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Transient gravitational waves (aka gravitational wave bursts) within the nanohertz frequency band could
be generated by a variety of astrophysical phenomena such as the encounter of supermassive black holes,
the kinks or cusps in cosmic strings, or other as-yet-unknown physical processes. Radio pulses emitted
from millisecond pulsars could be perturbed by passing gravitational waves; hence, the correlation of the
perturbations in a pulsar timing array can be used to detect and characterize burst signals with a duration of
Oð1–10Þ years. We propose a fully Bayesian framework for the analysis of the pulsar-timing-array data,
where the burst waveform is generically modeled by piecewise straight lines, and the waveform parameters
in the likelihood can be integrated out analytically. As a result, with merely three parameters (in addition
to those describing the pulsars’ intrinsic and background noise), one is able to efficiently search for the
existence and the sky location of a burst signal. If a signal is present, the posterior of the waveform can be
found without further Bayesian inference. We demonstrate this model by analyzing simulated datasets
containing a stochastic gravitational wave background and a burst signal generated by the parabolic
encounter of two supermassive black holes.
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I. INTRODUCTION

Millisecond pulsars are highly magnetized rotating
neutron stars with periods Oð1–10Þ milliseconds. Beams
of electromagnetic radiation emitting from the magnetic
poles rotate about the star’s spinning axis and may hit us as
radio pulses once per period. Known to have very stable
rotations, millisecond pulsars are highly sensitive probes of
their environments, including gravitational waves (GWs).
These waves cannot be inferred by observing a single
pulsar, but correlations among an array of pulsars can in
principle be hunted down. In particular, the detection of
Hellings and Downs (HD) correlations would be an
unambiguous signature of a stochastic gravitational wave
background (SGWB) [1]. Pulsar-timing-array (PTA) obser-
vations so far typically have a sampling interval of weeks
and span over Oð10Þ years, implying a sensitive GW
frequency range of around 1–100 nHz.
Recently, the North American Nanohertz Observatory

for Gravitational Waves (NANOGrav) [2] reported com-
pelling evidence for a nHz SGWB in our Universe [3]. The
analysis of the NANOGrav 15-year dataset shows a red
noise process that has a spectrum common among all

pulsars and that is spatially correlated among pulsar pairs in
a manner consistent with HD correlations. In the meantime,
the Chinese Pulsar Timing Array (CPTA), the European
Pulsar Timing Array (EPTA) [including data from the
Indian PTA (InPTA)], and the Parkes Pulsar Timing Array
(PPTA) have also reported these correlations at varying
levels of significance [4–6].
A promising source of SGWB in PTA is the combined

emission from an ensemble of inspiraling supermassive
black hole (SMBH) binaries. Most galaxies have an SMBH
with mass 106–1010M⊙ sitting at the center [7]. When two
galaxies merge, two SMBHs may find each other and form a
binary, emitting gravitational radiation for a time span much
larger than the PTA observation period. The investigation of
constraints on SMBH binaries from the NANOGrav 15-year
dataset can be found in Ref. [8]. An SGWB in the nHz band
could also be generated by physics in the early Universe, such
as inflation [9–12], phase transitions [13–23], and cosmic
strings [24–29]. Up-to-date PTA constraints on new physics
can be found in Refs. [30–32].
Besides the stochastic background, events with strong

GWemissions from certain sky locations could be detected
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individually. An example under active search is continuous
waves emitted from the brightest SMBH binary, the
detection of which would provide direct evidence of the
existence of SMBH binaries [33–36]. Several searches have
been carried out over the years, setting increasingly
stringent upper bounds on these sources [37–45].
In this paper, we shall focus on searching for the

strongest GW burst (or GW transient) with a duration
comparable to the PTA observation period. Bursts of this
kind could come from a variety of physical processes:
the encounter of two SMBHs, cosmic string cusps or
kinks [46–48], or the GW memory effect—i.e., a perma-
nent deformation of spacetime after a violent event, such
as the merger of two SMBHs (the merger itself also
emits GWs, but they are not in the nHz band) [49–55].
Furthermore, there may exist other phenomena generating
bursts with unknown waveforms.
A number of methods of searching for and reconstruct-

ing a generic burst signal in the PTA data have been
proposed and developed over the years.1 In Ref. [59], an
analytical hybrid (frequentist-Bayesian) approach was
adopted, where each data point was assigned a parameter
characterizing the burst waveform, and a maximum a pos-
teriori estimate was performed to fix the hyperparameters.
This method was improved in Ref. [60] by a Bayesian
nonparametric analysis. In Refs. [39,61,62], frequentist
frameworks were developed (in the time domain or the
frequency domain), where piecewise linear functions were
introduced to describe the burst waveform, and a least-
squares fitting process was performed to obtain the esti-
mates of the waveform parameters. Recently, a Bayesian
algorithm was implemented in Refs. [63,64], where a
generic burst is modeled by the superposition of Morlet-
Gabor wavelets.
In the present work, we present an efficient Bayesian

