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Abstract

The standard Bayesian technique for searching pulsar timing data for gravitational-wave bursts with memory
(BWMs) using Markov Chain Monte Carlo (MCMC) sampling is very computationally expensive to perform. In
this paper, we explain the implementation of an efficient Bayesian technique for searching for BWMs. This
technique makes use of the fact that the signal model for Earth-term BWMs (BWMs passing over the Earth) is fully
factorizable. We estimate that this implementation reduces the computational complexity by a factor of 100. We
also demonstrate that this technique gives upper limits consistent with published results using the standard
Bayesian technique, and may be used to perform all of the same analyses of BWMs that standard MCMC

techniques can perform.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); General relativity (641); Gravitational wave

detectors (676); Gravitational wave astronomy (675)

1. Introduction

Millisecond pulsars (MSPs) have very stable rotations.
Because the rotational period is so stable, it is possible to
detect small deviations in the times of arrival (TOAs) of radio
pulses from an array of these pulsars caused by gravitational
waves (GWs) passing between the pulsar and radio observa-
tories on Earth (Hellings & Downs 1983; Foster & Backer
1990; Manchester 2013; McLaughlin 2013). Pulsar timing
arrays (PTAs) are expected to be able to use TOA data from
many MSPs to either detect or provide constraints on GWs
(Sazhin 1978; Detweiler 1979).

One signal of interest is a GW burst with memory (GW
BWM). “Memory” is a permanent change in the spacetime
metric that remains after a GW passes through a region of space
arising from the nonlinearity of Einstein’s field equations
(Christodoulou 1991; Thorne 1992). In particular, it is expected
that mergers of supermassive black hole binaries will leave
behind detectable memory. Detections of (or constraints on) the
rates of BWM events would allow for a better understanding of
the rates at which these events occur in the universe (e.g., Islo
et al. 2019). Additionally, because all GW events leave behind
GW memory, detections of BWMs could lead to discoveries of
new sources of GWs (Cutler et al. 2014).

A GW BWM passing over an Earth—pulsar pair will shift the
pulsar’s observed rotational frequency (e.g., van Haasteren &
Levin 2010). This shift causes a difference between the
observed frequency of the pulsar and the frequency expected
from the timing model fit, and will therefore contribute to a
potentially detectable signal in the pulsar’s TOAs (Seto 2009;
Pshirkov et al. 2010; van Haasteren & Levin 2010; Cordes &
Jenet 2012; Madison et al. 2014; Islo et al. 2019). The observed
rotational frequency may change to be either faster or slower,
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depending on the orientation and polarization of the memory
wave front, which determines the sign of the memory.

In this paper, we will discuss the adaptation of analysis
techniques used in the NANOGrav 5 yr search for GW BWMs
(Arzoumanian et al. 2015; hereafter, NG5-bwm) to expedite
the Bayesian methods used in the NANOGrav 11 yr search for
BWMs (Aggarwal et al. 2020; hereafter, NG11-bwm). This
search was performed on the NANOGrav 11 yr data set
(Arzoumanian et al. 2018). In NG11-bwm, no detection of GW
BWMs was reported. Thus, the authors presented Earth-term
upper limits (ULs) as a function of burst epoch and sky location
(among other results, but these will be our focus). Our goal in
this paper is to show that the adapted techniques from NG5-
bwm may be used to efficiently perform Bayesian analyses
comparable to those in NG11-bwm with a similar degree of
accuracy.

In Section 2, we describe the effect of a BWM on the TOA
residuals of a pulsar. In Section 3, we discuss the current
standard Bayesian approach to searching for GW BWMs in
PTA data and the implementation of an efficient technique for
speeding up this search. In Section 4, we compare the results of
UL calculations using our more efficient technique against
results previously published in the literature. We also discuss
the improvements in computational efficiency that come from
this technique.

