
Repairing Reed-Solomon Codes over Prime Fields

via Exponential Sums

Roni Con∗, Noah Shutty†, Itzhak Tamo‡, and Mary Wootters§

∗Blavatnik School of Computer Science, Tel Aviv University, roni.con93@gmail.com
†Stanford Institute for Theoretical Physics, Stanford University, noaj@alumni.stanford.edu
‡Department of Electrical Engineering-Systems, Tel Aviv University, zactamo@gmail.com

§Department of Computer Science and Electrical Engineering, Stanford University, marykw@stanford.edu

AbstractÐThis paper presents several repair schemes for low-
rate Reed Solomon (RS) codes over prime fields that can repair
any node by downloading a constant number of bits from each
surviving node. The resulting total bandwidth is higher than the
bandwidth incurred during the trivial repair; however, this is
still interesting in the context of leakage-resilient secret sharing.
In that language, our results give attacks that show that k-out-
of-n Shamir’s Secret Sharing over prime fields for small k is not
leakage resilient, even if the parties only leak a constant number
of bits. To the best of our knowledge, these are the first such
attacks.

As another application, we provide decoding schemes for
RS codes over prime fields, where the entire RS codeword is
recovered by transmitting a constant number of bits from each
node.

Our results follow from a novel connection between exponen-
tial sums and repair of RS codes. In particular, we show that non-
trivial bounds on certain exponential sums imply the existence
of efficient nonlinear repair schemes for RS codes over prime
fields.

I. INTRODUCTION

Reed-Solomon (RS) codes are a widely-used family of

codes in both theory and practice. Among their many ap-

plications, RS codes are used in distributed storage systems

(e.g., Facebook, IBM, Google, etc. see Table 1 in [1]) In such

systems, a large file is encoded using an erasure-correcting

code and then distributed over many nodes. When a node

fails, we would like to be able to set up a replacement node

efficiently using information from the remaining nodes. In

our work, we focus on the repair bandwidthÐthat is, the

total amount of information downloadedÐas our metric of

efficiency. The problem of recovering the failed node with low

repair bandwidth was first considered in the seminal paper

of Dimakis et al. [2] and has since been the topic of much

research.

We begin by defining Reed-Solomon codes.
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Science Foundation (ISF grant number 1030/15). Noah Shutty was supported
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Definition 1. Let α1, α2, . . . , αn be distinct points of the finite

field Fq of order q. For k < n the [n, k]q RS code defined by

the evaluation set {α1, . . . , αn} is the set of codewords

{(f(α1), . . . , f(αn)) | f ∈ Fq[x], deg f < k} .

When n = q, the resulting code is called a full-length RS

code.

The repair problem of RS codes can be seen as a twist on

the standard polynomial interpolation problem: Repairing, say,

the i’th node is the same as recovering an evaluation f(αi)
using as little information as possible from the evaluations

f(αj) for j ̸= i. Formally, a repair scheme for an [n, k]q RS

code with evaluation points α1, . . . , αn consists of functions

τj : Fq× [n] → {0, 1}m for each j ∈ [n]; and a repair function

G : {0, 1}m×(n−1)×[n] → Fq, for some parameter m. For any

i (the index of a failed node), and any polynomial f of degree

less than k (representing the stored data), each surviving node

j ̸= i sends a message τj(f(αj), i). Then the reconstruction

algorithm G takes in the messages τj(f(αj), i), as well as

i, and outputs the missing information f(αi). Our goal is to

minimize m, the number of bits sent by each node.1

Via standard polynomial interpolation, it is clear that any

k values of f(αj) suffice to recover the polynomial f , and

in particular, to recover f(αi). This requires k log2(q) bits of

information; we refer to this as trivial repair. However, as was

shown in a line of work including [3]±[6], it is possible to do

better! That is, it is possible to recover f(αi) using strictly

less than k log(q) bits from the other nodes!

A. Repairing Reed-Solomon Codes over Prime Fields

Most of the RS repair schemes mentioned above (in fact, all

but that in [6]) require that the underlying field be an extension

field. In contrast, in our work, we focus on prime fields. Our

main motivation comes from applications to secret sharing.

