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Abstract
Tumor recurrence, driven by the evolution of drug resistance is a major barrier to ther-
apeutic success in cancer. Tumor drug resistance is often caused by genetic alterations
such as point mutation, which refers to the modification of a single genomic base
pair, or gene amplification, which refers to the duplication of a region of DNA that
contains a gene. These mechanisms typically confer varying degrees of resistance, and
they tend to occur at vastly different frequencies. Here we investigate the dependence
of tumor recurrence dynamics on these mechanisms of resistance, using stochastic
multi-type branching process models. We derive tumor extinction probabilities and
deterministic estimates for the tumor recurrence time, defined as the time when an
initially drug sensitive tumor surpasses its original size after developing resistance.
For models of amplification-driven and mutation-driven resistance, we prove law of
large numbers results regarding the convergence of the stochastic recurrence times to
their mean. Additionally, we prove sufficient and necessary conditions for a tumor to
escape extinction under the gene amplification model, discuss behavior under biolog-
ically relevant parameters, and compare the recurrence time and tumor composition
in the mutation and amplification models both analytically and using simulations. In
comparing these mechanisms, we find that the ratio between recurrence times driven
by amplification versus mutation depends linearly on the number of amplification
events required to acquire the same degree of resistance as a mutation event, and we
find that the relative frequency of amplification and mutation events plays a key role
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in determining the mechanism under which recurrence is more rapid for any specific
system. In the amplification-driven resistance model, we also observe that increas-
ing drug concentration leads to a stronger initial reduction in tumor burden, but that
the eventual recurrent tumor population is less heterogeneous, more aggressive and
harbors higher levels of drug-resistance.

Keywords Cancer evolution · Branching processes · Drug resistance · Point
mutation · Gene amplification

Mathematics Subject Classification 60 Probability Theory and Stochastic Processes ·
92 Biology and other natural sciences

1 Introduction

The emergence of drug-resistance is the principal cause of treatment failure in can-
cer. Drug resistance and the loss of effective treatment options is responsible for
up to 90% of cancer death (Wang et al. 2019). For example, in non-small cell lung
cancer (NSCLC), while many patients initially respond positively to treatment, 30–
55% of those patients eventually experience recurrence (Uramoto and Tanaka 2014).
Molecularly-targeted therapies are particularly vulnerable to the development of resis-
tance due to their focused action on specific mutable targets (Huang et al. 2014).
Tumors can acquire drug resistance via a variety of genetic and epigenetic mech-
anisms, including point mutation, gene amplification, and upregulated drug efflux
(Housman et al. 2014).

In this work we examine two common mechanisms of drug-resistance—point
mutations and gene amplification processes. Point mutation refers to a modification,
addition or deletion of a single base pair within the genome, while gene amplification
refers to the duplication of a region of DNA containing a gene. In Epidermal Growth
Factor Receptor (EGFR)-drivenNSCLC, for example, two of themost commonmech-
anisms of resistance to targeted EFGR inhibitors, such as erlotinib and gefitinib, are
a T790M point mutation (which alters the binding site of the drug) and amplifica-
tion of the MET gene (which upregulates an alternate signaling pathway) (Tang et al.
2013; Bean et al. 2007). Similarly, in chronic myeloid leukemia (CML), resistance to
imatinib can arise fromeither the amplificationof oncogeneBCR-ABLor a pointmuta-
tion in the target binding site (Komarova and Wodarz 2005). A review by Albertson
(2006) provides additional examples of drug resistance arising from gene amplifica-
tion, such as DHFR amplification in response to methotrexate in leukemia patients and
TYMS amplification in response to 5-fluorouracil in colorectal cancer patients. The
frequencies of gene amplication and point mutation events can differ by several orders
of magnitude, with amplification events often occurring more frequently than point
mutation (Tlsty et al. 1989). On the other hand, individual amplification events may
confer weaker drug resistance effects than rare point mutation events which accumu-
late as copy number increases; these interesting disparities can result in distinct tumor
recurrence timing and population dynamics. Developing an understanding of how
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resistance mechanisms influence recurrence dynamics provides critical insights into
prognosis for treatment response as well as treatment strategies for recurrent tumors.

To investigate these phenomena, we define and analyze branching process models
of drug resistance acquisition occurring through the mechanisms of point mutation
and gene amplification. Using these models, we investigate how these mechanisms
influence the tumor recurrence time, which refers to the time at which an initially
drug-sensitive tumor population rebounds to its initial size due to the outgrowth of
resistant clones, as well as the composition of recurrent tumors. Accurate estimates
of recurrence times may help physicians schedule surgical interventions and improve
understanding of optimal control of combination therapy. Furthermore, understanding
how these mechanisms influence the tumor composition at recurrence, i.e. the propor-
tion of drug resistant and drug sensitive cells, could help inform physicians about how
aggressive the tumor will be when it reaches its original size.

There have been many previous works analyzing mathematical models of point
mutation-driven drug resistance in tumors. For example, Tomasetti and Levy (2010)
used ODEs to characterize the average number of resistant cells that arise from point
mutations at any given time after treatment and generalize their results to the multi-
drug case.Works by Iwasa et al. (2006), Komarova (2006), and Komarova andWodarz
(2005) study the multi-drug point mutation scenario as well, but characterized the
probability of developing drug resistance under stochastic branching process models.
Hanagal et al. (2022) study recurrence time in a similar gene mutation model but
do not examine recurrence in the amplification model. In our previous works, we
developed a similar branching process modeling approach to study the stochastic time
at which the resistant cell population first begins to dominate the tumor (Foo and Leder
2013; Foo et al. 2014). However, these works have not typically explored the tumor
recurrence time. On the other hand, mathematical models of gene amplificaton-driven
resistance are somewhat less well-explored in the literature. Works by Kimmel and
Axelrod (1990) and Kimmel et al. (1992) and others detailed in a review by Swierniak
et al. (2009) use stochastic branching processes to model gene amplification. These
works focus on the distribution and dynamics of gene copy numbers under different
regimes, rather than on tumor recurrence or extinction; in this work we build upon
these existing contributions.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the
models for both point mutation and gene amplification. In Sect. 3, we explore suf-
ficient and necessary conditions for non-extinction of the process and analyze the
tumor recurrence time in both models. Theorem 1 gives a law of large numbers result
regarding the convergence of the stochastic recurrence time in the gene amplification
model, and Theorem 2 gives the analogous result in the point mutation model.We then
examine the effect of drug efficacy on the recurrence time in the amplification model
through simulations. Furthermore, we make comparisons between amplification and
mutation-driven tumor recurrence timing and composition under biologically relevant
parameters. Our results allow us to use the net growth rates, amplification andmutation
rates, and other parameters defined in detail in Sect. 2 to characterize the ratio between
the estimated recurrence times in the gene amplification and point mutation models.
In Sect. 4, we discuss our results and how they can potentially be used for parameter
inference, as well as limitations and possible extensions of the models. In Sect. 5, we
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provide proofs of the main results. Because a typical solid tumor has between 107 and
109 cancer cells per cubic centimeter (Michaelson et al. 1999), we focus on character-
izing the tumor recurrence time in the large population limit. Throughout the paper, we
use the following standard Landau notation for asymptotic behavior of non-negative
functions:

f (t) ∼ g(t) if f (t)/g(t) → 1 as t → ∞.

2 Models and Preliminaries

In this section we introduce mathematical models of tumor populations, under contin-
uous therapy, acquiring resistance via point mutation and gene amplification. In both
models, we start with an initial population of n drug-sensitive cells and zero resistant
cells at time t = 0. The population Xs(t) of sensitive cells is modeled using a sub-
critical Markovian branching process that declines during treatment with birth rate rs ,
death rate ds , and net growth rate λs = rs − ds < 0. Note that a birth rate of rs , for
example, indicates that in an infinitesimal time interval "t , the probability of a cell
division is "rs . Since λs < 0, the sensitive cell population goes extinct with proba-
bility 1, unless resistant cells are produced that ‘save’ the population from extinction.
Throughout, we consider these processes on the approximate time scale of extinction
of the sensitive cell process, tn = − 1

λs
log n. In the following sections we describe

models and analyze recurrence timing for two mechanisms of resistance production:
point mutation (Fig. 1) and genetic amplification (Fig. 2).

2.1 Mutationmodel

We first consider the scenario in which mutations occur at rate µn Xs(t), where
µn = n−α for 0 < α < 1. With this formulation, taking a limit as n → ∞ simul-
taneously sends µn → 0, which achieves the large population, small mutation rate
asymptotic regime in which the model is biologically relevant. Each mutant cell gives
rise to a supercritical Markovian branching process with birth rate rm , death rate dm ,
and net growth rate λm = rm −dm > 0. The total population of mutant cells is denoted
by Xm(t). In the following, all probability and expectation operators are conditioned
on the initial conditions Xs(0) = n and Xm(0) = 0. Lastly, we note that in this model
formulation, mutations occur throughout the life cycle of the cell and are not specifi-
cally restricted to arise during cellular division; this assumption is made for notational
convenience but the model can be easily restricted to this setting by multiplying the

Fig. 1 Schematic of the gene
mutation model. Sensitive type s
cells have birth rate rs , death rate
ds , and can give rise to a mutated
type m cell with birth rate rm
and death rate dm at rate µn
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Fig. 2 Schematic of the gene amplification model for M = 7. Type k cells have birth rate rk , death rate dk
and can give rise to a type k + 1 cell at rate νn

mutation rate by the cellular birth rate. A more detailed explanation of this adjustment
is available in “Appendix 5.1”.

Using the transition probabilities of these processes together with their moment
generating functions, we derive a system of ODE’s governing the first and second
moments, which we then use to calculate the mean and variance of Xs(t) and Xm(t).

Lemma 1 For i = s,m, let φi (t) = E[Xi (t)] and let ψi (t) = Var[Xi (t)]. Then for a
fixed z > 0, we have:

φs(ztn) = n1−z,

φm(ztn) =
n1−α

λm − λs

(
n−λmz/λs − n−z) ,

ψs(ztn) = n1−z
(
rs + ds
−λs

) (
1 − n−z) ,

ψm(ztn) ∼ 2rm
λm(2λm − λs)

· n1−α−2λmz/λs .

A proof of this lemma can be found in “Appendix 5.2”.

2.2 Amplificationmodel

In the amplification model, we assume that sensitive cells each have two copies of the
specific gene whose amplification is associated with drug resistance. For this reason
and for ease of notation, let a subscript of s be equivalent to a subscript of 2. Say type
k cells have k gene copies and M is the maximum number of gene copies a cell can
have. Let Xk(t), k = 2, 3, 4, . . . ,M , represent the population of type k cells with birth
rate rk , death rate dk , and net growth rate λk = rk − dk . We assume that the wild-type
cells are drug sensitive, that is, λ2 < 0. In this model, a type k − 1 cell may gain a
single gene copy, giving rise to a new type k cell. With each additional gene copy,
cells gain a fitness advantage, reaching a maximum of λM , which we will assume to
be positive. More specifically we define
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λk = λ2 + (k − 2)D, D = λM − λ2

M − 2
.

Let k′ be the smallest k for which λk > 0. These amplification steps occur at rate
νn Xk−1(t), where νn = n−β for 0 < β < 1

k′−2 . As in the mutation model, we
allow amplification events to occur at any time for notational convenience. Notice
that as β increases, the mutation rate νn = n−β decreases. In particular, when β

is large, the mutation rate may decrease to the point where very few mutations are
actually generated, resulting in the entire population of cancer cells dying out before
a resistant clone becomes established and hence preventing recurrence altogether. In
Proposition 1 below,wewill establish that this bound onβ is necessary and sufficient to
guarantee survival in the large population limit. However, for the sake of convenience,
the results in Sect. 3.2 will focus on the case where β < 1

M−2 .
We have already seen the formula for the mean of the sensitive cells in the previous

section. Now we examine the means of the other populations.

Lemma 2 For k = 3, 4, . . . ,M,

E[Xk(t)] = n1−(k−2)β(−1)k Sk(t),

where

Sk(t) =
k∑

i=2

eλi t

Pi,k
, Pi,k =

k∏

j=2, j &=i

(λ j − λi ).

An inductive proof of this lemma can be found in “Appendix 5.3”. The proof uses
the observation that for ( = 3, 4, . . . ,M , the means satisfy the following ordinary
differential equation:

d
dt

E[X((t)] = λkE[X((t)] + n−βE[X(−1(t)].

For k = 2, 3, . . . ,M let φk(t) = E[Xk(t)]. We already have that φ2(t) = φs(t). For
k = 3, 4, . . . ,M

φk(ztn) =
(−1)k

Dk−2 n
1−(k−2)β S̃k(z),

where

S̃k(z) =
k∑

i=2

n−λi z/λ2

P̃i,k
, P̃i,k =

k∏

j=2, j &=i

( j − i).

Note that for fixed z and n sufficiently large,

max
2≤k≤M

φk(ztn) ∈ {φ2(ztn),φM (ztn)}.
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This is because φ2(ztn) = n1−z and for large n, φk(ztn) has largest degree
n1−(k−2)β−λk z/λ2 . Since λM > 0 > λ2 and λM is the largest net growth rate, the
maximum will be φM (ztn) if z >

β(k−2)
1−λM/λ2

and φ2(ztn) otherwise.

3 Results

3.1 Conditions for tumor escape via amplification-driven resistance

We now present sufficient and necessary conditions for a tumor in the gene amplifica-
tion model to escape extinction and achieve recurrence. Recall that the amplification
rate is νn = n−β . As such, a threshold on β is necessary to control the fluctuations
between the cell populations and their means and to guarantee survival in the large
population limit.

Fix the initial population size n. Define sn,k to be the extinction probability of the
lineage generated by a single type k cell with birth rate rk , death rate dk , and mutation
rate νn = n−β , as defined above for our gene amplification model. That is, sn,k is the
probability that the original cell and all of its descendants eventually become extinct.
Then we can write the extinction probability of the entire process starting with n type
2 cells as qn = (sn,2)n because individual cells behave independently. Recall that k′

is the first k for which the type k cells are supercritical, that is rk > dk . The following
proposition relates the probability of extinction in the large population limit to β and
k′.

Proposition 1 Let q = limn→∞ qn be the extinction probability of the gene amplifi-
cation process in the large population limit. Then

q =






0 if 0 < β < 1
k′−2 ,

exp

(

− 1 − dk′/rk′
∏k′−1

i=2 di − ri

)

if β = 1
k′−2 ,

1 if β > 1
k′−2 .

A complete proof of this proposition is given in “Appendix 5.4”. However, a sketch
of the proof is as follows: By Theorem 2.1 of Hautphenne et al. (2013), we know that
for 2 ≤ k ≤ M , sn,k is the minimal non-negative solution to

sn,k =






rk
rk + dk + νn

(sn,k)2 +
dk

rk + dk + νn
+ νn

rk + dk + νn
sn,ksn,k+1 if 2 ≤ k < M,

rM
rM + dM

(sn,M )2 + dM
rM + dM

if k = M .

Intuitively, these equations represent conditioning on whether the next event is a birth,
death, or amplification. By induction, we can establish that if ( = k′ − k,
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sn,k =






dk
rk

+ O(νn) if k′ ≤ k ≤ M,

1 − 1 − dk′/rk′
∏k′−1

i=k di − ri
ν(
n + O(ν(+1

n ) if 2 < k < k′.

Then taking q = limn qn = limn(sn,2)n and using that νn = n−β produces our desired
result. In fact, we also prove that the same result holds for extinction under a variation
of the model where amplification can happen at any point during the cell cycle.

This result guarantees the survival of the process in the large population limit when
0 < β < 1

k′−2 and guarantees its extinctionwhenβ > 1
k′−2 . Note that this bound relies

on k′ and not M , since the key to survival is producing a population of supercritical
cells before the entire tumor becomes extinct. This result can also be applied to the
gene mutation model and justifies bounding 0 < α < 1 to guarantee survival of the
process.

3.2 Recurrence time in gene amplificationmodel

To compare the resistance mechanisms, we analyze the tumor recurrence time in both
models. Tumor recurrence time is defined intuitively as the amount of time it takes
from the beginning of treatment until the total number of cancer cells surpasses the
initial population size n, neglecting possible brief instances of this early on due to the
stochasticity of the processes. A more precise mathematical definition of recurrence
time will be given below.

Let

−λ2β(M − 2)
λM − λ2

< d <
−λ2β(M − 2)

λM
. (1)

Wewill prove that, with high probability, for sufficiently large n there are no permanent
recurrence events in the time interval [0, dtn]. In other words, either the number of
cancer cells does not surpass n during this time or it surpasses n only briefly before
subsequently falling to n or lower once again. To show this, we prove that for n large,
with high probability the total number of cancer cells does not exceed n at time dtn .

Lemma 3

lim
n→∞P

(
M∑

k=2

Xk(dtn) − n ≤ 0

)

= 1.

As a sketch of the proof, note that

P
(

M∑

k=2

Xk(dtn) − n > 0

)

= P
(

M∑

k=2

Âk(n)+ Âφ(n) > 0

)

,
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where

Âk(n) = nβ(M−2)+λMd/λ2−1 (Xk(dtn) − φk(dtn)) ,

Âφ(n) = nβ(M−2)+λMd/λ2−1

(
M∑

k=2

φk(dtn) − n

)

.

