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Abstract

Analyses of pulsar timing data have provided evidence for a stochastic gravitational wave background in the
nanohertz frequency band. The most plausible source of this background is the superposition of signals from
millions of supermassive black hole binaries. The standard statistical techniques used to search for this background
and assess its significance make several simplifying assumptions, namely (i) Gaussianity, (ii) isotropy, and most
often, (iii) a power-law spectrum. However, a stochastic background from a finite collection of binaries does not
exactly satisfy any of these assumptions. To understand the effect of these assumptions, we test standard analysis
techniques on a large collection of realistic simulated data sets. The data-set length, observing schedule, and noise
levels were chosen to emulate the NANOGrav 15 yr data set. Simulated signals from millions of binaries drawn
from models based on the Illustris cosmological hydrodynamical simulation were added to the data. We find that
the standard statistical methods perform remarkably well on these simulated data sets, even though their
fundamental assumptions are not strictly met. They are able to achieve a confident detection of the background.
However, even for a fixed set of astrophysical parameters, different realizations of the universe result in a large
variance in the significance and recovered parameters of the background. We also find that the presence of loud
individual binaries can bias the spectral recovery of the background if we do not account for them.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave sources (677);
Gravitational wave astronomy (675); Supermassive black holes (1663); Astronomy data analysis (1858); Bayesian
statistics (1900); Millisecond pulsars (1062)

1. Introduction

Pulsar timing arrays (PTAs) monitor millisecond pulsars
over a timespan of decades. The times of arrival of these radio
pulses are sensitive to various physical processes, including
variations in the proper distance between the pulsars and the
observer due to passing gravitational waves (GWs). PTAs
recently reported evidence for a nanohertz stochastic GW
background (GWB) in their most recent data sets (Agazie et al.
2023a; Antoniadis et al. 2023a; Reardon et al. 2023; Xu et al.
2023), and their results were shown to be consistent with each
other (The International Pulsar Timing Array Collaboration
et al. 2023). The most plausible source of this background is a

large collection of supermassive black hole binaries (SMBHBs;
Agazie et al. 2023b), but other more exotic phenomena can also
explain the signal (Afzal et al. 2023).
Several methods have been developed to search for a

GWB in PTA data sets. While the GWB is expected to first
appear as a common uncorrelated red-noise (CURN) process,
the definitive signature of a GWB is considered to be the
characteristic Hellings–Downs (HD; Hellings & Downs 1983)
angular correlation pattern between pulsars. The most notable
frequentist method is the so-called optimal statistic (OS;
Chamberlin et al. 2015), which is an unbiased maximum-
likelihood estimator of the GWB amplitude based on the cross-
correlations between pulsars and the theoretical correlation
pattern. It also allows one to define a signal-to-noise ratio
(S/N), which is used as a detection statistic. Bayesian
methods, on the other hand, marginalize over the parameters
of a Fourier-basis Gaussian process that describes the GWB
(Lentati et al. 2013; van Haasteren & Vallisneri 2014). This can
be constructed either with (HD model) or without (CURN
model) HD correlations between pulsars. One can calculate the
Bayes factor (BF) between these two models, which is the most
important quantity in quantifying the level of Bayesian
evidence for a GWB.
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As with any statistical data analysis, one needs to make
various assumptions when calculating either the OS S/N or the
HD versus CURN BF. Most commonly, one assumes that the
GWB is (i) Gaussian, (ii) isotropic, or (iii) described by a
power-law spectrum73. However, if the GWB is produced by a
finite number of SMBHBs, none of these assumptions holds
exactly (see, e.g., Bécsy et al. 2022). Methods have been
developed that relax some of these assumptions. Assumption
(iii) is the most often relaxed assumption. It is relaxed either by
modeling the spectrum as a two-component so-called broken
power-law model, or by allowing the amplitudes of different
frequency components to vary freely (see, e.g., Sampson et al.
2015; Taylor et al. 2017; Agazie et al. 2023a, 2023c,
K. Gersbach et al. 2023, in preparation, Lamb et al. 2023;
Meyers et al. 2023). Some specific searches were also
conducted for an anisotropic GWB (Mingarelli et al. 2013;
Taylor & Gair 2013; Gair et al. 2015; Romano et al. 2015; Ali-
Haï et al. 2020; Taylor et al. 2020; Pol et al. 2022; Agazie et al.
2023d), thus relaxing assumption (ii). One way of relaxing the
assumption of Gaussianity is to model the background as a
t-process, where the GWB power at each frequency follows a
Student t-distribution instead of a Gaussian distribution, thus
allowing more flexibility (see Appendix D in Agazie et al.
2023a). While generalized search algorithms like these are
available, the flagship results in most GWB searches continue
to rely upon these assumptions (see, e.g., Agazie et al. 2023a;
Antoniadis et al. 2023a; Reardon et al. 2023). This is in part
due to their simplicity, which makes them easier to compute. In
addition, it is widely expected that their assumptions are good
enough to make them strong and robust methods.