In secret sharing, RS codes are analogous to Shamir’s

secret sharing scheme (Shamir’s SSS). Informally speaking

(see Section I-C for more details), repair schemes for RS

1We note that traditionally the definition of a repair scheme allows for only
a subset of the nodes to be contacted; and the nodes could all potentially send
different amounts of information. In this work, we focus on the case where
all surviving nodes send the same amount of information, so we specialize
our definition to that case for simplicity.
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RS Code Bandwidth per
node (in bits)

Remarks

Theorem 3.3
in [6]

[n, 2]p
log(p)
n−2

+On(1) Non-explicit
construction.

Theorem 4.3
in [6]

[n, k]p
log(p)
n−k

+On(1) Repair only possible
for a particular failed
node (rather than any
failed node)2 using
all the remaining
nodes.

Theorem 5 [pδ , 3]p 3
(ln ln p)

1
3

(ln p)
2
3

≤ δ ≤ 1
2

Theorem 6 [p,
√
p

2
]p 3

TABLE I: Our result compared to [6]. If not stated in the

Remarks column, all of the results presented are explicit

constructions, and all the results give repair schemes that

repair any single failed node using all the remaining nodes.

For all results, p is a sufficiently large prime. For the results

in [6], n and k are assumed to be constants relative to p.

codes provide attacks on Shamir’s SSSs when the parties may

each leak a small amount of adversarially selected information

about their shares. That is, a repair scheme for RS codes shows

that an instance of Shamir’s SSS is not leakage-resilient.

Since the schemes of [3]±[5] and others require extension

fields, a natural hope for constructing Shamir’s SSSs that

are leakage-resilient is to work over prime fields, and indeed

several works [7]±[10] have shown that, when the dimension

k of the code is large, Ω(n), Shamir’s SSS over prime fields

is leakage resilient. In particular, their results imply that for

any constant m, there is some constant α ∈ (0, 1) so that any

[n, k]p RS code over a prime field with k ≥ αn does not admit

a repair scheme that downloads m bits from each surviving

node (see Theorem 1).

Recently, [6] showed the existence of asymptotically op-

timal repair schemes for [n, 2]p RS codes of dimension

k = 2 over sufficiently large prime fields. In their work, each

party downloads a non-constant number of bits, specifically,

m = 1
n−2 log(p)+On(1) bits (see Table I for their results for

larger k). Our results continue the line of work of [6]. We

make progress by giving schemes where each node transmits a

constant number m = O(1) bits. Our results have applications

both to (attacks on) leakage-resilient secret sharing and to

distributed storage.

B. Our Results

In this paper, we present repair schemes for RS codes over

prime fields, in which every node transmits a constant number

of bits. Specifically,

1) For exp
(

(ln p)2/3(ln ln p)1/3
)

≤ n ≤ √
p, we present

an [n, 3]p RS code where any node can be repaired

by downloading three bits from each of the remaining

nodes.

2) For k =
√
p/2, we show that any node in a full-length,

i.e., [p, k]p, RS code can be repaired by downloading

three bits from all the remaining p− 1 nodes.

2This is achieved by puncturing the code in [6, Theorem 4.3].

We emphasize that the total bandwidth of the two repair

schemes is much bigger than k · log(p), the bandwidth of the

trivial repair; thus our schemes are not competitive if one only

cares about total bandwidth.

However, our schemes are useful in settings where each

node can only transmit very few bits; in such a setting, the

trivial repair is not an option. This could be the case in

distributed storage models (e.g., in a model where each link

can only transmit a few bits). It is also the case in the model

of leakage-resilient secret sharing.

In particular, our results give attacks on Shamir’s SSSs

over prime fields, where each leaking party need only send a

constant number of bits. To the best of our knowledge, these

are the first such attacks with a constant number of bits per

leaking party.