2. Signal and Data Model

The rise time for the memory component of a GW BWM is
much shorter than the typical observing cadence of PTAs; thus,
we may ignore it and consider the frequency-shifting effect to
be instantaneous (Favata 2010; van Haasteren & Levin 2010;
Madison et al. 2014). This manifests as a linear “ramp” in the
residuals, since a constant excess or deficit of pulse phase will
accrue with each rotation of the pulsar. Consider a memory
event from a source at (0, ¢). The event wave front propagates
in the direction k, with strain Aq, passing over the Earth, from


https://orcid.org/0000-0002-7933-493X
https://orcid.org/0000-0002-7933-493X
https://orcid.org/0000-0002-7933-493X
https://orcid.org/0000-0003-2745-753X
https://orcid.org/0000-0003-2745-753X
https://orcid.org/0000-0003-2745-753X
https://orcid.org/0000-0002-7445-8423
https://orcid.org/0000-0002-7445-8423
https://orcid.org/0000-0002-7445-8423
https://orcid.org/0000-0003-2285-0404
https://orcid.org/0000-0003-2285-0404
https://orcid.org/0000-0003-2285-0404
https://orcid.org/0000-0002-7778-2990
https://orcid.org/0000-0002-7778-2990
https://orcid.org/0000-0002-7778-2990
mailto:sun.jerry.1996@gmail.com
http://astrothesaurus.org/uat/678
http://astrothesaurus.org/uat/641
http://astrothesaurus.org/uat/676
http://astrothesaurus.org/uat/676
http://astrothesaurus.org/uat/675
https://doi.org/10.3847/1538-4357/acd2cc
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acd2cc&domain=pdf&date_stamp=2023-07-07
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acd2cc&domain=pdf&date_stamp=2023-07-07
http://creativecommons.org/licenses/by/4.0/

THE ASTROPHYSICAL JOURNAL, 951:121 (9pp), 2023 July 10

which we observe a pulsar located at position p. The memory
wave front has the principal polarization vector 1}, described by
an angle v, which gives the principal polarization direction of
the wave front relative to an orthonormal basis (8, 3). In
particular, the principal polarization vector 12) is defined

@:ScostrBsinz/J. )

Following NG5-bwm and NG11-bwm, the perturbation to
pulse TOAs from this pulsar, 8f,,m,, may be modeled as

Stowm (t) = Bk, p , 1) hnem (1), )

where hpem(?) is the time-dependent strain of the memory wave
front, and the geometric factor B accounts for the relative
orientation of the source and pulsar (Estabrook &
Wahlquist 1975; Hellings & Downs 1983). The geometric
projection factor is

Blk,p, ) = %cos(zwﬁ)a — cosa), 3)

where « is the angle between p and k (pulsar location and
propagation direction, respectively) and the angle 1) is defined
to be the angle between the principal polarization vector and
the projection of the pulsar line of sight onto the (3, ,@) plane:

a=cos ' (p - k), “4)
hp= tanl(—ﬁ 5 ] . s)
p-é

We include this description for completeness, and a diagram
with more details may be found in Madison et al. (2014). For
this analysis, we simply characterize the polarization using the
principal polarization angle ). The time-dependent strain term
is (Pshirkov et al. 2010; van Haasteren & Levin 2010)

himem (1) = hol(t — 10)O — 1) — (1 — 1,)O( — 1,)],  (6)

where A is the strain of the memory; 7y is the time that the
memory wave front passed over the Earth; and
t, =ty + (|pl/c) [1 + cos()] is the time at which the
memory wave front passed over the pulsar, with p and «
still defined to be the position of the pulsar and the angle
between the pulsar and BWM propagation direction, as in
Equation (3). Additionally, ©(f) is the Heaviside function.
Because each pulsar in NANOGrav’s 11 yr data release (and,
more generally, current PTA data sets) is on the order of
thousands of light-years away from the Earth, and total
observation times are on the order of tens of years, we only
expect that one of the two terms in Equation (6) will be
nonzero. The first term in Equation (6) is called the “Earth
term,” and the second is called the “pulsar term.” A BWM
may be observed either when it passes over a single pulsar, or
when it passes over the Earth. In the former case, we will see
the frequency of a single pulsar spontaneously change. In the
latter case, we expect to see the rotational frequency of each
pulsar change simultaneously with a characteristic quad-
rupolar amplitude pattern. In either case, the time at which
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the BWM wave front causes an apparent rotational frequency
change is defined as the burst epoch.

This signal model is implemented in enterprise_ex-
tensions® (Taylor et al. 2021).

3. Methodology

We begin by discussing the standard Bayesian approach to
searching for a GW BWM. This discussion will summarize the
approach taken in NG11-bwm, which searched the NANO-
Grav 11 yr data set for GW BWMs. Then, we will discuss the
adaptation of the techniques used in NG5-bwm that expedites
both the pulsar- and Earth-term searches.