We can then show that
∣∣∣ Âk(n)

∣∣∣ converges to zero in probability using Proposition 3

below and that Âφ(n) is negative in the large population limit, which suffices to
complete the proof. A full proof of this result can be found in “Appendix 5.8”. Then
for sufficiently large n, the total number of cancer cells is less than or equal to n at
time dtn with high probability, implying that permanent recurrence occurs at time dtn
or later.

Definition 1 Define the recurrence time in the gene amplification model as

ωn = inf

{

t ≥ dtn :
M∑

k=2

Xk(t) > n

}

.

We restrict to t ≥ dtn in order to ignore any initial fluctuations that may temporarily
bring the total population above n.

To obtain an estimate of the stochastic recurrence time, we start with the following
proposition.

Proposition 2 There exists a unique ṽn > 0 satisfying
∑M

k=2 φk(ṽntn) = n. Moreover,
bn < ṽn < Bn where:

bn = 1
λM

[

−λ2β(M − 2) − 1
tn

log

[
(−1)M

DM−2 P̃M,M

(
1 − λM

λ2

)]]

,

Bn = 1
λM

[

−λ2β(M − 2) − 1
tn

log

[
(−1)M

DM−2 P̃M,M

]]

.

Hence ṽn → − λ2
λM

β(M − 2) as n → ∞.

The idea behind the proof of this proposition is to define f̂n(z) =
∑M

k=2 φk(ztn)−n.
We can find its critical points and show that f̂n(bn) < 0 < f̂n(Bn). From this, we
can show that there exists a unique ṽn > 0 with f̂n(ṽn) = 0 and that ṽn ∈ (bn, Bn).
Finally, since bn → − λ2

λM
β(M − 2) and Bn → − λ2

λM
β(M − 2), we can conclude that

ṽn → − λ2
λM

β(M − 2) as n → ∞ as well. A full proof of this result can be found in
“Appendix 5.9”.

For ease of notation, let vn = ṽntn represent our estimate of the tumor recurrence
time. Given ε > 0, define

v−
n (ε) =

vn − ε

tn
, v+n (ε) =

vn + ε

tn
.
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Fig. 3 a An example simulation of a tumor under the gene mutation model with n = 105, α = 0.5, rs = 1,
rm = 2 and ds = dm = 1.5. b An example simulation of a tumor under the gene amplification model with
M = 7, n = 105, β = 0.1, and birth rates ranging from r2 = 1.0 to r7 = 2.0 and uniform death rates of
dk = 1.5

Recall also that we assume β < 1
M−2 .

We will now state a proposition pertaining to the fluctuations of these populations
about their means.

Proposition 3 For δ > 0 and 2 ≤ k ≤ M,

lim
n→∞P

(

sup
z∈[d,v+n (ε)]

nβ(M−2)+λMz/λ2−1 |Xk(ztn) − φk(ztn)| > δ

)

= 0.

The proof of this proposition can be found in “Appendix 5.11”.
We now state our main law of large numbers result regarding the convergence of

the stochastic recurrence time in the gene amplification model:

Theorem 1 For all ε > 0,

lim
n→∞P (|ωn − vn| > ε) = 0.

In other words, the difference between the stochastic recurrence time and its estimate
converges to 0 in probability as n → ∞. Recall that vn = ṽntn and ṽn → − λ2

λM
β(M−

2) as n → ∞ by Proposition 2. So in the large population limit, the recurrence time is
not influenced by the birth and death rates directly. Instead, the estimate depends on
just the net growth rates λ2 and λM (which also determine the net growth rates λk for
2 < k < M), β, and M .

In order to show the desired result, we must show

lim
n→∞P(ωn > vn + ε)+ lim

n→∞P(ωn < vn − ε) = 0.
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We can observe that

P(ωn < vn − ε) ≤ P
(

sup
z∈[d,v−

n (ε)]

(
M∑

k=2

Xk(ztn) − n

)

> 0

)

= P
(

sup
z∈[d,v−

n (ε)]
nβ(M−2)+λMz/λ2−1

(
M∑

k=2

Xk(ztn)+
M∑

k=2

φk(ztn)

−
M∑

k=2

φk(ztn) − n

)

> 0

)

≤ P
(

M∑

k=2

B̂k(n, ε)+ B̂φ(n, ε) > 0

)

,

where

B̂k(n, ε) = sup
z∈[d,v−

n (ε)]
nβ(M−2)+λMz/λ2−1 (Xk(ztn) − φk(ztn)) ,

B̂φ(n, ε) = sup
z∈[d,v−

n (ε)]
nβ(M−2)+λMz/λ2−1

(
M∑

k=2

φk(ztn) − n

)

.

Using Proposition 3, we can show that the B̂k(n, ε)’s converge to zero in prob-
ability. Then it suffices to show that B̂φ(n, ε) is negative in the large popu-
lation limit. This can be done by examining the critical points of ĝn(z) =
nβ(M−2)+λMz/λ2−1

(∑M
k=2 φk(ztn) − n

)
. A complete proof of this theorem can be

found in “Appendix 5.10”.

3.3 Recurrence time in genemutationmodel

Results analogous to those presented above for the gene amplification model also exist
for the gene mutation model. In fact, some of the results are almost direct corollaries
of the results from the gene amplification model in the case where M = 3. However,
there is a slight difference in the definition of the recurrence time in this context, which
we will give below. As such, full proofs of the following results are available in the
“Appendix” for the sake of both completeness and illumination.

Let

c = αλs(λs − 2λm)
2λm(λm − λs)

.

The following lemma is analogous to Lemma 3 for the gene amplification model
and shows that with high probability there are no permanent recurrence events in the
interval [0, ctn].
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Lemma 4

lim
n→∞P (Xs(ctn)+ Xm(ctn) − n ≤ 0) = 1.

Definition 2 Define the recurrence time in the gene mutation model as

τn = inf{t ≥ ctn : Xs(t)+ Xm(t) > n}.

As in the gene amplification model, we restrict t in order to ignore any initial fluctua-
tions that may temporarily bring the total population above n.

Proposition 4 There exists a unique ũn > 0 satisfying φs(ũntn) + φm(ũntn) = n.
Moreover, an < ũn < An where:

an = 1
λm

(
−λsα + 1

tn
log (−λs)

)
,

An = 1
λm

(
−λsα + 1

tn
log (λm − λs)

)
.

Hence ũn → − λs
λm

α as n → ∞.

For ease of notation, let un = ũntn represent our estimate of the tumor recurrence
time. Given ε > 0, define

u−
n (ε) =

un − ε

tn
, u+n (ε) =

un + ε

tn
.

Proposition 5 For δ > 0 and i ∈ {s,m},

lim
n→∞P

(

sup
z∈[c,u+n (ε)]

nα+λmz/λs−1 |Xi (ztn) − φi (ztn)| > δ

)

= 0.

We now state our main law of large numbers result regarding the convergence of
the stochastic recurrence time in the gene mutation model:

Theorem 2 For all ε > 0,

lim
n→∞P (|τn − un| > ε) = 0.

In otherwords, the differencebetween the stochastic recurrence timeand its estimate
converges to 0 in probability as n → ∞ in the gene mutation model as well. Recall
that un = ũntn and ũn → − λs

λm
α as n → ∞.
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3.4 Model comparisons and simulations

Recurrence timecomparison.Wefirst compare recurrence estimates under the ampli-
fication and mutation models using our analytic results. Consider the ratio between
the estimated recurrence times − λ2

λM
β(M − 2) and − λs

λm
α, given by Proposition 2 and

Proposition 4 respectively. This ratio will be denoted v/u and can be simplified to

v/u =
− λ2

λM
β(M − 2)

− λs
λm

α
= λm

λM
· β(M − 2)

α
,

because we assume λ2 = λs .
We first consider the case where λM = λm , which represents the scenario where

amplification and mutation can eventually confer the same degree of resistance. In
the amplification model resistance is attained incrementally, whereas in the mutation
model resistance is attained in a single step. For example, Fig. 3 shows a simulation
under the gene mutation model with λs = −0.5 and λm = 0.5 and a simulation under
the gene amplification model with M = 7 and λk ∈ [−0.5, 0.5]. If λM = λm , then
v/u = β(M−2)

α , so the ratio between the amplification and mutation-driven recurrence
times increases linearly with M and the amplification parameter β. This agrees with
intuition that acquiring resistance more gradually (either via more steps or a lower
amplification rate) leads to longer times to recurrence than acquiring resistance via
mutation.However, typically amplification events occurmore frequently thanmutation
events so the ratio of the rates β/α plays a key role in determining the mechanism
under which recurrence is more rapid for any specific system.

Next consider the case where λk = λm for some fixed k < M . This would repre-
sent a scenario where cells have the possibility of increased fitness through continued
amplification relative to mutation. That is, k amplified copies is enough to have
acquired the same fitness as a mutated cell, but increasing beyond k copies allows
the cell to achieve net growth rates greater than that of mutated cells. In this scenario,
λM = λk−λ2

k−2 (M − 2)+ λ2, so

v/u = β(M − 2)
α

· λm
λk−λ2
k−2 (M − 2)+ λ2

= β

α
· λm(k − 2)
λm − λ2 + (k − 2)λ2/(M − 2)

.

Since λ2 < 0, notice that (k − 2)λ2/(M − 2) < 0 so v/u is bounded below as M
increases. This means that even if cells can acquire higher net growth rates through
continued amplification, the time it takes to accumulate the mutations is enough to
prevent recurrence before the given bound. In other words, the potential for increased
fitness through continued amplification has diminishing returns on the recurrence time.
This is a useful observation becauseM may be unknown in practice. It may be difficult
or impossible to determine whether the largest empirically observed copy number is
truly the maximum copy number possible. This observation means that even if there
is a gap between the true value of M and what is observed, the effect it will have on
the estimated recurrence time is limited by this bound.
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Non-small cell lung cancer (NSCLC) example. In NSCLC, bothMET amplification
and T790M mutation have been recognized as mechanisms of acquiring resistance
to EFGR inhibitors such as gefitinib and erlotinib (Bean et al. 2007). We estimate
n = 1010 as typical solid tumors have between 107 and 109 cells per cubic centimeter
(Michaelson et al. 1999). For a given locus, amplification rates have been estimated
to be to 10−3 or 10−4 events per division (Stark and Wahl 1984; Tlsty et al. 1989)
while mutation rates are estimated to be on the order of 10−10 events per division
(Brown et al. 2014). Solving for β,α from νn = n−β and µn = n−α , respectively,
yields an estimate of β = 0.3 and α = 1. In a comparison of gefitinib resistance
in non-small cell lung cancer arising from T790M point mutation and from MET
amplification, Engelman et al. (2007) observed that MET was amplified by a factor of
5 to 10 in resistant cells, so we can estimate 5 ≤ M ≤ 10. In a comparison of erlotinib
resistance driven by T790M mutation and MET amplification, Mumenthaler et al.
(2015) observed similar levels of amplification and documented the net growth rates
of amplified and mutated cells at various drug concentrations. From their data, we can
estimate 0.8 ≤ λm

λM
≤ 0.90 for concentrations of erlotinib up to 1 micromolar. Then

all together, we can estimate 0.7 ≤ vn/un ≤ 2.2. This suggests that the recurrence
times under these two mechanisms may not be distinguishable.

Composition of recurrent tumors driven by amplification resistance mech-
anisms. Using simulations, we first examine the effect of drug concentration and
efficacy on the composition of the recurrent tumor in the amplification model. Recall
that λk is the net growth rate of the type k cells. In Fig. 4a, we consider the amplifi-
cation model with M = 7 types with birth rates rk ∈ [1.0, 2.0] and all types having
death rate dk = 1.1. This results in net growth rates λk ∈ [−0.1, 0.9] and k′ = 3 being
the first cell type to have a positive net growth rate in this scenario. We then increase
the death rates uniformly to dk = 1.5 in Fig. 4b and dk = 1.9 in Fig. 4c, decreasing
all the net growth rates by 0.2 each time, to simulate increased drug concentration
or efficacy. We observe that the minimum tumor size decreases and the composition
consists of more cells with a high number of amplified copies. Moreover, we observe
that increasing the dk’s results in a decrease in heterogeneity. In Fig.4a, all cell types
are present at recurrence. In Fig. 4b, the majority of the cells at recurrence are type 7
and less than 5% of the cells are of type 2, 3, or 4. In Fig. 4c, all the cells are type 7 at
recurrence.

Overall, we observe that increasing drug concentration, in the amplification-driven
resistance model, leads to a stronger initial reduction in tumor burden, but that the
eventual recurrent tumor population is less heterogeneous, more aggressive and har-
bors high levels of drug-resistance. To explain this, we note that decreasing the net
growth rates λk has a two-fold effect. First, the tumor size will decrease more quickly
before it reaches its minimum size and increase more slowly afterwards because the
negative growth rates will be amplified in magnitude while the positive growth rates
will decrease inmagnitude. Second, k′, the number of gene copies necessary to become
supercritical, may increase depending on the size of the shift. That is, a sensitive tumor
cell may need to undergo more amplification events to have a positive net growth rate.
This would increase the time it takes for the overall tumor size to increase as the tumor
has to “wait" longer for more amplifications to occur. Together these two effects result
in the tumor having a smaller minimum size and an increased number of gene copies at
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recurrence. Additionally, the heterogeneity of the tumor at recurrence will decrease as
k′ increases as fewer cell types will have sufficient drug resistance to maintain growth.
However, the extinction results given in Proposition 1 mean that if it is still the case
that λM > 0 and the amplification parameter β < 1

k′−2 , tumor survival and recurrence
will not be prevented.

The previous observations about the minimum tumor size and tumor composition
may prompt the question: “Can minimum tumor size be used to predict tumor com-
position at recurrence?" Unfortunately, it cannot, as shown by the example in Fig. 5.
We begin with the same initial scenario as in Fig. 4a and decrease the amplification
rate νn = n−β by increasing β. This also results in a smaller minimum tumor size and
decreased heterogeneity. However, in contrast to the effect of increasing the death rates
dk , increasing β results in an increased proportion of cells with low copy numbers. The
increase in β decreases the amplification rate so the time at which the tumor is able
to achieve growth again is delayed, resulting in a smaller minimum tumor size. When
the tumor develops drug resistant cells, the regrowth generated happens “faster" than
the amplification events so recurrence happens before the tumor is fully amplified.

4 Discussion

In this work, we have defined two branching process models that represent drug resis-
tance arising from gene mutation, a single event that allows subcritical cells to become
supercritical, and gene amplification, which allows cells to gain resistance through
multiple incremental amplification events. For each model, we derived the mean of
each cell type and established necessary and sufficient conditions for non-extinction of
the processes in the large population limit. The extinction result for the gene amplifica-
tion process establishes the importance of the relationship between the amplification
parameter β and k′, the number of gene copies necessary for a cell to become super-
critical. Furthermore, since the result is independent of the net growth rates beyond
the assumption that λM > 0, non-extinction is still guaranteed in the large population
limit in exceedingly unfavorable scenarios such as λM being very small and k′ being
very large, as long as β < 1

k′−2 . This suggests that even drugs that are very effective
at killing sensitive cells may be unable to prevent recurrence when it is still possible
for cells to eventually become drug insensitive through amplification.

We then proved law of large numbers results regarding the convergence of the
stochastic recurrence times to their mean in both the mutation-driven resistance and
the amplification-driven resistancemodels. In particular, the estimated recurrence time
in the gene mutation model is − λs

λm
α and the estimated recurrence time in the gene

amplificationmodel is− λ2
λM

β(M−2). These results establish howdifferent parameters
of the model influence the stochastic recurrence time and could aid prediction of the
recurrence time in practice, given sufficient knowledge of the relevant parameters.

Finally,we examined the effects of various parameter regimes on tumor composition
in various simulations as well as on the estimated recurrence time in each model. In
simulations, we found that modeling increased drug efficacy by uniformly increasing
the death rates across all types caused the tumor to reach a smaller minimum size and
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Fig. 4 The composition of simulated tumors over time and at recurrence is shown for a dk = 1.1, b
dk = 1.5, and c dk = 1.9. The simulations were all conducted using the gene amplification model with
M = 7, n = 104, β = 0.1, and birth rates ranging from r2 = 1.0 to r7 = 2.0. The figures on the right show
the tumor composition at the time of recurrence
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Fig. 5 The composition of simulated tumors over time and at recurrence is shown for a β = 0.1, b β = 0.5,
and c β = 0.9. The simulations were all conducted using the gene amplification model with M = 7,
n = 104, β = 0.1, and birth rates ranging from r2 = 1.0 to r7 = 2.0. The figures on the right show the
tumor composition at the time of recurrence
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have less heterogeneity and an increased proportion of cells with high copy numbers at
recurrence. Increasing β also caused the tumor to achieve a smaller minimum size and
have less heterogeneity at recurrence. However, this was associated with a different
tumor composition at recurrence. In particular, a greater proportion of cells with low
copy numbers.An area for furtherwork is the exploration of estimates for theminimum
tumor size and the relationship between the minimum size, recurrence time, tumor
population, and tumor composition. We also compared the estimated recurrence times
under different scenarios analytically. We examined the scenario where λm = λM
to explore how taking incremental steps to achieve the same resistance affects the
estimated recurrence time. In this scenario, we established that the ratio between the
estimated recurrence time in the amplificationmodel and the estimated recurrence time
in the pointmutationmodel is β(M−2)

α .We also examined the scenariowhere continued
amplification allowed cells to potentially attainmore resistance than throughmutation.
We found that in this scenario increasing the maximum number of gene copies, M ,
had a limited effect on reducing the estimated recurrence time. Thus, our results are
somewhat robust to discrepancies between the true and observed values for M .