We also present decoding schemes of RS codes over prime

fields that download only a constant number of bits from each

node. That is, our schemes can recover the entire polynomial,

and not just a single missing evaluation point. Specifically, our

results are:

1) For any positive integers T < k < n and a prime

p > n such that k < O(n log(T )/ log(p)), there are

n functions τ1, . . . , τn : Fp → [T ] such that any

polynomial f of degree at most k− 1 can be recovered

from the information (τ1(f(α1), . . . , τ(f(αn))) where

α1, . . . , αn are any n distinct points in Fp. We note that

this result is similar to the result obtained in [8, Theorem

2] (see discussion in Section IV).

2) We construct an explicit decoding scheme for [p −
1,
√
p/2]p RS code defined with the evaluation points

F
∗
p. Namely, we show that any codeword in this code

can be recovered by downloading three bits from each

node.

Remark 1. We have a repair scheme and a decoding scheme

where both are applicable for k = O(
√
p) and require the

same total bandwidth. The primary difference between the

two schemes is that the first scheme (the repair scheme) only

reveals the secret, while the second scheme (the decoding

scheme) reveals the entire polynomial. One may wonder why

we present the first scheme. We choose to present the first

scheme because we hope that the techniques in it may be a

first step towards a scheme that can recover a single failed

node using at most O(1) bits per party while still achieving

significantly less bandwidth total than trivial repair. We leave

this as an important open direction.

C. Related Work

a) Low-bandwidth repair for distributed storage: As

mentioned above, the low-bandwidth repair problem was in-

troduced in [2], and since then there have been many code

constructions and repair schemes aiming at optimal repair,

for example [11]±[19]. The study of repairing Reed-Solomon

codes was introduced in [3], and the works [4], [5], among

others, have constructed repair schemes for RS codes over

extension fields with total bandwidth that is much smaller than
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the trivial bandwidth; in particular, the work [5] showed how

to construct RS codes that achieve the cut-set bound.

Our work focuses on prime fields. To the best of our knowl-

edge, the only work that gives positive results for repairing RS

codes over prime fields is [6], discussed above and summarized

in Table I.

b) Leakage-Resilient Secret Sharing: As mentioned

above, prime fields are especially relevant for secret sharing.

Shamir’s SSS, which was first introduced in [20], is a funda-

mental cryptographic primitive that provides a secure method

to distribute a secret among different parties, so that any k
can recover the secret but no k − 1 learn anything about it.

Formally, given a secret s ∈ F, a reconstruction threshold

k > 0 and a number of parties n, Shamir’s SSS works as

follows. A dealer chooses a random polynomial f of degree

at most k − 1, so that f(0) = s. Then party i is given the

share f(αi), where α1, . . . , αn ∈ F are distinct, pre-selected

points. It is easy to verify that any k parties can reconstruct the

polynomial f(x) and therefore recover the secret f(0) = s,

while the shares of any k − 1 parties reveal no information

about the secret.

Benhamouda, Degwekar, Ishai, and Rabin [7] considered

the question of local leakage-resilience of secret sharing

schemes over prime fields and, in particular, Shamir’s SSS

over prime fields. In this setting, the model is that each party

i may adversarially leak some function τi(f(αi)) ∈ {0, 1}m
of their share, for some (small) m. A scheme is m-local

leakage resilient if for any two secrets s, s′, the total variation

distance between the leaked messages under s and the leaked

messages under s′ is negligible. The work of Benhamouda et

al. established the following.

Theorem 1. [7, Corollary 4.12] Let m be a constant positive

integer and let n go to infinity. There exists an αm < 1, for

which Shamir’s SSS with n players and threshold k = αmn
is m-local leakage resilient.

Given Theorem 1, one cannot hope to repair RS codes over

prime fields with rate arbitrarily close to 1 by downloading a

constant number of bits from each node.

D. Organization

We present preliminaries in Section II. Our main theorems

are presented in Sections III and IV. Due to space limitations,

several proofs are omitted and will appear in the full version

of this paper.