3.1. Bayesian Approach

NG11-bwm modeled the timing residuals & of a pulsar as
ot =s+1Tb+n, (N

where 0t are the remaining perturbations to the TOAs from a
pulsar after fitting parameters in the pulsar’s timing model
using a general least-squares fit (Arzoumanian et al. 2018).
These remaining perturbations, the timing residuals, are
expected to originate from a combination of noise processes,
errors in the timing model fit, and GW signals. s are the
contributions to the timing residuals from a GW BWM. 7b are
the contributions to the residuals from any Gaussian processes.
In this paper, we consider two different Gaussian processes,
and so our 7T-matrix and b vector may be broken down into

r=im Fl. b=5].

where M is the design matrix for the linearized timing model
that accounts for uncertainty in the residuals from an imperfect
timing model fit €. F is the design matrix for pulsar-intrinsic red
noise, modeled as a Fourier series with coefficients a. Finally,
the elements of vector n are Gaussian white-noise uncertainties
in the observed TOAs.

The red-noise spectrum, for example from a stochastic

background of GWs, is expected to behave as a power law
(Phinney 2001):

P(f)—A?( Ji )_W (®)
j7 yrfl ’

where P(f;) is the power spectral density of the red-noise
process, A; is the characteristic amplitude of the red-noise
process in the jth frequency bin, using a reference frequency of
yr !, and ~ is the spectral index of the power law.

From Equation (7), we can construct an approximation of the
Gaussian white noise given an estimation of the model
parameters:

n=2~6t—s — Tb. 9)

This is only an approximation of the white noise, since the
terms on the right-hand side are estimations. However, if the
white noise is expected to be Gaussian, we can write the
probability of observing this particular series of white-noise

3 https://github.com/nanograv /enterprise_extensions
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residuals as:

exp(— %nTN* In)
2w detN

where N is a covariance matrix of white-noise uncertainties in
each observed TOA, and n” is the transpose of n.

Then, the likelihood of a BWM signal in the pulsar timing
residuals is equivalent to the likelihood that the remaining
residuals after subtracting out deterministic effects are Gaussian
white noise. In other words,

p(Btlb, s) = p(Btlb, hmem. 10, k. P, 1)
exp[—5 (8t — s — TB)’N"}(8t — 5 — Tb)]

V27 detN ’
1D

where we have explicitly written out the parameters that
determine s. This parameter space, when including each
Fourier coefficient and timing model parameter, is very high-
dimensional.

It is possible to analytically marginalize the likelihood in
Equation (11) over the parameters that describe the Gaussian
processes and reduce the dimensionality of the parameter space
(Lentati et al. 2013; van Haasteren & Vallisneri 2014, 2015).
The reduced likelihood is

pn) = (10)

exp(—34"Cg)

(Otlhmems 10, k. B ) = ,
p mem 0 p 1/} W

12)

where
q =0t —s, (13)
where C is defined as
C=N+TDTT (14)
and D is defined as

oo 0
o-[3 9]
where oo is a diagonal matrix of infinities, which effectively
gives unconstrained priors on the timing model parameters, and
¢ is a diagonal matrix containing the red noise power at each
frequency bin in Equation (8). The Woodbury (Woodbury
1950) matrix identity is used to evaluate C~' efficiently. The D
matrix also only appears as an inverse in this identity. Thus, in
practice, the diagonal matrix of infinities only appears as a
matrix of zeros in the likelihood calculation. This likelihood is
implemented in the ENTERPRISE® (Ellis et al. 2020) pulsar-
timing GW analysis software package.

Now that the likelihood has been constructed, samples from
the posterior distributions are drawn using the Markov Chain
Monte Carlo (MCMC) sampler implemented in the
PTMCMCSAMPLER package (Ellis & Haasteren 2017).

Great care must be taken when computing ULs over the sky
because of a strong selection bias. If there is no support for a
signal in the data, then the maximum posterior probability will
be determined largely by the prior. Because our amplitude prior

 hups: //github.com/nanograv /enterprise

7 https: //github.com/jellis18 /PTMCMCSampler
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spans many orders of magnitude, there is much more prior
volume at higher amplitudes. This means the posterior will be
maximized for bursts with very large amplitudes at insensitive
areas of the sky. Because the burst is placed at an insensitive
area of the sky, the data cannot exclude this strong signal. This
will cause the one-dimensional marginal posterior to be biased
toward very high amplitude for combinations of burst epochs,
sky locations, and polarization angles where the PTA has low
sensitivity. This would not fairly represent the sensitivity of the
Earth-term search (NG11-bwm).