The expectation that models employing these assumptions
are capable of detecting GWBs even when these assumptions
are broken is based largely on Cornish & Sesana (2013) and
Cornish & Sampson (2016). Cornish & Sesana (2013) showed
that even a single SMBHB produces HD correlations in an
array of isotropically distributed pulsars—showing that we can
trade the isotropy of the background for the isotropy of the
pulsar array. In Cornish & Sampson (2016), the authors studied
both realistic GWBs based on SMBHB population models and
also idealized Gaussian isotropic GWBs with a power-law
spectrum. They found that the significance with which one can
detect these is similar, except for cases with an unrealistically
low number of binaries. In this paper, we carry out a similar
analysis with a number of improvements.

1. We use a more up-to-date SMBHB population model.
2. Instead of pulsars with evenly sampled data, we use the

actual observation times from the NANOGrav 15 yr data
set (Agazie et al. 2023e).

3. In addition to white noise, we include pulsar red noise,
and we set the level of this noise based on the noise
properties found in the NANOGrav 15 yr data set (Agazie
et al. 2023c);

4. Instead of a simple frequency-domain analysis, we use
the actual software used in Agazie et al. (2023a), which
works in the time domain and takes covariances with the
timing model into account.

Our analysis can also be considered as an extension of the
consistency checks carried out in Johnson et al. (2023). There,
these analysis pipelines were extensively stress-tested to ensure

that they performed properly under the assumption that the data
analyzed conform to the models used. We extend the scope to
see how these pipelines perform if their assumptions are not
met perfectly, as is expected to be the case when analyzing real
data. This is a special kind of model mis-specification, where
our signal model does not match the data. Understanding the
effects of signal model mis-specification, along with noise
model mis-specification (Goncharov et al. 2021) and develop-
ing consistency checks for our models (Meyers et al. 2023),
will be increasingly important as PTAs become progressively
more sensitive.
The rest of the paper is organized as follows. In Section 2 we

describe our realistic population-based simulated data sets and
give more details about the statistical methods employed on
them. In Section 3 we present our results, and in Section 4 we
provide a brief conclusion and discuss future work.

2. Methods

2.1. Realistic Simulated Data Sets

Our simulated data sets are based on the pulsars and their
measured noise properties in the NANOGrav 15 yr data set
(Agazie et al. 2023e), following the simulation framework of
Pol et al. (2021). We use the libstempo software package,
and we simulate data sets with the actual observing times from
the real data set. To reduce the data volume, however, we only
keep one observation per epoch. We simulate data with the
white- and red-noise properties fixed to the maximum
a posteriori values inferred from the NANOGrav 15 yr data
set (Agazie et al. 2023c).
To simulate the contribution of a realistic GWB, we use an