II. PRELIMINARIES

We begin with some needed notations. Throughout, let p be

a prime number. For integers a < b let [a, b] = {a, a+1, . . . , b}
and [a] = {1, 2, . . . , a}. An arithmetic progression in some

field F of length N and a step s ∈ F is a set of the form {a, a+
s, . . . , a+(N−1)s} for some a ∈ F. For two sets A,B ⊆ Fp,

define their sumset as A+ B := {a+ b | a ∈ A, b ∈ B}. For

an element γ ∈ Fp we denote by γ · A := {γ · a : a ∈ A}
all the possible products of γ with elements in A. When we

use the notation α ∈ γ · [−t, t] for some α, γ ∈ Fp and an

integer t < p, we mean that there exists an integer j ∈ [−t, t]
for which α ≡ γ · j mod p. We denote by ep(x) the standard

additive character that maps elements from Fp to C, that is,

ep(x) := exp
(

2π
√
−1

p · x
)

.

A. Exponential sum bounds

Exponential sums of various forms are studied extensively

in number theory. They already have several applications in

coding theory, and in this work we shall present another. That

is, we will show how bounds like the Weil bound and bounds

on Kloosterman sums imply repair schemes for RS codes over

prime fields where every node transmits a constant number of

bits. In this section, we state a few of the bounds we need,

starting with the Weil bound.

Theorem 2. [21, Theorem 5.38] Let f ∈ Fp[X] be a non-

constant polynomial of degree at most k. It holds that
∣

∣

∣

∣

∣

∣

∑

α∈Fp

ep(f(α))

∣

∣

∣

∣

∣

∣

≤ (k − 1) · √p .

As one can see, the bound is non-trivial only when

deg(f) ≤ √
p. The Weil bound has applications throughout

mathematics, theoretical computer science, and information

theory. Motivated by these applications, there are extensions

to the Weil bound that improve the bound in certain classes of

polynomials, see e.g., [22], [23]. In [24], Bombieri extended

Weil’s bound and showed that it is true also for nontrivial

rational functions defined over algebraic curves. We are inter-

ested in a particular case of this generalization; to simplify the

notation, we present this particular case below. We mainly use

the description from [25, pages 1-2, Equation 1.4] to present

Bombieri’s result.

Theorem 3. [24, Theorem 5] Let f = f1/f2 be a rational

function with f1, f2 ∈ Fp[x] and gcd(f1, f2) = 1 in Z[x].
Let deg(f) = deg(f1) + deg(f2) be the total degree of f . If

deg(f) ≥ 1, then
∣

∣

∣

∣

∣

p−1
∑

x=1

ep(f(x))

∣

∣

∣

∣

∣

≤
{

(deg(f)− 1)
√
p+ 1 deg(f1) > deg(f2)

2(deg(f2)− 1)
√
p deg(f1) ≤ deg(f2)

.

Another important family of exponential sums are Kloost-

erman sums, which first appeared in [26]. Again, bounds

on these sums have broad applications, mainly in analytical

number theory [27], [28], but also in coding theory [29]±[31].

Theorem 4. [32, Theorems 2, 3] Let p be a sufficiently large

prime and let n be an integer such that e(ln p)2/3·(ln ln p)1/3 ≤
n ≤ √

p . Let D = (lnn)
(ln p)2/3(ln ln p)1/3

. Then, it holds

1) For any a such that gcd(a, p) = 1,
∣

∣

∣

∣

∣

∣

∑

1≤ν≤n

ep

(a

ν

)

∣

∣

∣

∣

∣

∣

≤ n · 260 lnD
D

= o(n) .
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2) For any a, b such that gcd(ab, p) = 1
∣

∣

∣

∣

∣

∣

∑

1≤ν≤n

ep

(a

ν
+ bν

)

∣

∣

∣

∣

∣

∣

≤ n · 222

D3/4
= o(n) .