To remedy this, NG11-bwm sampled individual “source-
orientation” bins, in which the burst epoch, sky location, and
polarization are all fixed. Then, a full Earth-term posterior is
constructed by concatenating an equal number of samples from
each source-orientation bin. This sampling scheme is the
equivalent of implementing a prior that exactly cancels the
selection effect, resulting in a posterior that is uniform in
source-orientation. This is related to the technique used in
Malmquist (1922).

More specifically, to place an amplitude UL as a function of
burst epochs, NG11-bwm created 48 HEALPIX® (Gorski et al.
2005) sky bins using healpy’ (Zonca et al. 2019), with eight
polarizations in each sky bin. This gives a total of 384 source-
orientation bins in each of the 40 burst epoch bins. An MCMC
sampler is then used to sample the posterior probability
distributions of the BWM amplitude. Then, to compute an
amplitude posterior marginalized over source-orientations for a
fixed burst epoch, equal numbers of samples are taken from
each source-orientation bin and concatenated.

To place ULs as a function of sky position, NG11-bwm used
768 HEALPIX sky bins and directly sampled polarization (rather
than sampling in fixed polarization bins). Then, the amplitude
UL may be computed from the marginalized amplitude
posterior for each sky position.

For a summary of the priors, see Table 1.

3.2. Accelerated Bayesian Search

For the accelerated Bayesian search, we mimic the Bayesian
approach described in Section 3.1 as closely as possible. We
found that the computational cost of the MCMC sampling
required was prohibitively expensive to perform on machines
we have access to. Thus, to expedite the Bayesian search, we
leverage a fact from NG5-bwm: the Earth-term likelihood is
able to be factorized into a product of pulsar-term likelihoods.
In other words,

Npsr

p(Stlk, b, tg, hg) =[] p;(Stlk, b, ty, hp)
i=1
Noss
=[] p:(8tlh, tp), (15)
i=1
and
hi = Bk, p;, ) X hmem, (16)

where p(6t|l€, 1, tg, hg) is the global likelihood of a burst
propagating in the direction k, with polarization ), an Earth-
term epoch 7, and strain /5. Additionally, p; is the pulsar-term
likelihood of this burst in the ith pulsar, with &; being the

8 https: //healpix.jpl.nasa.gov/
° https://github.com/healpy /healpy
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Table 1
Priors Used for Each of the Model Parameters in the Bayesian Search for Global Earth-term GW BWMs Using the Full PTA
Parameter Prior Description
log;oAm LinearExp(—17, —11) Amplitude of intrinsic pulsar red noise
Y Uniform(0, 7) Spectral index of intrinsic pulsar red noise
log, o Apwm LinearExp(—17, —10) Amplitude of global BWM
PBWM Uniform(0, ) Polarization of BWM
Oswm Uniform(0, ) Polar angle of BWM source
dewM Uniform(0, 27) Azimuthal angle of BWM source

IBwMm

Uniform(MJD 56000, MJD 57000)
Uniform(MJD 53216, MID 57387)

Earth-term BWM epoch

Note. There are a total of five global BWM parameters, as well as two parameters for each pulsar in the PTA. The priors on the logarithm of the amplitude are
equivalent to setting uniform priors over the amplitude. Because of selection effects, it is nontrivial to implement uniform priors over the sky location of the burst.
More details on this may be found in Section 3.1. The prior on fgwy also varies depending on the particular UL calculation. For ULSs as a function of sky location, we
use priors between MJD 56000 and MJD 57000. For ULs as a function of burst epoch, we use priors that encompass all the timing data (approximately MJD 53216 to

MID 57387). There is more detail on the burst epoch prior in Section 3.2.

observed amplitude of the burst after accounting for the
geometric projection, B(k, D:, 1), of the burst onto the pulsar—
Earth line of sight. Finally, N, is the number of pulsars. As
pointed out in NG5-bwm, the pulsar’s TOAs have no
information about the parameters of the burst, other than the
apparent burst amplitude after being projected onto the pulsar—
Earth line of sight. This allows us to precompute the individual
pulsar-term likelihoods over a grid of only post-projection
BWM amplitude and burst epoch without losing any informa-
tion. Then, at run time, the geometric projection factor,
Equation (3), may be applied to give the correct post-projection
amplitude for any given global trial burst. This way, we may
then look up the corresponding likelihoods of the global burst
in the precomputed lookup tables and combine them using
Equation (15).

