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Abstract—This paper presents several repair schemes for low-
rate Reed Solomon (RS) codes over prime fields that can repair
any node by downloading a constant number of bits from each
surviving node. The resulting total bandwidth is higher than the
bandwidth incurred during the trivial repair; however, this is
still interesting in the context of leakage-resilient secret sharing.
In that language, our results give attacks that show that k-out-
of-n. Shamir’s Secret Sharing over prime fields for small & is not
leakage resilient, even if the parties only leak a constant number
of bits. To the best of our knowledge, these are the first such
attacks.

As another application, we provide decoding schemes for
RS codes over prime fields, where the entire RS codeword is
recovered by transmitting a constant number of bits from each
node.

Our results follow from a novel connection between exponen-
tial sums and repair of RS codes. In particular, we show that non-
trivial bounds on certain exponential sums imply the existence
of efficient nonlinear repair schemes for RS codes over prime
fields.

I. INTRODUCTION

Reed-Solomon (RS) codes are a widely-used family of
codes in both theory and practice. Among their many ap-
plications, RS codes are used in distributed storage systems
(e.g., Facebook, IBM, Google, etc. see Table 1 in [1]) In such
systems, a large file is encoded using an erasure-correcting
code and then distributed over many nodes. When a node
fails, we would like to be able to set up a replacement node
efficiently using information from the remaining nodes. In
our work, we focus on the repair bandwidth—that is, the
total amount of information downloaded—as our metric of
efficiency. The problem of recovering the failed node with low
repair bandwidth was first considered in the seminal paper
of Dimakis et al. [2] and has since been the topic of much
research.

We begin by defining Reed-Solomon codes.
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Definition 1. Let aq, s, . .., o, be distinct points of the finite
field T, of order q. For k < n the [n, k], RS code defined by
the evaluation set {c, ... ,ay} is the set of codewords

{(f(ar),.... flan)) | f € Fgla] deg f <k} .

When n = q, the resulting code is called a full-length RS
code.

The repair problem of RS codes can be seen as a twist on
the standard polynomial interpolation problem: Repairing, say,
the i’th node is the same as recovering an evaluation f(«;)
using as little information as possible from the evaluations
f(cy) for j # 4. Formally, a repair scheme for an [n, k|, RS
code with evaluation points «q, ..., a, consists of functions
7j : Fgx[n] — {0,1}™ for each j € [n]; and a repair function
G :{0,1}"*(=V x[n] — F,, for some parameter m. For any
i (the index of a failed node), and any polynomial f of degree
less than k (representing the stored data), each surviving node
J # i sends a message 7;(f(c;),). Then the reconstruction
algorithm G takes in the messages 7;(f(c;),%), as well as
i, and outputs the missing information f(«;). Our goal is to
minimize m, the number of bits sent by each node.!

Via standard polynomial interpolation, it is clear that any
k values of f(a;) suffice to recover the polynomial f, and
in particular, to recover f(«;). This requires klog,(q) bits of
information; we refer to this as trivial repair. However, as was
shown in a line of work including [3]-[6], it is possible to do
better! That is, it is possible to recover f(«;) using strictly
less than klog(g) bits from the other nodes!

A. Repairing Reed-Solomon Codes over Prime Fields

Most of the RS repair schemes mentioned above (in fact, all
but that in [6]) require that the underlying field be an extension
field. In contrast, in our work, we focus on prime fields. Our
main motivation comes from applications to secret sharing.

In secret sharing, RS codes are analogous to Shamir’s
secret sharing scheme (Shamir’s SSS). Informally speaking
(see Section I-C for more details), repair schemes for RS

I'We note that traditionally the definition of a repair scheme allows for only
a subset of the nodes to be contacted; and the nodes could all potentially send
different amounts of information. In this work, we focus on the case where
all surviving nodes send the same amount of information, so we specialize
our definition to that case for simplicity.
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RS Code | Bandwidth per | Remarks
node (in bits)
Theorem 3.3 [n,2]p % +0n(1) | Non-explicit
in [6] construction.
Theorem 4.3 [n, klp % +On(1) | Repair only possible
in [6] for a particular failed
node (rather than any
failed node)? using
all the remaining
nodes.
I
Theorem 5 %, 3]p 3 % <5< %
(Inp)3
Theorem 6 [p, g]p 3