method to search for the strongest signal from a burst with
an unknown waveform in PTA data. Motivated by
Ref. [62], we model the burst waveform (with two polar-
izations) with two piecewise linear functions in the time
domain. In our model, the existence and the sky location
of the burst can be determined with only three parameters
(in addition to those describing the pulsars’ intrinsic and
common noise), with the parameters characterizing the
burst waveform analytically integrated out. If a signal is
indeed present in the data, its waveform can then be
straightforwardly extracted without performing further
Bayesian inference. We shall test this method by analyzing
simulated PTA datasets that contain an SGWB.
The rest of the paper is organized as follows: In Sec. II,

we describe how the burst waveform can be modeled
by piecewise linear functions, which leads to a simple

expression of the marginalized likelihood discussed in
detail in Sec. III. In Sec. III, we also show how to detect
the burst’s sky location and reconstruct the waveform. The
model will be demonstrated by the analyses of three
simulated datasets in Sec. IV. Conclusions are summarized
and discussed in Sec. V.

II. WAVEFORM MODELING

In pulsar timing, the times of arrival (TOAs) of radio
pulses from a millisecond pulsar are measured and com-
pared with predictions based on a timing model that
describes the pulsar physics (e.g., the spin period, the
spin-down rate, etc.). The differences are called timing
residuals. While they mainly come from deviations in the
timing model, white noise from measurement uncertainties
and red noise from the pulsar’s intrinsic instabilities, the
residuals may also be disturbed by passing GWs, such as a
possible stochastic background or deterministic signals
from certain physical phenomena. In this section, we
describe the residuals of a pulsar induced by a generic
GW burst and introduce our model, where the waveform of
the burst is approximated by piecewise straight lines. The
residuals can then be expressed in a simple form.

A. Timing residuals induced by burst

The location of the observer is set as the Solar System
barycenter (SSB), which sits at the origin of Cartesian
coordinates defined by orthonormal vectors ðx̂; ŷ; ẑÞ. The
north celestial pole is in the ẑ direction, and the vernal
equinox is in the x̂ direction. The sky location of the GW
burst can then be determined by the polar and azimuthal
angles ðθ;ϕÞ. Three useful orthonormal vectors are

Ω̂ ¼ − sin θ cosϕx̂ − sin θ sinϕŷ − cos θẑ; ð1Þ

m̂ ¼ − sinϕx̂þ cosϕŷ; ð2Þ

n̂ ¼ − cos θ cosϕx̂ − cos θ sinϕŷþ sin θẑ; ð3Þ

where Ω̂ points from the GW source to the SSB, and m̂
and n̂ are vectors that are useful for describing the two
polarization tensors of the source.
It can be shown that the GW brings two redshifting

signatures to a pulsar’s TOAs: perturbations to the timing
residuals when the wave reaches the pulsar (leading to the
“pulsar term”), and when it reaches the Earth (the “Earth
term”) [65]. Since the duration of a GW burst of interest
(∼1–10 years) is much smaller than the time it takes for a
radio pulse to travel from the pulsar to the Earth (thousands
of years), it is unlikely that a pulsar’s Earth term and pulsar
term are both present in a PTA dataset; it is also unlikely
that pulsar terms from different pulsars are correlated. On
the other hand, all Earth terms show up within the same
period. It is thus safe to neglect the pulsar terms.

1Burst search around the kilohertz frequency band has been
studied extensively in the context of ground-based interferometric
GW detectors such as LIGO and Virgo [56–58].
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The residuals of a single pulsar induced by a burst can
then be written in the following form:

hðtÞ ¼ FþðΩ̂ÞHþðtÞ þ F×ðΩ̂ÞH×ðtÞ: ð4Þ

Here, Hþ;×ðtÞ represent the perturbations to the residuals
when the burst reaches the Earth at time t, and Fþ;× are so-
called antenna pattern functions that describe the response
of an Earth-pulsar system to the GW signal, given by

FþðΩ̂Þ ¼ 1

2

ðm̂ · p̂Þ2 − ðn̂ · p̂Þ2

1þ Ω̂ · p̂
; ð5Þ

F×ðΩ̂Þ ¼ ðm̂ · p̂Þðn̂ · p̂Þ
1þ Ω̂ · p̂

; ð6Þ

where p̂ is a unit vector pointing from the SSB to the pulsar.

B. Waveform described by piecewise straight lines

By the previous subsection, the timing residuals of the
Ith pulsar caused by a GW burst reaching the Earth at time t
can be written as

hIðtÞ ¼ Fþ
I HþðtÞ þ F×

I H×ðtÞ: ð7Þ

If the sky location of the pulsar is known, Fþ;×
I are

functions of the sky location of the burst ðθ;ϕÞ. For certain
physical processes, such as GW memory effects or cosmic
string cusps, the waveforms HþðtÞ and H×ðtÞ can be
determined by theories. For a generic burst, however,
one needs a signal model that can describe a wide variety
of waveforms.
We will model HþðtÞ and H×ðtÞ with two independent

piecewise linear functions. An illustration is shown in
Fig. 1. To this end, we divide the ntoas recorded TOAs

of the pulsar into nH − 1 (not necessarily even) parts,
where nH ≪ ntoas. Let τμ be the time at the nH grid
points, with μ ¼ 1; 2;…; nH. We assign to each τμ two
quantities: Hþ

μ and H×
μ . The 2nH quantities

ðHþ
1 Hþ

2 % % % Hþ
nH

H×
1 H×

2 % % % H×
nH
Þ≡ H⊤ will

be the parameters characterizing the waveform: Hþ (H×)
at any time t can be estimated from the linear combination
of the two neighboring quantities in Hþ

μ (H×
μ ). For example,

for τ1 < t < τ2, HþðtÞ can be estimated as

HþðtÞ ≈ Hþ
1 þ Hþ

2 − Hþ
1

τ2 − τ1
ðt − τ1Þ

¼
!