With this in mind, we begin the accelerated Bayesian search
by first generating five-dimensional lookup tables for the
likelihood of each pulsar (the far right-hand side of
Equation (15)). In addition to the BWM amplitude |4;|, epoch
tg, and the sign of h;, we include the amplitude A,,, and spectral
index ~y of the red-noise process described in Equation (8). We
emphasize that we must keep track of the sign separately,
because any trial BWM may delay or advance the TOAs,
depending on the relative orientation of the BWM polarization
to the pulsar—Earth line of sight. Recall that a single BWM has
a quadrupolar antenna pattern. Consider a pulsar that is in a part
of the sky such that a particular BWM would cause the TOAs
to be advanced by some amount. Rotating the trial burst by 90°
would cause the TOAs to be delayed—rather than advanced—
by the same amount. Thus, for global searches of BWMs with
every possible orientation, we have to include the likelihoods
for every amplitude of BWM with both positive and negative
signs. We then numerically integrate over the red-noise
parameters using the composite Simpson’s rule to obtain one
red-noise-marginalized three-dimensional likelihood lookup
table for each pulsar (with the remaining parameters being
{|hi, 5, sign(h;)}). Then, we may compute marginal amplitude
likelihoods for any pulsar-term BWM by integrating over the
burst epoch.

Next, we can combine the pulsar-term likelihood tables to
construct global likelihood lookup tables that contain the
Bayesian likelihoods of finding an Earth-term trial burst with
fixed sky position (6, ¢), polarization 1, and strain A at some

fixed trial burst epoch #,. To do so, we project a burst with these
fixed global parameters onto each pulsar line of sight to find the
amplitude and sign with which this burst will appear in the
pulsar’s timing residuals. This allows us to compute the
observed amplitude in each of the pulsar terms. We then simply
look up the likelihood for each pulsar-specific projected
amplitude in the single-pulsar lookup tables. Finally, the global
likelihood of this trial burst is computed by multiplying the
pulsar-term likelihoods, Equation (15). We compute one two-
dimensional lookup table varying over trial bursts characterized
by (ho, to) for each set of trial parameters (0, ¢, ).

We can then construct global amplitude posteriors as a
function of sky position and epoch by integrating out any
nuisance parameters against their prior distributions. We do so
in the same way as in NG11-bwm (described in Section 3.1);
whenever we marginalize over source-orientation, we are
careful to do this by taking equal samples from each source-
orientation bin to demand a posterior that is uniform in source-
orientation.

Specifically, to compute the ULs as a function of burst
epoch, we compute two-dimensional posterior distributions of
BWM amplitude and epoch in each of 48 HEALP1ix sky pixels
with one of eight fixed polarizations (for a total of 384 total
source-orientation bins). Then, we compute the marginal BWM
amplitude posterior for each trial burst epoch. Finally, we
concatenate an equal number of samples from each source-
orientation bin to compute the full-sky, polarization-margin-
alized 95% ULs as a function of burst epoch.

To compute the ULs as a function of sky location, we use
768 HEALPix sky pixels and eight polarization bins, with the
prior for BWM epochs limited between MJD 56000 and MJD
57000. We use this limited prior because after MJID 56000,
there are no new pulsars added to the PTA. It is challenging to
come up with a scheme for determining representative BWM
amplitude posteriors over a period in which new pulsars are
continually added, so we limit our search only to the period in
which we already have data for each pulsar. For each source-
orientation bin, we then marginalize over burst epochs to obtain
the marginal BWM amplitude posterior, and concatenate
samples from all eight polarization bins. Finally, we margin-
alize over polarization by concatenating samples from each
polarization bin to obtain the marginal amplitude posterior for
each sky location. In very brief summary:
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Figure 1. Percent difference in the pulsar-term amplitude ULs for each pulsar used in NG11-bwm. These percent differences are computed by comparing the 95%
ULs from Bayesian MCMC runs and lookup table—based methods for positively and negatively signed memory. Overall, we see good agreement, with percent
differences less than 5% and largely consistent with 0%. For this comparison, we limit the search by excluding the first 180 days and last 270 days from the data set.
This is because many pulsars have very sparse observations early on. Furthermore, there will be little evidence for a BWM near the end of a data set, since there will
not be enough observed TOAs after the trial epoch to accurately detect a BWM. This results in extremely large posterior probabilities for bursts at late times, which
heavily reduced the accuracy of our numerical marginalization. The red points are the percent differences for amplitude ULs of positively signed memory, and the blue
points are the differences for negatively signed memory, while the error bars show the 95% confidence intervals computed from bootstrapping.