TABLE I: Our result compared to [6]. If not stated in the
Remarks column, all of the results presented are explicit
constructions, and all the results give repair schemes that
repair any single failed node using all the remaining nodes.
For all results, p is a sufficiently large prime. For the results
in [6], n and k are assumed to be constants relative to p.

codes provide attacks on Shamir’s SSSs when the parties may
each leak a small amount of adversarially selected information
about their shares. That is, a repair scheme for RS codes shows
that an instance of Shamir’s SSS is not leakage-resilient.

Since the schemes of [3]-[5] and others require extension
fields, a natural hope for constructing Shamir’s SSSs that
are leakage-resilient is to work over prime fields, and indeed
several works [7]-[10] have shown that, when the dimension
k of the code is large, €2(n), Shamir’s SSS over prime fields
is leakage resilient. In particular, their results imply that for
any constant m, there is some constant « € (0, 1) so that any
[n, k], RS code over a prime field with k£ > an does not admit
a repair scheme that downloads m bits from each surviving
node (see Theorem 1).

Recently, [6] showed the existence of asymptotically op-
timal repair schemes for [n,2], RS codes of dimension
k = 2 over sufficiently large prime fields. In their work, each
party downloads a non-constant number of bits, specifically,
m = —L>log(p) + O, (1) bits (see Table I for their results for
larger k). Our results continue the line of work of [6]. We
make progress by giving schemes where each node transmits a
constant number m = O(1) bits. Our results have applications
both to (attacks on) leakage-resilient secret sharing and to
distributed storage.

B. Our Results

In this paper, we present repair schemes for RS codes over
prime fields, in which every node transmits a constant number
of bits. Specifically,

1) For exp((Inp)?/3(Inlnp)'/3) < n < \/p, we present
an [n,3], RS code where any node can be repaired
by downloading three bits from each of the remaining
nodes.

For k = /p/2, we show that any node in a full-length,
ie., [p,k]p, RS code can be repaired by downloading
three bits from all the remaining p — 1 nodes.

2)

2This is achieved by puncturing the code in [6, Theorem 4.3].
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We emphasize that the total bandwidth of the two repair
schemes is much bigger than k - log(p), the bandwidth of the
trivial repair; thus our schemes are not competitive if one only
cares about total bandwidth.

However, our schemes are useful in settings where each
node can only transmit very few bits; in such a setting, the
trivial repair is not an option. This could be the case in
distributed storage models (e.g., in a model where each link
can only transmit a few bits). It is also the case in the model
of leakage-resilient secret sharing.

In particular, our results give attacks on Shamir’s SSSs
over prime fields, where each leaking party need only send a
constant number of bits. To the best of our knowledge, these
are the first such attacks with a constant number of bits per
leaking party.

We also present decoding schemes of RS codes over prime
fields that download only a constant number of bits from each
node. That is, our schemes can recover the entire polynomial,
and not just a single missing evaluation point. Specifically, our
results are:

1) For any positive integers 7' < k£ < n and a prime
p > n such that & < O(nlog(T)/log(p)), there are
n functions 7,...,7, : F, — [T] such that any
polynomial f of degree at most &k — 1 can be recovered
from the information (71(f(c1),...,7(f(ar))) where
aq, ..., are any n distinct points in IF,. We note that
this result is similar to the result obtained in [8, Theorem
2] (see discussion in Section IV).

We construct an explicit decoding scheme for [p —
1,./p/2], RS code defined with the evaluation points
7. Namely, we show that any codeword in this code
can be recovered by downloading three bits from each
node.

2)

Remark 1. We have a repair scheme and a decoding scheme
where both are applicable for k = O(\/p) and require the
same total bandwidth. The primary difference between the
two schemes is that the first scheme (the repair scheme) only
reveals the secret, while the second scheme (the decoding
scheme) reveals the entire polynomial. One may wonder why
we present the first scheme. We choose to present the first
scheme because we hope that the techniques in it may be a
first step towards a scheme that can recover a single failed
node using at most O(1) bits per party while still achieving
significantly less bandwidth total than trivial repair. We leave
this as an important open direction.