τ2−t
τ2−τ1

t−τ1
τ2−τ1

"!
Hþ

1

Hþ
2

"
: ð8Þ

Let tk be the list of TOAs, where k ¼ 1; 2;…; ntoas.
We have

0

BBBBBBBB@

Hþðt1Þ
Hþðt2Þ

..

.

Hþðtntoas−1Þ
HþðtntoasÞ

1

CCCCCCCCA

≈

0

BBBBBBBBB@

τ2−t1
τ2−τ1

t1−τ1
τ2−τ1

0 % % % 0 0

τ2−t2
τ2−τ1

t2−τ1
τ2−τ1

0 % % % 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 % % % τnH−tntoas−1
τnH−τnH−1

tntoas−1−τnH−1
τnH−τnH−1

0 0 0 % % % τnH−tntoas
τnH−τnH−1

tntoas−τnH−1
τnH−τnH−1

1

CCCCCCCCCA

0

BBBBBBBB@

Hþ
1

Hþ
2

..

.

Hþ
nH−1

Hþ
nH

1

CCCCCCCCA

≡ PIHþ; ð9Þ

where PI is an ntoas × nH matrix specific to the Ith pulsar (since it depends on that pulsar’s recorded TOAs). The burst signal
can then be estimated as

hI ≈ Fþ
I PIHþ þ F×

I PIH× ¼
#
Fþ

I PI F×
I PI

$!Hþ

H×

"
≡ SIH; ð10Þ

where SI ≡ ðFþ
I PI F×

I PI Þ is an ntoas × 2nH matrix. Let h be a concatenated vector composed of all pulsar residuals
generated by the burst; we have

FIG. 1. Illustration of waveform HðtÞ (red, solid curve) being
approximated by piecewise straight lines (blue, dashed). The
observation period is divided into nH − 1 parts, each grid point
being denoted by τμ, to which nH quantities Hμ are assigned to
represent HðτμÞ.
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h ≈ SH: ð11Þ

Here we have defined S ¼ ðS⊤
1 S⊤

2 % % % S⊤
npsr Þ⊤,

where npsr is the number of pulsars under consideration.
An advantage of using H to describe the waveform is that,
compared with higher-order polynomials or Fourier series,
locally bad TOAs do not contaminate the estimates of
Hþ;×ðtÞ over large spans of data [62].

III. LIKELIHOOD

The timing residuals induced by a burst modeled in the
previous section will be used to construct the likelihood of
the PTA data. It will be shown in this section that it is
possible to analytically integrate out the waveform param-
eters H. By so doing, one is able to determine the existence
and the sky location of the burst without reconstructing
the waveform. Such a marginalized likelihood allows an
efficient Bayesian search.

A. Likelihood without deterministic signals

PTA residuals are generated by various processes. In
the absence of deterministic signals, the residuals are
often modeled as the sum of contributions from timing
model deviations, white noise and red noise (such as an
SGWB) [66–69]:

r ¼ nþMϵþ Fa: ð12Þ

Here, r is a concatenated vector composed of all pulsar
residuals; n contains white noise from the radiometer,
instrumental effects, etc.; M is the timing model’s design
matrix basis, and ϵ is a vector of the corresponding
coefficients; F represents the Fourier basis of the red
noise, and a is a vector of the corresponding amplitudes.
Since n is expected to behave as white noise, the vector
r −Mϵ − Fa obeys the Gaussian distribution. To simplify
the notation, we shall write a zero-mean Gaussian (normal)
distribution with covariance matrix D as

N ðxjDÞ≡
exp

#
− 1

2 x
⊤D−1x

$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πDÞ

p : ð13Þ

The PTA likelihood is then given by

LðrjbÞ ¼ N ðr − TbjNÞ; ð14Þ

where N is the white noise covariance matrix, T ¼
ðM F Þ and b ¼ ð ϵ a Þ⊤. The prior on b can also be
set as Gaussian:

πðbjηÞ ¼ N ðbjBÞ: ð15Þ

Here, the covariance matrix is given byB ¼ diagð∞;ϕðηÞÞ,
where η contains hyperparameters that control B. The
timing model coefficients ϵ are well constrained by
observations; their inference is likelihood-dominated.
Hence, we can impose on them a Gaussian prior of infinite
variance. The covariance matrix of the Fourier coefficients
a includes all possible intrinsic or common red noise
processes:

