictive tests are based directly on the
timing residuals δt.We first consider visual checks, wherewe
use the model to predict our residuals. As in [14], we isolate
contributions from different parts of ourmodel, showing how
they sum together to model the timing residuals. Next, we
discuss leave-one-out tests where we use data from Np − 1

pulsars to predict the data of the Nth
p pulsar.

A. Visual data checks

We use the Gaussian process coefficients from Sec. IV
to reconstruct expected residuals for each pulsar. We draw

FIG. 5. Spatial correlations (median and 68% credible inter-
vals) as a function of pulsar pair angular separation θab for the
HELLINGSDOWNS-POWERLAW (top) and HELLINGSDOWNS-
MONOPOLE-POWERLAW (bottom) datasets. We show the in-
ferred (blue) and predicted (orange) correlations as a function
of pulsar angular separation. We also show the correlations as
inferred from solely the data (green). The black dashed line
shows the injected correlation, while the Hellings-Downs
correlations are shown in orange dot-dashed in the bottom
panel. In the bottom panel, the predicted correlations are
systematically lower than the inferred ones.

FIG. 6. Total GW spectrum for the HELLINGSDOWNS-TURN-
OVER (bottom) and spatial correlations for the HELLINGSDOWNS-
MONOPOLE-POWERLAW (top) datasets. Plotted quantities and
colors are similar to Figs. 3 and 5 A correlation mismodeling does
not manifest in the spectrum comparison (top). A spectrum
mismodeling has a larger effect on the characterization of the
spatial correlations (bottom).
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bs
a ∼ pðbajΛs; δtÞ, and use these to reconstruct predicted

timing residuals in pulsar a, δtsa ¼ Tabs
a. This procedure

allow us to separate contributions to the residuals from
the GW background, the intrinsic pulsar noise, and from
timing-model fluctuations.
Figure 7 plots the simulated timing residuals and the

separate contributions from intrinsic pulsar noise, GW
background, and the sum of the two for J1909 − 3744
(top, low intrinsic noise) and B1937þ 21 (bottom, high
intrinsic noise) for the HELLINGSDOWNS-TURNOVER data-
set. These reconstructions include frequencies fi > 3=T,
because the two lowest frequencies are degenerate with the
frequency and spin down parameters in the timing model.
In the J1909 − 3744 case (top) the median estimate of the
intrinsic noise at each time is near zero, although there is a
spread in potential values. Meanwhile, the GW background
and total noise (GW plus intrinsic) track the residuals more
closely. In the B1937þ 21 case (bottom) the residuals are
dominated by intrinsic noise, while the GW background
contribution is smaller.

We do not show the contribution from timing-model
corrections as it is small in this case. However, their
posterior is estimated and could be compared to the fiducial
values used to create the original timing residuals. This
could serve as a useful cross-check, especially for indi-
vidual pulsars that are difficult to model.

B. Leave-one-out analysis:
Hellings-Downs vs common noise model comparison

We construct predicted data distributions for each pulsar
under different assumptions for the correlation pattern, and
specifically assuming either Hellings-Downs correlations
or an uncorrelated common process. Evaluating these
distributions on the actual observed data, we introduce a
pseudo-Bayes factor [45] for the presence of Hellings-
Downs correlations. We compare the pseudo-Bayes factor
to null distributions obtained from simulated data and show
how they can be used to establish the presence of Hellings-
Downs correlations, and equivalently the detection of a
GW background.
In contrast to the parameter predictive tests of Sec. IV,

here we perform per-pulsar tests conditioned on the data
of the other pulsars. This distinction is driven by two main
reasons. First, the tests of Sec. IV focus on GW model
parameters, inference of which is informed by more than
one pulsar. For example, the GW Gaussian process
coefficients in one pulsar are informed by the other pulsars
through Hellings-Downs correlations. There is therefore
no clear sense in which GW parameters “belong” to one
pulsar. Second, typically a small number of pulsars
dominates the constraints. Therefore in-sample and out-
of-sample data predictions can be quite distinct.
We begin by selecting a pulsar a to leave out. Quantities

