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—— Abstract

A Homomorphic Secret Sharing (HSS) scheme is a secret-sharing scheme that shares a secret x
among s servers, and additionally allows an output client to reconstruct some function f(z), using
information that can be locally computed by each server. A key parameter in HSS schemes is
download rate, which quantifies how much information the output client needs to download from each
server. Recent work (Fosli, Ishai, Kolobov, and Wootters, ITCS 2022) established a fundamental
limitation on the download rate of linear HSS schemes for computing low-degree polynomials, and
gave an example of HSS schemes that meet this limit.

In this paper, we further explore optimal-rate linear HSS schemes for polynomials. Our main
result is a complete characterization of such schemes, in terms of a coding-theoretic notion that we
introduce, termed optimal labelweight codes. We use this characterization to answer open questions
about the amortization required by HSS schemes that achieve optimal download rate. In more
detail, the construction of Fosli et al. required amortization over ¢ instances of the problem, and
only worked for particular values of £. We show that — perhaps surprisingly — the set of £’s for which
their construction works is in fact nearly optimal, possibly leaving out only one additional value of ¢.
We show this by using our coding-theoretic characterization to prove a necessary condition on the
£’s admitting optimal-rate linear HSS schemes. We then provide a slightly improved construction of
optimal-rate linear HSS schemes, where the set of allowable £’s is optimal in even more parameter
settings. Moreover, based on a connection to the MDS conjecture, we conjecture that our construction
is optimal for all parameter regimes.
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1 Introduction

A Homomorphic Secret Sharing (HSS) scheme is a secret sharing scheme that supports
computation on top of the shares [5, 11, 12]. Homomorphic Secret Sharing has found
many applications in recent years, from private information retrieval to secure multiparty
computation (see, e.g., [8, 12]).
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In more detail, a standard ¢-private (threshold) secret sharing scheme shares an input x
as s shares, Share(x) = (y1,...,ys), which are then distributed among s servers; the goal is
that any ¢ + 1 of the servers can together recover the secret z, while no t of the servers can
learn anything about z.!

A t-private HSS scheme has the additional feature that the servers are able to compute
functions f in some function class F, as follows. Each server j does some local computation
on its share y; to obtain an output share z; = Eval(f, j,y;). The output shares z1,..., 25 are
then sent to an output client, who uses these output shares to recover f(z) = Rec(z1, ..., 2s).
Formally, we say that the HSS scheme 7 is given by the tuple of functions (Share, Eval, Rec)
(see Definition 8).

In order for this notion to be interesting, the output shares z; should be substantially
smaller than the original shares y;; otherwise any ¢ 4 1 servers could just communicate their
entire shares y; to the output client, who would recover « and then compute f(z). To that
end, prior work [22] focused on the the download rate of (information-theoretically secure)
HSS schemes. The download rate (see Definition 11) of an HSS scheme is the ratio of the
number of bits in the output f(z) (that is, the number of bits the output client wants to
compute), to the number of bits in all of the output shares z; (that is, the number of bits
that the output client downloads); ideally this rate would be as close to 1 as possible.

The work [22] focused on HSS schemes for the function class F = POLY 4, (F), the class
of all m-variate, degree-d polynomials over a finite field F, and we will do the same here.
One of the main results of that work was an infeasibility result on the download rate for
linear HSS schemes, which are schemes where both Share and Rec are linear over some field;
note that Eval (which converts the shares y; to the output shares z;) need not be linear.

» Theorem 1 ([22] (Informal, see Theorem 15)). Any t-private s-server linear HSS scheme
for POLY g, (F) has download rate at most (s — dt)/s.

In fact, [22] proved that the bound (s — dt)/s holds even if the HSS scheme is allowed to
“amortize” over /¢ instances of the problem. That is, given £ secrets (1), ...,z shared

independently as y(-i) for j € [s],i € [£], the j’th server may do local computation on its

J
shares yj(»l),..., j(() to compute an output share z;; the output client needs to recover
fr(z@), oo fo(2®), given 21, ..., 2.

Moreover, [22] complemented this infeasibility result with a construction achieving
download rate (s — dt)/s, provided that the amortization factor £ is a sufficiently large

multiple of (s — dt):

» Theorem 2 ([22]). Suppose that s > dt, and suppose that £ = j(s — dt) for some integer
J = logp(s). Then there is a t-private, s-server linear HSS scheme for POLY 4 (F)
(with CNF sharing, see Definition 16), download rate at least (s — dt)/s, and amortization
parameter £.

This state of affairs leaves open two questions, which motivate our work:

(1) Are there optimal-rate linear HSS schemes for POLY 4 ,,(F) beyond the example in
Theorem 2?7 Can we characterize them?

(2) Is some amount of amortization necessary to achieve the optimal rate? If so, which
amortization parameters ¢ admit optimal-rate linear HSS schemes for POLY 4, (F)?

L In this work, we focus on information-theoretic security, so the above statement means that the joint
distribution of any t shares does not depend on the secret x.
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1.1 Main Results

We answer both questions (1) and (2) above. For all of our results, we consider CNF
sharing [24] (see Definition 16). It is known that CNF sharing is universal for linear secret
sharing schemes, in that t-CNF shares can be locally converted to shares of any linear
t-private secret sharing scheme [17].

High-level answers to Questions (1) and (2).

(1) Our results give a complete characterization of the Rec functions for optimal-rate linear
HSS schemes for POLY 4 ,,,(F). Our characterization is in terms of linear codes with
optimal labelweight, a notion that we introduce, which generalizes distance. Similar to
how optimal-distance (MDS) codes are characterized by a property of their generator
matrices, we are also able to characterize the generator matrices of optimal-labelweight
codes.

We hope that the notion of labelweight will find other uses, and we believe that this
characterization will be useful for studying linear HSS schemes beyond our work.

(2) Using our characterization, we show that the amortization parameters ¢ given in Theo-
rem 2 are in fact (usually) all of the admissible ¢’s.? In particular, some amortization is
required, and there are parameter regimes where one cannot obtain optimal download
rate with amortization parameters ¢ other than those in the construction in [22]. More-
over, we give a construction that slightly improves on the construction in [22], closing
the gap between the lower and upper bounds in a few more parameter regimes.

We find this answer to Question (2) somewhat surprising; we expected that the particular
form of £ in Theorem 2 was an artifact of the construction, but it turns out to be intrinsic.

We describe our results in more detail below.

(1) A characterization of optimal-rate linear HSS schemes. Our main result is a char-
acterization of linear HSS schemes for POLY 4 ,,,(F) with optimal download rate (s — dt)/s.
In particular, we show that the Rec algorithms for such schemes (with CNF sharing) are
equivalent to a coding-theoretic notion that we introduce, which we refer to as codes with
optimal labelweight.