A limitation of this work is that many of the relevant parameters needed to estimate
the recurrence time may be difficult to attain in practice. As such, the results may have
more clinical relevance in the context of inference of the parameters of the evolutionary
processes during tumor progression. For example, consider the scenario where it is
known that a tumor has developed drug resistance through gene amplification and
the initial net growth rate of the drug sensitive cells λ2 and the gene amplification
parameter β are known. Suppose it is observed that a population of resistant cells has
emerged with net growth rate λk > 0, but that the number of gene copies k in the cells
and the maximum possible number of gene copies M are both unknown. Then it may
be possible to estimate k and M by comparing an observed recurrence time with our
estimated recurrence time. Intuitively, if k is increased, the estimated recurrence time
increases, and if M increases relative to k, the estimated recurrence time decreases to
an extent.

Another context in which inference may be possible is in the estimation of k′, the
number of amplified copies of a particular gene necessary for a tumor cell to become
supercritical in the presence of drug. For NSCLC, the number of MET amplifications
necessary to achieve resistance to tyrosine kinase inhibitors is still unknown (Kolesar
et al. 2022). Since Proposition 1 guarantees survival of the tumor when β < 1

k′−2
and guarantees extinction when β > 1

k′−2 in the large population limit, knowledge
of β in conjunction with observations of recurrence or extinction of tumors could
provide estimates of k′. Another possibility is through analysis of tumor composition
at recurrence. Changing dk , as in Fig. 4, has the effect of shifting k′. It may be possible
to exploit the relationship between k′ and tumor composition to perform inference of
k′ in practice.

As we saw in our discussion of Figs. 4 and 5, inference of tumor composition from
just the minimum tumor size is not possible in general as smaller minimum size leads
to opposite trends in the composition of the tumor in the two examples. However, it
is possible to conclude that the growth of the tumor from its minimum size until the
recurrence time consists of only treatment-insensitive cells. This could have important
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clinical implications. An area for future work is further exploration of the effect of
different parameters on the tumor composition at recurrence.

Other areas for future work include generalizations of the models to better capture
other nuances in these biological systems. For example, in the geometric amplification
model fromKimmel andAxelrod (1990), the number of gene copies doubles with each
amplification event. We could account for this by allowing the values of the step sizes
λk − λk−1 to vary rather than stay constant. Our extinction result would still hold as
it does not rely on the values of rk and dk , but other results may need to be altered.
Another extension would be to explore the behavior of the model when allowing for
multi-drug combinations, as in Tomasetti and Levy (2010), Komarova and Wodarz
(2005), and Komarova (2006), as well as periods off drug to represent drug holidays,
which are commonly used to manage toxicity. This would involve new parameters for
the growth rates off drug and could also include the potential for cells to revert their
typing and lose their resistance.We also assume that themodels aremutually exclusive
in this paper. However, work by Bean et al. (2007) shows that MET amplification
can occur alongside T790M mutation in lung tumors with resistance to gefitinib or
erlotinib. Thus, it may bemore biologically relevant to extend and combine themodels
to accommodate both point mutations and amplification events in a single model.
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5 Appendix

5.1 Restriction of mutation and amplification to cell division

To restrict mutations to arise only during cell division, let µ̃n be the probability that a
cell undergoing division produces a mutated cell. Then the rate at which mutated cells
arise in the population is rsµ̃n Xs(t). The bounds in Proposition 4 then become

an = 1
λm

(
−λsα + 1

tn
log
(−λs

rs

))
,

An = 1
λm

(
−λsα + 1

tn
log
(

λm − λs

rs

))
.

However, it is still the case that ũn → − λs
λm

α as n → ∞ so our estimated recurrence
time in the large population limit does not change and the convergence in Theorem 2
will still hold.

Similarly, to restrict amplification events to only occur during cell division, let ν̃n
be the probability that a cell undergoing division produces an amplified cell. Then the
rate at which amplified cells with k copies of the gene arise is rk−1ν̃n Xk−1(t). For the
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proof of Proposition 1, sn,k will instead be of the form

sn,k =






dk
rk

+ O(ν̃n) if k′ ≤ k ≤ M,

1 − 1 − dk′/rk′
∏k′−1

i=k di − ri




k′−1∏

i=k

ri



 ν̃(
n + O(ν̃(+1

n ) if 2 < k < k′.

Thus, we will have an extinction probability of

q = lim
n→∞

(
sn,2

)n =






0 if 0 < β < 1
k′−2 ,

exp



− 1 − dk′/rk′
∏k′−1

i=2 di − ri




k′−1∏

i=k

ri







 if β = 1
k′−2 ,

1 if β > 1
k′−2 .

That is, the only difference occurs when β = 1
k′−2 .

For Proposition 2, the bounds become

bn = 1
λM

[

−λ2β(M − 2) − 1
tn

log

[ ∏M
i=2 −ri

DM−2 P̃M,M

(
1 − λM

λ2

)]]

,

Bn = 1
λM

[

−λ2β(M − 2) − 1
tn

log

[ ∏M
i=2 −ri

DM−2 P̃M,M

]]

.

Hence we still have that ṽn → − λ2
λM

β(M − 2) as n → ∞. As in the mutation model,
our estimated recurrence time is unchanged and our convergence in Theorem 1 will
still hold as well.

5.2 Proof of lemma 1

We know that the first moment of the process generated by a single sensitive cell is
ms

1(t) = eλs t . Notice then that

φs(ztn) = nms
1(ztn) = neλs ztn = ne−z log n = n1−z .

By Equation 5 in Chapter III Part 4 of Athreya and Ney (1972), we know that the
second moment of the process generated by a single sensitive cell is given by

ms
2(t) = u′′(1)

e2λs t − eλs t

λs
+ eλs t ,
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where u(x) = ds + rs x2 − x(rs + ds). Then

Var[Xs(t)] = n
(
ms

2(t) −
(
ms

1(t)
)2) = 2nrs

e2λs t − eλs t

λs
+ neλs t − ne2λs t .

Thus,

ψs(ztn) = Var[Xs(ztn)]

= 2nrs
e2λs ztn − eλs ztn

λs
+ neλs ztn − ne2λs ztn

= 2rs
n1−2z − n1−z

λs
+ n1−z − n1−2z

= −
(
n1−z − n1−2z

)(2rs
λs

− 1
)

= n1−z(1 − n−z)
2rs − rs + ds

−λs

= n1−z rs + ds
−λs

(1 − n−z),

as desired.
By definition, E[Xm(t)] satisfies

d
dt

E[Xm(t)] = λmE[Xm(t)] + n−αE[Xs(t)],

with initial condition E[Xm(t)] = 0. Notice then that n1−α

λm−λs

(
eλmt − eλs t

)
satisfies the

differential equation and initial condition:

d
dt

[
n1−α

λm − λs

(
eλmt − eλs t

)]
= n1−α

λm − λs

(
λmeλmt − λseλs t

)

= n1−α

λm − λs

(
λmeλmt − λmeλs t

)
+ n1−α

λm − λs

(
(λm − λs)eλs t

)

= λm

(
n1−α

λm − λs

(
eλmt − eλs t

))
+ n−αE[Xs(t)].

So indeed, E[Xm(t)] = n1−α

λm−λs

(
eλmt − eλs t

)
. Thus,

φm(ztn) = E[Xm(ztn)] =
n1−α

λm − λs

(
eλmztn − eλs ztn

)
= n1−α

λm − λs

(
n− λm

λs
z − n−z

)
.

To calculate Var[Xm(t)], let B(t) represent the population size at t of a process
generated by a single resistant cell, and let N (t) be the number of resistant cells
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generated by the sensitive cells before time t . Then we have that

E[Xm(t)2 | (Xs(s))s≤t ] =
∞∑

k=0

P(N (t)

= k | (Xs(s))s≤t ) · E[Xm(t)2 | N (t) = k, (Xs(s))s≤t ]

=
∞∑

k=0

P(N (t) = k | (Xs(s))s≤t ) · E








N (t)∑

i=1

B(t − τi )




2 ∣∣∣∣ N (t) = k, (Xs(s))s≤t



 ,

where τi represents the time that the i-th resistant cell is generated. Notice that

P(N (t) = k | (Xs(s))s≤t ) =
ρke−ρ

k! ,

where ρ =
∫ t
0 Xs(s)µ ds. Let us consider the conditional expectation on its own.

Conditioned on N (t) = k, the τi ’s are distributed as order statistics of {Ti | 1 ≤ i ≤ k},
where the Ti ’s are i.i.d. random variables with PDF

f (s) = Xs(s)µn∫ t
0 Xs(s)µn ds

= 1
ρ
Xs(s)µn,

supported on s ∈ (0, t]. We have that

E








N (t)∑

i=1

B(t − τi )




2 ∣∣∣∣ N (t) = k, (Xs(s))s≤t




(d)= E




(

k∑

i=1

B(t − T(i))

)2 ∣∣∣∣(Xs(s))s≤t



 ,

and we can reorder terms as necessary and expand the square to write

E




(

k∑

i=1

B(t − Ti )

)2 ∣∣∣∣(Xs(s))s≤t



 =
k∑

i=1

E
[
B(t − Ti )2

∣∣∣∣(Xs(s))s≤t

]

+ 2
∑

1≤i< j≤k

E
[
B(t − Ti )B(t − Tj )

∣∣∣∣(Xs(s))s≤t

]
.

In particular, we have that

E[Xm (t)2 | (Xs (s))s≤t ] (d)=
∞∑

k=0

P(N (t) = k | (Xs (s))s≤t )




k∑

i=1

E
[
B(t − Ti )

2
∣∣∣∣(Xs (s))s≤t

]



+
∞∑

k=0

P(N (t) = k | (Xs (s))s≤t )



2
∑

1≤i< j≤k

E
[
B(t − Ti )B(t − Tj )

∣∣∣∣(Xs (s))s≤t

]

 . (2)
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Notice that E
[
B(t − Ti )2

∣∣∣∣(Xs(s))s≤t

]
=
∫ t
0 f (s)E

[
B(t − s)2

]
ds. Following the

process above for the sensitive process, we can get that for s ≤ t ,

E[B(t − s)2] = mB
2 (t − s) = 2rm

λm
e2λm (t−s) +

(−dm − rm
λm

)
eλm (t−s).

We have then that

E
[
B(t − Ti )2

∣∣∣∣(Xs(s))s≤t

]
=
∫ t

0

1
ρ
Xs(s)µn

(
2rm
λm

e2λm (t−s) +
(−dm − rm

λm

)
eλm (t−s)

)
ds.

Then

k∑

i=1

E
[
B(t − Ti )2

∣∣∣∣(Xs(s))s≤t

]

= k · 1
ρ

∫ t

0
Xs(s)µn

(
2rm
λm

e2λm (t−s) +
(−dm − rm

λm

)
eλm (t−s)

)
ds. (3)

Similarly, by independence

E
[
B(t − Ti )B(t − Tj )

∣∣∣∣(Xs (s))s≤t

]
= E

[
B(t − Ti )

∣∣∣∣(Xs (s))s≤t

]
E
[
B(t − Tj )

∣∣∣∣(Xs (s))s≤t

]

= E
[
B(t − Ti )

∣∣∣∣(Xs (s))s≤t

]2

=
(∫ ∞

−∞
f (s)E [B(t − s)] ds

)2

= 1
ρ2

(∫ t

0
Xs (s)µneλm (t−s) ds

)2
.

So

2
∑

1≤i< j≤k

E
[
B(t − Ti )B(t − Tj )

∣∣∣∣(Xs (s))s≤t

]
= k(k − 1) · 1

ρ2

(∫ t

0
Xs (s)µneλm (t−s) ds

)2
.

(4)

Then inserting (3) and (4) into (2) gets us that

E[Xm(t)2 | (Xs(s))s≤t ]
(d)=

∞∑

k=0

ρke−ρ

k!

(
k · 1

ρ

∫ t

0
Xs(s)µn

(
2rm
λm

e2λm (t−s) +
(−dm − rm

λm

)
eλm (t−s)

)
ds
)

+
∞∑

k=0

ρke−ρ

k!

(

k(k − 1) · 1
ρ2

(∫ t

0
Xs(s)µneλm (t−s) ds

)2
)

=
∫ t

0
Xs(s)µn

(
2rm
λm

e2λm (t−s) +
(−dm − rm

λm

)
eλm (t−s)

)
ds
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+
(∫ t

0
Xs(s)µneλm (t−s) ds

)2

.

Repeating the ideas from the above calculation, we can calculate

E[Xm (t) | (Xs (s))s≤t ]2=




∞∑

k=0

P(N (t)=k | (Xs (s))s≤t ) · E




N (t)∑

i=1

B(t − τi )

∣∣∣∣N (t) = k, (Xs (s))s≤t








2

(d)=




∞∑

k=0

ρke−ρ

k! · E




k∑

i=1

B(t − Ti )
∣∣∣∣ (Xs (s))s≤t








2

=
(∫ t

0
Xs (s)µneλm (t−s) ds

)2
.

Then we have that

Var
(
Xm(t)

∣∣∣∣(Xs(s))s≤t

)
= E[Xm(t)2 | (Xs(s))s≤t ] − E[Xm(t) | (Xs(s))s≤t ]2

=
∫ t

0
Xs(s)µn

(
2rm
λm

e2λm (t−s) +
(−dm − rm

λm

)
eλm (t−s)

)
ds.

Taking the expectation and then interchanging the expectation of the integral, we have
that

E
[
Var

(
Xm (t)

∣∣∣∣(Xs (s))s≤t

)]
= E

[∫ t

0
Xs (s)µn

(
2rm
λm

e2λm (t−s) +
(−dm − rm

λm

)
eλm (t−s)

)
ds
]

= µn

∫ t

0
neλs (s)

(
2rm
λm

e2λm (t−s) +
(−dm − rm

λm

)
eλm (t−s)

)
ds

= nµn

[
2rme2λmt+(λs−2λm )s

λm (λs − 2λm )
+ (−dm − rm )eλmt+(λs−λm )s

λm (λs − λm )

]t

s=0

= nµn

λm

(
2rmeλs t

λs − 2λm
+ (−dm − rm )eλs t

λs − λm
− 2rme2λmt

λs − 2λm
− (−dm − rm )eλmt

λs − λm

)

.

Let g(t) = E
[
Var

(
Xm(t)

∣∣∣∣(Xs(s))s≤t

)]
. Notice that since λs < 0 < λm , we have

that

g(ztn) ∼ nµn
2rme2λmztn

λm(2λm − λs)
= 2rm

λm(2λm − λs)
n1−α−2λmz/λs .

The Law of Total Variance gives that

Var[Xm(t)] = g(t)+ h(t),

where h(t) = Var[E[Xm(t) | (Xs(s))s≤t ]]. Define h1(t) = E[E[Xm(t) | (Xs
(s))s≤t ]2] and define h2(t) = E[E[Xm(t) | (Xs(s))s≤t ]]2. Then h(t) = h1(t)−h2(t).
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Notice that

h2(t) = E[E[Xm(t) | (Xs(s))s≤t ]]2 = E[Xm(t)]2 =
(

n1−α

λm − λs

(
eλmt − eλs t

))2

.