with a subscript of a correspond to this pulsar, while a
subscript of −a denotes the set of all the other pulsars in
the array. We also explicitly break up all quantities into
GW, pulsar a, and all other pulsars (−a): ϵ ¼ ½ϵa; ϵ−a#,
Λ ¼ ½Λgw;Λa;Λ−a#, a ¼ ½agw;a; agw;−a; aa;a−a#. This split
is motivated by the fact that δt−a offers no information
about the intrinsic parameters of pulsar a, for example
pðΛjδt−aÞ ¼ pðΛgw;Λ−ajδt−aÞpðΛaÞ.
The likelihood of residuals δta in pulsar a given the

residuals δt−a in all other pulsars is

pðδtajδt−aÞ ¼
Z

dΛdϵdapðδtajΛ; ϵ; aÞpðΛ; ϵ; ajδt−aÞ:

ð25Þ

After a long derivation laid out in the Appendix we find

pHDðδtajδt−aÞ ≈
1

Ns

X

s

Z
dΛadagw;apðδtajΛa; agw;aÞ

× pðagw;ajΛs
gw;Λs

−a; δt−aÞpðΛaÞ; ð26Þ

FIG. 7. GW background (blue, solid), intrinsic pulsar noise
(red, dashed-dotted), and total noise (black, dotted) contribution
to timing residuals for J1909 − 3744 (top) and B1937þ 21
(bottom), compared to the simulated residuals (green). The
shaded regions indicate 90% credible intervals and the lines
indicate the median. The residuals were simulated using the
HELLINGSDOWNS-TURNOVER model. For J1909 − 3744, the
residuals are dominated by the GW, while for B1937þ 21 the
intrinsic noise dominates. In both cases, the total noise posterior
tracks the residuals closely. We do not plot the timing model
corrections for clarity, as they are small in this case.
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pCNðδtajδt−aÞ ≈
1

Ns

X

s

Z
dΛapðδtajΛa;Λs

gwÞpðΛaÞ:

ð27Þ

where the “HD” subscript signifies that we have assumed
Hellings-Downs correlations and “CN” subscript signifies
that we ignore the Hellings-Downs correlations and assume
that the pulsars are only subject to an uncorrelated common
process. Equations (26) and (27) are evaluated over Ns
draws from the hyperparameter posterior

Λs
gw;Λs

−a ∼ pðΛgw;Λs
−ajδt−aÞ; ð28Þ

from the analysis of Sec. II B. The integral over dagw;a is
performed analytically as it involves a product of
Gaussian distributions, while the one over dΛa is performed
numerically.
Comparing Eqs. (26) and (27) can provide an estimate

of how much each pulsar supports the presence of Hellings-
Downs correlations. We introduce the “pseudo-Bayes
factor” (PBF) [45] between Hellings-Downs and common
noise in pulsar a as

PBFHDCN;a ≡
pHDðδtajδt−aÞ
pCNðδtajδt−aÞ

; ð29Þ

where the numerator and denominator are defined in
Eqs. (26) and (27) respectively, and are posterior predictive
likelihoods that are calculated on the observed δta. The
total pseudo-Bayes factor is then the product over all
pulsars

PBFHDCN ¼
YNp

a¼1

PBFHDCN;a: ð30Þ

The pseudo-Bayes factor shares some similarities with the
traditional Bayes factor (i.e., the marginal likelihood ratio),
but there are also important differences. First, both tradi-
tional and pseudo-Bayes factors are a ratio of likelihoods.
Second, unlike traditional Bayes factors, the pseudo-Bayes
factor is insensitive to the existence of parameter space
regions of little likelihood support, which reduce Bayes
factors by the so-called Occam factors. In that sense, the
pseudo-Bayes factor does not suffer from interpretation
issues related to the extent of parameter priors or the
presence of improper priors [31,33,68]. Third, by definition
PBFHDCN;a is a measure of how well the model predicts new
data. This means that it can be estimated on a per-pulsar
basis, thereby assessing which pulsar is more consistent
with each model, and identifying outliers. Specifically,
PBFHDCN;a tests whether certain pulsars are poorly under-
stood compared to others, potentially signaling issues with
their intrinsic noise modeling.