» Definition 3 (Labelweight). Let C C F™ be a linear code of dimension (. Let L : [n] — [s]
be any function, which we refer to as a labeling function. The labelweight of c € C is the
number of distinct labels that the support of ¢ touches:

Ar(e) ={L®G) : i € [n],c; # 0}
The labelweight of C is the minimum labelweight of any nonzero codeword:

As(C)= min Ag(c).
£€) = _min Ac(o
In particular, if s = n and £(j) = j for all j € [n], then A.(C) is just the minimum Hamming
distance of C. Thus, the labelweight of a code generalizes the standard notion of distance.
Our main characterization theorem is the following.

2 The parenthetical “(usually)” is due to a corner case; it is possible that £ = j(s—dt) with j = [log)r (5)1-1,
which is one smaller than the bound given in Theorem 2.
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» Theorem 4 (Optimal linear HSS schemes are equivalent to optimal labelweight codes. (Informal,
see Lemma 23 and Theorem 27)). Let m = (Share, Eval,Rec) be a t-private, s-server linear
HSS for POLY 4, (F), with download rate (s — dt)/s. Let G be the matriz that represents
Rec (see Observation 21). Then there is some labeling function L so that G is the generator
matriz for a code C with rate (s — dt)/s and with A (C) > dt + 1.

Conversely, suppose that there is a labeling function L : [n] — [s] and a linear code C C F™
with rate (s — dt)/s and with Ag(C) > dt + 1. Then any generator matriz G of C describes
a linear reconstruction algorithm Rec for an s-server t-private linear HSS for POLY g ., (F)
that has download rate (s — dt)/s.

We remark that the converse direction is constructive: given the description of such a
code C, the proof (see Theorem 27) gives an efficient construction of the Eval function as
well as the Rec function.

Given Theorem 4, we now want to know when optimal labelweight codes exist. Our
second main result — which may be of independent interest — characterizes these codes in
terms of their generator matrices. We describe this characterization more in the Technical
Overview (Section 1.2), and next we describe the implications for HSS schemes.

(2) Understanding the amortization parameter £. Using our characterization above, we are
able to nearly completely classify which amortization parameters ¢ admit download-optimal
linear HSS schemes for POLY 4 ,,,(F). Given Theorem 4, it suffices to understand when
optimal labelweight codes exist. We show the following theorem.

» Theorem 5 (Limitations on optimal labelweight codes. (Informal, see Theorem 31)). Suppose
that G € ngn is the generator matriz for a code C with rate £/n = (s — dt)/s, and suppose
that there is a labeling function L : [n] — [s] so that Az(C) > dt + 1. Then ¢ = j(s — dt) for
some integer j, with j > max{log,(s — dt +1),log,(dt + 1)}.

This result nearly matches the feasibility result of [22] (Theorem 2 above). That is,
Theorem 2 allows for £ = j(s — dt) for any integer j > log,(s). As we always have
max(s — dt + 1,dt + 1) > s/2, the conclusion in Corollary 5 implies that j > log,(s/2) =
log,(s) —1/logy(q). As j must be an integer, this exactly matches the amortization parameter
in Theorem 2 whenever

Fog(s) — 1-‘ B "log(s)—‘
log(q) log(q) |’
which holds for most values of s and g when ¢ is large. Moreover, we give a construction

that very slightly improves on the one from Theorem 2, which exactly matches Theorem 5
for even more settings of s:

» Theorem 6 (Construction of optimal labelweight codes. (Informal, see Theorem 30)). Let j
be any integer so that

. log,(s —1) ¢ odd, or (s —dt) & {3,¢° — 1}
JZ log, (s —2) ¢’ even, and (s — dt) € {3,¢" — 1} .

There is an explicit construction of a code C C Fy with dimension £ = j(s — dt), block
length n = js, (and hence rate (s — dt)/s), and a labeling function L : [n] — [s] so that
Ap(C) > dt + 1.
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Given Theorem 4 (our equivalence between codes with good labelweight and linear HSS
schemes), Theorem 6 immediately implies that there is a download-optimal linear HSS scheme
for POLY 4., (F) with amortization parameter ¢ = j(s — dt) for any j as in Theorem 6. (See
Corollary 33 for a formal statement).

The HSS result implied by Theorem 6 is quite close to the existing result from [22]
(Theorem 2).3 The only quantitative difference between Theorem 6 and the result of [22] is
that we can take j to be either [log,(s—1)] or [log,(s—2)], rather than [log,(s)]. Meanwhile,
Theorem 5 says that we must have j > [log,(s/2 + 1)]. So there are a few values of s where
Theorem 6 is tight (matching Theorem 5) but Theorem 2 (the construction from [22]) is
not. For example, if ¢ = 2 and s = 2" + 1, then [log,(s — 2)] = [log,(s/2+ 1)] = r, but
[log,(s)] =7+ 11is larger.

There are still a few parameter regimes where there is a gap (of size one) between the j’s
that work in Theorem 6 and bound of Theorem 5. We conjecture that in fact the construction
is optimal, and Theorem 5 is loose. Our work establishes a connection between constructions
of download-optimal HSS schemes and the MDS conjecture over extension fields, which
may be of independent interest; due to space constraints, details are deferred to the full
manuscript [6]. Further, we show that, assuming the MDS conjecture, our construction of
Theorem 6 is optimal within a natural class of constructions, even when it does not match
our infeasibility result in Theorem 5.

1.2 Technical Overview

In this section, we give a high-level overview of our techniques.

Relationship between download-optimal HSS schemes and optimal labelweight codes.
Theorem 4 states that download-optimal linear HSS schemes are equivalent to optimal-
labelweight codes. To give some intuition for the connection, we explain the forward
direction, which is simpler. For simplicity, suppose that the function f is identity, amortized
over £ secrets 1), ... 2() € F. This problem is called HSS for concatenation in [22]; the
goal is to share the £ secrets independently, and then communicate them to the output client
using significantly less information than simply transmitting ¢ + 1 shares of each secret.