C. Related Work

a) Low-bandwidth repair for distributed storage: As
mentioned above, the low-bandwidth repair problem was in-
troduced in [2], and since then there have been many code
constructions and repair schemes aiming at optimal repair,
for example [11]-[19]. The study of repairing Reed-Solomon
codes was introduced in [3], and the works [4], [5], among
others, have constructed repair schemes for RS codes over
extension fields with total bandwidth that is much smaller than
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the trivial bandwidth; in particular, the work [5] showed how
to construct RS codes that achieve the cut-set bound.

Our work focuses on prime fields. To the best of our knowl-
edge, the only work that gives positive results for repairing RS
codes over prime fields is [6], discussed above and summarized
in Table I.

b) Leakage-Resilient Secret Sharing: As mentioned
above, prime fields are especially relevant for secret sharing.
Shamir’s SSS, which was first introduced in [20], is a funda-
mental cryptographic primitive that provides a secure method
to distribute a secret among different parties, so that any k
can recover the secret but no £ — 1 learn anything about it.
Formally, given a secret s € F, a reconstruction threshold
k > 0 and a number of parties n, Shamir’s SSS works as
follows. A dealer chooses a random polynomial f of degree
at most k — 1, so that f(0) = s. Then party ¢ is given the
share f(«;), where ay,...,a, € FF are distinct, pre-selected
points. It is easy to verify that any k parties can reconstruct the
polynomial f(z) and therefore recover the secret f(0) = s,
while the shares of any k — 1 parties reveal no information
about the secret.

Benhamouda, Degwekar, Ishai, and Rabin [7] considered
the question of local leakage-resilience of secret sharing
schemes over prime fields and, in particular, Shamir’s SSS
over prime fields. In this setting, the model is that each party
¢ may adversarially leak some function 7;(f(a;)) € {0,1}™
of their share, for some (small) m. A scheme is m-local
leakage resilient if for any two secrets s, s, the total variation
distance between the leaked messages under s and the leaked
messages under s’ is negligible. The work of Benhamouda et
al. established the following.

Theorem 1. [7, Corollary 4.12] Let m be a constant positive
integer and let n go to infinity. There exists an o, < 1, for
which Shamir’s SSS with n players and threshold k = a,n
is m-local leakage resilient.

Given Theorem 1, one cannot hope to repair RS codes over
prime fields with rate arbitrarily close to 1 by downloading a
constant number of bits from each node.

D. Organization

We present preliminaries in Section II. Our main theorems
are presented in Sections III and IV. Due to space limitations,
several proofs are omitted and will appear in the full version
of this paper.

II. PRELIMINARIES

We begin with some needed notations. Throughout, let p be
a prime number. For integers a < blet [a,b] = {a,a+1,...,b}
and [a] = {1,2,...,a}. An arithmetic progression in some
field F of length N and a step s € F is a set of the form {a, a+
$,...,a+ (N —1)s} for some a € F. For two sets A, B C FF,,,
define their sumset as A+ B:={a+b|a € A,b e B}. For
an element v € F,, we denote by v- A := {v-a:a € A}
all the possible products of v with elements in A. When we
use the notation « € v - [—t,t] for some o,y € F, and an

integer ¢ < p, we mean that there exists an integer j € [—t, ]
for which & = v-j mod p. We denote by e, (z) the standard
additive character that maps elements from F, to C, that is,

ep(z) == exp(%r )
A. Exponential sum bounds

Exponential sums of various forms are studied extensively
in number theory. They already have several applications in
coding theory, and in this work we shall present another. That
is, we will show how bounds like the Weil bound and bounds
on Kloosterman sums imply repair schemes for RS codes over
prime fields where every node transmits a constant number of
bits. In this section, we state a few of the bounds we need,
starting with the Weil bound.