The pseudo-Bayes factor, however, does suffer from
calibration issues just as the traditional Bayes factor. That
is, how are we to interpret its value in terms of statistical
confidence? Rather than relying on arbitrary classifications
schemes [26,27], a common procedure to interpret Bayes
factors involves using a large set of simulations to estimate
a false-alarm probability for the measured value [69–74].9
Figure 8 shows the (natural logarithm of the)

pseudo-Bayes factors for individual pulsars ordered
from lowest to highest. We produce 59 simulated datasets
using HELLINGSDOWNS-POWERLAW, and 45 using
NOGRAVITATIONALWAVE. The following result should be
interpreted only as a demonstration of our method as the
simulated GW background amplitude of log10 Agw ¼ −14
is higher than the one inferred from real data by a factor
of ∼5 [46]. Such a high value was chosen so that we have a
detectable signal in 12 years of simulated data and thus we
can meaningfully test the proposed methods.
For each simulated dataset, we compute ln PBFHDCN;a for

each pulsar a, we sort the pulsars from the smallest to
the largest value, and we plot the distribution over data
realizations.10 In the HELLINGSDOWNS-POWERLAW case,
we regularly find ∼20 pulsars with positive ln PBFHDCN;a.
This means that data from the other pulsars can predict the
observed data in pulsar a better if Hellings-Downs corre-
lations are present. The test is uninformative for ∼10
pulsars with ln PBFHDCN;a ∼ 0, while a similar number of

FIG. 8. Pseudo-Bayes factor comparing the Hellings-Downs
and common noise models for each pulsar. We consider 59
realizations of simulated HELLINGSDOWNS-POWERLAW (orange)
and 45 NOGRAVITATIONALWAVE (blue) datasets and show the
distribution of obtained pseudo-Bayes factors in violins. Pulsars
are ordered from lowest to higher value of the pseudo-Bayes
factor. Most pulsars support the presence of Hellings-Downs
correlations when a signal is present, though a minority displays
the opposite behavior. All pulsars have uninformative pseudo-
Bayes factors when no signal is injected.

9Another recommendation is to compare PBFHDCN to the variance
of PBFHDCN;a over the pulsars [75]; we leave this to future work.

10This procedure means that the pulsar order is different for
each simulated dataset. Therefore the x-axis of Fig. 8 is not a
specific pulsar, but instead the nth pulsar as ranked by its pseudo-
Bayes factor in each dataset.
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pulsars has ln PBFHDCN;a < 0. The latter means that these
pulsars support no Hellings-Downs correlations even if these
exist in the data. Such behavior is also encountered in the
“drop-out factors” calculated by sampling an indicator
variable that switches between the common process and no
common signal hypotheses for each individual pulsar [46].
Some negative ln PBFHDCN;a are therefore to be expected even in
simulated data and they are not immediately an indication
of mismodeling.11 In the NOGRAVITATIONALWAVE case, all
pulsars have ln PBFHDCN;a ∼ 0, suggesting no preference either
way. This is to be expected as no signal is present, so there
should be no information about its correlation pattern.
Even though individual pulsars can have ln PBFHDCN;a < 0,

the total pseudo-Bayes factor is in favor of Hellings-Downs
correlations for the majority of the simulated datasets with
a signal. Figure 9 shows distributions of ln PBFHDCN over 59
data realizations for HELLINGSDOWNS-POWERLAW (top) and
45 for NOGRAVITATIONALWAVE (bottom). In the top panel,
we find ln PBFHDCN > 0 for 92% of the realizations, with most
datasets resulting in a strong preference for Hellings-Downs

correlations and ln PBFHDCN ∼ 10–20. However, as discussed
above, the absolute scale of the pseudo-Bayes factor has no
definite statistical interpretation, and results should instead
be calibrated to simulations. The bottom panel shows the
null distribution of ln PBFHDCN. All datasets have lnPBF