SMBHB population model implemented in the holodeck
software package (L. Z. Kelley et al. 2023, in preparation),
based on the Illustris cosmological hydrodynamical simulation
(Vogelsberger et al. 2014). This model applies a post-
processing step to account for small-scale physics not captured
by Illustris, uses a phenomenological model to describe binary
evolution (for details, see Agazie et al. 2023b), and produces a
simulated list of binaries in the universe (Kelley et al. 2017a,
2017b, 2018). To add the contribution of these binaries, we
model the brightest 1000 binaries in each frequency bin
individually and add the rest as a stochastic background. This
was shown to produce results equivalent to a full simulation,
but with drastically reduced runtimes (Bécsy et al. 2022). We
produce hundreds of realizations of these simulations by
drawing new binary populations to account for cosmic
variance, and randomizing their extrinsic parameters (sky
location, inclination, polarization angle, and phases). We then
analyze them with both Bayesian and frequentist statistical
methods, which are described in the next sections.

2.2. Bayesian Methods

To carry out a Bayesian statistical analysis of our data sets,
we use the following likelihood function (for more details, see,
e.g., Equation (7.35) in Taylor 2021):

[ ( )] ( )d d p= - +-L t C t Clog
1
2

log det 2 , 1T 1

where δt are the timing residuals, and C is the noise covariance
matrix that includes the effects of both white and red noise and
the linearized timing model. The matrix C depends on the
parameters describing the noise. In our analysis, we fix the73 This also means that we implicitly assume that the signal is stationary.
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white-noise parameters to their true values. We model the
spectrum of the intrinsic pulsar red noise with a power-law
model, so that its power spectral density (PSD) in the ith pulsar
is

( ) ( )
p

=
g-

-⎛⎝⎜ ⎞⎠⎟S f
A f

f
f

12
, 2i

i
2

2
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where Ai and γi are the amplitude and the spectral slope of the
red noise in the ith pulsar, respectively, and fyr= (yr)−1 is the
frequency corresponding to a period of a year. We marginalize
over Ai and γi in our analysis. Similarly, we model the timing
residuals induced by the GWB as a red-noise process with a
power-law spectrum, such that its cross-power spectral density
between the ith and jth pulsar is
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where Γij is the overlap reduction function (ORF) between the
two pulsars. For a GWB, the ORF is given by the HD curve
(Hellings & Downs 1983), which introduces correlations
between pulsars depending on their angular separation on the
sky. Another useful model is the CURN, which assumes
Γij= δij, that is, no correlation between pulsars. This model is
much more efficient to calculate because C is block diagonal.
In practice, the posteriors on AGWB and γGWB are similar
between the CURN and HD models. This allows one to sample
the simpler CURN model and reweight the posterior samples to
obtain fair draws from the HD posterior (for details, see
Hourihane et al. 2022). The mean of the weights also serves as
a measurement of the BF between the HD and CURN models,
which is the primary quantity one needs to measure to claim a
detection of the GWB. The variance of the weights can be used
to approximate the number of effectively independent samples
after reweighting. The ratio of this to the total number of
samples defines the reweighting efficiency, which needs to be
sufficiently high to obtain reliable results. Only 17 of the 773
realizations we analyzed showed a reweighting efficiency
lower than 5%, most of which resulted in only a modest error
of the measured BFs, altough the efficiency is low. Thus, the
use of the reweighting technique should not have a significant
effect on our results.

2.3. Frequentist Methods

While GWB searches usually focus on Bayesian methods,
frequentist methods can also be useful, particularly because
their computational speed is significantly faster. The most
common frequentist method used in searches for a GWB is the
so-called OS (Chamberlin et al. 2015), which is an unbiased
estimator of the GWB amplitude. It is constructed by
maximizing the likelihood of the measured cross-correlation
values under the assumption of an ORF and a (typically power-
law) PSD model. This results in the estimated GWB amplitude
(Â) and the standard deviation of that estimate (σA). The ratio
of these gives the S/N, which can be used as a detection
statistic for the presence of a GWB.