ϕðIiÞðJjÞ ¼ haIiaJji ¼ δijðδIJφIi þ ΓIJΦiÞ; ð16Þ

where I, J range over pulsars and i, j over Fourier
components; δij is the Kronecker delta; φIi describes the
spectrum of intrinsic red noise in pulsar I; and ΓIJΦi
describes processes with a common spectrum across all
pulsars and interpulsar correlations. For an isotropic
SGWB with HD correlations, ΓIJ is the HD function of
pulsar angular separations, and Φi is usually assumed to
obey a power law characterized by amplitude A and
spectral index γ:

Φi ¼
A2

12π2
1

T

!
fi

1 yr−1

"−γ
1 yr−3: ð17Þ

Here, fi is the frequency of the ith Fourier component and
T is the maximum TOA’s extent. For an SWGB generated
by inspiral SMBH binaries, γ is expected to be 13=3 [70].
The full hierarchical PTA posterior can then be written as

pðb; ηjrÞ ¼ LðrjbÞπðbjηÞπðηÞ; ð18Þ

where πðηÞ is the hyperprior on η. Compared with the
hyperparameters in η—e.g., the amplitude (A) and spectral
index (γ) of the SGWB power spectrum—parameters in
b—i.e., the design matrix coefficients ϵ and the Fourier
coefficients a—are usually not of particular interest. Note
that the hierarchical likelihood LðrjbÞπðbjηÞ is a Gaussian
function for b. One can then integrate out these parameters
analytically and obtain the marginalized likelihood that
only depends on η [67,71]:

LðrjηÞ ¼
Z

LðrjbÞπðbjηÞdϵda ¼ N ðrjCÞ; ð19Þ

where C ¼ N þ TBT⊤, and we have used the Woodbury
identity that gives C−1¼N−1þN−1TðB−1þT⊤N−1TÞ−1×
T⊤N−1. This is practically the likelihood implemented
within production-level GW search pipelines, such as
ENTERPRISE2 [72].

2https://github.com/nanograv/enterprise, https://github.com/
nanograv/enterprise_extensions.
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B. Marginalized likelihood including the burst

In the previous subsection, we consider the PTA like-
lihood when only stochastic processes are present. When
the burst is taken into account, residuals r in Eq. (19) should
be replaced by r − h ≈ r − SH. To simplify the notation, we
define the inner product ⟦xjy⟧ ¼ x⊤C−1y. The likelihood in
our “h ¼ SH” model is then given by

Lðrjη; θ;ϕ;HÞ ¼ N ðr − SHjCÞ

¼ N ðrjCÞ exp
!
⟦rjS⟧H −

1

2
H⊤⟦SjS⟧H

"
;

ð20Þ

where the first part is simply the likelihood in the absence
of deterministic signals [Eq. (19)], and the sky location of
the burst ðθ;ϕÞ only appears in the two inner products
⟦rjS⟧ and ⟦SjS⟧. Since we do not have any information
about the burst waveform, elements in H can in principle
take any real values. A reasonable prior on H is the
Gaussian distribution:

πðHjqÞ ¼ N ðHjQÞ; ð21Þ

where the covariance matrix is defined to have the form
Q ¼ 102qI, with I being a 2nH × 2nH identity matrix.3 The
entries in Q have units ½s2'. H plays a similar role to b in
Eq. (15), and q is similar to η (such as A and γ). Note that
elements in H are expected to be not much larger than
10−6 s, which is the order of magnitude of the residuals r.
Hence, the hyperparameter q should have a value compa-
rable to or smaller than −6.
With the likelihood Lðrjη; θ;ϕ;HÞ and the prior πðHjqÞ

(in addition to the trivial priors on other parameters),
we are able to perform a Bayesian analysis in search of the
posterior distributions for all model parameters. However,
before searching for a burst signal with a PTA dataset, the
first question one may ask is “Is there a burst in the data?”
rather than “What is the waveform?” If we are only
interested in whether a burst exists, note that since both
Lðrjη; θ;ϕ;HÞ and πðHjqÞ are Gaussian functions for H,
we can integrate out the waveform analytically and obtain
the marginalized likelihood:

Lðrjη; θ;ϕ; qÞ

¼
Z

Lðrjη; θ;ϕ;HÞπðHjqÞdH

¼
Z

N ðrjCÞ
exp

&
⟦rjS⟧H − 1

2H
⊤ð⟦SjS⟧þ Q−1ÞH

'
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2πQÞ

p dH

¼ N ðrjCÞ
exp

#
1
2 ⟦rjS⟧Σ−1⟦Sjr⟧

$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðQΣÞ

p ; ð22Þ

where we have defined Σ≡ ⟦SjS⟧þ Q−1 in the last step.4

Therefore, without reconstructing the burst waveform, we
are able to search for the noise parameters in C and the sky
location of the burst in S (if there was indeed a burst). The
hyperparameter q in Q controls the prior of H. If q is fixed
to be a small number—e.g., q ¼ −9—only tiny values
(≲10−9 in the unit of [s]) would be assigned toH, and hence
the search is effectively equivalent to searching in a noise-
only model. Therefore, the ratio of q’s prior and posterior at
small q gives the Savage-Dickey density ratio [73], which
is equivalent to the Bayes factor, comparing our model to
the model without deterministic signals. If q’s marginal
posterior does not have support near the lower bound of its
prior, our model is strongly preferred over the null model.