1. Compute pulsar-term BWM likelihoods on a grid
of {logolhil, sign(h;), fo, 10g;gAm, Yy }-

2. Marginalize pulsar-term BWM likelihoods over red-noise
parameters.

3. Use pulsar-term likelihoods, Equations (15) and (16), to
compute Earth-term BWM likelihoods on a grid of
{log, ko, tg} for each set of trial burst parameters 0, ¢, 1.

4. Marginalize over:

(a) Burst epoch and polarization to compute amplitude
posterior over sky location; and

(b) Sky location and polarization to compute amplitude
posterior over burst epoch.

We computed these global BWM amplitude posteriors using
a prior that is log-uniform in the burst amplitude. However, to
compute ULs on the burst amplitude, we need to use a posterior
with a prior that is uniform in the burst amplitude. Although
our marginal posteriors have log-uniform priors built in, we can
still readjust the prior. Under a log-uniform prior, the burst
amplitude posterior is

plogfuni (Abwmld) X p(dlAbwm) Tog —uni (Abwm)

1
o p(d|Abwm) R (17)

bwm

where 7 (Apwm) X AL is the prior distribution on Apym,. We
b

can see that multiplv}vfning the (log-uniform) posterior by the
amplitude will then correctly adjust the prior to have equal
volume at each burst amplitude, instead of equal volumes at
each order of magnitude of burst amplitude. Once this posterior
is recomputed with the correct prior, we can compute the 95%
amplitude ULs by numerical integration or rejection sampling.

We would also like to emphasize a new, unique advantage of
this accelerated search for BWMs. One challenge of using
PTAs to detect GWs is the necessity of accurate, well-

understood pulsar noise models. Because our global likelihood
is computed using individual pulsar-term likelihoods, we are
free to experiment with different noise models for each pulsar
individually. In contrast, using the traditional techniques would
require a full recomputation of the Bayesian posteriors using
MCMC, even when altering just one of the pulsars’ noise
models. There has been much work done to improve pulsar
noise models, and this factorized approach very robustly allows
for adjustments of noise models during analysis, while
minimizing the computational cost. Furthermore, this would
also allow us to use bespoke noise models for each pulsar, if
necessary.

4. Results

In this section, we will compare ULs on the amplitudes of
GW BWMs computed using this more efficient search and the
previously published ULs in NG11-bwm. Then, we discuss the
improvements in efficiency.

4.1. Pulsar-term Comparisons

Figure 1 shows the percent difference between the pulsar-
term BWM ULs for both positively and negatively signed
memory computed using direct MCMC methods and our
lookup table—based method. It also shows the 95% confidence
intervals computed by bootstrap sampling the posteriors from
the likelihood tables and the MCMC runs. We can see that
these confidence intervals are essentially consistent with zero
difference for the chosen grid density. We chose to compare the
differently signed memory ULs separately in order to fully
compare the two techniques.

Additionally, we narrowed the priors on the burst epoch to
exclude the first 180 and last 270 days of each pulsar’s TOAs.
This choice is largely motivated by extremely large posterior
probabilities for bursts at very early and late times in several
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Figure 2. Marginal amplitude and burst epoch posteriors for three different sets of lookup tables. The leftmost pair show the marginal amplitude and burst epoch
posteriors with 180 days excluded from the beginning and end of the epoch prior. The marginal posteriors computed using lookup tables are in red, and the marginal
posteriors computed using the MCMC sampler are in blue. In this case, the grid density is too low, and the last two points in the burst epoch grid do not fully
characterize the true distribution. This results in a biased marginal amplitude posterior. The center pair shows the posteriors if we exclude an additional 90 days from
the end of the burst epoch prior (orange). We can see that removing the large feature at the end of the data set gives good agreement between the amplitude posteriors.
Additionally, the rightmost pair shows that a higher grid density that has enough grid points to accurately characterize the features in the burst epoch posterior also

gives very good agreement of the amplitude posteriors.

pulsars. These early- and late-time bursts are not credible, and
only exist because they cannot be ruled out by data (there is not
enough data before/after an early/late burst to constrain the
amplitude). Furthermore, the posteriors in these cases vary on
very short timescales, and therefore require more grid points to
fully capture the feature. We can ameliorate this by either
excluding early and late times from the pulsar-term search, or
by using a much denser grid to characterize the posterior
probability as a function of burst epoch. Figure 2 shows that
both of these methods sufficiently address this problem. The
left-hand side of the figure shows both the numerically
marginalized posteriors (red) and the MCMC-computed
posteriors (blue). We can see that without any special
adjustments being made, the last two points of the burst epoch
grid do not sufficiently characterize the posterior, and the
resulting marginal amplitude posterior is biased toward high
amplitudes. However, both the exclusion of early and late trial
burst epochs (orange, center) and the use of a denser grid
(purple, right) give agreement between the marginal amplitude
posteriors.