Consider a linear HSS scheme for this problem. By definition, the reconstruction algorithm
Rec is linear, and so can be represented by a matrix G € F**", where n is the total number
of symbols of F sent by all of the servers together. In more detail, we view each output share
zj as a vector over IF, and concatenate all of them to obtain a vector z € F". Then we can
linearly recover the ¢ concatenated secrets from z:

e

= Rec(z1,...,25) = Gz.
2©
Now we can define a labeling function £ : [n] — [s] so that £(r) € [s] is the identity of
the server sending the r’th symbol in z. We claim that G is the generator matrix* of a code
C with Az(C) >t + 1. (Recall that in HSS for concatenation, d =1, so t +1 = dt + 1 is the
bound on A,(C) that we want in Theorem 4). To see this, suppose that there were some
codeword m”'G for some m € F with labelweight at most t. But consider the quantity

3 In addition to the quantitative results being quite close, the constructions themselves are also similar.
This is not surprising, given that one of our main results is that such schemes must be extremely
structured. We discuss the relationship between our construction and that of [22] in the technical
overview below.

4 When we say that G is the generator matriz of C C F", we mean that C is the rowspan of G.
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4
X = Zmix(i) =m’Gz.
i=1

If m”'G had labelweight at most ¢ (with this labeling £), that means that the quantity X
can be computed using messages coming from only ¢ of the servers. But this contradicts the
t-privacy of the original secret sharing scheme. Indeed, suppose without loss of generality
that my # 0. Then if (2 = ... = 2(Y) = 0, some set of ¢ servers would be able to recover
X =myz™ and hence z(), and this should be impossible. For the full proof of this direction,
we need to generalize to larger d’s and more general functions, but the basic idea is the same.

The converse, showing that any optimal-labelweight code C implies an optimal HSS
scheme, is a bit trickier. The main challenge is that the connection above tells us what Rec
should be — it should be given by the generator matrix of C — but it does not tell us what Eval
should be, or that an appropriate Eval function even exists. To find Eval, we view the output
shares as vectors of polynomials in the input shares. That is, each server must return some
function of the shares that it holds, and over a finite field, every function is a polynomial.
In this view, we can set up an affine system to solve for Eval, where the variables are the
coefficients that appear in each server’s output polynomials. Then we show that this system
has a solution, and that this solution indeed leads to a legitimate Eval function.

Characterization of Optimal Labelweight Codes. In order to understand when optimal
labelweight codes exist, we give a characterization of them in terms of their generator
matrices. We show that the generator matrices of optimal labelweight codes can be taken to
be block-totally-nonsingular. We defer the formal definition to Definition 35, but informally,
a block-totally-nonsingular matrix is made up of j x j invertible blocks A € GL(F, j), with
the property that any square sub-array of blocks (not necessarily contiguous) is full-rank.

» Lemma 7 (Characterization of optimal label-weight codes. (Informal, see Lemma 36)).
Suppose that C C F" is a code of rate (s — dt)/s, and suppose that there is a labeling function
L :[n] = [s] so that Ap(C) > dt + 1. Then, up to a permutation of the coordinates, there is
a generator matriz G for C that looks like G = [I|A], where A is block-totally-nonsingular.
Conversely, any such matriz is the generator matriz for a code C with Ag(C) > dt + 1, where
L :[n] — [s] is the labeling function L(x) = [z/]].

To give some intuition for the lemma, we first explain where the “block” structure comes
from. We show (Lemma 24) that in fact any labeling function £ so that Az (C) = dt + 1 must
be balanced, meaning that each set £71(i) for i € [s] has the same cardinality, |[£~(i)| = 7,
for some integer j. The blocks then correspond to the sets £71(i) for i € [s].

Next, we give some intuition for the “totally non-singular” part. The basic idea is that
if there were a square sub-array of blocks that were singular, then there would be a vector
m ¢ F* with support on only the relevant blocks, so that m”A = 0. If G = [I|A] as in
Lemma 7, then this implies that m” G has support only on the labels that appear on the
first £ columns of GG, which it turns out is small enough to contradict the optimal labelweight
property. We refer to the proof of Lemma 36 for details on both points.

Applications to Amortization. We apply the machinery described above to Question (2),
about what amortization parameters £ are possible, as follows. As described above, we show
that optimal-download-rate HSS schemes are equivalent to optimal labelweight codes, which
in turn are equivalent to to block-totally-nonsingular matrices. At this point, we already
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know that the amortization parameter £ must be equal to j(s — dt) for some integer j; this
follows from the j x j block structure of block-totally-nonsingular matrices. It remains only
to understand for which j’s such matrices exist. A limitation on such matrices follows from
a standard counting argument, and this implies our infeasibility result, given formally as
Theorem 31.

As noted above, there is already a near-optimal construction of HSS schemes in [22]
(Theorem 2). In our language, that construction is based on systematic generator matrices of
Reed-Solomon Codes. After an appropriate conversion to block form, such matrices are of the
form [I]|A], where A is a block-totally-nonsingular matrix. Up to the conversion to block-form,
the famous MDS Conjecture (see discussion in the full version [6]) implies that Reed-Solomon
codes are nearly optimal in this context, but it is known that a slight improvement is possible:
instead of requiring j > log,(s) as in Theorem 2, one can get j > log, (s —2) or log, (s — 1),
as in Theorem 6. The change is simple: one essentially adds one or two more (block) columns
to the generator matrix ((see, e.g., [28, 1]); and the proof of Theorem 30). Thus, we can
slightly improve on the construction of [22] (Theorem 2) by making this slight improvement
to the underlying code.

1.3 Related Work

Linear HSS schemes (for, e.g. low-degree polynomials) are implicit in classical protocols for

tasks like secure multiparty computation and private information retrieval [5, 4, 14, 18, 2, 3, 15].

More recently, [12] initiated the systematic study of HSS, and in there has been a long line
of work on the topic, most of which has focused on HSS schemes that are cryptographically
secure [9, 20, 10, 11, 21, 12, 13, 7, 16, 25, 26, 19]. In contrast, we focus on information-theoretic
security. The information-theoretic setting was explored in [12] and was further studied
in [22], which is the closest to our work and also our main motivation. In particular, [22]
focused the download rate of information-theoretically secure HSS schemes (both linear and
non-linear), but did not focus quantitatively on the amortization parameter ¢. In contrast,
we restrict our attention to linear schemes, but focus on characterizing such schemes and on
pinning down /.

We note that the work [22] also obtained linear HSS schemes using coding-theoretic
techniques, but the connection that they exploited is different. In particular, they show
that for the case of d = 1 (that is, HSS for concatenation), the existence of linear HSS
schemes for POLY 4—1 (F)e is equivalent to the existence of linear codes with a particular
rate and distance. However, this characterization only works when d = 1. In contrast, our
characterization, in terms of codes with good labelweight, a generalization of distance, applies
for general d.