C. Waveform reconstruction

If our model is favored over the noise-only model, one
would then be interested in what the burst waveform looks
like. In order to reconstruct the waveform, a straightforward
way is to go back to the likelihood given by Eq. (20)
and perform a Bayesian analysis over all parameters.
Depending on how many pieces into which we divide
the observation period, the number of parameters in H
could be large, which makes the search computationally
expensive. However, it turns out the cost can be reduced
significantly if we exploit the samples drawn from the
posterior based on Eq. (22) and search for the waveform
parameters one by one.
Note again that the part containing H in Eq. (20) is (part

of) a multivariate Gaussian distribution, which has the
property that if some of the variables are integrated out,
the rest also obey a multivariate Gaussian distribution. The
means would be the corresponding means of the original
distribution, and the covariance matrix would be the
corresponding submatrix of the original one. For example,
let N ðxjμ;DÞ denote a Gaussian distribution with mean μ
and covariance D. If all variables except for xi are
integrated out, the marginalized distribution of xi is

3Waveform parameters from a certain physical process should
be correlated in some way, so the covariance matrix should have
off-diagonal entries. However, considering that we do not have
any a priori information about the signal, and that the number of
pieces nH is much smaller than the number of TOAs, a diagonalQ
may not be a bad assumption.

4Using the Woodbury identity, Lðrjη; θ;ϕ; qÞ can be written
in a more compact form: Lðrjη; θ;ϕ; qÞ ¼ N ðrjCqÞ, where
Cq ≡ Cþ SQS⊤. This is of the same form as the likelihood
in Eq. (19); the difference is the extra term SQS⊤.
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pðxiÞ ¼
Z

N ðxjμ;DÞdx1dx2…dxi−1dxiþ1…

¼ N ðxijμi; DiiÞ; ð23Þ

where μi is the ith element of vector μ, and Dii represents the ith diagonal element in matrix D. In our context, if,
for example, we integrate out the last 2nH − 1 elements in H ¼ ðHþ

1 Hþ
2 % % % Hþ

nH
H×

1 H×
2 % % % H×

nH
Þ⊤, the

marginalized likelihood becomes

Lðrjη; θ;ϕ; q;Hþ
1 Þ ¼

Z
Lðrjη; θ;ϕ;HÞπðHjqÞdHþ

2 dH
þ
3 …dH×

nH

¼ N ðrjCÞ
exp

#
1
2 ⟦rjS⟧Σ−1⟦Sjr⟧

$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðQΣÞ

p
Z

N ðHjΣ−1⟦Sjr⟧;ΣÞdHþ
2 dH

þ
3 …dH×

nH

¼ Lðrjη; θ;ϕ; qÞN ðHþ
1 jðΣ−1⟦Sjr⟧Þ1;Σ11Þ; ð24Þ

where in the last step we have used Eq. (22). A similar
expression applies to all other parameters in H. This allows
us to perform the search of H one element after another.
This can be achieved as follows: In performing a

Bayesian analysis based on the likelihood given by
Eq. (22), we have obtained the posterior pðη; θ;ϕ; qjrÞ ∝
Lðrjη; θ;ϕ; qÞ from, e.g., MCMC sampling. To find the
marginal posterior distribution of, say, Hþ

1 , we need to
integrate out the parameters η, θ, ϕ, and q in Eq. (24),
which contains the distribution ∝ Lðrjη; θ;ϕ; qÞ. To find
the posterior density at Hþ

1 ¼ x, we simply need to take the
sum of N ðxjðΣ−1⟦Sjr⟧Þ1;Σ11Þ over all the samples. In
other words,

pðHþ
1 ¼ xÞ ∝

X

j

N
(
xjðΣ−1⟦Sjr⟧ÞðjÞ1 ;ΣðjÞ

11

)
; ð25Þ

where the superscript (j) represents the jth sample in the
chain. In principle, x can take any value, but in the presence
of a burst, we would expect that Hþ

1 only has support
near ðΣ−1

( ⟦S(jr⟧Þ1 within the range ∼Σ(11, where “ (”
denotes the maximum a posteriori value obtained from
pðη; θ;ϕ; qjrÞ. Therefore, we can simply make a grid near
this region and evaluate the posterior of Hþ

1 . This process
can be repeated for other parameters in H.
In conclusion, there are two practical “versions” of

likelihood in our model. If one wants to know whether a
burst signal exists, we simply need to use Eq. (22), which
efficiently gives the marginal posterior for q. If a burst
signal is present, the sky location ðθ;ϕÞ can also be tracked
down from this analysis. If we are interested in what the
burst looks like, we could then use Eqs. (24) and (25) to
find the posterior distributions of H without a further
Bayesian search. It will be shown in the next section
how these two likelihoods are applied in simulated datasets.