4.2. Earth-term Comparison

For the Earth-term ULs, we report two results: (1) the ULs as
a function of burst epoch; and (2) the ULs as a function of

position in the sky. These results are shown in Figures 3 and 4,
respectively.

In Figure 3, we see that both methods return nearly identical
ULs as a function of burst epoch. There are some significant
differences, however, at early epochs. Although the ULs appear
very discrepant, at these early epochs, there are very few
recorded TOAs. As such, it is impossible to place very accurate
limits on a BWM, since very large amplitude BWMs can be fit
to the sparse data. Therefore, despite the apparent differences,
we are not very concerned, since we expect a very
nonconstraining UL at these early epochs. More importantly,
as more pulsars and more data are added to the PTA, the ULs
become nearly identical.

Figure 4 shows the ULs on the BWM amplitude as a
function of sky location using the method described in
Section 3.2. The resulting amplitude posterior is sampled to
compute the 95% UL. We find that the amplitude ULs as a
function of sky location are similar to those reported
in NG11-bwm.

Although we can comment on general similarities between
the results, we cannot directly compare them. NGI11-bwm
included an additional model, called BayesEphem, in their
analysis. The BayesEphem model accounts for uncertainty in
the solar system ephemeris. This is especially important in the
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the authors of NG11-bwm. There is good agreement for the vast majority of the data set, with some discrepancy at early times. We believe that these discrepancies
arise from the lack of data early in the data set, and expect uninformative, unconstraining ULs at these trial burst epochs.
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Figure 4. Left: 95% BWM amplitude ULs as a function of sky location. The stars mark the locations of the pulsars in NANOGrav’s 11 yr data release. As expected,
the PTA is most sensitive to BWMs in sky locations where many pulsars are being timed.

NANOGrav 11 yr data set, because the observation baseline is
very close to Jupiter’s orbital period.

This model introduces 11 extra parameters, which is far too
many to use on our parameter grid. It is therefore impossible to
include BayesEphem using the techniques described in this
work. Since there are no published results for ULs on BWMs in
the NANOGrav 11 yr data set as a function of sky position that
do not include BayesEphem, we report our results without a
comparison.

This technique of using pulsar-term likelihood tables can be
used to reproduce the same types of analyses and results that
MCMC-based methods can. The fundamental Bayesian
methodology is identical; both techniques compute margin-
alized posterior probabilities for model parameters. This

method simply takes advantage of the factorizable likelihood
to more efficiently carry out the marginalization.

4.3. Computational Improvement

The computational complexity of computing the pulsar-term
lookup tables is dominated by the cost of inverting the
covariance matrix in Equation (12). This is an N, X N,
matrix, where Ny, is the number of Gaussian process
parameters needed for a single-pulsar-term BWM signal model
(Ellis & Haasteren 2017; Ellis et al. 2020). One inversion has
computational complexity O(Ng3p). To compute a full pulsar-
term lookup table, we evaluate the likelihood once for each
point on a five-dimensional grid (A, Y, |ho|, sign(ho), to).
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Thus, the total cost of the inversions we must perform for one
lookup table is MmMMbmeignMJ\Qp, where each of these
terms represents the number of grid points in the lookup tables
for red-noise amplitudes, red-noise spectral indices, BWM
amplitudes, BWM signs, burst epochs, and Gaussian process
parameters, respectively. For this paper, for a pulsar that has 10
yr of data, the total number of grid points is approximately
32 x 10°. Then, if we compute one lookup table for each
pulsar, for the purpose of convenient comparison, we can
consider the complexity to be approximately 10’ Npsrl\lgp,
where N, is the number of pulsars in the PTA.