HD
CN <2

and 61% of them have ln PBFHDCN < 0. Given this null,
Hellings-Downs correlations would have been detected in
89% of the HELLINGSDOWNS-POWERLAW simulations with
a significance of > 2σ. With 59 background simulations the
significance estimate is limited to ∼1=59 ∼ 2σ.
Figure 9 shows also the distributions of traditional Bayes

factors between the Hellings-Downs and common noise
hypotheses for the same simulations computed via like-
lihood reweighting [55]. On average the HELLINGSDOWNS-
POWERLAW dataset results in larger pseudo-Bayes factors
than traditional Bayes factors, while the trend is reversed
for the NOGRAVITATIONALWAVE datasets. However, due to
the high GW signal amplitude we still find that 90% of
the simulated datasets in the top panel have detectable
Hellings-Downs correlations at > 2σ significance when
using the traditional Bayes factor as a detection statistic.
These results suggest that pseudo-and traditional Bayes
factors can act as complementary model-checking tools.
We leave the determination of their relative sensitivity as
detection statistics to future work, since this demonstration
is based on only 45 simulations and a loud injected GWB.

VI. DISCUSSION AND CONCLUSIONS

PTA analyses assume that a GW background results
in arrival time residuals that are subject to a common
power-law process among pulsars and Hellings-Downs
spatial correlations between them. While the correlation
pattern is robust under a tensorial GW background,
systematic errors can induce further monopolar or dipolar
correlations [14,77–81]. Moreover, the GW spectral shape
is subject to astrophysical, statistical, and even cosmologi-
cal uncertainties [60,61,72]. Here we propose to test these
assumptions using posterior predictive checks that assess
how well predicted data based on the inferred model
parameters match the observed data. Predictive tests based
on different quantities allow us to assess different aspects of
the model or pulsars in the array separately and thus can
offer insights about model extensions if a discrepancy is
identified.
We propose and study two types of tests. The first type

concerns the Gaussian-process coefficients of the GW and
intrinsic-noise stochastic processes. Comparing predicted
and inferred coefficients on simulated datasets, we can
identify frequency bins where the power-law model under-
or over-predicts the observed power. Moreover, by com-
paring the inferred and predicted spatial correlations we can
assess the presence of non-Hellings-Downs correlations.
The second type of test concerns the timing residuals
themselves, and specifically the likelihood of the observed
data in a select pulsar given all other pulsars. We compute

FIG. 9. Distribution of total pseudo-Bayes factors (solid histo-
grams) and traditional Bayes factors (dashed histograms) for
repeated simulations with the HELLINGSDOWNS-POWERLAW
(top) and NOGRAVITATIONALWAVE (bottom) datasets comparing
the Hellings-Downs and common noise hypotheses. Note the
different x-axis scales on the two panels. Using the results of the
bottom panel as a null distribution, 89% of the simulated datasets
in the top panel have detectable Hellings-Downs correlations at
> 2σ significance.

11In fact down-selecting pulsars based on arbitrary metrics can
lead to biased estimates [76].
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the pseudo-Bayes factor as the ratio of these likelihoods
under the Hellings-Downs and the uncorrelated common
process hypotheses. We show that among all the pulsars in
the array it is expected for a handful to show preference
against Hellings-Downs correlations. However, the total
pseudo-Bayes factor over the entire array can be used as a
detection statistic to establish the presence of Hellings-
Downs correlations.
Our study adds to existing efforts that explore extensions