We also have that

h1(t) = E
[(∫ t

0
Xs(s)µneλm (t−s) ds

)2
]

= µ2
n

∫ t

0

∫ t

0
E[Xs(s)Xs(y)]eλm (t−s)eλm (t−y) dsdy

= µ2
n

∫ t

0

∫ y

0
E[Xs(s)E[Xs(y)|Xs(s)]]eλm (t−s)eλm (t−y) dsdy

+ µ2
n

∫ t

0

∫ t

y
E[E[Xs(s)|Xs(y)]Xs(y)]eλm (t−s)eλm (t−y) dsdy

= 2µ2
n

∫ t

0

∫ t

y
E[Xs(y)2]eλs (s−y)eλm (t−s)eλm (t−y) dsdy.

by symmetry. Note that E[Xs(t)2] = Var[Xs(t)] + E[Xs(t)]2 =
(
n2 + rs+ds

λs
n
)

e2λs t + −rs−ds
λs

neλs t . Then

∫ t

0

∫ t

y
E[Xs(y)2]eλs (s−y)eλm (t−s)eλm (t−y) dsdy

=
∫ t

0
E[Xs(y)2]eλm (t−y)

∫ t

y
eλs (s−y)eλm (t−s) dsdy

=
∫ t

0

((
n2 + rs + ds

λs
n
)
e2λs y + −rs − ds

λs
neλs y

)
eλm (t−y)

λs − λm

(
eλs (t−y) − eλm (t−y)

)
dy

=
∫ t

0

(
n2

λs − λm
+ (rs + ds)n

λs(λs − λm)

)
e(λs+λm )t+(λs−λm )y

+
(

n2

λm − λs
+ (rs + ds)n

λs(λm − λs)

)
e2λmt+(2λs−2λm )y

+ (rs + ds)n
λs(λm − λs)

e(λs+λm )t−λm y + (rs + ds)n
λs(λs − λm)

e2λmt+(λs−2λm )y dy

= 1
(λm − λs)2

((
n2 + (rs + ds)n

λs

)
e2λs t +

(
n2

−2
+ (rs + ds)n

−2λs

)
e2λs t

−
(
n2 + (rs + ds)n

λs

)
e(λs+λm )t +

(
n2

2
+ (rs + ds)n

2λs

)
e2λmt

)
+ (rs + ds)n

λs(−λm)(λm − λs)
eλs t

+ (rs + ds)n
λs(λs − λm)(λs − 2λm)

eλs t + (rs + ds)n
λsλm(λm − λs)

e(λs+λm )t

− (rs + ds)n
λs(λs − λm)(λs − 2λm)

e2λmt .
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Then

h1(t) =
(
n2 + (rs + ds )n

λs

)(
µn(eλmt − eλs t )

λm − λs

)2
+ 2µ2

n

[
(rs + ds )n

λs (−λm )(λm − λs )
eλs t

+ (rs + ds )n
λs (λs − λm )(λs − 2λm )

eλs t + (rs + ds )n
λsλm (λm − λs )

e(λs+λm )t − (rs + ds )n
λs (λs − λm )(λs − 2λm )

e2λmt
]

= h2(t)+
(
(rs + ds )n

λs

)(
µn(eλmt − eλs t )

λm − λs

)2
+ 2µ2

n

[
(rs + ds )n

λs (−λm )(λm − λs )
eλs t

+ (rs + ds )n
λs (λs − λm )(λs − 2λm )

eλs t + (rs + ds )n
λsλm (λm − λs )

e(λs+λm )t − (rs + ds )n
λs (λs − λm )(λs − 2λm )

e2λmt
]
.

Then

h(ztn) =
(
(rs + ds )n

λs

)(
n−α(eλmztn − eλs ztn )

λm − λs

)2
+ 2n−2α

[
(rs + ds )n

λs (−λm )(λm − λs )
eλs ztn

+ (rs + ds )n
λsλm (λm − λs )

e(λs+λm )ztn − (rs + ds )n
λs (λs − λm )(λs − 2λm )

e2λmztn
]

= n1−2α
(
(rs + ds )

λs

)(
(n−λmz/λ2 − n−z)

λm − λs

)2
+ 2n1−2α

[
(rs + ds )

λs (−λm )(λm − λs )
n−z

+ (rs + ds )
λsλm (λm − λs )

n−(1+λm/λ2)z − (rs + ds )
λs (λs − λm )(λs − 2λm )

n−2λmz/λs
]

= O(n1−2α−2λmz/λs ),

because −λmz/λs > 0. Then since g(ztn) ∼ 2rm
λm (2λm−λs )

n1−α−2λmz/λs , we have that

ψm(ztn) = Var[Xm(ztn)]
= g(ztn)+ h(ztn)

∼ 2rm
λm(2λm − λs)

n1−α−2λmz/λs ,

as desired.

5.3 Proof of lemma 2

Proof Wewill prove this by induction. Let’s start by proving the base case: k = 3. We
need to show that

E[X3(t)] = n1−β

(
eλ2t

λ2 − λ3
− eλ3t

λ2 − λ3

)
.

Because X3(t) is a birth-death process with mutation, its mean is governed by the
following ODE:

d
dt

E[X3(t)] = λ3E[X3(t)] + n−βE[X2(t)].
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Sure enough, plugging E[X2(t)] and E[X3(t)] into the above ODE yields

d
dt

[
n1−β

(
eλ2t

λ2 − λ3
− eλ3t

λ2 − λ3

)]
= λ3n1−β

(
eλ2t

λ2 − λ3
− eλ3t

λ2 − λ3

)
+ n−βneλ2t

n1−β

(
λ2eλ2t

λ2 − λ3
− λ3eλ3t

λ2 − λ3

)
= n1−β

(
λ3eλ2t

λ2 − λ3
− λ3eλ3t

λ2 − λ3
+ (λ2 − λ3)eλ2t

λ2 − λ3

)
,

which is clearly true. So we do indeed have E[X3(t)] = n1−β
(

eλ2 t

λ2−λ3
− eλ3t

λ2−λ3

)
, as

desired. Now assume

E[X((t)] = n1−((−2)β(−1)l S((t).

We want to show that

E[X(+1(t)] = n1−((−1)β(−1)(+1S(+1(t).

Because X(+1(t) is a birth-death process with mutation, its mean is governed by the
following ODE:

d
dt

E[X(+1(t)] = λ(+1E[X(+1(t)] + n−βE[X((t)].

Plugging E[X((t)] and E[X(+1(t)] into the above ODE yields

d
dt

[
n1−((−1)β(−1)(+1S(+1(t)

]
= λ(+1n1−((−1)β(−1)(+1S(+1(t)

+ n−βn1−((−2)β(−1)l S((t)

n1−((−1)β(−1)(+1
(+1∑

i=2

λi eλi t

Pi,(+1
= n1−((−1)β(−1)(+1 [λ(+1S(+1(t) − S((t)

]
.

Dividing both sides by n1−((−1)β(−1)(+1, we get

(+1∑

i=2

λi eλi t

Pi,(+1
= λ(+1S(+1(t) − S((t)

=
l∑

i=2

λ(+1eλi t

Pi,l+1
+ λ(+1eλ(+1t

P(+1,l+1
−

l∑

i=2

(λ(+1 − λi )eλi t

Pi,l+1
,

which is clearly true. So we have shown the desired result. *+

123



59 Page 28 of 63 A. Li et al.

5.4 Proof of proposition 1

Proof We first will solve for ŝn,k , the extinction probability of a type k cell under a
slightly different model. Consider a model where amplification events involve replac-
ing a type k cell with a type k + 1 cell. That is, when a new amplified cell arises, a
type k cell is removed. Then the following relation will hold

ŝn,k =






rk
rk + dk + νn

(ŝn,k)2 +
dk

rk + dk + νn
+ νn

rk + dk + νn
ŝn,k+1 if 2 ≤ k < M,

rM
rM + dM

(ŝn,M )2 + dM
rM + dM

if k = M .
(5)

The intuition for why this relation holds is that the terms represent whether the next
event is a birth, a death, or an amplification, respectively. If the next event is a birth
event, then there are now two independent type k cells each with extinction probability
ŝn,k . If the next event is a death, then the particle becomes extinct. If the next event is
a gene amplification, then the type k cell becomes a type k + 1 cell, whose extinction
probability is ŝn,k+1. In the case that k = M , no further amplification events are
possible so only the first two terms exist. By Theorem 2.1 of Hautphenne et al. (2013),
for 2 ≤ k < M , ŝn,k is the minimal non-negative solution to (5).

Applying the quadratic formula to 5, the minimal non-negative solution is ŝn,M =
dM
rM

. Similarly, for 2 ≤ k < M ,

ŝn,k =
rk + dk + νn

2rk
± 1

2

√
(rk + dk + νn)2

rk2
− 4

dk + νn ŝn,k+1

rk

= rk + dk + νn

2rk
± 1

2rk

√
(rk + dk)2 + 2(rk + dk)νn + νn2 − 4rkdk − 4rkνn ŝn,k+1

= rk + dk + νn

2rk
± |rk − dk |

2rk

√

1+ 2(rk + dk)
(rk − dk)2

νn +
1

(rk − dk)2
νn2 − 4rk

(rk − dk)2
νn ŝn,k+1

= (rk + dk)+ νn

2rk
± |rk − dk |

2rk

√
1+ xk

where

xk =
2(rk + dk)
(rk − dk)2

νn +
1

(rk − dk)2
ν2n − 4rk

(rk − dk)2
ŝn,k+1νn .

Since νn = n−β → 0 in the large population limit, the Taylor expansion
√
1+ x =∑∞

i=0
(1/2

i

)
xi , gives

ŝn,k =
(rk + dk)+ νn

2rk
± |rk − dk |

2rk

( ∞∑

i=0

(
1/2
i

)
xk i
)

.
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Now consider k such that k′ ≤ k < M . In particular, rk > dk because the cells with
k′ or more copies are supercritical by definition. Then,

ŝn,k =
(rk + dk)+ νn

2rk
± rk − dk

2rk

( ∞∑

i=0

(
1/2
i

)
xk i
)

= (rk + dk)+ νn

2rk
± rk − dk

2rk

(

1+
∞∑

i=1

(
1/2
i

)
xk i
)

= 1+ O(νn) or
dk
rk

+ O(νn),

because xk is a multiple of νn . Since rk > dk , the minimal non-negative root is thus of
the form ŝn,k = dk

rk
+ O(νn). Intuitively, this aligns with the knowledge that without

mutation, the extinction probability would be dk
rk
.

Now consider k such that 2 ≤ k < k′. We will show with induction that

ŝn,k = 1 − 1 − dk′/rk′
∏k′−1

i=k di − ri
νn

( + O
(
ν(+1
n

)
,

where ( = k′ − k. Note that in these cases rk < dk .
For our base case, consider ŝn,k′−1. Then

ŝn,k′−1 =
(rk′−1 + dk′−1)+ νn

2rk′−1
± dk′−1 − rk′−1

2rk′−1

(

1+
∞∑

i=1

(
1/2
i

)
xk′−1

i

)

= 1+ νn

2rk′−1
− dk′−1 − rk′−1

2rk′−1

( ∞∑

i=1

(
1/2
i

)
xk′−1

i

)

,

or
dk′−1

rk′−1
+ νn

2rk′−1
+ dk′−1 − rk′−1

2rk′−1

( ∞∑

i=1

(
1/2
i

)
xk′−1

i

)

.

Since rk′−1 < dk′−1, we know that the former must be the correct root so

ŝn,k′−1 = 1+ νn

2rk′−1
− dk′−1 − rk′−1

2rk′−1

( ∞∑

i=1

(
1/2
i

)
xk′−1

i

)

,

where

xk′−1 =
2(rk′−1 + dk′−1)

(rk′−1 − dk′−1)2
νn +

1
(rk′−1 − dk′−1)2

ν2n − 4rk′−1

(rk′−1 − dk′−1)2

(
dk′

rk′
+ O(νn)

)
νn
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Intuitively, this makes sense because the lineage of a subcritical cell without mutation
is guaranteed to go extinct. Notice that the coefficient of νn in ŝn,k′−1 is

1
2rk′−1

− dk′−1 − rk′−1

2rk′−1

(
1/2
1

)(
2(rk′−1 + dk′−1) − 4rk′−1 · dk′/rk′

2(rk′−1 − dk′−1)2

)

= 1
2rk′−1

(
1+ (rk′−1 + dk′−1) − 2rk′−1 · dk′/rk′

(rk′−1 − dk′−1)

)

= 1
rk′−1

(
2rk′−1 − 2rk′−1 · dk′/rk′

(rk′−1 − dk′−1)

)

= 1 − dk′/rk′

rk′−1 − dk′−1

= − 1 − dk′/rk′

dk′−1 − rk′−1
.

Thus, we indeed have that

ŝn,k′−1 = 1 − 1 − dk′/rk′

dk′−1 − rk′−1
νn + O

(
ν2n

)
,

as desired. Now assume that for some 2 < k + 1 < k′ that

ŝn,k+1 = 1 − 1 − dk′/rk′
∏k′−1

i=k+1 di − ri
νn

(−1 + O
(
ν(
n

)
,

where ( = k′ − k. Then we know

ŝn,k =
(rk + dk)+ νn

2rk
± dk − rk

2rk

(

1+
∞∑

i=1

(
1/2
i

)
xk i
)

= 1+ νn

2rk
− dk − rk

2rk

( ∞∑

i=1

(
1/2
i

)
xk i
)

or
dk
rk

+ νn

2rk
+ dk − rk

2rk

( ∞∑

i=1

(
1/2
i

)
xk i
)

,

and that the former root is the correct one because rk < dk . So

ŝn,k = 1+ νn

2rk
− dk − rk

2rk

( ∞∑

i=1

(
1/2
i

)
xk i
)

,

where

xk =
2(rk + dk)
(rk − dk)2

νn +
1

(rk − dk)2
ν2n − 4rk

(rk − dk)2

(

1 − 1 − dk′/rk′
∏k′−1

i=k+1 di − ri
νn

(−1 + O
(
ν(
n

))

νn

= 2(rk + dk) − 4rk
(rk − dk)2

νn +
1

(rk − dk)2
ν2n + 4rk

(rk − dk)2
1 − dk′/rk′

∏k′−1
i=k+1 di − ri

νn
( + O

(
ν(+1
n

)
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= −2
(rk − dk)

νn +
1

(rk − dk)2
ν2n + 4rk

(rk − dk)2
· 1 − dk′/rk′
∏k′−1

i=k+1 di − ri
νn

( + O
(
ν(+1
n

)
.

Notice that if we collect the terms in the sum that arise from the first two terms of xk ,
we can write

∞∑

i=1

(
1/2
i

)
xk i =

∞∑

i=1

(
1/2
i

)( −2
(rk − dk)

νn +
1

(rk − dk)2
ν2n

)i

+
(
1/2
1

)
4rk

(rk − dk)2
· 1 − dk′/rk′
∏k′−1

i=k+1 di − ri
νn

( + O
(
ν(+1
n

)

=
√

1+ −2
(rk − dk)

νn +
1

(rk − dk)2
ν2n − 1+ 2rk

(rk − dk)2
· 1 − dk′/rk′
∏k′−1

i=k+1 di − ri
νn

(

+ O
(
ν(+1
n

)

=
∣∣∣∣1 − νn

rk − dk

∣∣∣∣− 1+ 2rk
(rk − dk)2

· 1 − dk′/rk′
∏k′−1

i=k+1 di − ri
νn

( + O
(
ν(+1
n

)

= νn

dk − rk
+ 2rk

(rk − dk)2
· 1 − dk′/rk′
∏k′−1

i=k+1 di − ri
νn

( + O
(
ν(+1
n

)
,

because rk < dk . Then, we have that

ŝn,k = 1+ νn

2rk
− dk − rk

2rk

(
νn

dk − rk
+ 2rk

(rk − dk)2
· 1 − dk′/rk′
∏k′−1

i=k+1 di − ri
νn

( + O
(
ν(+1
n

))

= 1+ νn

2rk
− νn

2rk
− 1

dk − rk
· 1 − dk′/rk′
∏k′−1

i=k+1 di − ri
νn

( + O
(
ν(+1
n

)

= 1 − 1 − dk′/rk′
∏k′−1

i=k di − ri
νn

( + O
(
ν(+1
n

)
,

as desired. This completes our inductive step so indeed we have that for 2 ≤ k < k′,

ŝn,k = 1 − 1 − dk′/rk′
∏k′−1

i=k di − ri
νn

( + O
(
ν(+1
n

)
,

where ( = k′ − k.
To complete the proof, we will derive an answer for sn,k in terms of ŝn,k . Notice

that instead of (5), sn,k satisfies

sn,k =






rk
rk + dk + νn

(sn,k)2 +
dk

rk + dk + νn
+ νn

rk + dk + νn
sn,ksn,k+1 if 2 ≤ k < M,

rM
rM + dM

(sn,M )2 + dM
rM + dM

if k = M .

(6)
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So sn,M = dk
rk

as above. Let k′ ≤ k < M . Then rk > dk . Notice that

0 = rk(sn,k)2 − (rk + dk)sn,k + dk + O(νn).

So the minimal non-negative root is of the form sn,k = dk
rk

+ O(νn).
Now let 2 ≤ k < k′. Notice that by (5) and (6),

(rk + dk + νn)(ŝn,k − sn,k) = rk((ŝn,k)2 − (sn,k)2)+ νn(ŝn,k+1 − sn,ksn,k+1)

= rk(ŝn,k + sn,k)(ŝn,k − sn,k)+ νn
(
ŝn,k+1 − ŝn,k ŝn,k+1 + ŝn,k ŝn,k+1

−sn,k ŝn,k+1 + sn,k ŝn,k+1 − sn,ksn,k+1
)

= rk(ŝn,k + sn,k)(ŝn,k − sn,k)

+ νn
(
ŝn,k+1(1 − ŝn,k)+ ŝn,k+1(ŝn,k − sn,k)+ sn,k(ŝn,k+1 − sn,k+1)

)
.

Then

(rk − rk(ŝn,k + sn,k)+ dk + νn(1 − sn,k+1))(ŝn,k − sn,k)

= νn
(
ŝn,k+1(1 − ŝn,k)+ sn,k(ŝn,k+1 − sn,k+1)

)
.