Finally, we mention the MDS conjecture, which is related to our results. The MDS
conjecture was stated by Segre in 1955 [27], and roughly says that Reed-Solomon codes have
the best alphabet size possible for any Mazimum-Distance Separable (MDS) code. After
being open for over 60 years, the conjecture has been proved for prime order fields, and
particular extension fields [1]. Our characterization of optimal-rate HSS schemes leads us to
consider the related question of the best alphabet size possible for any Totally Nonsingular
matrix, which we observe in the full version of this paper [6] is equivalent to the MDS
conjecture over extension fields. This connection leads us to conjecture that our construction
is in fact optimal, and we show that the MDS conjecture implies that it is, within a natural
class of constructions. See the discussion in the full version of the paper [6] for more on this
connection.
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1.4 Open Questions and Future Directions

Before we get into the details, we take a moment to highlight some open questions.
The most obvious question that our work leaves open is about the edge cases in the
characterization of amortization parameters £ that are admissible for optimal-download
linear HSS schemes. Given the relationship to the MDS conjecture over extension fields,
resolving this may be quite a hard problem. However, there is some hope. In particular,
the MDS conjecture would imply that our construction is optimal only within a natural
class of constructions; it may be possible to get improved results by leaving that class.
Another open question is to find further applications of our characterization of download
optimal HSS schemes. We use this characterization to nearly resolve the question of what
amortization parameters are admissible for such schemes, but we hope that it will be
useful for other questions about linear information-theoretic HSS.
Finally, it would be interesting to extend our results to linear HSS schemes that do
not have optimal download rate. For example, perhaps it is possible to get a drastic
improvement in the amortization parameter ¢ by backing off from the optimal download
rate by only a small amount.

1.5 Organization

In Section 2, we set notation and record a few formal definitions that we will need. In
Section 3, we show that download-optimal HSS schemes are equivalent to codes with good
labelweight: Lemma 23 establishes that HSS schemes imply codes with good labelweight, and
Theorem 27 establishes the converse. In Section 4, we state our characterization of generator
matrices of codes with good labelweight (Lemma 36), and explain how this can be used to
prove bounds on good labelweight codes (Theorems 30 and 31); this implies Corollary 33,
which gives nearly-tight bounds on the amortization parameter ¢ in download-optimal linear
HSS schemes for POLY 4, (F).

Throughout this extended abstract, we have had to omit details due to space constraints;
we refer the reader to the full version [6] for all the details.

2 Preliminaries

We begin by setting notation and some definitions that we will need throughout the paper.

Notation. For n € Z*, we denote by [n] the set {1,2,...,n}. We use bold symbols (e.g.,
x) to denote vectors. For an object w in some domain W, we use ||w| = log,(|W]) to denote
the number of bits used to represent w.

2.1 Homomorphic Secret Sharing

We consider homomorphic secret sharing (HSS) schemes with m inputs and s servers; each
input is shared independently. We denote by F = {f : X™ — O} the class of functions we
wish to compute, where X and O are input and output domains, respectively.

» Definition 8 (HSS). Given a collection of s servers and a function class F = {f : X™ — O},
consider a tuple m = (Share, Eval, Rec), where Share : X x R — Y*, Eval : F x [s] x J) — Z*,
and Rec : Z* — O as follows®:

5 By Z*, we mean a vector of some number of symbols from Z.
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Share(x;,r;): For i € [m], Share takes as input a secret x; € X and randomness r; € R;
it outputs s shares (y; ; : j € [s]) € Y. We refer to the y; ; as input shares; server j
holds shares (y; ; : i € [m]).

Eval (f,7, (W15,Y2,---,Ym,;)): Given f € F, server index j € [s], and server j’s input
shares (y1,j,Y2,5,---,Ym,;), Eval outputs z; € Z™i, for some n; € Z. We refer to the z;
as output shares.

Rec(z1,...,2s5): Given output shares z1,...,zs, Rec computes f(x1,...,2m) € O.

We say that m = (Share, Eval, Rec) is a s-server HSS scheme for F if the following requirements
hold:
Correctness: For any m inputs x1,...,x, € X and f € F,

_W € [ml], (Yi1,--.,¥is) < Share(x;,r;)

Pr [Rec(z1,...,25) = f(x1,...,Tm) : =1
reR™ ( b ’ S) f( b e V_j S [8]7 Zj < EV3|(f7j, (yl,j,..wym}j))
Note that the random seeds r1,...,r, are independent.

Security: Fix i € [m]; we say that 7 is t-private if for every T C [s] with |T| <t and
x;, @, € X, Share(z;)|r has the same distribution as Share(x})|r, over the randomness
r € R™ used in Share.

» Remark 9. We remark that in the definition of HSS, the reconstruction algorithm Rec does
not need to know the identity of the function f being computed, while the Eval function
does. In some contexts it makes sense to consider an HSS scheme for F = {f}, in which
case f is fixed and known to all. Our results in this work apply for general collections F of
low-degree, multivariate polynomials, and in particular cover both situations.

We will focus on linear HSS schemes, which means that both Share and Rec are F-linear
over some finite field F; we never require Eval to be linear. More precisely, we have the
following definition.

» Definition 10 (Linear HSS). Let IF be a finite field.
We say that an s-server HSS m = (Share, Eval, Rec) has linear reconstruction if:
Z =T, so each output share z; € F™ is a vector over F;
O =TF° is a vector space over F; and
Rec: F2:™ s F° is F-linear.
We say that m has linear sharing if X, R, and Y are all F-vector spaces, and Share is
F-linear.
We say that 7 is linear if it has both linear reconstruction and linear sharing. Note there
s mo requirement for Eval to be F-linear.

Our main focus will be on the download rate of linear HSS schemes.

» Definition 11 (Download cost, dowload rate). Let s,t be integers and let F be a class of
functions with input space X™ and output space O. Let w be a s-server t-private HSS for F.
Let z; € Z™ for i € [s] denote the output shares.

The download cost of m is given by DownloadCost(m) := 3,y I12ill, where we recall that
|z:|| = nilogy | 2| denotes the number of bits used to represent z;.
The download rate of 7w is given by

logs |O]
DownloadRate(r) := Downloijost(ﬂ)'

Thus, the download rate is a number between 0 and 1, and we would like it to be as close
to 1 as possible.
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2.2 Polynomial Function Classes

Throughout, we will be interested in classes of functions F comprised of low-degree polyno-
mials.

» Definition 12. Let m > 0 be an integer and F be a finite field. We define
POLY 4 (F) :={f € F[Xu,..., X,,] : deg(f) < d}
to be the class of all m-variate polynomials of degree at most d, with coefficients in F.

We are primarily interested in amortizing HSS computations over ¢ instances of POLY g, (F).
In this case, we will take our function class to be (a subset of) POLY 4., (F)* for some ¢ € Z7.