One disadvantage of the OS is that one needs to know the
PSD describing the GWB and the intrinsic red noise of each

pulsar, which is not known a priori in a real data set. One can
measure the PSD using Bayesian methods, and a point estimate
(usually the maximum a posteriori) can be used to calculate the
OS. However, this does not take the uncertainty of the
measured spectrum into account. To do this, Vigeland et al.
(2018) developed the so-called noise-marginalized OS, which
calculates the OS for random draws of the spectrum from a
Bayesian posterior, thus producing a distribution of OS values.
Subsequently, Vallisneri et al. (2023) have also proposed a
related method for interpreting the OS in the context of
posterior predictive checking.
The OS can also be used to calculate the S/N of processes

described by different ORFs. Two commonly calculated ORFs
are the monopole and dipole, which could arise, e.g., from
systematic clock errors and ephemeris errors, respectively. One
limitation of the standard OS is that because these ORFs are
usually not orthogonal, processes with less preferred ORFs can
still produce high S/N values. To alleviate this problem,
Sardesai & Vigeland (2023) developed the so-called multi-
component OS, which can allow multiple processes with
different ORFs to fit the data simultaneously. As a result,
different processes can be better decoupled. In this study, we
calculate S/N values with the noise-marginalized multi-
component OS method to assess the frequentist significance
of the GWB, along with monopole- or dipole-correlated
processes.

3. Results

To produce robust results, we analyzed 773 different
realizations of our simulated 15 yr data set. The median (thick
lines) and mean (thin lines) GWB spectra over these
realizations are shown in Figure 1, both for all the binaries
(solid red lines) and for all except the brightest binaries in each
bin (dashed green lines). The shaded region represents

Figure 1. Mean and median GWB spectra over 773 realizations. Also shown is
the spectrum after removing the contribution of the brightest binary in each
frequency bin. The shaded regions show the range of spectra between the 5th
and 95th percentile. We also show a power-law spectrum with a canonical 13/3
slope as a reference.
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amplitudes between the 5th and 95th percentile in each bin. We
also show a spectrum with γ= 13/3 as a reference. Note that
this has a slope between the median and mean lines for all
sources, which give γ= 4.6 and γ= 4.2 in a linear fit to the
first five frequency bins, respectively. We can also see that the
median spectrum is similar to the mean spectrum when the
brightest binary is removed. However, for the total spectrum,

the mean spectrum is shallower and follows the expected 13/3
spectral slope better. This is due to the fact that the median is
insensitive to outliers, and thus we lose the information about
the bright sources.

3.1. Stochastic Background

We carry out a Bayesian search for a 14-frequency CURN
process in each realization, resulting in posterior distributions
of the power-law parameters. Based on these, we calculate the
median AGWB and γGWB values for each realization. Their
distribution is shown in Figure 2 (blue), along with AGWB and
γGWB values estimated by a simple least-squares fit to the
theoretical spectrum using either the first five (orange) or the
first 14 (green) frequency bins. Interestingly, fitting to the first
five frequencies gives very similar values to the actual
Bayesian CURN analysis, even though that uses the first 14
frequencies. This is due to the fact that the Bayesian analysis is
dominated by the first few frequencies, where the signal is
strongest. Conversely, a 14-frequency fit to the spectra provides
unrealistically accurate measurements, as it does not take the
effect of red and white noise into account, the latter of which
dominates the GWB signal at higher frequencies. Note that all
of these distributions center roughly around the theoretically
expected γGWB= 13/3 value and the amplitude to which this
population was calibrated. However, they show a significant
spread, indicating that the lower γGWB value and higher
amplitude found in the NANOGrav 15 yr GWB search
(posterior distribution and median values shown by the red
contour and dot on Figure 2) is compatible with the binary
population in our simulations. Note that this is consistent with
the findings of Agazie et al. (2023a), who reported that the
NANOGrav results are compatible with an SMBHB inter-
pretation based on a comparison between the recovered AGWB
and γGWB values and fits to SMBHB population models.74 As

Figure 2. Distribution of recovered median -Alog10 0.1yr 1 and γGWB values from
a 14-frequency CURN analysis of 773 realizations (blue). Also shown are the
values we obtain from a simple least-squares fit to the first five (orange) and
first 14 (green) frequency bins of the simulated spectra, and the parameters
reported in Agazie et al. (2023a) based on the NANOGrav 15 yr data set (red).
The contours represent 99.7% levels (3σ), and the dots show the medians. The
one-dimensional marginal distributions are also shown, and the 95.4% intervals
(2σ) are highlighted for some of the distributions. While the NANOGrav
results show a γGWB value lower than the 13/3 value expected from circular
GW-driven GWB (gray), it is well within the spread of γGWB values found in
our simulated data sets.