IV. ANALYSES OF SIMULATED DATASETS

In this section, we test our model by analyzing three
simulated datasets, each consisting of 20 pulsars. Each
pulsar has been observed for 10 years every 30 days.
Since the timescale and the shape of the burst signal are
unknown, the ideal number of grid points that divide the
TOAs and the ideal grid spacing cannot be determined
beforehand, and so they should be regarded as parameters.
However, fixing the grid can significantly reduce the
computational cost. In this work, we divide the PTA
observation period into 20 even pieces (nH ¼ 21), leaving
the effect of varying nH and the grid spacing to future work
(see discussion in Sec. V).
For simplicity, all simulated residuals have the same

constant white noise level of 0.5 μs and no intrinsic
pulsar red noise. In addition, an SGWB is injected with
a power spectrum given by Eq. (17), with A ¼ 4 × 10−15

(log10 A ≈ −14.398) and γ ¼ 13=3. Although the injected
SGWB induces correlated red noise among pulsars, in the
following analyses we treat the background as an uncorre-
lated common red noise process. This greatly reduces the
computational cost, because the noise matrix C is now
block diagonal, which allows C−1 to be computed block
by block (or pulsar by pulsar). Consequently, the inner
products ⟦rjS⟧ and ⟦SjS⟧ can be obtained rather effi-
ciently. Ignoring pulsar correlations in C could bias the
burst search by overestimating the significance of the
potential signal, but since the correlations should have a
smaller effect compared to the common spectrum, using
a block-diagonal C is not expected to significantly affect
the results in the simple scenarios we are considering in
this work.
Following Ref. [59], a burst signal from the parabolic

encounter of two SMBHs is injected. The waveform in
Ref. [59] was obtained from the quadrupole formula
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applied to a parabolic Kepler orbit. It serves as a first
approximation of the encounter event and as an exemplar
for the purpose of demonstrating how our model works.
The event under consideration is set to occur at sky location
ðcos θ;ϕÞ ¼ ð0.5; 3Þ. The two black holes have the same
mass 109M⊙, and the impact parameter is 2 × 1011M⊙
(where we have set G ¼ c ¼ 1). The injected signal is also
set to sit in the middle of the observation period.
Similarly to Ref. [59], we shall test our model with

datasets of different signal-to-noise ratios (SNRs, defined
by SNR ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
⟦hjh⟧

p
). In the first two datasets, the encoun-

ter event occurs at different distances from us: 20 Mpc
(strong signal, SNR ≈ 14.7) and 45 Mpc (weak signal,
SNR ≈ 6.5). For each case, we first perform an analysis
based on the noise-only model, with the likelihood given by
Eq. (19), which only contains two parameters: A and γ.
Then, we search for the existence and sky location of the
burst using the likelihood given by Eq. (22), which contains
five parameters: A, γ, θ, ϕ, and q. Lastly, we reconstruct the
waveform according to Eq. (25) and compare the results
with the injected signals. In addition, we also test our model
with a dataset that contains no burst signals. The priors on
log10 A, γ, cos θ, ϕ, and q are all set as uniform distribu-
tions, with bounds shown in Table I.
Besides the above three datasets that contain an SGWB,

we shall also study datasets that contain a burst signal only
and no SGWB.5 The purpose is to test the possibility of the
burst being mistaken as a background.
In what follows, the Bayesian inferences are achieved by

Nestle, a Python implementation of the nested sampling
algorithm [74–78] aiming at comparing models and gen-
erating samples from posterior distributions.6

A. Strong signal (SNR ≈ 14.7)

We first consider a case where a strong signal is injected
into the background. The source is placed at a distance of
20 Mpc. In Fig. 2, we show the postfit timing residuals7 and

the contribution from the injected burst for four of the 20
pulsars. We first analyze the dataset with the noise-only
model, where the residuals are assumed to be generated by
white noise and an SGWB.With the white noise parameters
fixed, there are only two free parameters: the amplitude
of the SGWB spectrum A and the spectral index γ. Using
the likelihood given by Eq. (19), we obtain the posterior
distributions shown in Fig. 3. The median values
(log10 A ≈ −13.66 and γ ≈ 2.79) obviously deviate from
the true values (log10 A ≈ −14.398 and γ ≈ 4.33). In the
presence of the strong signal, the noise-only model is not
able to recover the SGWB faithfully. Since the noise-only
model treats the burst signal as part of the background, the
“detected” magnitude of the SGWB spectrum is larger than
the true value.
We then perform a Bayesian analysis with the likelihood

given by Eq. (22), which contains three additional param-
eters: θ, ϕ, and q. The posterior distributions are shown in
Fig. 4. We can see that the SGWB parameters are now
captured by our model, with median values and true values

TABLE I. Prior distributions for log10 A, γ, cos θ, ϕ, and q and
the true values in the simulated datasets.

Parameter Prior range (uniform) True value

log10 A ½−18;−13' −14.398
γ [0, 7] 13=3
cos θ ½−1; 1' 0.5
ϕ ½0; 2π' 3
q ½−9;−5'

FIG. 2. Postfit residuals (blue data points with error bars) and
perturbations from the injected strong burst (solid red curves) for
four of the 20 pulsars. The reconstructed burst-induced residuals
are shown as dashed, purple curves (with 90% confidence
intervals), where the sky location of the burst is taken as the
posterior medians for cos θ and ϕ.

5We would like to thank the anonymous referee for suggesting
these tests.