» Remark 13 (Amortization over the computation of ¢ polynomials). If F is (a subset of)
POLY 4., (F)?, then the definition of HSS can be interpreted as follows:
There are £-m input secrets, xfj) for i € [¢] and k € [m], and each are shared independently
among the s servers. (That is, in Definition 8, we take m < £-m).
There are ¢ target functions fi,...,f; € POLY4,,(F), and the goal is to compute
fi(mgi), ce ngl)) for each ¢ € [¢]. (That is, in Definition 8, f = (f1,..., f¢) is an element
of F = POLY 4., (F)").
Each server j € [s] sends a function z; of all of their output shares, which importantly
can combine information from across the ¢ instances; then the output client reconstructs
fi(xgi), . ,ngl)) for each i € [¢] from these shares.

In particular, we remark that this notion of amortization is interesting even for d = m = 1,
when f1 = fo = .-+ = f; is identity function. In [22], that problem was called HSS for
concatenation.

As hinted at above, our infeasibility results hold not just for POLY 4, (F)¢ but also for
any F C POLY 4, (F) that contains monomials with at least d different variables.

» Definition 14. Let F C POLY,,,(F)*. We say that F is non-trivial if there exists some
f=(f1,..., fe) € F so that for alli € [{], f; contains a monomial with at least d distinct
variables.

(We note that our feasibility results are stated in terms of F = POLY g, (F)%; trivially these
extend to any subset 7 C POLY 4, (F)).

As mentioned in the introduction (Theorem 1), the work [22] showed that any linear HSS
scheme for POLY 4, (F)* (for any £) can have download rate at most (s — dt)/s: We recall
the following theorem from [22].

» Theorem 15 ([22]). Let t,s,d, m,{ be positive integers so that m > d. Let F be any finite
field and 7 be a t-private s-server linear HSS scheme for POLY 4, (F)*. Then dt < s, and
DownloadRate(m) < (s — dt)/s.

2.3 CNF Sharing

The main Share function that we consider in this work is CNF sharing [24].

» Definition 16 (t-private CNF sharing). Let F be a finite field. The t-private, s-server CNF
secret-sharing scheme over F is a function Share : F x F()-1 (F(Sil)) that shares a

secret x € F as s shares y; € i ), using (‘z) — 1 random field elements, as follows.
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Let x € F, and let r € F()1 pe g uniformly random vector. Using r, choose yr € F for
each set T C [s] of size t, as follows: The yr are uniformly random subject to the equation
T = rcis =t Y7 Then for all j € [s], define Share(z,r); = (yr : j ¢ T) € F(").

We observe that CNF-sharing is indeed t-private. Any ¢+ 1 servers between them hold all
of the shares yr, and thus can reconstruct = ), y7. In contrast, any t of the servers (say
given by some set S C [s]) are missing the share yg, and thus cannot learn anything about z.

The main reason we focus on CNF sharing is that it is universal for linear secret sharing
schemes:

» Theorem 17 ([17]). Suppose that x € F is t-CNF-shared among s servers, so that server
J holds y; € IF(SZI), and let Share’ be any other linear secret-sharing scheme for s servers
that is (at least) t-private. Then the shares y; are locally convertible into shares of Share’.
That, is there are functions ¢1,...,¢s so that (¢1(y1), ..., ds(ys)) has the same distribution
as Share’(z,r) for a uniformly random vector r.

In particular, we prove several results of the form “no linear HSS with CNF sharing can do
better than 7 Because of Theorem 17, these results imply that “no linear HSS with
any linear sharing scheme can do better than 7

Finally, we record a useful lemma about HSS with ¢t-CNF sharing, which says that in
order to recover a degree-d monomial, the output client must contact at least dt + 1 servers.
This lemma is implicit in Lemma 2 of [22]. For completeness, we provide a proof in the full

version [6].

» Lemma 18 ([22]). Fiz s,d,t so that s > dt + 1, and suppose m > d. Let m1 =
(Share, Eval,Rec) be any linear HSS that t-CNF shares m secrets x1,...,&,, € F among
s servers, for a nontrivial function class F C POLY 4,0, (F). Then Rec must depend on output
shares z; from at least dt + 1 distinct servers j € [s].

2.4 Linear Codes and Labelweights

Throughout, we will be working with linear codes C C F™. Such a code is just a subspace of
F™. For a linear code C C F™ of dimension ¢, we say that a matrix G € Feéxn
matriz for C if C = rowSpan(G). Note that generator matrices are not unique. If G has the
form G = [I|A] where I = F*** is the identity matrix and A € F*("~9) we say that G is in
systematic form, and we refer to the first ¢ coordinates as systematic coordinates. The other

is a generator

coordinates we refer to as non-systematic coordinates. The rate of a linear code C C F"™ of
dimension ¢ is defined as Rate(C) := £.
As discussed in the Introduction, our characterization of download-optimal linear HSS

schemes is in terms of linear codes with good labelweight.

» Definition 19 (Labeling Function). Let U,V be finite domains satisfying |U| > |V|. We
say that a mapping L : U — V is a labeling function (or simply labeling) of U by V if L is a
surjection.

We will usually take U = [n] and V = [s] for n,s € ZT with n > s. For a code C C F", and a
labeling function £ : [n] — [s], the labelweight of a codeword is the number of distinct labels
that its support touches, and the labelweight of a code is the minimum labelweight of any
nonzero codeword. More precisely, we have the following definition.
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» Definition 20 (Labelweight). Let £ be a labeling of [n] by [s] where n,s € Z with n > s.
Let F denote a field. Given ¢ € F", we define the labelweight of ¢ by

Ace) = [{£(0) + ¢ £ 0},
For a code C CF™, we define labelweight of C by

Ar(C) = olin, Ar(c).

We note that labelweight is a generalization of Hamming weight; indeed, let ¢ : [n] — [n]
denote the identity function on [n], which may be viewed as a labeling of [n] by [n]. Given
a linear code C of length n and ¢ € C, we see that A,(c) and A,(C) are equivalent to the
Hamming weight of ¢ and the minimum Hamming distance of C, respectively.

3 Linear HSS Schemes and Good Labelweight Codes

In this section we show that finding optimal-download linear HSS schemes for low-degree
multivariate polynomials is equivalent to finding linear codes with high labelweight. Before
we show the equivalence, we make a few observations about linear reconstruction algorithms.
The first is just the observation that any linear reconstruction scheme can be regarded as
matrix:

» Observation 21. Let ¢,t,s,d, m,n be integers. Let m = (Share, Eval, Rec) be a t-private,
s-server HSS for some function class F C POLYdmL(]F)Z with linear reconstruction Rec :
F* — F’, wheren =Y

175 and the output share z; of server j is an element of F™i. Let

J€[s
z € F™ be the vector of all output shares. That is, z = z1 0 z 0 --- 0 25, where o denotes
concatenation.
Then there exists a matriz G € F™ so that, for all f € F and for all secrets x € (F™)¢,
fr(x™M)
f2(x®)
Rec(z) = Gz = f(x) = .
fo(x(9)

For a linear HSS 7, we call G, as in the observation above the reconstruction matriz
corresponding to Rec. We next observe that G, has full rank.