Figure 3. Distribution of HD vs. CURN BFs for all 773 realizations (blue) and
for 14 realizations with a recovered amplitude consistent with the amplitude
recovered in the NANOGrav 15 yr analysis at the 90% confidence level
(purple). Also shown are the means of these distributions (dashed vertical lines)
and the BF reported in Agazie et al. (2023a) based on the NANOGrav 15 yr
data set (red). While this particular astrophysical model predicts amplitudes and
BFs that tend to be lower than the one found in the NANOGrav 15 yr data set,
if we select a subset of these that produce a consistent amplitude, they also
show good consistency in terms of BF.

Figure 4. HD vs. CURN BFs as a function of the recovered GWB amplitude
referenced at f = 0.1yr−1 (blue dots). While there is a correlation between the
amplitude and the BF, the BFs show significant variance even at a given
amplitude. Also shown is the BF and amplitude reported in Agazie et al.
(2023a) based on the NANOGrav 15 yr data set (red).

74 Note that Agazie et al. (2023b) carried out much more rigorous analyses that
also showed that the GWB is consistent with an SMBHB interpretation.
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we can see, the Bayesian spectral analysis of population-based
simulated data sets yields similar conclusions. This is not
surprising given that we see that a simple fit to the spectrum
gives results that are very similar to those of a full analysis.

For each realization, we also produce HD posteriors using
the reweighting method (Hourihane et al. 2022). We calculate
the BF between the HD and CURN models, which are shown
as the blue histogram in Figure 3. Note the large variance of the
BF, even though we fixed the astrophysical parameters of the
simulation (more than eight orders of magnitude between the
lowest and highest BF). To understand the source of this
variance, it is worth looking at the recovered BFs as a function
of the amplitude of the GWB. Figure 4 shows the BFs as a
function of -Alog10 0.1yr 1, i.e., the amplitude of the GWB

referenced at a frequency of 0.1yr−1 instead of the usual 1yr−1.
We use this reference point because the amplitude there is less
covariant with γGWB. We can see that while the BF is
correlated with the amplitude, we see significant scatter in it
even at a given fixed amplitude. Thus, even for universes
described by the same astrophysics and a GWB with the same
amplitude, the recovered BF shows a significant variance. This
is consistent with previous findings on both astrophysical and
simple power-law backgrounds (Cornish & Sampson 2016;
Hourihane et al. 2022). Thus, this is a generic property of any
stochastic background and is not specific for astrophysical
backgrounds.
Figure 3 also shows the histogram of BFs for realizations

that show an amplitude that is consistent at the 90% level with

Figure 5. Distribution of mean OS S/Ns, HD vs. CURN BFs, and recovered GWB amplitude referenced at f = 0.1yr−1. The gray lines represent zero S/Ns and unit
BFs, and the red lines represent the values reported in Agazie et al. (2023a) based on the NANOGrav 15 yr data set. We also indicate the Pearson correlation
coefficient for every pair where the associated p-value is below 10−3.
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that reported in the NANOGrav 15 yr GWB search (Agazie
et al. 2023a), along with the actual measured BF in that search.
We can see that the simulations show a scatter of about four
orders of magnitude even in this narrow amplitude range, but
they predict BFs that are roughly consistent with the real data.
Note that this is not a rigorous consistency check of the 15 yr
results with the astrophysical predictions because our
astrophysical models tend to produce a lower amplitude than
that found in the 15 yr data set. Thus, the mean of our
simulations produces a lower amplitude and lower BF than
found in the 15 yr data. However, when we filter out only the
realizations that produce an amplitude close to the one found in
the real data, we find that the BFs are consistent with that
measured on real data. This shows that our simplified analysis
methods are capable of detecting the GWB with the
significance reported in (Agazie et al. 2023a), even if the
GWB comes from a finite number of binaries.