of PTA analyses. A common extension to the power-law
spectrum (and one of our simulated datasets) is the
truncated power law that arises when astrophysical hard-
ening mechanisms accelerate the inspiral of the black hole
binaries that source the GW background [30]. A different
kind of broken power law flattens the spectrum at high
frequencies [46]. Such flattening is interpreted as being
caused by modeling systematics related to the intrinsic
pulsar noise, and it is used to limit the number of frequency
bins analyzed [46]. Doing away with a parametric model,
“free spectral” analyses instead allow for independent
amplitudes at each frequency bin [46]. Beyond the details
of the spectral shape, a GW background has a unique
spectrum, even though the exact realization will differ
between pulsars. A test of this assumption involves
allowing for some scatter in the GW amplitude inferred
from each pulsar, whose probable origin would be mis-
modeling [32]. Applying the test to PPTA data, Ref. [32]
found no evidence for such a scatter.
Moving on to spatial correlations, proposed checks

include reconstructing the correlations as interpolated func-
tions, sums of Legendre polynomials [82], or perturbed
Hellings-Downs patterns [83]. These tests proceed with the
observed data alone and compare the reconstructed generic
correlation pattern with the expected Hellings-Downs pat-
tern. A related test replaces or augments the Hellings-Downs
correlations with nontensorial correlations expected for
certain theories of gravity beyond general relativity [84,85].
The tests proposed in this study offer complementary

ways to assess PTA models. We expect such tests to
become increasingly important as PTA datasets expand
in sensitivity, and move toward detection of the GW
background. Furthermore, our tests can be used to assess
consistency between different PTA datasets. For example,
we could use NANOGrav data to predict PPTA data and
then compare to the actual observed PPTA data. Such tests
would generalize the comparisons performed in [57] and
help establish consistency between datasets, thus strength-
ening astrophysical conclusions.
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APPENDIX: DETAILED DERIVATION OF THE
POSTERIOR PREDICTIVE LIKELIHOOD FOR

SINGLE-PULSAR DATA

The starting point of the derivation is the likelihood of
the residuals δta in pulsar a given the residuals δt−a in all
other pulsars, reproduced here from Eq. (25):

pðδtajδt−aÞ ¼
Z

dΛdϵdapðδtajΛ; ϵ; aÞpðΛ; ϵ; ajδt−aÞ:

ðA1Þ

The first term in the integrand of Eq. (A1) reduces to

pðδtajΛ; ϵ; aÞ ¼ pðδtajϵa; agw;a; aaÞ; ðA2Þ

as the data of pulsar a depend on the parameters of this
pulsar only, as given by Eq. (4). The second term in the
integrand of Eq. (A1) is

pðΛ;ϵ;ajδt−aÞ
¼ pðΛa;ϵa;aaÞpðΛgw;Λ−a;ϵ−a;a−a;agw;a;agw;−ajδt−aÞ;

ðA3Þ

where the first term includes all properties of pulsar a that
do not depend on the data of the other pulsars. The only
property of pulsar a that remains in the second term are the
GW Gaussian process coefficients agw;a, since those are
informed by δt−a through the Hellings-Downs correlations.
Returning to the full predictive likelihood in Eq. (A1), the
integrals over agw;−a; ϵ−a; a−a are now trivial. Performing
those and substituting Eqs. (A2) and (A3) in Eq. (A1)
we get
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pHDðδtajδt−aÞ ¼
Z

dΛgwdΛadΛ−adϵadagw;adaapðδtajϵa; agw;a; aaÞpðΛa; ϵa; aaÞpðΛgw;Λ−a; agw;ajδt−aÞ

¼
Z

dΛgwdΛadΛ−adϵadagw;adaapðδtajϵa; agw;a; aaÞpðΛaÞpðϵa; aajΛaÞpðΛgw;Λ−a; agw;ajδt−aÞ