» Lemma 22. Let t,s,d, m,{ be positive integers so that m > d and n > £, and let ™ be a
t-private s-server linear HSS for some F C POLY 4., (F), so that F contains an element
(fi,---, fo) where each fi, i € [{] is non-constant. Then G, € F**™ has rank (.

Proof. Suppose that G, does not have rank £. Then there is a left kernel vector v, so that
vI'G, =0. Let (f1,..., f¢) € F be as in the lemma statement. By Observation 21, we then
have

f (X(l))
0=vIGz=v" :
fo(x®)
for all values of secrets x(1), ..., x®. In particular, Zle v; fi (x(i)) is identically zero as a

polynomial in the variables x,(:) for k € [m],i € [¢]. However, this is a contradiction because
the variables that show up in x() are different for different values of i € [], and thus cannot

cancel with each other. <
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3.1 Optimal-Download HSS Implies Good Labelweight Codes

We now show the forward direction of the equivalence.

» Lemma 23. Let 0,t,s,d,m be integers, with m > d. Suppose there exists a t-private, s-
server HSS m = (Share, Eval, Rec) for some non-trivial (see Definition 14) F C POLY 4, (F)¥,
with download rate DownloadRate(m) = (s — dt)/s. Let n = £/DownloadRate(r). Suppose
also that w is linear over F, and the Share is t-CNF sharing. Then there exists a linear code
C C F™ with rate DownloadRate(r) and a labeling L : [n] — [s] so that Az (C) > dt + 1.

Proof. Let G € F**™ be the matrix representation of the linear reconstruction algorithm
Rec, as in Observation 21. Let C denote the linear code spanned by the rows of G,.. By
Lemma 22, G has rank ¢, so the rate of C is % = DownloadRate(r). It remains only to show
A£(C) = dt +1 for some labeling function £. Recall from Observation 21 that n =3,y
is the total number of symbols of F that appear in output shares across all of the servers, and
that each column of G is associated with one such symbol. Let £ : [n] — [s] be the labeling
function so that the j’th column of G is associated with a symbol sent by the £(j)’th server.

n;j

Let x = (x1,...,%X¢) € (Fm)e be the vector of m/ secrets, each of which is independently
t-CNF shared to the s servers. Let f = (f1,..., f¢) € F be a function guaranteed by the fact
that F is nontrivial (Definition 14).

As in Observation 21, let z € F™ be the vector of n output shares. Notice that with the
labeling function defined above, this means that the j'th coordinate of z is sent by server
L(j). Let Gr1,...,Gr ¢ denote the rows of G, and observe that

G:,lz fl(xili)

GT .z fa(x
Gz = _’2 =f(x) = 2(_ )

fo,ez fz(x(z))

Let v € F*\ {0}, and consider the codeword ¢ € C given by ¢ = v/'G,. Then from the
above,

4
Tz =3 v fy(x D) = f(x).
=1

In particular, for 7/ = {f}, ¢ gives a linear reconstruction algorithm Rec’ for a linear
HSS 7/ = (Share, Eval,Rec’) for F’. Notice that F’ is also non-trivial; indeed, each f;(x(®)
contains distinct variables (so they cannot cancel), and each f; has a monomial with at least
d distinct variables; thus f contains a monomial with at least d distinct variables.

Then by Lemma 18, Rec’ must depend on output shares from at least dt + 1 distinct
servers j € [s]. It follows from the definition of £ that Az (c) > dt + 1. Since v, and hence c,
was arbitrary (non-zero), this implies that A, (C) > dt + 1, as desired. <

Lemma 23 shows that the existence of an optimal-rate linear HSS scheme for polynomials
implies the existence of a linear code with with optimum labelweight. The converse is also
true, but before we prove that result, we need to dive a bit deeper into the structure of codes
with good labelweight, which we do next.
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3.2 Structural Properties of Labeling Functions for Optimal Labelweight
Codes

We establish a few structural properties of the labeling functions £ that appear in codes with
optimal labelweight. Our main structural result states that for any code C of rate (s — dt)/s,
if £ is such that Az (C) > dt + 1, then in fact the labeling function £ must be “balanced,”
in the sense that each label shows up the same number of times. Below and throughout
the paper, for £ : [n] — [s], we use L71(\) = {j € [n] : L(j) = A} to denote the preimage of
A € [s] under L.

» Lemma 24. Let C CF" be a rate (s — dt)/s linear code and L : [n] — [s] a labeling of its
coordinates by [s] so that Az (C) > dt+ 1. Then for all X # N € [s], |[L7H(A)| = [L7H(N)].

Proof. Since C has rate (s — dt)/s, there exists some j € QT such that C has block length
n = js and dimension £ = j(s — dt). Let G € F/(s=41)XJ$ he an arbitrary generator matrix of
C. The lemma holds if and only if for each A € [s], we have |[£L71()\)| = js/s = j. Thus, we
assume towards a contradiction that this is not the case and break the proof into three cases,
depending on the relationship between s and 2dt.

Case 1: s = 2dt. In this case, consider Aj,...,Aq chosen so that Zfil L7\ is
minimized. As we assume towards a contradiction that there exists A € [s] such that
’E‘l()\)‘ # j, there exists a choice of A1, Aa, ..., Agt € [s] so that

dt
Ut =jdt — o < jdt
i=1

for some ¢ > 0. Without loss of generality we may assume that A1, ..., Ag label the final

jdt — o columns of G. Since s = 2dt, G has j(s — dt) = jdt rows; hence there exists some
nonzero m € F7% such that m” G has no support in its final jdt — o coordinates. But then
Ar(mT@G) < dt, contradicting Az (C) > dt + 1.

Case 2: s > 2dt+1. In this case, consider Aq,..., Ag so that Z?il |£71(\;)] is maximized.
As we assume towards a contradiction that there exists A € [s] such that ‘[fl()\)| # j, there
exists a choice of A1, Ag, ..., g € [s] so that

=jdt+ o > jdt

dt
Ue o
i=1

for some ¢ > 0. Without loss of generality we may assume that A1,..., Ag label the final
jdt + o columns of G, leaving the first js — (jdt + o) = j(s — dt) — o columns labeled with
[s]\ {A1,...,Aat}. Since G has precisely j(s — dt) rows, there exists some m € F/ such that
m” G has no support in its first j(s — dt) — o coordinates. It follows that Az (m”G) < dt,
contradicting Az (C) > dt + 1.