We also calculate the noise-marginalized multicomponent
optimal statistic for all realizations. Figure 5 shows the
distribution of the mean monopole, dipole, and HD S/Ns,
along with the HD versus CURN BFs and -Alog10 0.1yr 1. We
also indicate the values found in the NANOGrav 15 yr data set
in Figure 5 (red markers). Note that these are all roughly
consistent with our simulations. The black lines represent zero
S/Ns and BFs. Note that, as expected, both monopole and
dipole S/N values are centered around zero, while the HD S/N
distribution is offset toward positive values.
We can see some interesting correlations between the values

shown in Figure 5. To quantify them, we calculate the Pearson
correlation coefficient (r) for each parameter pair and show
them in the figure where the correlation is significant (p-value
<10−3). The strongest correlation of r = 0.82 can be observed
between HD S/N and HD versus CURN BF. This is reassuring
because they are both meant to quantify the significance of the

Figure 6. Distribution of GWB spectrum parameters (γGWB, -Alog10 0.1yr 1) based on a CURN analysis, and S/N and flog10 of the highest-S/N CW source in each
realization. The red lines represent the values reported in Agazie et al. (2023a) based on the NANOGrav 15 yr data set. We also indicate the Pearson correlation
coefficient for every pair where the associated p-value is below 10−3.
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presence of HD cross-correlations in the data. In fact, both Pol
et al. (2021) and Vallisneri et al. (2023) presented an
approximate mapping between these two quantities. Both the
HD S/N and HD versus CURN BF values are also correlated
with -Alog10 0.1yr 1, with r = 0.39 and r = 0.43, respectively.
These relatively low correlation values are in line with our
finding above that a large variation remains in the detection
statistics even at a fixed amplitude. The fact that the amplitude
is more strongly correlated with the BF than with the HD S/N
can potentially be explained by the fact that the Bayesian
analysis uses both autocorrelation and cross-correlation
information, while the OS solely relies on cross-correlations.
Additionally, both monopole and HD S/N are anticorrelated
with the dipole S/N. However, there seems to be no correlation
between the HD and monopole S/N.

3.2. Individual Binaries

We investigate the detection prospects of individual binaries
(also called continuous waves; CW) and how they relate to
background properties by following Bécsy et al. (2022): We
calculate the expected S/N of binaries defined as ( ∣ )= s sS N ,
where s is the simulated CW signal, i.e., we calculate the inner
product of the waveform with itself. We do so for each binary
with randomly assigned extrinsic parameters (sky location,
inclination angle, polarization angle, and phases), and we find the
binary with the highest S/N in each realization. Figure 6 shows
the S/N and GW frequency of that best binary in each
realization, along with the -Alog10 0.1yr 1 and γGWB values we find
in our CURN analysis. Similarly to Bécsy et al. (2022), we find
that the highest-S/N sources tend to be found at moderate
frequencies around 2–10 nHz. We find a higher mean S/N,

which is not surprising given the inclusion of additional pulsars
and updated noise models of NANOGrav 15 yr pulsars.
We calculate the Pearson correlation coefficient (r) for each

parameter pair and show it in Figure 6 where the correlation is
significant (p-value <10−3). The most significant correlation is
shown between the CW S/N and -Alog10 0.1yr 1, with r = 0.51.
This can be attributed to the fact that the CURN analysis does
not include a CW model, so that if a CW is present, the
recovered amplitude is expected to be biased high. We also find
a significant anticorrelation between the CW S/N and γGWB
(r=− 0.26). This is probably due to the fact that γGWB can be
biased low by a significant individual binary at moderate
frequencies, as we show below. Finally, the only parameter that
correlates with the frequency of the loudest binary is γGWB,
showing a negative correlation with r=− 0.34. This can be
understood by the fact that the higher the binary frequency, the
stronger its potential to bias the GWB slope low.
To further investigate the covariance between individual