Theorem 2. [21, Theorem 5.38] Let f € F,[X] be a non-
constant polynomial of degree at most k. It holds that

Y ep(fl@)| < (k-1)-vp.

a€cl,

As one can see, the bound is non-trivial only when
deg(f) < /p. The Weil bound has applications throughout
mathematics, theoretical computer science, and information
theory. Motivated by these applications, there are extensions
to the Weil bound that improve the bound in certain classes of
polynomials, see e.g., [22], [23]. In [24], Bombieri extended
Weil’s bound and showed that it is true also for nontrivial
rational functions defined over algebraic curves. We are inter-
ested in a particular case of this generalization; to simplify the
notation, we present this particular case below. We mainly use
the description from [25, pages 1-2, Equation 1.4] to present
Bombieri’s result.

Theorem 3. [24, Theorem 5] Let f = f1/f2 be a rational
function with f1, fo € Fplz] and ged(fi1, f) = 1 in Z[zx].
Let deg(f) = deg(f1) + deg(f2) be the total degree of f. If
deg(f) > 1, then

x))|

< J(deg(f) =1)yp+1 deg(f1) > deg(f2)
T | 2(deg(f2) = 1)yp  deg(f1) < deg(f2) ‘

Another important family of exponential sums are Kloost-
erman sums, which first appeared in [26]. Again, bounds
on these sums have broad applications, mainly in analytical
number theory [27], [28], but also in coding theory [29]-[31].

Theorem 4. [32, Theorems 2, 3] Let p be a suj?ﬁcwntly large
1
prime and let n be an integer such that enp)**-(nlnp)!/?

n S f .Let D = % Then, it holds

1) For any a such that ged(a,p) =1,
P\v/| = D ’

1<v<n
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2) For any a,b such that ged(ab,p) =1

Z ep(%—i-bV) <n-

1<v<n

222
W = o(n) .

B. Repair with arithmetic progressions

In this section, we recall the framework of [6] for using
arithmetic progressions to define repair schemes. Recall the
definition of a repair scheme for the nth node of a code C. (For
this discussion, we assume that the failed node is the nth one
for notational simplicity, although we remove this assumption
for our formal treatment). Such a repair scheme is comprised
of a collection of n — 1 functions 7; : F, — [s] and a function
G : [s|"~! — F, such that for any codeword (c1,...,c,) € C

(1

Upon a failure of the nth node, the ith node, which holds the
symbol ¢;, computes 7;(c¢;) and transmits it using [log s] bits.
Upon receiving the n — 1 messages 7;(c;), the repair scheme
is completed by calculating the nth symbol using (1). The
bandwidth of the repair scheme, which is the total number of
bits transmitted across the network during the repair, is equal
to (n — 1)[log(s)] bits.

Every function 7; defines a partition {7, '(a) : a € [s]} of
F,. On the other hand, any partition of IF,, into s sets defines
a function whose value at the point a € F, is the index of the
set that contains it. Hence, in the sequel, we will define the
functions 7; by partitions of I, into s sets.

In [6], arithmetic progressions were used to construct par-
titions that give rise to efficient nonlinear repair schemes for
RS codes over prime fields, as explained next.

Fix an integer 1 < ¢ < p, set s [p/t] and define
Ao, ..., As_1 to be the partition of I, into the following s
arithmetic progressions of length ¢ and step 1:

G(Tl(cl), N ,Tnfl(Cnfl)) = Cp-

gtogt+ 1,5t +t -1} 0<j<s5—-2

4=t b0 @)
{(s=1t,...,p—1} j=s—1.

For a nonzero v € [Fp, it is easy to verify that v- Ag,...,v-

A,_1 is also a partition of I, into arithmetic progressions of
length t (except for the last set v - A;_1) and step ~. Each
function 74,7 € [n — 1] of the repair scheme will be defined
by a partition ;- Ao, . . ., 7; - As—1 for an appropriate selection
of ~;. Notice that the ~;’s will be distinct for distinct 7’s and
therefore also the functions 7; will be distinct for distinct ¢’s. It
was observed in [6] the partitions defined by the ;’s extend to
a valid repair scheme if (and only if) for any two codewords
¢, € C that belong to the same set in all of the n — 1
different partitions, i.e., ¢;,c} € ;- A;, for all ¢ € [n — 1],
it holds that ¢, ¢’ agree on their nth symbol, i.e., ¢, = ¢,,. In
[6, Proposition 2.2], the authors provided a relatively simple
sufficient condition for a linear code to have a valid repair
scheme. We will rephrase their proposition to the specific case
of RS codes, as that is the main focus of this paper.