Case 3: s < 2dt — 1. Note that s > dt + 1, as we assume that Az (C) > dt + 1. Thus,
we may write s = dt + §, where § € [dt — 1]. In this case, consider Aj,...,A; so that
Zle |£71(\;)] is minimized. As we assume towards a contradiction that there exists A € [s]
such that ‘[fl()\)| # j, there exists a choice of A\, Ag, ..., A\s € [s] so that

=j§—0<J8

O L7 (N)
i=1



K. Blackwell and M. Wootters

for some o > 0. Without loss of generality we may assume that A1,...,A; label the first
j§— o columns of G. Since there are j5 rows of G, there exists some m € F7¢ such that m”'G
has no support in its first j§ — o coordinates. It follows that A, (m”G) < dt, contradicting
Ap (C) > dt+ 1. <

We next state a few corollaries; we refer to the full version [6] for the proofs.

» Corollary 25. Let s,d,t € Z* satisfying s — dt > 0. Let C be a rate (s — dt)/s linear code
and L a labeling of its coordinates by [s] so that Ap(C) > dt + 1. Then there exists some
j € Z% such that:

(i) C has length n = js and dimension £ = j(s — dt);

(i) [£7Y(\)| =3 for all X € [s];

(iii) there is a re-ordering of the coordinates of C so that L : [js] — [s] is given by L : x

[z/]].

» Corollary 26. Let j be a positive integer, and let C C IFZS be a linear code of length js
and dimension j(s — dt). Let L : [js] — [s] be a labeling such that Ay(C) > dt + 1. Let
G e Ffll(sfdt)xjs be an arbitrary generator matriz for C. Given A C [s], let G(A) be the
submatriz of G consisting of the columns G; of G for all i € [js] so that L(i) € A. Then for
any A C [s] with |A| = s — dt, G(A) € FIGs=a)xi(6=dt) gnd det(G(A)) # 0.

3.3 Good Labelweight Codes Imply Optimal-Download HSS

Now, we can prove a converse to Lemma 23.

» Theorem 27. Let {,t,s,d,m,n be integers, with m > d and s = n(s — dt). Suppose that
there exists a linear code C C F™ and a labeling L : [n] — [s] so that Ag(C) > dt + 1. Then
there exists a t-private, s-server linear HSS m = (Share, Eval,Rec) for POLY 4, (F)* with
download rate DownloadRate(wt) > (s — dt)/s.

Proof. The proof is by construction; let C be as in the theorem statement, and let G € F¢x»

be any generator matrix for C. In order to define 7, we need to define the functions Share,
Eval, and Rec. For Share, we will use ¢t-CNF sharing (Definition 16). We define Rec using the
generator matrix G. In particular, we will (soon) define Eval so that server j € [s] returns
nj := |L71(j)| elements of F as output shares. We will gather these output shares into a
vector z € F"', where n.= 3, n;. Then Rec will be given by Rec(z) = Gz.

Finally, it remains to define Eval. To do so, we will set up a linear system that essentially
says “the Rec function we just defined is correct.” Then we will show that this linear system
has a solution, and that will yield our Eval function.

Below, we assume without loss of generality that the function f = (f1,..., f¢) that the
HSS scheme is trying to compute has f;(z1,...,2m) = H?Zl x; for all j € [¢], and we
will define Eval(f, j,y;) on only this f. To obtain the general result for any polynomials
(p1,p2,..-,00) € POLYde(IF)Z, we first observe that the argument goes through if the f;’s
are any monomials of degree at most d, possibly with a leading coefficient; this follows by
re-ordering the secrets, and possibly including some dummy secrets that are identically equal
to a constant (that is, increasing the parameter m, which does not appear in any of the
results) to obtain monomials of degree less than d and/or with a leading coefficient. Then to
pass to general polynomials, and not just monomials, we observe that since Rec is linear, we
may define Eval additively; that is, if p;(x(?) = 3=, fi -(x()) for some monomials f; ., server
j will compute Eval on each f, = (f1,,,..., fe,r), and then return their sum.
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Now we return to the task of setting up a linear system to define Eval for the particular
function f defined above. In order to set up this linear system, we introduce some notation.
Let 7 = {T C [s] : |T| = t} be the set of size-t subsets of [s]. Let x = (x(1),... x(®)) € (F™)*
denote the secrets to be shared. For T € T, r € [{], and j € [m], let yj(r% denote the CNF

shares of xj(.r), S0 ;UJ@ =>r yJ(Z)T Thus, for each i € [£] the function we would like to recover is

d
FxD) = 3" T o (1)

TeT? k=1

Let y; denote the set of CNF shares that server j holds: y; = (y,(:)T cked,TeT,ie€
[0, ¢ T). We will treat y; as tuples of formal variables.
Next, we define the following classes of monomials, in the variables yJ(Z)T Let

M= { vk, s TeThie ).

Given a server j € [s], let

M; = yﬁ)nyéf)n“-yg)n eM:TeThicll,j¢ |J T
keld]

That is, M is the subset of M locally computable by server j.
The function Eval(f, j,y;) that determines server j’s output shares will be defined by a

sequence of n; = |[£7!(j)| polynomials of degree d, constructed from the monomials in M.

To that end, we will define a vector of variables e € ]FZTE["I IM“”', indexed by pairs (r, x)

for x € Mg(y. The vector e will encode the function Eval as follows. For each r € [n], we
define z, = z.(yz(r)) to be the polynomial in the variables y(,) given by

2(yem) = Y. ey X(yem)- (2)
XEM L (r)

Then we define Eval by
Eval(f,j,y;) = (2 (y;) : 7 € £L71(5)) € F™

for each server j € [s].

Now we will set up our system to solve for the coefficients in e, which will define Eval as
above. Define the matrix S € FZ‘M‘XZ*G["I Mol a5 follows.

The rows of S are indexed by pairs (i, m) € [(] x M.

The columns of S are indexed by pairs (r, x) for r € [s] and x € M,..

The entry of S indexed by (i, m) and (r, x) is given by:

SWmunm={q“ﬂm:X.

0 else

Define a vector g € F¥M so that the coordinates of g are indexed by pairs (i, m) € [¢] x M,
so that

0 else

gl(i,m)] = {
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Pi(m) =

1 mis of the form szl y,(;)Tk for some T € T4
0 else

Notice that (1) implies that for i € [¢],

d
L) = 3" T uin = > wi(m) - m(y). (3)

TeTd k=1 meMm

In the full version [6], we show formally that the HSS that we have just constructed is
correct. That is, we prove the following claim.