binaries and the GWB, we analyzed a single realization with
the model of an individual binary and CURN (CURN+CW).
For this analysis, we used QuickCW (Bécsy et al. 2022, 2023),
a software package that builds on the enterprise (Ellis
et al. 2019) and enterprise extensions (Taylor et al.
2021) libraries, but uses a custom likelihood calculation and a
Markov chain Monte Carlo sampler tailored to the search for
individual binaries. We selected this realization randomly
under the constraints that it has a CW S/N > 5 and a monopole
S/N > 1.5. The former ensured that there is a detectable
individual binary in the data, while the latter was motivated by
the subdominant monopolar signature found around 4 nHz in
the NANOGrav 15 yr data set (Agazie et al. 2023a), which was
also identified by the individual binary search carried out using
that data set (Agazie et al. 2023f). The selected realization has a
monopole S/N of 1.8, a dipole S/N of −1.33, an HD S/N of
2.29, an HD versus CURN BF of 77, a = --Alog 14.410 0.1yr 1 ,
a CW S/N of 6.2, and a CW frequency of 9 nHz.
Analyzing this data set with the CURN+CW model, we

found that the CW signal was clearly detected, with a CURN
+CW versus CURN BF of ∼25. Moreover, the parameter
recovery of the CURN process was significantly affected by the
inclusion of the CW model. Figure 7 shows the distribution of
γGWB and Alog10 under the CURN (red), HD (orange), CURN
+CW (black), and HD+CW (blue) models. Posteriors with
models including HD were produced by reweighting (Hour-
ihane et al. 2022). We can see that in the case of the CURN-
only and HD-only models, the unmodeled binary biases the
γGWB recovery low compared to the canonical 13/3 value,
while the CURN+CW and HD+CW models produce γGWB
posteriors centered on values close to 13/3. This is under-
standable because the CURN model can partially model the
CW signal by introducing more power at higher frequencies
where the CW is present. This is also consistent with the
correlation between γGWB and CW properties we found in
Figure 6. While we cannot draw definitive conclusions from a
single realization, this result suggests that modeling individual
binaries along with the GWB may be crucial for an unbiased
spectral characterization of the GWB. We leave a detailed
investigation of this problem to a future study.
It is important to note that while the NANOGrav 15 yr

analysis recovers a γGWB value lower than 13/3, this does not
significantly change with the inclusion of an individual binary
model (Agazie et al. 2023f), and the γGWB recovery is instead

Figure 7. Distribution of GWB parameters under the CURN (red), HD
(orange), CURN+CW (black), and HD+CW (blue) models for a particular
realization with a clearly detectable binary (S/N = 6.2). Not modeling the CW
signal biases the spectral slope low while, when we include it, we recover the
expected γ = 13/3 value. Note that in this particular example, the CURN and
HD models show very similar posteriors, while the spectral recovery is slightly
different between the CURN+CW and HD+CW models.
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more affected by the particular noise models employed (Agazie
et al. 2023a). This is different from the EPTA DR2 analysis,
where the inclusion of an individual binary completely changes
the GWB recovery (Antoniadis et al. 2023b). This highlights
that both a mis-specified signal model and a noise model can
have adverse effects on the parameter estimation.

Note that in this particular realization, the recovered spectra
under the CURN and HD models are practically identical (red and
orange in Figure 7). This is not particularly surprising because this
forms the basis of the reweighting technique (Hourihane et al.
2022). In the presence of an individual binary, the inclusion of
correlations does have a small effect on the recovered spectrum
(compare the black and blue lines in Figure 7), but the difference
is small enough for the reweighting technique to be effective.