B. Repair with arithmetic progressions

In this section, we recall the framework of [6] for using

arithmetic progressions to define repair schemes. Recall the

definition of a repair scheme for the nth node of a code C. (For

this discussion, we assume that the failed node is the nth one

for notational simplicity, although we remove this assumption

for our formal treatment). Such a repair scheme is comprised

of a collection of n−1 functions τi : Fp → [s] and a function

G : [s]n−1 → Fp such that for any codeword (c1, . . . , cn) ∈ C
G(τ1(c1), . . . , τn−1(cn−1)) = cn. (1)

Upon a failure of the nth node, the ith node, which holds the

symbol ci, computes τi(ci) and transmits it using ⌈log s⌉ bits.

Upon receiving the n− 1 messages τi(ci), the repair scheme

is completed by calculating the nth symbol using (1). The

bandwidth of the repair scheme, which is the total number of

bits transmitted across the network during the repair, is equal

to (n− 1)⌈log(s)⌉ bits.

Every function τi defines a partition {τ−1
i (a) : a ∈ [s]} of

Fp. On the other hand, any partition of Fp into s sets defines

a function whose value at the point a ∈ Fp is the index of the

set that contains it. Hence, in the sequel, we will define the

functions τi by partitions of Fp into s sets.

In [6], arithmetic progressions were used to construct par-

titions that give rise to efficient nonlinear repair schemes for

RS codes over prime fields, as explained next.

Fix an integer 1 ≤ t ≤ p, set s = ⌈p/t⌉ and define

A0, . . . , As−1 to be the partition of Fp into the following s
arithmetic progressions of length t and step 1:

Aj =

{

{jt, jt+ 1, . . . , jt+ t− 1} 0 ≤ j ≤ s− 2

{(s− 1)t, . . . , p− 1} j = s− 1.
(2)

For a nonzero γ ∈ Fp, it is easy to verify that γ · A0, . . . , γ ·
As−1 is also a partition of Fp into arithmetic progressions of

length t (except for the last set γ · As−1) and step γ. Each

function τi, i ∈ [n − 1] of the repair scheme will be defined

by a partition γi ·A0, . . . , γi ·As−1 for an appropriate selection

of γi. Notice that the γi’s will be distinct for distinct i’s and

therefore also the functions τi will be distinct for distinct i’s. It

was observed in [6] the partitions defined by the γi’s extend to

a valid repair scheme if (and only if) for any two codewords

c, c′ ∈ C that belong to the same set in all of the n − 1
different partitions, i.e., ci, c

′
i ∈ γi · Aji for all i ∈ [n − 1],

it holds that c, c′ agree on their nth symbol, i.e., cn = c′n. In

[6, Proposition 2.2], the authors provided a relatively simple

sufficient condition for a linear code to have a valid repair

scheme. We will rephrase their proposition to the specific case

of RS codes, as that is the main focus of this paper.

Proposition 1 ( [6]). Consider an [n, k]p RS code defined with

the evaluation points α1, . . . , αn. Let ℓ ∈ [n] be the index of

the failed node. Let t < p be an integer and for i ∈ [n] \ {ℓ},

let γi ∈ F
∗
p. If for any polynomial f(x) ∈ Fp[x] of degree less

than k with f(αi) ∈ γi · [−t, t] for all i ∈ [n] \ {ℓ}, it holds

that f(αℓ) = 0, then, the γi’s define a valid repair scheme for

the ℓth node with a total bandwidth of (n− 1) · log⌈p/t⌉ bits.

In [6], the authors focused on the regime where t =

Θ
(

p1−
1

n−k+1

)

and where n and k are constants compared

to p. In particular, each surviving node sends Θ(log(p)) bits.

As p is assumed to be growing for these results, this is not a

constant.

In this work, we focus on the regime where t = Θ(p). Here,

every node transmits a constant number (log⌈p/t⌉) bits to the

replacement node.

III. REPAIR USING BOUNDS ON EXPONENTIAL SUMS

In this section, we present our main results for repairing

single failed nodes for RS codes over prime fields. We shall

extensively use the following simple lemma.

Lemma 1. Let p be a prime number and let t < p/4. Let

a1, . . . , an ∈ Fp such that ai ∈ [−t, t] for all i ∈ [n]. Then,

|∑n
i=1 ep(ai)| ≥ n · cos

(

2πt
p

)

.