The computational complexity of one pulsar-term search for
BWMs using an MCMC sampler may be approximated to be
just the product of the complexity of one likelihood evaluation
and the number of evaluations needed. This means the
complexity of the pulsar-term search for BWMs is approxi-
mately Mleerergp, where Nj, is the number of iterations used
per sampling run. Normally, Nje, ~ 10° is sufficient for
parameter estimates to converge, so we can consider the
complexity to be 10° Npsrl\lgp.

It is very clear that the cost of producing one lookup table is
significantly more expensive than performing one pulsar-term
BWM search. However, once the pulsar-term likelihood tables are
computed, it is very cheap to compute the global likelihoods in a
full-PTA, Earth-term BWM search. For example, to compute the
ULs as a function of trial burst epoch (the results shown in
Figure 3), a full-PTA covariance matrix must be inverted. Because
the signal model does not contain correlations between pulsar
pairs, we may take advantage of the block diagonal structure of
the covariance matrix and invert it in O(Npsrl\fg’p). In other words,
the matrix inversion itself is no less expensive. However, because
of the sampling scheme, we must perform one MCMC sampling
run for each set of (Ng, Ny, Ny, N;). Thus, the total complexity of
computing ULs as a function of burst epoch is approximately
Nier N9 Ny NwN,Npsrl\/;p. In NGI1l-bwm, this total cost is
approximately 8 x 10 Npsrl\fg’p.

We see that although the search is less efficient for
computing pulsar-term ULs, it is far more efficient when
computing certain full-PTA searches. On an Intel 19-9900K
CPU with eight physical cores operating at 3.60 GHz, it takes
approximately two weeks to compute all the single-pulsar
lookup tables. Once the lookup tables have been produced,
each of the full-PTA searches may be completed in
approximately two days. Using only MCMC sampling to
compute full-PTA ULs would have taken approximately 3 yr.

5. Conclusion

In this paper, we have implemented a more efficient
technique for performing a Bayesian search for GW BWMs
by using precomputed lookup tables to circumvent repeated,
expensive matrix inversions to compute a factorizable like-
lihood. This method is faster and gives very similar results to
those given by MCMC sampling. In addition, because all
deterministic signals necessarily factorize, this method is not
limited only to GW BWM searches. However, the BWM signal
lends itself very well to this method because both the pulsar-
term and Earth-term signals have a very low-dimensional
parameter space. This is not generally true of GW signals, and
any extra parameter incurs significant costs in both computa-
tion and storage.

Sun et al.

We believe that there are still improvements to be made. For
example, a robust solution for any errors arising from our
finite-density grid may be implementing a scheme for adaptive
grid spacing, depending on the local variation of the likelihood
surface. This way, we would spend less time over-characteriz-
ing regions of parameter space that do not vary much, while
maintaining accuracy in quickly varying regions of parameter
space.

Overall, we find that our sky-averaged ULs as a function of
burst epochs (see Figure 3) match well with previously
published results, with almost no difference in the most
sensitive regions of the data set (although the ULs differ
somewhat significantly at early trial epochs). This is somewhat
unsurprising; there is very little timing data at early epochs, and
we expect very weak constraints on any BWMs appearing this
early in the data set.

Furthermore, we are able to perform the same full-PTA
search for GWs over the entire sky. Although we cannot
compare results with NG11-bwm, since they use an additional
Bayesian ephemeris model, our results are still quite similar.
For future data sets with more accurate ephemeris models, we
expect these differences to become smaller. Specifically, when
using the ephemeris model DE438 in Arzoumanian et al.
(2020), the Bayesian ephemeris model, BayesEphem, no
longer made a significant difference in common noise
parameter estimation.

In the future, given the results in Arzoumanian et al. (2020),
in which a detection of a common red-noise process was made,
it will be important to include this common process in the
signal model for future BWM searches. This additional signal
requires introducing two new model parameters. While this
would make this method take significantly longer, it may be
possible to find improvements in computational costs by using
Python vectorization or simply by reducing the resolution of
the parameter grid. Preliminary testing shows that a reduction
in grid resolution of approximately 20% still maintains a
similar degree of accuracy to the results shown in this work.
Even with the addition of two more signal parameters, we
expect that this method will still be significantly faster than the
traditional MCMC sampling method.

As pulsar timing baselines become longer and PTAs become
populated with more pulsars, it will be difficult to use current
MCMC sampling techniques to search for GW BWMs, and it
will be important to find faster methods to do so. This method
provides a very efficient way to perform searches for BWMs as
PTAs continue to grow and data sets become too large for
MCMC sampling to be tractable without significant computa-
tional resources.
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