> Claim 28. Suppose that S -e = g. Then the HSS scheme 7 = (Share, Eval, Rec), where
Share and Rec are as above, and Eval is defined by e as above, is correct. (That is, it satisfies
the Correctness property in Definition 8).

Given Claim 28, we now only need to show that we can find a vector e so that S-e =g. To
do this, we show in the full version [6] that the matrix S has full row rank, and in particular
we can solve the above affine system. Formally, we have the following claim.

> Claim 29. Let S be as above. Then S has full row rank.

Claim 28 says that any e so that S -e = g corresponds to a correct Eval function (with
Share and Rec as given above), and Claim 29 implies that we can find such an e efficiently.
Thus we can efficiently find a description of m = (Share, Eval, Rec). It remains to verify that
DownloadRate(w) > (s — dt)/s, which follows from construction, as the download rate of 7 is
equal to the rate of C, which is by definition (s — dt)/s. <

4 Linear Codes with Good Labelweight

Now that we know that download-optimal linear HSS schemes are equivalent to linear codes
with good labelweight, we focus on constructions and limitations of such codes. In this
section we give a construction, and a nearly-matching infeasibility result. We begin by stating
the constructive result, which as noted in the Introduction is a very slight improvement over
the construction in [22].

» Theorem 30 (Construction of linear codes with good labelweight). Let F be a finite field of
size q. Let s,d,t € ZT such that s — dt > 0. For all integers

. log,(s — 1) ¢’ odd, or (s —dt) & {3,¢° — 1}
J = log, (s —2) ¢’ even, and (s —dt) € {3,¢ — 1} )

there is an explicit construction of a linear code C C FI¢ of dimension j(s—dt), and a labeling
L:[js] — [s] such that Ag(C) > dt + 1.

The following theorem says that Theorem 30 is basically optimal, in that we cannot take
j to be substantially smaller:

» Theorem 31 (Limitations on linear codes with good labelweight). Let F be a finite field
of size q. Let s,d,t € ZT such that s — dt > 0. Suppose that there is a code C C F™ with
dimension £ and rate (s — dt)/s; and a labeling function L : [n] — [s] so that Ag(C) > dt + 1.
Suppose that j is such that £ = j(s — dt) and n = js. Then j is an integer, and

j > [max {log, (s — dt 4 1),log,(dt + 1) }].
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» Remark 32 (Gap between upper and lower bounds on j.). As discussed in the Introduction,
Theorem 31 and Theorem 30 do not quite match. However, because 7 must be an integer, in
fact the bounds are exactly the same for many parameter settings, especially when ¢ is large.
We also remark that, when Theorems 31 and 30 disagree, we conjecture that the con-
struction (Theorem 30) is the correct one. Indeed, our construction in Theorem 30 follows
from “puffing up” a totally nonsingular (TN) matrix; the value of the parameter j has to
do with the field size over which this TN matrix is defined. In fact, assuming the MDS
conjecture for extension fields, the field size that we use in our construction — and hence
the value of j — is the best possible; see [6] for details. Thus, if Theorem 30 is not optimal,
either the MDS conjecture is false over extension fields, or else there is an alternate way to
construct Block TN matrices without going through TN matrices over larger fields.

Given Lemma 23 and Theorem 27, Theorems 30 and 31 immediately imply the following
corollary about linear HSS schemes.

» Corollary 33 (Classification of Amortization Parameter for Linear HSS Schemes). Let
s,d,t,m, £ be positive integers, so that m > d.

Let m = (Share, Eval,Rec) be a linear HSS scheme for some nontrivial (Definition 14)
function class F C POLY g, (F), with download rate (s —dt)/s. Then £ = j(s —dt) for some
integer j that satisfies

j > max{[log,(s — dt +1)], [log,(dt + 1)]}.

Conversely, let j be any integer so that j is as in Theorem 30. Then there are explicit
constructions of linear HSS schemes for any F C POLY 4 ,,,(F) with download rate (s —dt)/s
and amortization parameter £ = j(s — dt).

» Remark 34. As in Remark 32, we observe that the bounds are quite close. Indeed, for any
setting of parameters, there is at most one value of ¢ (namely, £ = j(s — dt) for one particular
integer j) for which we do not know whether or not there exists a download-optimal linear
HSS scheme for POLY 4, (F)¢. Moreover, for many parameter settings (especially when g is
large), the bounds exactly match.

We prove Theorems 30 and 31 in the full version of the paper [6] However, in this extended
abstract, we do state Lemma 36, which is the technical meat of the proofs. This lemma
characterizes codes of high labelweight in terms of block totally nonsingular matrices, which
we informally defined in the Introduction and which we formally define in Definition 35 below.
Theorems 30 and 31 then follow from an analysis of block totally nonsingular matrices.

4.1 Block Totally-Nonsingular Matrices

We say that a matrix A is totally nonsingular if any square sub-matrix of A (not necessarily
contiguous) is nonsingular [23]. We extend the definition of total nonsingularity to block
matrices as follows.

» Definition 35 (Block Totally-Nonsingular Matrices). Let F be a finite field, and fix integers
jyru. Let A =[A; : i€ [r],k € [u]] € (GL(F, 7)) be ar xu block array of invertible
J x j matrices A; . We say that A is Block Totally Nonsingular (Block TN) if every square
sub-array of block matrices is full-rank. More precisely, for all S C [r] and S’ C [u] of the
same size, the matriz A’ = [A; 0 € A : i€ 8,7 € 8] € FIISXIIS'T s nonsingular.

The main technical lemma at the heart of the proofs of Theorems 30 and 31 says that
constructing codes with good labelweight is equivalent to constructing Block TN matrices:
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» Lemma 36. Let j,s,d,t be positive integers so that s > dt, and let q be a prime power.
Then the following are equivalent.
(i) There is a linear code C C FJ* with block length js and dimension j(s — dt) and a
labeling L : [js] — [s] so that As(C) > dt + 1.
(i) There exists a Block TN matriz A € GL(F,, j)s~d)xdt,

Moreover, the equivalence is constructive: if A is a Block TN matriz as in (i), then the
code C in (i) is generated by the matriz [I|A]. If C is a code as in (i), then it has a generator
matriz of the form [I|A], where A is the Block TN matrix as in (ii).

Given Lemma 36, proving Theorems 30 and 31 amounts to giving constructions of and
limitations on Block-TN matrices. Due to space limitations, we omit these analyses from
this extended abstract, and give the details in the full version [6].
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