In addition, the significance of the individual binary does not
change significantly after reweighting. We show the distribu-
tion of some individual binary model parameters in Figure 8.
The black lines show posteriors from the CURN+CW run, and
the blue lines show those that were reweighted to HD+CW.
The red lines indicate the true parameters of the signal. In both
cases, the binary is clearly detected. The reweighted posterior
distributions are similar to the original ones, but are less
strongly constrained. We can also see that the recovery of
some parameters shows nonnegligible bias. This run is well
converged, and QuickCW has been shown to produce unbiased
parameter estimates (Agazie et al. 2023f) in CURN+CW
simulations. Thus, we suspect that this bias is due to some
model mis-specification, e.g., because the background is

Figure 8. Distribution of the CW parameters for a particular realization from a CURN+CW analysis (black) and those that were reweighted to HD+CW (blue). The
red lines represent the true parameter values.
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modeled with a power-law spectrum, or because we assume
that only one significant binary is present. In particular, the
unmodeled contributions of subdominant binaries at similar
frequencies could potentially result in strong biases in some
parameters because the sampler tries to adjust the model to fit
contributions from more than one binary. In these particular
realizations, there are three binaries with frequencies within
1/(2Tobs); 2 nHz and amplitudes within a factor of three of
the loudest binary. This effect is being investigated in a follow-
up systematic injection study, where we analyze a large number
of realizations under the CURN+CW model. If this bias is
indeed the result of the single-binary assumption, an analysis
modeling multiple binaries simultaneously could alleviate the
problem. An efficient implementation of such an analysis is
under development based on an existing multibinary pipeline
(BayesHopper; Bécsy & Cornish 2020) and techniques from
the efficient single-binary QuickCW algorithm (Bécsy
et al. 2022).

4. Conclusion and Future Work

We used state-of-the art statistical data analysis techniques to
search for a stochastic GW background in realistic simulated data
sets. We employed both Bayesian and frequentist techniques to
estimate the parameters of the background and assess its
significance. Our simulated data sets were produced based on
an astrophysical population of SMBHs, and as such, the resulting
stochastic backgrounds were anisotropic, non-Gaussian, and had
non-power-law spectra. We found that standard analysis
techniques were able to detect the characteristic HD correlations
in these backgrounds even though they assume isotropic
Gaussian power-law backgrounds.

These analyses were also able to correctly characterize the
spectrum of these backgrounds most of the time. However, we
found that the presence of a strong individual binary can bias
the recovered amplitude high and the recovered spectral slope
low. We calculated the S/N of the loudest individual binary in
each realization and examined how it relates to the background
properties.

The fact that standard statistical analysis techniques used by
the PTA community can indeed detect the signals from a
realistic SMBHB population is reassuring. On the other hand,
the possibility that individual binaries can bias the spectral
recovery is cause for concern and suggests that joint analyses of
individual binaries and the background might become
necessary to avoid a biased inference. Future studies
investigating the interplay between these two source types will
be crucial in ensuring that any astrophysical interpretation is
robust. In addition, it will be important to assess the importance
of modeling multiple binaries simultaneously. We also
plan to investigate the expected level of anisotropy in the
stochastic background based on these realistic simulations
using methods described, e.g., in Agazie et al. (2023d) and
Gardiner et al. (2023). While the results presented in this paper
are based on a fixed astrophysical model, investigating the
effect of astrophysical parameters on the resulting background
and individual binary prospects is also being investigated
(Gardiner et al. 2023).

Note that a similar independent analysis was reported
concurrently in Valtolina et al. (2023), with results consistent
with ours. The analysis was based on simulated data sets
resembling the latest data set of the European Pulsar Timing
Array. This highlights that our results are robust against the

choice of the specific data set on which we base our
simulations. One difference between the results is that
Valtolina et al. (2023) find that their spectral index recovery
is biased high, while we see an unbiased recovery of the
spectral index on average (see Figure 2). This is potentially due
to the fact that the data set we consider is significantly longer,
which allows access to lower frequencies, where the spectrum
is less affected by finite-number effects.
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