Proposition 1 ( [6]). Consider an [n, k|, RS code defined with
the evaluation points a1, ..., q,. Let £ € [n] be the index of

the failed node. Let t < p be an integer and for i € [n]\ {¢},
let v; € Fy. If for any polynomial f(x) € Fp[z] of degree less
than k with f(c;) € 7; - [=t,t] for all i € [n]\ {¢}, it holds
that f(ay) = 0, then, the ~;’s define a valid repair scheme for
the {th node with a total bandwidth of (n — 1) -log[p/t] bits.

In [6], the authors focused on the regime where ¢t =
/o) (pl— R
to p. In particular, each surviving node sends ©(log(p)) bits.
As p is assumed to be growing for these results, this is not a
constant.

In this work, we focus on the regime where ¢t = ©(p). Here,
every node transmits a constant number (log[p/t]) bits to the
replacement node.

) and where n and k are constants compared

III. REPAIR USING BOUNDS ON EXPONENTIAL SUMS

In this section, we present our main results for repairing
single failed nodes for RS codes over prime fields. We shall
extensively use the following simple lemma.

Lemma 1. Let p be a prime number and let t < p/4. Let
ai,...,an € ¥y such that a; € [—t,t] for all i € [n]. Then,

>0 epa)| >n- cos(%)

Our first repair scheme is capable of repairing every node
in an [n, 3], RS code for n that is small compared to p.

Theorem 5. Let B > 3 be a positive integer. Let p
be a large enough prime and n be an integer such that
exp((lnp)z/3 “(Inlnp)*/?) < n < \/p. The [n +1,3], RS
code defined with the evaluation points o; = 1,1 € {0} U [n]
admits repair of any node by downloading B bits from all the
other nodes.

Proof. Sett:= [p/2”] and assume that we wish to repair the
node ¢. We will prove that the condition in Proposition 1 holds
with v; =i — £ for every i € {0} U [n] \ {¢}. Assume that it
does not hold. Thus, there exists a polynomial f(x) = fo(x —
0%+ fi(z —£) + fo € Fp[x] such that f(i) € (i — £) - [~,1]
for all i € {0} U [n]\ {¢} and f(¢) # 0. Define

e[ ()

i=0
=y,

and note that by Lemma 1 and our choice of ¢, it holds that

S > n~cos(2”t) > n~cos(§ + %’T) > 0.7n for large enough
p. On the other hand,
N , fo
S=1> e f2'(l—€)+f1+i7€
2t
[ (-0 2
=
)4 f n—~¢ f
. 0 , 0
< . 29 . 20
=~ ;ep<f2 Z+ Z) + ;ep<f2 Z+ Z)‘
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The second equality follows by extracting |e,(f1)| from all the
summands and the inequality follows by the triangle inequal-
ity. Denote ¢/ = n — £ and assume without loss of generality
that £ > n/2 > ¢'. Denote S’ = ‘Ele ep<f2 i+ %)‘

Recall that our assumption states that f(£) = fo # 0
which implies that ged(fo,p) = 1. Consider the following
two options. First, if fo # 0 then ged(fo f2,p) = 1 and by the
second bound in Theorem 4, we have S’ = o(n). Second,
if fo = 0 then S' = ‘Zle ep(foi_l)‘ and by the first
bound in Theorem 4, we have S’ = o(n). We conclude that
S < 0.5n + o(n) and arrive at a contradiction.

The claim about the bandwidth follows by noting that
according to Proposition 1, each node sends [log((%]ﬂ <
ﬂog(23)] = B bits.

Our next construction presents a full-length RS code of
dimension O(,/p) where any node can be repaired by down-
loading a constant number of bits from all the remaining
nodes. The proof of the next Theorem is similar to the proof of
Theorem 5 but here we apply the bound given in Theorem 3.