Then

|rk − rk(ŝn,k + sn,k)+ dk + νn(1 − sn,k+1)| · |ŝn,k − sn,k |
= νn

∣∣ŝn,k+1(1 − ŝn,k)+ sn,k(ŝn,k+1 − sn,k+1)
∣∣

≤ νn|1 − ŝn,k | + νn|ŝn,k+1 − sn,k+1|,

because |ŝn,k+1|, |sn,k | ≤ 1. Since ŝn,k + sn.k ≤ 2 and 1 − sn,k+1 ≥ 0,

rk − rk(ŝn,k + sn,k)+ dk + νn(1 − sn,k+1) ≥ dk − rk .

Since k < k′, we know that dk > rk . So

|ŝn,k − sn,k | ≤ νn

dk − rk

(
|1 − ŝn,k | + |ŝn,k+1 − sn,k+1|

)
. (7)

Our goal is to show that for 2 ≤ k < k′ that |ŝn,k −sn,k | = O(ν(+1
n ), where ( = k′ −k.

Proceed by induction on (, recall that

ŝn,k =






1 − 1 − dk′/rk′
∏k′−1

i=k di − ri
νn

( + O
(
ν(+1
n

)
if 2 ≤ k < k′,

dk
rk

+ O(νn) if k′ ≤ k ≤ M .
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For our base case, consider ( = 1, that is k = k′ − 1. Then ŝn,k′−1 = 1 + O(νn)

so |1 − ŝn,k′−1| = O(νn). We also know from above that ŝn,k′ = dk′
rk′

+ O(νn) and

sn,k′ = dk′
rk′

+ O(νn), so |ŝn,k′ − sn,k′ | = O(νn) as well. Then by (7),

|ŝn,k′−1 − sn,k′−1| ≤ νn

dk − rk

(
|1 − ŝn,k′−1| + |ŝn,k′ − sn,k′ |

)
= νn

dk − rk
O(νn) = O(ν2n ).

Now consider ( > 1, i.e. k < k′ − 1. Then by induction, |ŝn,k+1 − sn,k+1| =
O
(
ν
((−1)+1
n

)
= O(ν(

n). We know ŝn,k = 1 + O(ν(
n) so |1 − ŝn,k | = O(ν(

n) as
well. Then by (7),

|ŝn,k − sn,k | ≤ νn

dk − rk

(
|1 − ŝn,k | + |ŝn,k+1 − sn,k+1|

)
= νn

dk − rk
O(ν(

n) = O
(
ν(+1
n

)
,

as desired. So indeed |ŝn,k − sn,k | = O(ν(+1
n ) for 2 ≤ k < k′. Then since

ŝn,k = 1 − 1 − dk′/rk′
∏k′−1

i=k di − ri
νn

( + O
(
ν(+1
n

)
,

we know that

sn,k = ŝn,k − (ŝn,k − sn,k) = 1 − 1 − dk′/rk′
∏k′−1

i=k di − ri
νn

( + O
(
ν(+1
n

)
,

as well.
In particular, we have that

sn,2 = 1 − 1 − dk′/rk′
∏k′−1

i=2 di − ri
νn

k′−2 + O
(
νk

′−1
n

)

= 1 − 1 − dk′/rk′
∏k′−1

i=2 di − ri
n−β(k′−2) + O

(
n−β(k′−2+1)

)
.

We know that our extinction probability starting with n particles of of type 2 is qn =
(sn,2)n . Notice that since rk′ > dk′ and ri < di for 2 ≤ i < k′, we have 1−dk′/rk′∏k′−1

i=2 di−ri
> 0.

Then

q = lim
n→∞ qn

= lim
n→∞

(

1 − 1 − dk′/rk′
∏k′−1

i=2 di − ri
n−β(k′−2) + O

(
n−β(k′−2+1)

))n

=






0 if 0 < β < 1
k′−2 ,

exp

(

− 1 − dk′/rk′
∏k′−1

i=2 di − ri

)

if β = 1
k′−2 ,

1 if β > 1
k′−2 . *+
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5.5 Proof of Proposition 4

Proof Let f̄n(z) = nz−1(φs(ztn)+ φm(ztn)− n). Using the definitions of φs and φm ,
we see that

f̄n(z) = nz−1
(
n1−z + n1−α

λm − λs

(
n−λmz/λs − n−z)− n

)

= 1+ 1
nα(λm − λs)

nz(1−λm/λs ) − 1
nα(λm − λs)

− nz .

Taking the derivative with respect to z yields

f̄ ′
n(z) =

1
nα(λm − λs)

λs − λm

λs
nz(1−λm/λs ) log n − nz log n

= nz log n
( −1
nαλs

n−λmz/λs − 1
)
.

Next we set f̄ ′
n(z) = 0 and solve for z to find any local maxima or minima of f̄n(z).

Since nz > 0 and log n > 0 for sufficiently large n, we have that

f̄ ′
n(z) = 0 -⇒ −1

nαλs
n−λmz/λs = 1

-⇒ −λm

λs
z log n = log

(
−nαλs

)
.

Solving the above equation for z yields

z = −λs

λm
· log(−nαλs)

log n

= −λs

λm

(
α + log(−λs)

log n

)

= 1
λm

(
−λsα + 1

tn
log (−λs)

)
.

Hence an = 1
λm

(
−λsα + 1

tn
log(−λs)

)
is the only maximum or minimum of f̄n(z).

Moreover, we have that an > 0 for sufficiently large n.
Next note that f̄ ′

n(an−1) = nan−1 log n
(

−1
nαλs

n−λm (an−1)/λs − 1
)
. Since nan−1 > 0

and log n > 0 for sufficiently large n and

−1
nαλs

n−λm (an−1)/λs − 1 = −1
nαλs

n
λm
−λs

· 1
λm

(−λsα+ 1
tn

log(−λs )−λm ) − 1

= −1
nαλs

nα+ 1
log n log(−λs )+λm/λs − 1
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= nλm/λs − 1

< 0 for sufficiently large n,

we have that f̄ ′
n(an − 1) < 0 for sufficiently large n. Hence f̄n(z) is monotonically

decreasing for z < an . Similarly, f̄ ′
n(an +1) = nan+1 log n

(
−1
nαλs

n−λm (an+1)/λs − 1
)
.

Since nan+1 > 0 and log n > 0 for sufficiently large n and

−1
nαλs

n−λm (an+1)/λs − 1 = −1
nαλs

n
λm
−λs

· 1
λm

(−λsα+ 1
tn

log(−λs )+λm ) − 1

= −1
nαλs

nα+ 1
log n log(−λs )−λm/λs − 1

= n−λm/λs − 1

> 0 for sufficiently large n,

we have that f̄ ′
n(an + 1) > 0 for sufficiently large n. Hence f̄n(z) is monotonically

increasing for z > an .
Now let An = 1

λm

(
−λsα + 1

tn
log(λm − λs)

)
. Then

f̄n(An) = 1+ n−α

λm − λs

(
nAn(1−λm/λs ) − 1

)
− nAn

= 1+ n−α

λm − λs

(
n

λm−λs
−λsλm

(
−λsα+ 1

tn
log(λm−λs )

)

− 1
)

− n
1

λm

(
−λsα+ 1

tn
log(λm−λs )

)

= 1+ n−α

λm − λs

(
nα(1−λs/λm )n

λm−λs
λm log n log(λm−λs ) − 1

)
− n−λsα/λm n

−λs
λm log n log(λm−λs )

= 1+ n−α

λm − λs

(
nα(1−λs/λm ) (λm − λs)

1−λs/λm − 1
)

− n−λsα/λm (λm − λs)
−λs/λm

= 1+ n−λsα/λm (λm − λs)
−λs/λm − n−α

λm − λs
− n−λsα/λm (λm − λs)

−λs/λm

= 1 − n−α

λm − λs

> 0 for sufficiently large n.

Note that since f̄n(0) = 0 and f̄n(z) is decreasing for all z ∈ (0, an), we have
that f̄n(an) < 0. But f̄n(z) is increasing for z > an and we have that f̄n(An) > 0.
Therefore, there exists a unique ũn ∈ (an, An) such that f̄n(ũn) = 0 by monotonicity.
Using the definition of f̄n(z) and the fact that nz−1 > 0, this implies that there is a
unique ũn > 0 such that an < ũn < An and φs(ũntn)+ φm(ũntn) = n. Furthermore,
limn→∞ an = limn→∞ An = −λsα

λm
. Hence ũn → −λsα

λm
as n → ∞. *+
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5.6 Proof of theorem 2

Proof In order to show the desired result, we must show

lim
n→∞P(τn > un + ε)+ lim

n→∞P(τn < un − ε) = 0.

Let’s start by proving that P(τn < un − ε) → 0 as n → ∞. Note that

P (τn < un − ε) = P
(

τn

tn
< u−

n (ε)

)

≤ P
(

sup
z∈[c,u−

n (ε)]
(Xs(ztn)+ Xm(ztn) − n) > 0

)

= P
(

sup
z∈[c,u−

n (ε)]
nα+λmz/λs−1(Xs(ztn) − φs(ztn)+ φs(ztn) − n

+ φm(ztn) − φm(ztn)+ Xm(ztn)) > 0
)

≤ P
(
B̄1(n, ε)+ B̄2(n, ε)+ B̄3(n, ε) > 0

)
,

where

B̄1(n, ε) = sup
z∈[c,u−

n (ε)]
nα+λmz/λs−1(Xs(ztn) − φs(ztn)),

B̄2(n, ε) = sup
z∈[c,u−

n (ε)]
nα+λmz/λs−1(φs(ztn)+ φm(ztn) − n),

B̄3(n, ε) = sup
z∈[c,u−

n (ε)]
nα+λmz/λs−1(Xm(ztn) − φm(ztn)).

Note that, for i ∈ {s,m},

sup
z∈[c,u−

n (ε)]

∣∣∣nα+λmz/λs−1 (Xi (ztn) − φi (ztn))
∣∣∣

≤ sup
z∈[c,u+n (ε)]

nα+λmz/λs−1 |Xi (ztn) − φi (ztn)| ,

which converges to zero in probability by Proposition 5. Now we just need
to show that B̄2(n, ε) is negative in the large population limit. Let ḡn(z) =
nα+λmz/λs−1 (φs(ztn)+ φm(ztn) − n). Using the definitions of φs and φm , we see
that

ḡn(z) = nα+λmz/λs−1
(
n1−z + n1−α

λm − λs

(
n−λmz/λs − n−z)− n

)

= nα+z(λm/λs−1) + 1
λm − λs

− 1
λm − λs

nz(λm/λs−1) − nα+λmz/λs .
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Taking the derivative with respect to z yields

ḡ′
n(z) =

λm − λs

λs
nα+z(λm/λs−1) log n − 1

λs
nz(λm/λs−1) log n − λm

λs
nα+λmz/λs log n

= −1
λs

nα+z(λm/λs−1) log n
[
−λm + λs + n−α + λmnz

]
.

Next we set ḡ′
n(z) = 0 and solve for z to find any local maxima or minima of ḡn(z).

Since −1/λs > 0 and nα−z(1−λm/λs ) > 0 and log n > 0 for sufficiently large n, we
have that

ḡ′
n(z) = 0 -⇒ λmnz = λm − λs − n−α

-⇒ z log n = log
(

λm − λs − n−α

λm

)

-⇒ z = 1
log n

log
(

λm − λs − n−α

λm

)
.

Hence q̄n = 1
log n log

(
λm−λs−n−α

λm

)
is the only maximum or minimum of ḡn(z). Next

note that ḡ′
n(q̄n + 1) = −1

λs
nα−(q̄n+1)(1−λm/λs ) log n

[
−λm + λs + n−α + λmnq̄n+1].

Since −1/λs > 0 and nα−(q̄n+1)(1−λm/λs ) > 0 and log n > 0 for sufficiently large n
and

−λm + λs + n−α + λmnq̄n+1 = λmn · n
1

log n log
(

λm−λs−n−α

λm

)

− λm + λs + n−α

= λmn
(

λm − λs − n−α

λm

)
− λm + λs + n−α

= (n − 1)
(
λm − λs − n−α

)

> 0 for sufficiently large n,

we have that ḡ′
n(q̄n + 1) > 0 for sufficiently large n. Hence ḡn(z) is monotonically

increasing for z > q̄n . Note that the only positive solution to ḡn(z) = 0 occurs at
z = ũn by Proposition 4. Also note that q̄n < c < u−

n (ε) < ũn for sufficiently large
n. Therefore, we have that B̄2(n, ε) < 0. Moreover, we may rewrite B̄2(n, ε) as

B̄2(n, ε) = nα+λmu−
n (ε)/λs−1 (φs

(
u−
n (ε)tn

)
+ φm

(
u−
n (ε)tn

)
− n

)
.

Then by the definitions of φs and φm , we have

B̄2(n, ε) = nα+λmu−
n (ε)/λs−1

(
n1−u−

n (ε) + n1−α

λm − λs

(
n−λmu−

n (ε)/λs − n−u−
n (ε)

)
− n

)

= nα−u−
n (ε)(1−λm/λs ) + 1

λm − λs
− 1

λm − λs
n−u−

n (ε)(1−λm/λs ) − nα+λmu−
n (ε)/λs .
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Note that

nα+λmu−
n (ε)/λs = nαn

ελm
log n nũn(λm/λs )

= eελmnα+ũn(λm/λs )

≥ eελmnα+An(λm/λs )

= eελmn
α+ λm

λs
· 1
λm

(
−λsα+ 1

tn
log(λm−λs )

)

= eελmnα−α− 1
log n log(λm−λs )

= eελm

(
1

λm − λs

)
.

Therefore, we have that

B̄2(n, ε) ≤ nα−u−
n (ε)(1−λm/λs ) + 1

λm − λs
− 1

λm − λs
n−u−

n (ε)(1−λm/λs ) − eελm

(
1

λm − λs

)

= 1
λm − λs

(
1 − eελm

)
+ nα−u−

n (ε)(1−λm/λs )

(
1 − n−α

λm − λs

)
. (8)

Clearly, 1 − n−α/(λm − λs) → 1 as n → ∞ since α > 0. We also have that

lim
n→∞ nα−u−

n (ε)(1−λm/λs ) = lim
n→∞ nαn

ε
tn
(1−λm/λs )n−ũn(1−λm/λs )

= eε(λm−λs ) lim
n→∞ nα−ũn(1−λm/λs )

= eε(λm−λs ) lim
n→∞ e[α−ũn(1−λm/λs )] log n

= 0

since ũn → −αλs/λm as n → ∞ by Proposition 4. Therefore, the right-hand side of
equation (8) converges to 1

λm−λs
(1 − eελm ) < 0. So B̄2(n, ε) is negative in the large

population limit. Putting this all together, we have our desired result: P(B̄1(n, ε) +
B̄2(n, ε) + B̄3(n, ε) > 0) → 0 as n → ∞. Therefore, we have shown P(τn <

un − ε) → 0 as n → ∞. The proof that P(τn > un + ε) → 0 as n → ∞ follows
using a similar argument. *+

5.7 Proof of proposition 5

Proof Let’s start by proving the i = s case. That is, we want to show that

lim
n→∞P

(

sup
z∈[c,u+n (ε)]

nα+λmz/λs−1 |Xs(ztn) − φs(ztn)| > δ

)

= 0.
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Because a branching process normalized by its mean is a martingale, we know that

Zs(z) = nα+z−1 (Xs(ztn) − φs(ztn))

is a martingale in z. To prove our desired result for i = s, we need to show

lim
n→∞P

(

sup
z∈[c,u+n (ε)]

nλmz/λs−z |Zs(z)| > δ

)

= 0.

Note that

sup
z∈[c,u+n (ε)]

nλmz/λs−z |Zs(z)| ≤ sup
z∈[c,u+n (ε)]

nλmz/λs−z · sup
z∈[c,u+n (ε)]

|Zs(z)|

= nλmc/λs−c · sup
z∈[c,u+n (ε)]

|Zs(z)|.

Therefore, we have that

P
(

sup
z∈[c,u+n (ε)]

nλmz/λs−z |Zs(z)| > δ

)

≤ P
(

nλmc/λs−c · sup
z∈[c,u+n (ε)]

|Zs(z)| > δ

)

= P
(

sup
z∈[c,u+n (ε)]

|Zs(z)| > δ · nc−λmc/λs

)

≤ 1
δ2

n2λmc/λs−2c · E
[(
Zs(u+n (ε))

)2]

by Doob’s Martingale Inequality. Note that

E
[(
Zs(u+n (ε))

)2] = E
[(

nα+u+n (ε)−1Xs(u+n (ε)tn) − nα+u+n (ε)−1φs(u+n (ε)tn)
)2]

= Var
[
nα+u+n (ε)−1Xs(u+n (ε)tn)

]
.