Our first repair scheme is capable of repairing every node

in an [n, 3]p RS code for n that is small compared to p.

Theorem 5. Let B ≥ 3 be a positive integer. Let p
be a large enough prime and n be an integer such that

exp
(

(ln p)2/3 · (ln ln p)1/3
)

≤ n ≤ √
p. The [n + 1, 3]p RS

code defined with the evaluation points αi = i, i ∈ {0} ∪ [n]
admits repair of any node by downloading B bits from all the

other nodes.

Proof. Set t :=
⌈

p/2B
⌉

and assume that we wish to repair the

node ℓ. We will prove that the condition in Proposition 1 holds

with γi = i− ℓ for every i ∈ {0} ∪ [n] \ {ℓ}. Assume that it

does not hold. Thus, there exists a polynomial f(x) = f2(x−
ℓ)2 + f1(x− ℓ) + f0 ∈ Fp[x] such that f(i) ∈ (i− ℓ) · [−t, t]
for all i ∈ {0} ∪ [n] \ {ℓ} and f(ℓ) ̸= 0. Define

S :=

∣

∣

∣

∣

∣

∣

∣

n
∑

i=0
i ̸=ℓ

ep

(

f(i)

i− ℓ

)

∣

∣

∣

∣

∣

∣

∣

and note that by Lemma 1 and our choice of t, it holds that

S ≥ n ·cos
(

2πt
p

)

≥ n ·cos
(

π
4 + 2π

p

)

> 0.7n for large enough

p. On the other hand,

S =

∣

∣

∣

∣

∣

∣

∣

n
∑

i=0
i ̸=ℓ

ep

(

f2 · (i− ℓ) + f1 +
f0

i− ℓ

)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

n
∑

i=0
i ̸=ℓ

ep

(

f2 · (i− ℓ) +
f0

i− ℓ

)

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

ℓ
∑

i=1

ep

(

f2 · i+
f0
i

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n−ℓ
∑

i=1

ep

(

f2 · i+
f0
i

)

∣

∣

∣

∣

∣
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The second equality follows by extracting |ep(f1)| from all the

summands and the inequality follows by the triangle inequal-

ity. Denote ℓ′ = n− ℓ and assume without loss of generality

that ℓ ≥ n/2 ≥ ℓ′. Denote S′ =
∣

∣

∣

∑ℓ
i=1 ep

(

f2 · i+ f0
i

)∣

∣

∣
.

Recall that our assumption states that f(ℓ) = f0 ̸= 0
which implies that gcd(f0, p) = 1. Consider the following

two options. First, if f2 ̸= 0 then gcd(f0f2, p) = 1 and by the

second bound in Theorem 4, we have S′ = o(n). Second,

if f2 = 0 then S′ =
∣

∣

∣

∑ℓ
i=1 ep

(

f0i
−1

)

∣

∣

∣
and by the first

bound in Theorem 4, we have S′ = o(n). We conclude that

S ≤ 0.5n+ o(n) and arrive at a contradiction.

The claim about the bandwidth follows by noting that

according to Proposition 1, each node sends
⌈

log
(⌈

p
t

⌉)⌉

≤
⌈

log
(

2B
)⌉

= B bits.

Our next construction presents a full-length RS code of

dimension O(
√
p) where any node can be repaired by down-

loading a constant number of bits from all the remaining

nodes. The proof of the next Theorem is similar to the proof of

Theorem 5 but here we apply the bound given in Theorem 3.

Theorem 6. Let B ≥ 3 be a positive integer. Let k be an

integer and p be a prime such that k ≤ √
p/2. The respective

[p, k]p RS code admits repair of any node by downloading B
bits from all the p− 1 other nodes.

Remark 2. The repair schemes described in this section

download a constant number of bits from each node. While the

total bandwidth of these schemes is larger than the amount of

information required to determine the polynomial (k · log(p)),
they do not reveal the entire polynomial. For example, consider

the polynomials f(x) = x and g(x) = 2x. In both schemes,

each node f(α) and g(α) transmits the same value, since

f(α), g(α) ∈ α · [0, t− 1].