6https://github.com/kbarbary/nestle.
7Here “postfit” means that the contribution in residuals fitted

by the timing model, such as the quadratic components, has been
removed.
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FIG. 3. Posterior distributions of the SGWB parameters A and γ in the noise-only model when a strong burst signal is present. The
dashed lines represent the median values. The distributions are obviously incompatible with the true values in the simulated dataset
(log10 A ≈ −14.398 and γ ≈ 4.33), represented by blue lines.

FIG. 4. Posterior distributions of parameters log10 A, γ, cos θ, ϕ, and q in our model when a strong burst signal is present. The dashed
lines represent the median values, and the blue solid lines denote the true values in the simulated dataset. The red noise parameters are
recovered, and the location of the burst is detected. The existence of the burst has significant evidence, since the hyperparameter q has no
samples near the lower bound of its prior (qmin ¼ −9).
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being rather close to each other.8 The hyperparameter q is
only sampled near −6.4, which indicates a large Savage-
Dickey ratio. In fact, the Bayes factor for our model to the
noise-only model (based on the Nestle results) is ∼1010,
corresponding to overwhelming evidence for the presence
of a signal. From the marginal posterior distributions of
cos θ and ϕ, the injected burst is also perfectly localized on
the sky map by our model.
Following the method described in Sec. III C, we then

use the samples from the last paragraph to infer the burst
waveform. The best-fit piecewise straight lines describing
Hþ and H× are shown in Fig. 5 by dashed, purple curves
with 90% confidence intervals. The red curves are the
postfit injected Hþ and H×. We also show in Fig. 2 the
reconstructed burst-induced residuals for four pulsars.

B. Weak signal (SNR ≈ 6.5)

Now we turn to a weaker signal from the encounter event
occurring at a distance of 45 Mpc. Figure 6 shows the
timing residuals and the contribution from the injected
burst for four of the 20 pulsars (the same as those in Fig. 2).
By analyzing the dataset with the noise-only model, we
obtain the posteriors shown in Fig. 7. Unlike the case in the
previous subsection, the distributions of log10 A and γ here
are compatible with the true values. The burst signal is so
weak that the noise-only model is capable of detecting the
injected SGWB.

We then search for the burst using our model with
additional parameters θ, ϕ, and q. The posterior distribu-
tions are shown in Fig. 8. We can see that the SGWB
spectrum is also well captured, with median values and true
values almost overlapping. The distribution of q has a tail
extending to the lower bound of its prior. Both the Savage-
Dickey ratio and the model evidences computed by Nestle
give a Bayes factor of ∼2–3, corresponding to fairly weak
evidence supporting our model. However, the sky location
of the injected burst is captured by the two peaks in the
posteriors of cos θ and ϕ. The reconstructed waveform is
shown in Fig. 9. We also show in Fig. 6 the reconstructed
burst-induced residuals for four pulsars. As expected, the
injected signal is too weak to be fully characterized by
our model.

C. No signal

In the absence of deterministic signals, our model should
be consistent with the noise-only model. Here we consider

FIG. 5. Injected HþðtÞ and H×ðtÞ (postfit) for a strong-burst
signal (red curves), the reconstructed piecewise linear functions
Hþ

μ and H×
μ (dashed, purple curves, median values) and 90% con-

fidence intervals (shaded region), where the sky location of the
burst is taken as the posterior medians for cos θ and ϕ.

FIG. 6. Postfit residuals (blue data points with error bars) and
perturbations from the injected weak burst (solid red curves) for
four of the 20 pulsars. These are the same pulsars as those in
Fig. 2. The difference in residuals for each pulsar comes from the
distance of the encounter event. The reconstructed burst-induced
residuals are shown as dashed, purple curves (with 90% con-
fidence intervals), where the sky location of the burst is taken as
the posterior medians for cos θ and ϕ.

8How well the median and true values agree depends on the
realization of simulated data. With the background parameters
(white noise level, A and γ) fixed, different realizations of the
stochastic feature (i.e., different sets of random number gener-
ators) can lead to statistical errors.
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FIG. 7. Posterior distributions of the SGWB parameters A and γ in the noise-only model when a weak burst signal is present. The
dashed lines represent the median values, and the blue solid lines denote the true values in the simulated dataset. For such a weak signal,
the SGWB parameters are properly captured by our model.

FIG. 8. Posterior distributions of parameters log10 A, γ, cos θ, ϕ, and q in our model when a weak signal is present. The dashed lines
represent the median values, and the blue solid lines denote the true values in the simulated dataset. The red noise parameters are recovered,
and the location of the burst is detected. However, the evidence supporting the existence of the burst is not significant (see text).
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FIG. 9. Injected HþðtÞ and H×ðtÞ (postfit) for a weak-burst signal (red curves), the reconstructed piecewise linear functions Hþ
μ and

H×
μ (purple curves), and 90% confidence intervals (shaded region), where the sky location of the burst is taken as the posterior medians

for cos θ and ϕ. For such a weak signal, our model is not able to characterize the burst waveform.