Therefore, now we have

P
(

sup
z∈[c,u+n (ε)]

nλmz/λs−z |Zs(z)| > δ

)

≤ 1
δ2

n2λmc/λs−2c · Var
[
nα+u+n (ε)−1Xs(u+n (ε)tn)

]

= 1
δ2

n2λmc/λs−2cn2α+2u+n (ε)−2n1−u+n (ε)
(
rs + ds
−λs

)(
1 − n−u+n (ε)

)

= 1
δ2

(
rs + ds
−λs

)(
1 − n−u+n (ε)

)
n2α+2c(λm/λs−1)+u+n (ε)−1.
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Clearly, 1
δ2

(
rs+ds
−λs

)
is just a finite constant. Note that

lim
n→∞

(
1 − n−u+n (ε)

)
= 1 − lim

n→∞ n−ε/tn n−ũn

= 1 − eελs lim
n→∞ e−ũn log n

= 1

since ũn → −λsα/λm as n → ∞ by Proposition 4. We also have that

lim
n→∞ n2α+2c(λm/λs−1)+u+n (ε)−1 = lim

n→∞ n2α+
αλs (λs−2λm )
λm (λm−λs )

· λm−λs
λs

−1nũn nε/tn

= e−ελs lim
n→∞ n2α+α(λs−2λm )/λm−1+ũn

= e−ελs lim
n→∞ e[ũn+αλs/λm−1] log n

= 0

since ũn → −λsα/λm as n → ∞ by Proposition 4. So we are done with the i = s
case.

Next, let’s prove the desired result for i = m. As a reminder, we want to show that

lim
n→∞P

(

sup
z∈[c,u+n (ε)]

nα+λmz/λs−1 |Xm(ztn) − φm(ztn)| > δ

)

= 0.

Note that

φm(ztn) =
∫ ztn

0
n−αneλs seλm (ztn−s) ds

= n1−λmz/λs−α

∫ ztn

0
e(λs−λm )s ds.

Therefore,

nα+λmz/λs−1 (Xm(ztn) − φm(ztn))

= nα+λmz/λs−1Xm(ztn) −
∫ ztn

0
e(λs−λm )s ds

= nα+λmz/λs−1Xm(ztn) − 1
n

∫ ztn

0
Xs(s)e−λms ds + 1

n

∫ ztn

0

(
Xs(s) − neλs s

)
e−λms ds.

Taking the absolute value of both sides and using the triangle inequality, we get

nα+λmz/λs−1 |Xm(ztn) − φm(ztn)|

≤
∣∣∣∣n

α+λmz/λs−1Xm(ztn) − 1
n

∫ ztn

0
Xs(s)e−λms ds

∣∣∣∣+
1
n

∫ ztn

0

∣∣Xs(s) − neλs s
∣∣ e−λms ds.
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This implies that

sup
z∈[c,u+n (ε)]

nα+λmz/λs−1 |Xm(ztn) − φm(ztn)|

≤ sup
z∈[c,u+n (ε)]

∣∣∣∣n
α+λmz/λs−1Xm(ztn) − 1

n

∫ ztn

0
Xs(s)e−λms ds

∣∣∣∣

+ sup
z∈[c,u+n (ε)]

1
n

∫ ztn

0

∣∣Xs(s) − neλs s
∣∣ e−λms ds.

Hence

P
(

sup
z∈[c,u+n (ε)]

nα+λmz/λs−1 |Xm(ztn) − φm(ztn)| > δ

)

≤ P
(

sup
z∈[c,u+n (ε)]

∣∣∣∣n
α+λmz/λs−1Xm(ztn) − 1

n

∫ ztn

0
Xs(s)e−λms ds

∣∣∣∣ > δ/2

)

+ P
(

sup
z∈[c,u+n (ε)]

1
n

∫ ztn

0

∣∣Xs(s) − neλs s
∣∣ e−λms ds > δ/2

)

.

The process in the second term of the above sum is monotonically increasing in z. So
we may simplify the expression above to

P
(

sup
z∈[c,u+n (ε)]

nα+λmz/λs−1 |Xm(ztn) − φm(ztn)| > δ

)

≤ P
(

sup
z∈[c,u+n (ε)]

∣∣∣∣n
α+λmz/λs−1Xm(ztn) − 1

n

∫ ztn

0
Xs(s)e−λms ds

∣∣∣∣ > δ/2

)

+ P
(
1
n

∫ u+n (ε)tn

0

∣∣Xs(s) − neλs s
∣∣ e−λms ds > δ/2

)

.

By Lemma 1 in Durrett and Moseley (2010), we know that

e−λmt Xm(t) −
∫ t

0
n−αe−λms Xs(s) ds

is a martingale. Setting t = ztn = z
−λs

log n, we get that

nλmz/λs Xm(ztn) − 1
nα

∫ ztn

0
e−λms Xs(s) ds
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is a martingale in z. Since linear combinations of martingales are also martingales,

nα+λmz/λs−1Xm(ztn) − 1
n

∫ ztn

0
e−λms Xs(s) ds

is also a martingale in z. Therefore,

∣∣∣∣n
α+λmz/λs−1Xm(ztn) − 1

n

∫ ztn

0
Xs(s)e−λms ds

∣∣∣∣

is a non-negative submartingale in z, so we can apply Doob’s Martingale Inequality
to get

P
(

sup
z∈[c,u+n (ε)]

nα+λmz/λs−1 |Xm(ztn) − φm(ztn)| > δ

)

≤ 4
δ2

· E
[(

nα+λmu+n (ε)/λs−1Xm(un + ε) − 1
n

∫ un+ε

0
Xs(s)e−λms ds

)2
]

+ P
(
1
n

∫ un+ε

0

∣∣Xs(s) − neλs s
∣∣ e−λms ds > δ/2

)
. (9)

Let us start by showing that the second term in (9) converges to zero. Since convergence
in mean implies convergence in probability (by Markov’s Inequality), it suffices to
show that

lim
n→∞E

[
1
n

∫ un+ε

0

∣∣Xs(s) − neλs s
∣∣ e−λms ds

]
= 0,

or, equivalently,

lim
n→∞

1
n

∫ un+ε

0
E
[∣∣Xs(s) − neλs s

∣∣] e−λms ds = 0.

By the Cauchy-Schwarz Inequality, we know

E
[∣∣Xs(s) − neλs s

∣∣] ≤
√
E
[∣∣Xs(s) − neλs s

∣∣2
]

≤
√
Var [Xs(s)]

= n1/2
[(

rs + ds
λs

)(
e2λs s − eλs s

)]1/2
.

Multiplying both sides by 1
n e

−λms and integrating yields

1
n

∫ un+ε

0
E
[∣∣Xs(s) − neλs s

∣∣] e−λms ds ≤ 1
n1/2

∫ un+ε

0

[(
rs + ds

λs

) (
e2λs s − eλs s

)]1/2
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× e−λms ds

=
(
rs + ds
−λsn

)1/2 ∫ un+ε

0

(
1 − eλs s

)1/2
eλs s/2e−λms ds

≤
(
rs + ds
−λsn

)1/2 ∫ un+ε

0
e(λs/2−λm )s ds

= 1
λs/2 − λm

(
rs + ds
−λsn

)1/2 (
e(λs/2−λm )(un+ε) − 1

)
.

Note that, since un = ũntn = ũn
−λs

log n,

e(λs/2−λm )(un+ε) = e(λs/2−λm )
ũn

−λs
log ne(λs/2−λm )ε

= n(λm/λs−1/2)ũn e(λs/2−λm )ε,

which converges to zero since ũn → −λsα
λm

as n → ∞ by Proposition 4. Therefore,

lim
n→∞

1
n

∫ un+ε

0
E
[∣∣Xs(s) − neλs s

∣∣] e−λms ds = 0,

as desired. Next, we will show the first term in (9) converges to zero as well.

E
[(

nα+λmu+n (ε)/λs−1Xm(un + ε) − 1
n

∫ un+ε

0
Xs(s)e−λms ds

)2
]

= n2(α+λmu+n (ε)/λs−1)E
[
Xm(un + ε)2

]

− 2nα+λmu+n (ε)/λs−2
∫ un+ε

0
E [Xs(s)Xm(un + ε)] e−λms ds

+
(
1
n

)2 ∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] e−λmse−λm y ds dy.

From Lemma 1 in Foo and Leder (2013), we know that

E
[
Xm(un + ε)2

]
=
(

1
nα

)2 ∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] eλm (un+ε−s)eλm (un+ε−y) ds dy

+
(

1
nα

)∫ un+ε

0
E [Xs(s)]E

[
X̃m(un + ε − s)2

]
ds,

E [Xs(s)Xm(un + ε)] =
(

1
nα

)∫ un+ε

0
E [Xs(y)Xs(s)] eλm (un+ε−y) dy,
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where X̃m is a binary branching process starting from size one with birth rate rm and
death rate dm . Substituting these expressions into our equation yields

E
[(

nα+λmu+n (ε)/λs−1Xm(un + ε) − 1
n

∫ un+ε

0
Xs(s)e−λms ds

)2
]

= n2(λmu
+
n (ε)/λs−1)

∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] eλm (2un+2ε−s−y) ds dy

+ nα+2(λmu+n (ε)/λs−1)
∫ un+ε

0
E [Xs(s)]E

[
X̃m(un + ε − s)2

]
ds

− 2nλmu+n (ε)/λs−2
∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] eλm (un+ε−s−y) ds dy

+ n−2
∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] e−λm (s+y) ds dy.

Then, by the definition of u+n (ε),

E
[(

nα+λmu+n (ε)/λs−1Xm(un + ε) − 1
n

∫ un+ε

0
Xs(s)e−λms ds

)2
]

= n
−2
(

λm (un+ε)
log n +1

) ∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] eλm (2un+2ε−s−y) ds dy

+ n
α−2

(
λm (un+ε)

log n +1
) ∫ un+ε

0
E [Xs(s)]E

[
X̃m(un + ε − s)2

]
ds

− 2n− λm (un+ε)
log n −2

∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] eλm (un+ε−s−y) ds dy

+ n−2
∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] e−λm (s+y) ds dy

=
(
1
n

)2 ∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] e−λm (s+y) ds dy

+ nα−2e−2λm (un+ε)

∫ un+ε

0
E [Xs(s)]E

[
X̃m(un + ε − s)2

]
ds

− 2
(
1
n

)2 ∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] e−λm (s+y) ds dy

+
(
1
n

)2 ∫ un+ε

0

∫ un+ε

0
E [Xs(s)Xs(y)] e−λm (s+y) ds dy

= nα−2e−2λm (un+ε)

∫ un+ε

0
E [Xs(s)]E

[
X̃m(un + ε − s)2

]
ds.

Note that

E [Xs(t)] = neλs t ,
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E
[
X̃m(t)2

]
= 2rm

λm
e2λmt − rm + dm

λm
eλmt .

Substituting these into the above expression yields

E
[(

nα+λmu+n (ε)/λs−1Xm(un + ε) − 1
n

∫ un+ε

0
Xs(s)e−λms ds

)2
]

= nα−2e−2λm (un+ε)

∫ un+ε

0
neλs s

(
2rm
λm

e2λm (un+ε−s) − rm + dm
λm

eλm (un+ε−s)
)

ds

= 2rmnα−1

λm

∫ un+ε

0
e(λs−2λm )s ds − nα−1(rm + dm)

λm
e−λm (un+ε)

∫ un+ε

0
e(λs−λm )s ds

= 2rmnα−1

λm(λs − 2λm)

(
e(λs−2λm )(un+ε) − 1

)

− nα−1(rm + dm)
λm(λs − λm)

(
e(λs−2λm )(un+ε) − e−λm (un+ε)

)
.

Since un = ũntn and tn = −1
λs

log n, the expression above is equivalent to

nα−1

λm

[
e(λs−2λm )(ũn −1

λs
log n+ε)

(
2rm

λs − 2λm
− rm + dm

λs − λm

)

− 2rm
λs − 2λm

+ rm + dm
λs − λm

e−λm (ũn −1
λs

log n+ε)

]
.

Because ũn → −λsα
λm

asn → ∞, e(λs−2λm )(ũn −1
λs

log n+ε) → 0 and e−λm (ũn −1
λs

log n+ε) →
0. Therefore, the entire expression above converges to zero since α < 1, so we are
done. *+

5.8 Proof of lemma 3

Proof Since P
(∑M

k=2 Xk(dtn) − n ≤ 0
)
= 1 − P

(∑M
k=2 Xk(dtn) − n > 0

)
, it suf-

fices to show

lim
n→∞P

(
M∑

k=2

Xk(dtn) − n > 0

)

= 0.

Note that

P
(

M∑

k=2

Xk(dtn) − n > 0

)

= P
(

nβ(M−2)+λMd/λ2−1

(
M∑

k=2

Xk(dtn)+
M∑

k=2

φk(dtn) −
M∑

k=2

φk(dtn) − n

)

> 0

)
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= P
(

M∑

k=2

Âk(n)+ Âφ(n) > 0

)

,

where

Âk(n) = nβ(M−2)+λMd/λ2−1 (Xk(dtn) − φk(dtn)) ,

Âφ(n) = nβ(M−2)+λMd/λ2−1

(
M∑

k=2

φk(dtn) − n

)

.

Note that
∣∣∣ Âk(n)

∣∣∣ = nβ(M−2)+λMd/λ2−1 |Xk(dtn) − φk(dtn)|
≤ sup

z∈[d,v+n (ε)]
nβ(M−2)+λMz/λ2−1 |Xk(ztn) − φk(ztn)| ,

which converges to zero in probability by Proposition 3, below. Now we just need to
show that Âφ(n) is negative in the large population limit. By the definitions of φ2 and
φk , k ≥ 3,

Âφ(n) = nβ(M−2)+λMd/λ2−1

(

n1−d +
M∑

k=3

(−1)k

Dk−2 n
1−(k−2)β S̃k(d) − n

)

= nβ(M−2)+λMd/λ2

(

n−d +
M∑

k=3

(−1)k

Dk−2 n
−β(k−2) S̃k(d) − 1

)

∼ nβ(M−2)+λMd/λ2

(
M∑

k=3

(−1)k

Dk−2 · n
−β(k−2)−λkd/λ2

P̃k,k
− 1

)

.

For 3 ≤ k < M , we obviously have k − 2 < M − 2. Since d > −λ2β
M−2

λM−λ2
= −λ2β

D
by (1), this means that Dd/λ2 < −β, and hence β + Dd/λ2 < 0. Therefore, for all
3 ≤ k < M ,

−(k − 2)(β + Dd/λ2) < −(M − 2)(β + Dd/λ2)

−d − β(k − 2) − (k − 2)Dd/λ2 < −d − β(M − 2) − (M − 2)Dd/λ2
−β(k − 2) − [λ2 + (k − 2)D]d/λ2 < −β(M − 2) − [λ2 + (M − 2)D]d/λ2

−β(k − 2) − λkd/λ2 < −β(M − 2) − λMd/λ2.

This implies that

Âφ(n) ∼ nβ(M−2)+λMd/λ2

(
(−1)M

DM−2 P̃M,M
n−β(M−2)−λMd/λ2 − 1

)

= (−1)M

DM−2 P̃M,M
− nβ(M−2)+λMd/λ2 .
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Since d < −λ2β(M−2)
λM

by (1), we have that λMd/λ2 > −β(M − 2), and hence

nβ(M−2)+λMd/λ2 → ∞ as n → ∞. Therefore, Âφ(n) is definitely negative in
the large population limit. Putting this all together, we have our desired result:
P
(∑M

k=2 Âk(n)+ Âφ(n) > 0
)

→ 0 as n → ∞. *+

5.9 Proof of proposition 2

Proof Let f̂n(z) =
∑M

k=2 φk(ztn)− n. Taking the first derivative of φ2 with respect to
z, we get

d
dz

φ2(ztn) = −n1−z log n.

Taking a second derivative yields

d2

dz2
φ2(ztn) = (log n)2n1−z

> 0.

Hence φ2(ztn) is concave up everywhere. Now for k > 2, we have

φk(ztn) =
(−1)k

Dk−2 n
1−(k−2)β S̃k(z).

Taking the first derivative of this equation with respect to z, we get

d
dz

φk(ztn) =
(−1)k

Dk−2 n
1−(k−2)β log n

(
− λi

λ2

)
S̃k(z).

Taking a second derivative yields

d2

dz2
φk(ztn) =

(−1)k

Dk−2 n
1−(k−2)β(log n)2

(
λi

λ2

)2

S̃k(z)

∼ (−1)k

Dk−2 n
1−(k−2)β(log n)2

(λk/λ2)
2n−λk z/λ2

P̃k,k
> 0.

So φk(ztn) is concave up in the large population limit for all k ≥ 2. Therefore,∑M
k=2 φk(ztn) is concave up since a sum of concave up functions is always concave up.

Hence f̂n(z) is concave up as well. Since f̂n(z) is clearly differentiable everywhere,
this implies that either f̂n(z) is monotonically increasing everywhere, or f̂n(z) is
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decreasing on the first part of its domain and then increasing on the rest of its domain.
Note that f̂n(0) = 0. We also have that

f̂n(bn) = n1−bn +
M∑

k=3

(−1)k

Dk−2 n
1−(k−2)β S̃k(bn) − n

= n
[
n

λ2
λM

β(M−2)n
1

λM tn
log
[

(−1)M

DM−2 P̃M,M

(
λ2−λM

λ2

)]

+
M∑

k=3

(−1)k

Dk−2

k∑

i=2

n−β(k−2)n
λi
λM

β(M−2)n
λi

λM λ2 tn
log
[

(−1)M

DM−2 P̃M,M

(
λ2−λM

λ2

)]

P̃i,k
− 1

]

∼ n




M∑

k=3

(−1)k

Dk−2 ·
nβ[λk (M−2)/λM−(k−2)]

[
(−1)M

DM−2 P̃M,M

(
λ2−λM

λ2

)]−λk/λM

P̃k,k
− 1





= n
[M−1∑

k=3

(−1)k

Dk−2 ·
nβ[λk (M−2)/λM−(k−2)]

[
(−1)M

DM−2 P̃M,M

(
λ2−λM

λ2

)]−λk/λM

P̃k,k

+ λ2

λ2 − λM
− 1

]
.