Theorem 6. Let B > 3 be a positive integer. Let k be an
integer and p be a prime such that k < \/p/2. The respective
[p, k]p RS code admits repair of any node by downloading B
bits from all the p — 1 other nodes.

Remark 2. The repair schemes described in this section
download a constant number of bits from each node. While the
total bandwidth of these schemes is larger than the amount of
information required to determine the polynomial (k -log(p)),
they do not reveal the entire polynomial. For example, consider
the polynomials f(x) = x and g(x) = 2x. In both schemes,
each node f(a) and g(a) transmits the same value, since
f(a)ag(a) ca- [Ovt - 1]
IV. RECOVERING THE ENTIRE POLYNOMIAL

In Section III, we constructed repair schemes for repairing
a single code symbol. In this section, we show how one
can download a constant number of bits from every node
and recover the entire polynomial. Clearly, since the entire
polynomial is recovered, we must download at least klog(p)
bits from the nodes. Trivially, one can contact k nodes and
download their symbol (log(p) bits), solve a system of linear
equations, and get the polynomial. Here, we will download a
constant number of bits from more than k& nodes, and show
that these bits suffice to learn the entire polynomial.

Let C C F} be a linear code over F),. A decoding scheme
for C is a set of n functions 7; : F,, — [s] and a function
G : [s]" — I}, such that for any codeword (cy,...,¢c,) €C

G(Tl(cl),...,Tn(Cn)): (Cl,.. (3)

The trivial decoding scheme for an [n, k] is just the scheme
where we set £ functions, say, 7i,...,7; : F, — ), to be
the identity functions. Proposition 2 below shows that, in
the regime where k& < O(n/log(p)), there are n functions
7;, each of which output a constant number of bits from one
of the n nodes, and whose output can be used to recover

Sy Cn)-

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on

13

any polynomial of degree less than k. The proof of this
Proposition is very similar to the proof of [8, Theorem 2].
It also randomly chooses the leakage functions and then uses
the union bound. The difference is that we argue that we can
learn the entire polynomial while in [8, Theorem 2] the authors
aim for learning just the secret with high probability.

Proposition 2. Let p be a prime. Let n, T, and k be
integers such that k < %. Let aq,...,a, € T
be distinct. There are n functions T1,...,7, : F, — [T]
such that for any f € Fplz]| of degree at most k — 1, the
information (11(f(1)),...,Tn(f(an))) uniquely determines

f among such polynomials.

Before stating our decoding scheme, we rephrase the con-
dition given in Proposition 1 to this case.

Proposition 3 (Follows from Proposition 1). Consider an
[n, k], RS code defined by the evaluation points as, . .., o,
Let t < p be an integer and for i € [n], let v; € Fy. If
the only polynomial f € Fp[z]| of degree at most k — 1 for
which f(ay) € vi[—t,t] for all i € [n] is the zero polynomial,
then the ~;’s define a decoding scheme with total bandwidth
n -log([p/t]) bits.

We now show that a simple application of the Weil bound
together with a slight change in the repair scheme from
Theorem 5 gives a decoding scheme for an [IF;, k], RS code

with k = O(,/p).

Theorem 7. Let B > 3 be a positive integer. Let k < \/p/2.
The RS code [F}, k|, admits a decoding scheme by download-
ing B bits from all the nodes.

Proof of Theorem 7. Set t := [p/25]. We will show that the
condition in Proposition 3 holds with v; = j~! for all j € [p].
Assume towards a contradiction that the condition does not
hold. Namely, there is a nonzero polynomial f(x) of degree
< k—1 such that f(j) € j=!-[—t,] for every j € [p]. Define

S =

> eyl flaw))
=1

and observe that by Lemma 1, .S > 0.7(p — 1). On the other
hand, as we assumed that f # 0, the polynomial = - f(x)
is not a constant and therefore, by the Weil bound given in
Theorem 2,

P

Zep(%‘ - flow))

i=1

S:

<k-Vp<3.

We arrive at a contradiction. Thus, f must be the zero
polynomial. The claim about the bandwidth is identical to
Theorem 5. O
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