FIG. 10. Posterior distributions of parameters log10 A, γ, cos θ, ϕ, and q when no burst signal is present. The dashed lines represent the
median values, and the blue solid lines denote the true values in the simulated dataset. Our model does not detect any burst signal in this
dataset. The distributions of the SGWB parameters are compatible with the true values.
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a dataset without a burst. The corner plots for our model are
shown in Fig. 10. The Bayes factor for our model vs the
noise-only model is ∼1, which means our model is capable
of describing datasets that contain no evidence of a burst
signal.

D. No background

For completeness, in this subsection we consider the
case where only a burst signal and no SGWB is present.
Such a dataset is interesting, as it can show whether the
transient signal could be mistaken as a background. For
instance, in Ref. [79], a simulated dataset containing a
continuous wave signal and no SGWB prefers an SGWB-
only model.
In Figs. 11 and 12, we show the results based on a dataset

where a burst signal the same as that in Sec. IV B is
injected. Figure 11 is from the noise-only model, which
more or less extracts a common red noise spectrum from
the data. Figure 12 is from our model. By the Savage-
Dickey ratio, it is obvious from the posteriors of log10 A and
q that our model or the burst-only model is strongly
preferred over the noise-only model. We can also see that,
compared to Fig. 8, now that the common red noise is
removed from the data, the sky location of the burst source
is clearly detected.
We have also analyzed datasets with various SNRs. At

least in our case, where the burst comes from the encounter
of two SMBHs, the presence of an SGWB is always
disfavored, whereas the burst is either detected, or is drown
out by white noise.

V. CONCLUSIONS AND DISCUSSION

In this work, we have investigated a method for perform-
ing Bayesian analyses on PTA datasets to search for the
strongest burst signals. The burst waveform is modeled by
piecewise straight lines, which allows it the likelihood to
have a simple form. Although the number of waveform
parameters H could be large [of order Oð10Þ depending on
how the observation period is divided], these parameters
can be analytically integrated out if their priors follow a
Gaussian distribution. The resulting marginalized likeli-
hood [Eq. (22)] has only three parameters in addition to
the intrinsic and common noise parameters. Among the
three parameters, q controls the prior of the waveform
parametersH; its marginal posterior can immediately tell us
whether our model is favored over the noise-only model.
The other two parameters, θ and ϕ, denote the sky location
of the burst. If a signal is present, one can efficiently
retrieve the posterior of the waveform by analyzing the
MCMC samples of q, θ, and ϕ based on the marginalized
likelihood.
We tested this model by analyzing three simulated PTA

datasets, the first two containing a burst signal generated by
the parabolic encounter of two SMBHs, and the third
containing no burst signals. For the strong signal (with
SNR ≈ 14.7), our model is strongly favored compared to
the noise-only model; not only can the burst’s sky location
be detected, but its waveform can also be extracted to a
reasonable accuracy. For a weak signal (with SNR ≈ 6.5),
although the waveform cannot be distinguished from the
background, the marginal posteriors of the sky location
peak near the true values. When the signal is absent, the
Bayes factor for our model to the noise-only model
becomes ∼1. For completeness, we have also analyzed
datasets that do not contain an SGWB, but a burst signal
only. The presence of the burst is always favored compared
to a noise-only scenario.
Our model could be improved in several ways. As

mentioned previously, in performing the piecewise linear
fit, how the observation period is divided was predeter-
mined. We fixed the grid point number nH, with each
segment containing a similar number of TOAs in each
pulsar. In real data, however, TOAs are not evenly sampled
in time, and they may vary significantly from one pulsar to
another. We expect that the optimal number of grid points
and the optimal spacing will both depend on the signal. A
higher SNR signal requires a larger nH, and a signal highly
concentrated in a particular time span requires more points
in that region and fewer elsewhere. Noting that varying the
grid spacing adaptively tends to significantly increase the
computational cost, a straightforward extension of the
current framework is to treat nH as a free parameter while
ensuring we have a sufficient number of TOAs for each
piece, or to test different nH’s and then perform model
selection on nH.

FIG. 11. Posterior distributions of the SGWB parameters
log10 A and γ in the noise-only model when only a burst signal
and no SGWB is present. The dashed lines represent the median
values. The model more or less sees a common red noise
spectrum.
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Finally, the burst may also be better characterized if the
prior on the waveform parameters H is not controlled by a
single hyperparameter. In the above analyses, we assume
the prior πðHjqÞ is a Gaussian distribution with covariance
Q determined by q only. However, the amplitude of the
waveform can differ between HþðtÞ and H×ðtÞ, and it may
vary significantly over the observation period. Roughly
speaking, regions with a smaller amplitude require a
smaller q. Hence, a natural extension of the current
framework is to set a number of hyperparameters (e.g.,
q1; q2;…; qn, where n ≪ nH in order not to lose the

efficiency of the model) responsible for different polari-
zation components and different time domains.
We plan on improving the model accordingly and

applying it to the search for a gravitational wave burst
signal in real datasets in the near future.
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FIG. 12. Posterior distributions of parameters log10 A, γ, cos θ, ϕ, and q when only a burst signal and no SGWB is present. The dashed
lines represent the median values, and the blue solid lines denote the true values in the simulated dataset. Our model detects the sky
location of the source and is strongly preferred over the noise-only model.
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