IV. RECOVERING THE ENTIRE POLYNOMIAL

In Section III, we constructed repair schemes for repairing

a single code symbol. In this section, we show how one

can download a constant number of bits from every node

and recover the entire polynomial. Clearly, since the entire

polynomial is recovered, we must download at least k log(p)
bits from the nodes. Trivially, one can contact k nodes and

download their symbol (log(p) bits), solve a system of linear

equations, and get the polynomial. Here, we will download a

constant number of bits from more than k nodes, and show

that these bits suffice to learn the entire polynomial.

Let C ⊆ F
n
p be a linear code over Fp. A decoding scheme

for C is a set of n functions τi : Fp → [s] and a function

G : [s]n → F
n
p such that for any codeword (c1, . . . , cn) ∈ C

G(τ1(c1), . . . , τn(cn)) = (c1, . . . , cn). (3)

The trivial decoding scheme for an [n, k] is just the scheme

where we set k functions, say, τ1, . . . , τk : Fp → Fp to be

the identity functions. Proposition 2 below shows that, in

the regime where k < O(n/ log(p)), there are n functions

τi, each of which output a constant number of bits from one

of the n nodes, and whose output can be used to recover

any polynomial of degree less than k. The proof of this

Proposition is very similar to the proof of [8, Theorem 2].

It also randomly chooses the leakage functions and then uses

the union bound. The difference is that we argue that we can

learn the entire polynomial while in [8, Theorem 2] the authors

aim for learning just the secret with high probability.

Proposition 2. Let p be a prime. Let n, T , and k be

integers such that k < (n+1) log(T )
2 log(p)+log(T ) . Let α1, . . . , αn ∈ Fp

be distinct. There are n functions τ1, . . . , τn : Fp → [T ]
such that for any f ∈ Fp[x] of degree at most k − 1, the

information (τ1(f(α1)), . . . , τn(f(αn))) uniquely determines

f among such polynomials.

Before stating our decoding scheme, we rephrase the con-

dition given in Proposition 1 to this case.

Proposition 3 (Follows from Proposition 1). Consider an

[n, k]p RS code defined by the evaluation points α1, . . . , αn.

Let t < p be an integer and for i ∈ [n], let γi ∈ F
∗
p. If

the only polynomial f ∈ Fp[x] of degree at most k − 1 for

which f(αi) ∈ γi[−t, t] for all i ∈ [n] is the zero polynomial,

then the γi’s define a decoding scheme with total bandwidth

n · log(⌈p/t⌉) bits.

We now show that a simple application of the Weil bound

together with a slight change in the repair scheme from

Theorem 5 gives a decoding scheme for an [F∗
p, k]p RS code

with k = O(
√
p).

Theorem 7. Let B ≥ 3 be a positive integer. Let k <
√
p/2.

The RS code [F∗
p, k]p admits a decoding scheme by download-

ing B bits from all the nodes.

Proof of Theorem 7. Set t :=
⌈

p/2B
⌉

. We will show that the

condition in Proposition 3 holds with γj = j−1 for all j ∈ [p].
Assume towards a contradiction that the condition does not

hold. Namely, there is a nonzero polynomial f(x) of degree

≤ k−1 such that f(j) ∈ j−1 · [−t, t] for every j ∈ [p]. Define

S :=

∣

∣

∣

∣

∣

p
∑

i=1

ep(αi · f(αi))

∣

∣

∣

∣

∣

and observe that by Lemma 1, S > 0.7(p− 1). On the other

hand, as we assumed that f ̸≡ 0, the polynomial x · f(x)
is not a constant and therefore, by the Weil bound given in

Theorem 2,

S =

∣

∣

∣

∣

∣

p
∑

i=1

ep(αi · f(αi))

∣

∣

∣

∣

∣

≤ k · √p ≤ p

2
.

We arrive at a contradiction. Thus, f must be the zero

polynomial. The claim about the bandwidth is identical to

Theorem 5.
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