¼
Z

dΛgwdΛadΛ−adagw;apðδtajagw;a;ΛaÞpðΛaÞpðΛgw;Λ−a; agw;ajδt−aÞ

¼
Z

dΛgwdΛadΛ−adagw;apðδtajagw;a;ΛaÞpðΛaÞpðagw;ajΛgw;Λ−a; δt−aÞpðΛgw;Λ−ajδt−aÞ

¼
Z

dΛgwdΛ−a

!Z
dΛadagw;apðδtajagw;aΛaÞpðΛaÞpðagw;ajΛgw;Λ−a; δt−aÞ

"
pðΛgw;Λ−ajδt−aÞ; ðA4Þ

where the “HD” subscript signifies that we have assumed
Hellings-Downs correlations. In the second linewe have used
the definition of conditional probabilities pðΛa; ϵa; aaÞ ¼
pðΛaÞpðϵa; aajΛaÞ and in the third linewehavemarginalized
over ϵa; aa following Eq. (10). In the third linewe have again
used conditional probabilities pðΛgw;Λ−a; agw;ajδt−aÞ ¼
pðagw;ajΛgw;Λ−a; δt−aÞðΛgw;Λ−ajδt−aÞ and in the last line
we reorganize the integrals. The first term in the integral,
pðδtajagw;a;ΛaÞ, is given by Eq. (4) after (analytically)

marginalizing over the intrinsic noise Gaussian process
coefficients, pðagw;ajΛgw;Λ−a; δt−aÞ is a Gaussian with
mean and covariance given by Eqs. (11) and (12), pðΛaÞ
is the prior onΛa, while pðΛgw;Λ−ajδt−aÞ is the posterior of
the hyperparameters.
A simplified version of Eq. (A4) can be obtained if we

ignore the Hellings-Downs correlations and assume that the
pulsars are only subject to an uncorrelated common
process, denoted as “CN” in equations below. Then

pCNðδtajδt−aÞ ¼
Z

dΛgwdΛ−a

!Z
dΛadagw;apðδtajagw;aΛaÞpðΛaÞpðagw;ajΛgw;Λ−a; δt−aÞ

"
pðΛgw;Λ−ajδt−aÞ

¼
Z

dΛgwdΛ−a

!Z
dΛadagw;apðδtajagw;aΛaÞpðΛaÞpðagw;ajΛgwÞ

"
pðΛgw;Λ−ajδt−aÞ

¼
Z

dΛgw

!Z
dΛapðδtajΛgw;ΛaÞpðΛaÞ

"
pðΛgwjδt−aÞ; ðA5Þ

where in the second line we have simplified
pðagw;ajΛgw;Λ−a; δt−aÞ ¼ pðagw;ajΛgwÞ due to the lack
of Hellings-Downs correlations, and in the third line we
have marginalized over agw;a;Λ−a following Eq. (10).
Equations (A4) and (A5) are estimated as follows. The

integral over dΛgw (and Λ−a if applicable) is performed
through Monte-Carlo integration using Ns samples

Λs
gw;Λs

−a ∼ pðΛgw;Λ−ajδt−aÞ; ðA6Þ

from the analysis of Sec. II B:

pHDðδtajδt−aÞ ≈
1

Ns

X

s

Z
dΛadagw;apðδtajΛa; asgw;aÞ

× pðasgw;ajΛs
gw;Λs−a; δt−aÞpðΛaÞ; ðA7Þ

pCNðδtajδt−aÞ≈
1

Ns

X

s

Z
dΛapðδtajΛa;Λs

gwÞpðΛaÞ: ðA8Þ

The integral over dΛa is performed numerically. The
integral over dagw;a is performed analytically as both terms
involving agw;a are Gaussians.
The above equations require estimating Np posteriors

pðΛjδt−aÞ—one for each individual pulsar, a. This results
in a heavy computational cost that may be unfeasible.
Instead, if the hyperparameter posterior is not strongly
affected by any individual pulsars, we can approximate
Eq. (A6) with

pðΛjδt−aÞ ¼ pðΛgw;Λ−ajδt−aÞpðΛaÞ
≈ pðΛgw;Λ−ajδtÞpðΛaÞ: ðA9Þ

Crucially, while we use the data from pulsar a to constrain
Λgw by assuming that the effect is small, we do not use the
same data to constrain Λa, instead still integrating over
the prior. We have checked that this approximation has a
minor impact on our results while greatly reducing com-
putational cost, so we adopted it to produce the results in
Secs. IV and V.
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