Note that

β

[
λk (M − 2)

λM
− (k − 2)

]
= β

[
λ2 + (k − 2) λM−λ2

M−2

]
(M − 2) −

[
λ2 + (M − 2) λM−λ2

M−2

]
(k − 2)

λM

= β
λ2(M − 2)+ (k − 2)(λM − λ2) − λ2(k − 2) − (k − 2)(λM − λ2)

λM

= β
λ2
λM

(M − k),

so we can substitute this to get

f̂n(bn) ∼ n
[M−1∑

k=3

(−1)k
[

(−1)M

DM−2 P̃M,M

(
λ2−λM

λ2

)]−λk/λM

Dk−2 P̃k,k
nβλ2(M−k)/λM + λ2

λ2 − λM
− 1

]

∼ n
(

λ2

λ2 − λM
− 1

)

< 0.

So f̂n(bn) < 0 in the large population limit. Similarly,

f̂n(Bn) = n1−Bn +
M∑

k=3

(−1)k

Dk−2 n
1−(k−2)β S̃k(Bn) − n

= n
[
n

λ2
λM

β(M−2)n
1

λM tn
log
[

(−1)M

DM−2 P̃M,M

]
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+
M∑

k=3

(−1)k

Dk−2

k∑

i=2

n−β(k−2)n
λi
λM

β(M−2)n
λi

λM λ2 tn
log
[

(−1)M

DM−2 P̃M,M

]

P̃i,k
− 1

]

∼ n




M∑

k=3

(−1)k

Dk−2 ·
nβ[λk (M−2)/λM−(k−2)]

[
(−1)M

DM−2 P̃M,M

]−λk/λM

P̃k,k
− 1





= n




M−1∑

k=3

(−1)k
[

(−1)M

DM−2 P̃M,M

]−λk/λM

Dk−2 P̃k,k
nβλ2(M−k)/λM





> 0.

So f̂n(Bn) > 0 in the large population limit. Therefore, we know that f̂n(z) must be
monotonically decreasing on the first part of its domain and monotonically increasing
on the rest of its domain. This implies that there exists one and only one positive
solution ṽn to the equation f̂n(z) = 0. And since f̂n(bn) < 0 and f̂n(Bn) > 0 in the
large population limit, we must have bn < ṽn < Bn . Lastly, because limn→∞ bn =
limn→∞ Bn = − λ2

λM
β(M − 2), the solution ṽn → − λ2

λM
β(M − 2) as n → ∞ as well.

*+

5.10 Proof of theorem 1

Proof In order to show the desired result, we must show

lim
n→∞P(ωn > vn + ε)+ lim

n→∞P(ωn < vn − ε) = 0.

Let’s start by proving that P(ωn < vn − ε) → 0 as n → ∞. Note that

P(ωn < vn − ε)

= P
(

ωn

tn
< v−

n (ε)

)

≤ P
(

sup
z∈[d,v−

n (ε)]

(
M∑

k=2

Xk(ztn) − n

)

> 0

)

= P
(

sup
z∈[d,v−

n (ε)]
nβ(M−2)+λMz/λ2−1

(
M∑

k=2

Xk(ztn)+
M∑

k=2

φk(ztn) −
M∑

k=2

φk(ztn) − n

)

> 0

)

≤ P
(

M∑

k=2

B̂k(n, ε)+ B̂φ(n, ε) > 0

)

,

where

B̂k(n, ε) = sup
z∈[d,v−

n (ε)]
nβ(M−2)+λMz/λ2−1 (Xk(ztn) − φk(ztn)) ,
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B̂φ(n, ε) = sup
z∈[d,v−

n (ε)]
nβ(M−2)+λMz/λ2−1

(
M∑

k=2

φk(ztn) − n

)

.

Note that

sup
z∈[d,v−

n (ε)]

∣∣∣nβ(M−2)+λMz/λ2−1 (Xk(ztn) − φk(ztn))
∣∣∣

≤ sup
z∈[d,v+n (ε)]

nβ(M−2)+λMz/λ2−1 |Xk(ztn) − φk(ztn)| ,

which converges to zero in probability by Proposition 3. Now we just need
to show that B̂φ(n, ε) is negative in the large population limit. Let ĝn(z) =
nβ(M−2)+λMz/λ2−1

(∑M
k=2 φk(ztn) − n

)
. Using the definitions of φ2 and φk for k > 2,

we see that

ĝn(z) = nβ(M−2)+λMz/λ2−1

(

n1−z +
M∑

k=3

(−1)k

Dk−2 n
1−(k−2)β S̃k(z) − n

)

= nβ(M−2)+z(λM/λ2−1) +
M∑

k=3

(−1)k

Dk−2

k∑

i=2

nβ(M−k)+(λM−λi )z/λ2

P̃i,k
− nβ(M−2)+λMz/λ2

= n(M−2)(β+Dz/λ2) +
M∑

k=3

(−1)k

Dk−2

k∑

i=2

nβ(M−k)+(M−i)Dz/λ2

P̃i,k
− nβ(M−2)+λMz/λ2 .

Taking the derivative with respect to z yields

ĝ′
n(z) = n(M−2)(β+Dz/λ2) log n · (M − 2)D

λ2

+
M∑

k=3

(−1)k

Dk−2

k∑

i=2

nβ(M−k)+(M−i)Dz/λ2 log n · (M−i)D
λ2

P̃i,k

− nβ(M−2) log n · λM

λ2
nλMz/λ2

Since λ2 < 0 we know that the inner sum of the second term will be asymptotically
dominated by the i = k term as n → ∞. Thus,

ĝ′
n(z) ∼ log n

λ2

[
(M − 2)D · n(M−2)(β+Dz/λ2)

+
M∑

k=3

(−1)k(M − k)

Dk−3 P̃k,k
n(M−k)(β+Dz/λ2) − λMnβ(M−2)+λMz/λ2

]

,

Let z ∈ [d, v−
n (ε)]. Since z ≥ d we have that z > −λ2β

M−2
λM−λ2

= −λ2β/D by (1).
Therefore, Dz/λ2 < −β, and hence β + Dz/λ2 < 0. So (M − k)(β + Dz/λ2) ≤
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0 for 2 ≤ k ≤ M . On the other hand, since z ≤ v−
n (ε) < − λ2

λM
β(M − 2) for

sufficiently large n by Proposition 2, we have that λMz/λ2 > −β(M − 2), and hence
β(M − 2)+ λMz/λ2 > 0. Together, this implies that when z ∈ [d, v−

n (ε)],

ĝ′
n(z) ∼ log n

λ2

[
−λMnβ(M−2)+λMz/λ2

]

= λM log n
−λ2

nβ(M−2)+λMz/λ2

> 0 for sufficiently large n.

Hence ĝn(z) is monotonically increasing on the interval [d, v−
n (ε)]. Therefore, we

may rewrite B̂φ(n, ε) as

B̂φ(n, ε) = nβ(M−2)+λMv−
n (ε)/λ2−1

(
M∑

k=2

φk(v
−
n (ε)tn) − n

)

.

Then by the definitions of φ2 and φk for k > 2, we have

B̂φ(n, ε) = nβ(M−2)+λMv−
n (ε)/λ2−1

(

n1−v−
n (ε) +

M∑

k=3

(−1)k

Dk−2 n
1−(k−2)β S̃k(v−

n (ε)) − n

)

=
(
n(M−2)(β+Dv−

n (ε)/λ2)

+ nβ(M−2)+λMv−
n (ε)/λ2−1

M∑

k=3

(−1)k

Dk−2 n
1−(k−2)β

k∑

i=2

n−v−
n (ε)−(i−2)Dv−

n (ε)/λ2

P̃i,k

− nβ(M−2)+λMv−
n (ε)/λ2

)

Similar to the previous calculations, since λ2 < 0 we know that the inner sum of the
second term will be dominated by the i = k term as n → ∞. Thus,

B̂φ(n, ε) ∼
(
n(M−2)(β+Dv−

n (ε)/λ2)

+ nβ(M−2)+λMv−
n (ε)/λ2−1

M∑

k=3

(−1)k

Dk−2 P̃k,k
n1−(k−2)β−v−

n (ε)−(k−2)Dv−
n (ε)/λ2

− nβ(M−2)+λMv−
n (ε)/λ2

)

=
(
n(M−2)(β+Dv−

n (ε)/λ2)

123



59 Page 52 of 63 A. Li et al.

+ n(M−2)(β+Dv−
n (ε)/λ2)

M∑

k=3

(−1)k

Dk−2 P̃k,k
n−(k−2)(β+Dv−

n (ε)/λ2)

− nβ(M−2)+λMv−
n (ε)/λ2

)

=
(
n(M−2)(β+Dv−

n (ε)/λ2)

+
M∑

k=3

(−1)k

Dk−2 P̃k,k
n(M−k)(β+Dv−

n (ε)/λ2) − nβ(M−2)+λMv−
n (ε)/λ2

)

Since v−
n (ε) > d, we have that v−

n (ε) > −λ2β
M−2

λM−λ2
= −λ2β/D by (1). Therefore,

Dv−
n (ε)/λ2 < −α, and hence β + Dv−

n (ε)/λ2 < 0. This implies that (M − k)(β +
Dv−

n (ε)/λ2) < 0 for 2 ≤ k ≤ M . Moreover, since v−
n (ε) < −λ2

λM
β(M − 2) for

sufficiently large n by Proposition 2, we have that λM
λ2

v−
n ε > −β(M − 2) and hence

β(M − 2)+ λM
λ2

v−
n ε > 0. Thus,

B̂φ(n, ε) ∼ −nβ(M−2)+λMv−
n (ε)/λ2 .

So B̂φ(n, ε) is definitely negative in the large population limit. Putting this all together,

we have thatP
(∑M

k=2 B̂k(n, ε)+ B̂φ(n, ε) > 0
)

→ 0 as n → ∞. Therefore,we have
shown P(ωn < vn − ε) → 0 as n → ∞. The proof that P(ωn > vn + ε) → 0 as
n → ∞ follows using a similar argument. *+

5.11 Proof of Proposition 3

Proof Let’s start by proving the k = 2 case. That is, we want to show that

lim
n→∞P

(

sup
z∈[d,v+n (ε)]

nβ(M−2)+λMz/λ2−1 |X2(ztn) − φ2(ztn)| > δ

)

= 0.

Because a branching process normalized by its mean is a martingale, we know that

Z2(z) = nβ(M−2)+z−1 (X2(ztn) − φ2(ztn))

is a martingale in z. To prove our desired result for k = 2, we need to show

lim
n→∞P

(

sup
z∈[d,v+n (ε)]

n(λM−λ2)z/λ2 |Z2(z)| > δ

)

= 0,
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or, equivalently,

lim
n→∞P

(

sup
z∈[d,v+n (ε)]

n(M−2)Dz/λ2 |Z2(z)| > δ

)

= 0.

Note that

sup
z∈[d,v+n (ε)]

n(M−2)Dz/λ2 |Z2(z)| ≤ sup
z∈[d,v+n (ε)]

n(M−2)Dz/λ2 · sup
z∈[d,v+n (ε)]

|Z2(z)|

= n(M−2)Dd/λ2 · sup
z∈[d,v+n (ε)]

|Z2(z)|.

Therefore, we have that

P
(

sup
z∈[d,v+n (ε)]

n(M−2)Dz/λ2 |Z2(z)| > δ

)

≤ P
(

n(M−2)Dd/λ2 · sup
z∈[d,v+n (ε)]

|Z2(z)| > δ

)

= P
(

sup
z∈[d,v+n (ε)]

|Z2(z)| > δ · n(2−M)Dd/λ2

)

≤ 1
δ
n(M−2)Dd/λ2 · E

[∣∣Z2(v
+
n (ε))

∣∣] by Doob’s Martingale Inequality

= 1
δ
n(M−2)Dd/λ2 · E

[∣∣∣nβ(M−2)+v+n (ε)−1(X2(v
+
n (ε)tn) − φ2(v

+
n (ε)tn))

∣∣∣
]

= 1
δ
nβ(M−2)+(M−2)Dd/λ2+v+n (ε)−1 · E

[∣∣X2(v
+
n (ε)tn) − φ2(v

+
n (ε)tn)

∣∣] .

Clearly,

∣∣X2(v
+
n (ε)tn) − φ2(v

+
n (ε)tn)

∣∣ ≤
∣∣X2(v

+
n (ε)tn)

∣∣+
∣∣φ2(v

+
n (ε)tn)

∣∣

= X2(v
+
n (ε)tn)+ φ2(v

+
n (ε)tn).

This implies that

E
[∣∣X2(v

+
n (ε)tn) − φ2(v

+
n (ε)tn)

∣∣] ≤ E
[
X2(v

+
n (ε)tn)+ φ2(v

+
n (ε)tn)

]

= 2φ2(v
+
n (ε)tn).

And hence

P
(

sup
z∈[d,v+n (ε)]

n(M−2)Dz/λ2 |Z2(z)| > δ

)

≤ 2
δ
nβ(M−2)+(M−2)Dd/λ2+v+n (ε)−1n1−v+n (ε)

123



59 Page 54 of 63 A. Li et al.

= 2
δ
n(M−2)(β+Dd/λ2).

So it suffices to show that β + Dd/λ2 < 0. From (1), we have that

d > −λ2β
M − 2

λM − λ2
= −λ2β

m
,

which implies that Dd/λ2 < −β, so we are done with the k = 2 case.
Next, let’s prove the desired result for k > 2. Note that

φk(ztn) =
∫ ztn

0
n−βφk−1(s)eλk (ztn−s) ds

= n−β−λk z/λ2
∫ ztn

0
φk−1(s)e−λk s ds.

Therefore,

nβ(M−2)+λMz/λ2−1 (Xk(ztn) − φk(ztn))

= nβ(M−2)+λMz/λ2−1Xk(ztn) − nβ(M−3)+(λM−λk )z/λ2−1
∫ ztn

0
φk−1(s)e−λk s ds

= nβ(M−2)+λMz/λ2−1Xk(ztn) − nβ(M−3)+(M−k)Dz/λ2−1
∫ ztn

0
φk−1(s)e−λk s ds

= nβ(M−2)+λMz/λ2−1Xk(ztn) − nβ(M−3)+(M−k)Dz/λ2−1
∫ ztn

0
Xk−1(s)e−λk s ds

+ nβ(M−3)+(M−k)Dz/λ2−1
∫ ztn

0
(Xk−1(s) − φk−1(s)) e−λk s ds.

Taking the absolute value of both sides and using the triangle inequality, we get

nβ(M−2)+λMz/λ2−1 |Xk(ztn) − φk(ztn)|

≤
∣∣∣∣n

β(M−2)+λMz/λ2−1Xk(ztn) − nβ(M−3)+(M−k)Dz/λ2−1
∫ ztn

0
Xk−1(s)e−λk s ds

∣∣∣∣

+ nβ(M−3)+(M−k)Dz/λ2−1
∫ ztn

0
|Xk−1(s) − φk−1(s)| e−λk s ds.

This implies that

sup
z∈[d,v+n (ε)]

nβ(M−2)+λMz/λ2−1 |Xk(ztn) − φk(ztn)|

≤ sup
z∈[d,v+n (ε)]

∣∣∣nβ(M−2)+λMz/λ2−1Xk(ztn) − nβ(M−3)+(M−k)Dz/λ2−1

∫ ztn

0
Xk−1(s)e−λk s ds

∣∣∣∣+ sup
z∈[d,v+n (ε)]

nβ(M−3)+(M−k)Dz/λ2−1
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∫ ztn

0
|Xk−1(s) − φk−1(s)| e−λk s ds.

Hence

P
(

sup
z∈[d,v+n (ε)]

nβ(M−2)+λM z/λ2−1 |Xk(ztn) − φk(ztn)| > δ

)

≤ P
(

sup
z∈[d,v+n (ε)]

∣∣∣∣n
β(M−2)+λM z/λ2−1Xk (ztn) − nβ(M−3)+(M−k)Dz/λ2−1

∫ ztn

0
Xk−1(s)e−λk s ds

∣∣∣∣ > δ/2

)

(10)

+ P
(

sup
z∈[d,v+n (ε)]

nβ(M−3)+(M−k)Dz/λ2−1
∫ ztn

0
|Xk−1(s) − φk−1(s)| e−λk s ds > δ/2

)

. (11)

As a reminder, our goal is to show that (11) converges to 0 as n → ∞.
Let’s start with the second term. Note that

sup
z∈[d,v+n (ε)]

nβ(M−3)+(M−k)Dz/λ2−1
∫ ztn

0
|Xk−1(s) − φk−1(s)| e−λk s ds

≤ sup
z∈[d,v+n (ε)]

nβ(M−3)+(M−k)Dz/λ2−1 sup
z∈[d,v+n (ε)]

∫ ztn

0
|Xk−1(s) − φk−1(s)| e−λk s ds

= nβ(M−3)+(M−k)Dd/λ2−1
∫ v+n (ε)tn

0
|Xk−1(s) − φk−1(s)| e−λk s ds.

So, in order to show the second term in (11) converges to 0, we must show

lim
n→∞P

(

nβ(M−3)+(M−k)Dd/λ2−1
∫ v+n (ε)tn

0
|Xk−1(s) − φk−1(s)| e−λk s ds > δ/2

)

= 0.

Since convergence in mean implies convergence in probability (by Markov’s Inequal-
ity), it suffices to show that

lim
n→∞E

(

nβ(M−3)+(M−k)Dd/λ2−1
∫ v+n (ε)tn

0
|Xk−1(s) − φk−1(s)| e−λk s ds

)

= 0

or, equivalently,

lim
n→∞ nβ(M−3)+(M−k)Dd/λ2−1

∫ vn+ε

0
E
[|Xk−1(s) − φk−1(s)|

]
e−λk s ds = 0.

Note that

|Xk−1(s) − φk−1(s)| ≤ |Xk−1(s)| + |φk−1(s)| by the triangle inequality

= Xk−1(s)+ φk−1(s).
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Taking the mean of both sides yields

E
[|Xk−1(s) − φk−1(s)|

]
≤ E

[
Xk−1(s)+ φk−1(s)

]

= 2φk−1(s).

Multiplying both sides by nβ(M−3)+(M−k)Dd/λ2−1e−λk s and integrating gives us the
following inequality:

nβ(M−3)+(M−k)Dd/λ2−1 ∫ vn+ε
0 E

[|Xk−1(s) − φk−1(s)|
]
e−λk s ds

≤ nβ(M−3)+(M−k)Dd/λ2−1 ∫ vn+ε
0 2φk−1(s)e−λk s ds.

So it suffices to show that

lim
n→∞ nβ(M−3)+(M−k)Dd/λ2−1

∫ vn+ε

0
2φk−1(s)e−λk s ds = 0

or, equivalently,

lim
n→∞ nβ(M−3)+(M−k)Dd/λ2−1

∫ vn+ε

0
E
[
Xk−1(s)

]
e−λk s ds = 0.

Using the definition of E
[
Xk−1(s)

]
, we see that

nβ(M−3)+(M−k)Dd/λ2−1
∫ vn+ε

0
E
[
Xk−1(s)

]
e−λk s ds

= nβ(M−3)+(M−k)Dd/λ2−1
∫ vn+ε

0

[
n1−(k−3)β(−1)k−1Sk−1(s)

]
e−λk s ds

= nβ(M−k)+(M−k)Dd/λ2(−1)k−1
∫ vn+ε

0

k−1∑

i=2

e(λi−λk )s

Pi,k−1
ds

=
(
1
m

)k−3

n(M−k)(β+Dd/λ2)(−1)k−1
k−1∑

i=2

∫ vn+ε

0

e(i−k)Ds

P̃i,k−1
ds

= 1
Dk−2 n

(M−k)(β+Dd/λ2)(−1)k
k−1∑

i=2

1

P̃i,k

(
e(i−k)D(vn+ε) − 1

)
.

Since vn = ṽntn = − ṽn
λ2

log n,

e(i−k)D(vn+ε) = e(k−i)D ṽn
λ2

log ne(i−k)Dε

= n(k−i)Dṽn/λ2e(i−k)Dε.
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So we want to show that

lim
n→∞

1
Dk−2 n

(M−k)(β+Dd/λ2)(−1)k
k−1∑

i=2

1

P̃i,k

(
n(k−i)Dṽn/λ2e(i−k)Dε − 1

)
= 0

or, equivalently,

lim
n→∞ n(M−k)(β+Dd/λ2)

k−1∑

i=2

1

P̃i,k

(
n(k−i)Dṽn/λ2e(i−k)Dε − 1

)
= 0.

Since ṽn → − λ2
λM

β(M − 2) as n → ∞, we have that n(k−i)Dṽn/λ2 → 0 and hence

n(k−i)Dṽn/λ2e(i−k)Dε − 1 → −1. Therefore, this problem simplifies to showing that
n(M−k)(β+Dd/λ2) → 0 as n → ∞. But we have already seen that β + Dd/λ2 < 0 in
the k = 2 case, so we have the desired result.

Now that we have proved the second term in (11) converges to 0 as n → ∞, all we
have left is to show that the first term converges to 0 as well. By Lemma 1 in Durrett
and Moseley (2010), we know that

e−λk t Xk(t) −
∫ t

0
n−βe−λk s Xk−1(s) ds

is a martingale. Setting t = ztn = − z
λ2

log n, we get that

nλk z/λ2Xk(ztn) − n−β

∫ ztn

0
e−λk s Xk−1(s) ds

is a martingale in z. Since linear combinations of martingales are also martingales,

nλk z/λ2+β(M−2)+(λM−λk )z/λ2−1Xk (ztn) − n−β+β(M−2)+(λM−λk )z/λ2−1
∫ ztn

0
Xk−1(s)e

−λk s ds

is also a martingale in z. The expression above simplifies to

nβ(M−2)+λMz/λ2−1Xk(ztn) − nβ(M−3)+(M−k)Dz/λ2−1
∫ ztn

0
Xk−1(s)e−λk s ds.

Therefore,

∣∣∣∣n
β(M−2)+λMz/λ2−1Xk(ztn) − nβ(M−3)+(M−k)Dz/λ2−1

∫ ztn

0
Xk−1(s)e−λk s ds

∣∣∣∣

is a non-negative submartingale in z, so we can apply Doob’s Martingale Inequality
to get

P



 sup
z∈[d,v+n (ε)]

∣∣∣∣n
β(M−2)+λMz/λ2−1Xk (ztn) − nβ(M−3)+(M−k)Dz/λ2−1

∫ ztn

0
Xk−1(s)e

−λk s ds
∣∣∣∣ > δ/2




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≤ 4
δ2

· E
[(

nβ(M−2)+λM v+n (ε)/λ2−1Xk (vn + ε)

− nβ(M−3)+(M−k)Dv+n (ε)/λ2−1
∫ vn+ε

0
Xk−1(s)e

−λk s ds
)2]

.

Therefore, it suffices to show that

lim
n→∞E

[(
nβ(M−2)+λM v+n (ε)/λ2−1Xk (vn + ε) − nβ(M−3)+(M−k)Dv+n (ε)/λ2−1

∫ vn+ε

0
Xk−1(s)e

−λk s ds
)2]

= 0.

We can expand the quantity above as follows:

E
[(

nβ(M−2)+λMv+n (ε)/λ2−1Xk(vn + ε) − nβ(M−3)+(M−k)Dv+n (ε)/λ2−1

∫ vn+ε

0
Xk−1(s)e−λk s ds

)2
]

= n2β(M−2)+2λMv+n (ε)/λ2−2E
[
Xk(vn + ε)2

]

− 2nβ(2M−5)+(2λM−λk )v
+
n (ε)/λ2−2

∫ vn+ε

0
E
[
Xk−1(s)Xk(vn + ε)

]
e−λk s ds

+ n2β(M−3)+2(λM−λk )v
+
n (ε)/λ2−2

∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
e−λk se−λk y ds dy.

By making a slight modification to the proof of Lemma 1 in Foo and Leder (2013),
we have that

E
[
Xk (vn + ε)2

]
= (n−β )2

∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
eλk (vn+ε−s)eλk (vn+ε−y) ds dy

+ n−β
∫ vn+ε

0
E
[
Xk−1(s)

]
E
[
X̃k (vn + ε − s)2

]
ds

E
[
Xk−1(s)Xk (vn + ε)

]
= n−β

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
e−λk (vn+ε−y) dy

where X̃k is a binary branching process starting from size one with birth rate rk and
death rate dk . Substituting these expressions into our equation yields

E
[(

nβ(M−2)+λM v+n (ε)/λ2−1Xk (vn + ε) − nβ(M−3)+(M−k)Dv+n (ε)/λ2−1

∫ vn+ε

0
Xk−1(s)e

−λk s ds
)2]

= n2β(M−3)+2λM v+n (ε)/λ2−2
∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
eλk (2vn+2ε−s−y) ds dy

+ nβ(2M−5)+2λM v+n (ε)/λ2−2
∫ vn+ε

0
E
[
Xk−1(s)

]
E
[
X̃k (vn + ε − s)2

]
ds

− 2n2β(M−3)+(2λM−λk )v
+
n (ε)/λ2−2

∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
eλk (vn+ε−s−y) ds dy

+ n2β(M−3)+2(λM−λk )v
+
n (ε)/λ2−2

∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
e−λk (s+y) ds dy.

123



A comparison of mutation and amplification-driven… Page 59 of 63 59

Then, by definition of v+n (ε),

E
[(

nβ(M−2)+λM v+n (ε)/λ2−1Xk (vn + ε) − nβ(M−3)+(M−k)Dv+n (ε)/λ2−1

∫ vn+ε

0
Xk−1(s)e

−λk s ds
)2]

= n2β(M−3)−2e−2λM (vn+ε)
∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
eλk (2vn+2ε−s−y) ds dy

+ nβ(2M−5)−2e−2λM (vn+ε)
∫ vn+ε

0
E
[
Xk−1(s)

]
E
[
X̃k (vn + ε − s)2

]
ds

− 2n2β(M−3)−2e−(2λM−λk )(vn+ε)
∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
eλk (vn+ε−s−y) ds dy

+ n2β(M−3)−2e−2(λM−λk )(vn+ε)
∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
e−λk (s+y) ds dy

= n2β(M−3)−2e2(λk−λM )(vn+ε)
∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
e−λk (s+y) ds dy

+ nβ(2M−5)−2e−2λM (vn+ε)
∫ vn+ε

0
E
[
Xk−1(s)

]
E
[
X̃k (vn + ε − s)2

]
ds

− 2n2β(M−3)−2e2(λk−λM )(vn+ε)
∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
e−λk (s+y) ds dy

+ n2β(M−3)−2e2(λk−λM )(vn+ε)
∫ vn+ε

0

∫ vn+ε

0
E
[
Xk−1(s)Xk−1(y)

]
e−λk (s+y) ds dy

= nβ(2M−5)−2e−2λM (vn+ε)
∫ vn+ε

0
E
[
Xk−1(s)

]
E
[
X̃k (vn + ε − s)2

]
ds.

Note that

E
[
Xk−1(s)

]
= n1−(k−3)β(−1)k−1Sk−1(s),

E
[
X̃k(vn + ε − s)2

]
= 2rk

λk
e2λk (vn+ε−s) − rk + dk

λk
eλk (vn+ε−s).

Substituting these into the above expression yields

E
[(

nβ(M−2)+λM v+n (ε)/λ2−1Xk (vn + ε) − nβ(M−3)+(M−k)Dv+n (ε)/λ2−1
∫ vn+ε

0
Xk−1(s)e

−λk s ds
)2]

= nβ(2M−5)−2e−2λM (vn+ε)·
∫ vn+ε

0
n1−(k−3)β (−1)k−1Sk−1(s)

(
2rk
λk

e2λk (vn+ε−s) − rk + dk
λk

eλk (vn+ε−s)
)

ds

= nβ(2M−k−2)−1e−2λM (vn+ε)(−1)k−1
[
2rk
λk

e2λk (vn+ε)
∫ vn+ε

0

k−1∑

i=2

e(λi−2λk )s

Pi,k−1
ds

− rk + dk
λk

eλk (vn+ε)
∫ vn+ε

0

k−1∑

i=2

e(λi−λk )s

Pi,k−1
ds
]

= nβ(2M−k−2)−1(−1)k−1e−2λM (vn+ε) 1
λk

·

k−1∑

i=2




2rk

(
eλi (vn+ε) − e2λk (vn+ε)

)

(λi − 2λk )Pi,k−1
−

(rk + dk )
(
eλi (vn+ε) − eλk (vn+ε)

)

(λi − λk )Pi,k−1




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= nβ(2M−k−2)−1(−1)k−1e−2λM (vn+ε) 1
λk

·

k−1∑

i=2

2rk (λi − λk )
(
eλi (vn+ε) − e2λk (vn+ε)

)
− (rk + dk )(λi − 2λk )

(
eλi (vn+ε) − eλk (vn+ε)

)

(λi − λk )(λi − 2λk )Pi,k−1
.

Now note that

2rk(λi − λk)
(
eλi (vn+ε) − e2λk (vn+ε)

)
− (rk + dk)(λi − 2λk)

(
eλi (vn+ε) − eλk (vn+ε)

)

= λk (λi + 2dk) eλi (vn+ε) + (rk + dk) (λi − 2λk) eλk (vn+ε) + 2rk (λk − λi ) e2λk (vn+ε).

Substituting this back in, we get

E
[(

nβ(M−2)+λMv+n (ε)/λ2−1Xk(vn + ε) − nβ(M−3)+(M−k)Dv+n (ε)/λ2−1

∫ vn+ε

0
Xk−1(s)e−λk s ds

)2
]

= nβ(2M−k−2)−1(−1)k−1e−2λM (vn+ε) 1
λk

·
k−1∑

i=2

λk (λi + 2dk) eλi (vn+ε) + (rk + dk) (λi − 2λk) eλk (vn+ε) + 2rk (λk − λi ) e2λk (vn+ε)

(λi − λk)(λi − 2λk)Pi,k−1

∼ nβ(2M−k−2)−1(−1)k−1e−2λM (vn+ε)

λk(λk−1 − λk)(λk−1 − 2λk)Pk−1,k−1
·

[
(rk + dk)(λk−1 − 2λk)eλk (vn+ε) + 2rk(λk − λk−1)e2λk (vn+ε)

]
.

Since vn = ṽntn = − ṽn
λ2

log n,

E
[(

nβ(M−2)+λMv+n (ε)/λ2−1Xk(vn + ε) − nβ(M−3)+(M−k)Dv+n (ε)/λ2−1

∫ vn+ε

0
Xk−1(s)e−λk s ds

)2
]

∼ nβ(2M−k−2)−1(−1)k−1e−2λMεe
2λM ṽn

λ2
log n

λk(λk−1 − λk)(λk−1 − 2λk)Pk−1,k−1
·

[
(rk + dk)(λk−1 − 2λk)eλkεe

λk ṽn
−λ2

log n + 2rk(λk − λk−1)e2λkεe
2λk ṽn
−λ2

log n
]

= (−1)k−1e−2λMε

λk(λk−1 − λk)(λk−1 − 2λk)Pk−1,k−1
·

[
(rk + dk)(λk−1 − 2λk)eλkεnβ(2M−k−2)−1+(2λM−λk )ṽn/λ2

+ 2rk(λk − λk−1)e2λkεnβ(2M−k−2)−1+2(λM−λk )ṽn/λ2
]
.
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Note that

2λM − λk

λ2
= 2(λ2 + (M − 2)D) − (λ2 + (k − 2)D)

λ2

= 1+ D(2M − k − 2)
λ2

.

Therefore,

lim
n→∞ nβ(2M−k−2)−1+(2λM−λk )ṽn/λ2 = lim

n→∞ nβ(2M−k−2)−1+ṽn+ D(2M−k−2)
λ2

ṽn

= lim
n→∞ e

[
β(2M−k−2)−1+ṽn+ D(2M−k−2)

λ2
ṽn

]
log n

.

Then, since

lim
n→∞

[
β(2M − k − 2) − 1+ ṽn +

D(2M − k − 2)
λ2

ṽn

]

= β(2M − k − 2) − 1 − λ2

λM
β(M − 2) − D(2M − k − 2)

λ2

λ2

λM
β(M − 2)

by Proposition 2

= β(2M − k − 2)
(
1 − M − 2

λM

λM − λ2

M − 2

)
− 1 − λ2

λM
β(M − 2)

= λ2

λM
β(M − k) − 1

< 0,

we have that

lim
n→∞ nβ(2M−k−2)−1+(2λM−λk )ṽn/λ2 = 0.

Similarly, note that

2
λM − λk

λ2
= 2

(λ2 + (M − 2)D) − (λ2 + (k − 2)D)

λ2

= 2D
M − k

λ2
.

Therefore,

lim
n→∞ nβ(2M−k−2)−1+2(λM−λk )ṽn/λ2 = lim

n→∞ nβ(2M−k−2)−1+2D M−k
λ2

ṽn

= lim
n→∞ e

[
β(2M−k−2)−1+2D M−k

λ2
ṽn

]
log n

.
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We also have that

lim
n→∞

[
β(2M − k − 2) − 1+ 2D

M − k
λ2

ṽn

]

= β(2M − k − 2) − 1 − 2D
M − k

λ2

λ2

λM
β(M − 2) by Proposition 2

= β(M − 2)+ β(M − k) − 1 − 2β
(
1 − λ2

λM

)
(M − k)

= β(M − 2) − 1+ β(M − k)
(
2

λ2

λM
− 1

)
.

Since β(M − k)(2λ2/λM − 1) < 0 and β < 1/(M − 2), the above limit is negative,
and hence

lim
n→∞ nβ(2M−k−2)−1+2(λM−λk )ṽn/λ2 = 0.

So we are done. *+
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