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Abstract

Although neutron star–black hole binaries have been identified through mergers detected in gravitational waves, a
pulsar–black hole binary has yet to be detected. While short-period binaries are detectable due to a clear signal in
the pulsar’s timing residuals, effects from a long-period binary could be masked by other timing effects, allowing
them to go undetected. In particular, a long-period binary measured over a small subset of its orbital period could
manifest via time derivatives of the spin frequency incompatible with isolated pulsar properties. We assess the
possibility of pulsars having unknown companions in long-period binaries and put constraints on the range of
binary properties that may remain undetected in current data, but that may be detectable with further observations.
We find that for 35% of canonical pulsars with published higher-order derivatives, the precision of measurements
is not enough to confidently reject binarity (period 2 kyr), and that a black hole binary companion could not be
ruled out for a sample of pulsars without published constraints if the period is >1 kyr. While we find no convincing
cases in the literature, we put more stringent limits on orbital period and longitude of periastron for the few pulsars
with published higher-order frequency derivatives (n� 3). We discuss the detectability of candidates and find that
a sample pulsar in a 100 yr orbit could be detectable within 5–10 yr.

Unified Astronomy Thesaurus concepts: Binary pulsars (153); Black holes (162)

1. Introduction

Pulsar–black hole (BH) binaries have been described as the
“holy grail of astrophysics” (Faucher-Giguère & Loeb 2011);
the discovery of such a system could reveal a wealth of
information on stellar evolution and strong gravity. Although
the exact number is highly uncertain, predictions range from a
few to roughly 100 such binaries existing in the Galaxy
(Lipunov et al. 2005; Lorimer & Kramer 2012; Shao &
Li 2018). While no pulsar–BH binaries are yet known, large-
scale pulsar surveys with the Square Kilometre Array
(SKA)are predicted to increase the known pulsar population
to 30,000 sources, 3000 of which are expected to be recycled
pulsars (Keane et al. 2015), greatly increasing the likelihood of
discovering exotic pulsar binaries such as these.

Sigurdsson (2003) outlines two formation scenarios for a
pulsar–BH binary in the Galactic field. (1) The system starts as
a binary consisting of two massive stars. The primary, more-
massive star explodes, forming a BH with the system
remaining bound. The secondary, less-massive star then
explodes as a supernova, leaving behind a canonical pulsar in
a wide orbit. A possible example of a progenitor to such a
system is VFTS 243, which hosts a BH (MBH> 9 Me) in a
∼10 days orbit with a 25Me O-type star (Shenar et al. 2022).
(2) The pulsar would form first in a tighter binary, outlined in
more detail by Sipior et al. (2004). Both progenitor main-
sequence stars would be just below the mass threshold to form
a BH and would need to be close enough for mass transfer. The
neutron star progenitor (i.e., the primary star) would lose
enough mass to the secondary star such that the secondary

reaches the threshold of BH formation with the primary
retaining enough mass to become a neutron star. Sipior et al.
(2004) assume that the secondary’s mass gain shortens its
evolutionary timescale in accordance with the mass gained,
while the primary’s lifetime is not extended by mass loss. After
the primary forms a neutron star, the two stars need to stay
close enough for a second round of mass transfer, this time with
the secondary losing mass to the newly formed neutron star.
After this second period of mass transfer, the system would
contain a recycled, millisecond pulsar (MSP) that will remain
bound following the subsequent formation of the BH (Tauris
et al. 2012). High-mass companions that have yet to become
BHs could be detected via their optical emission (Igoshev &
Perets 2019; Antoniadis et al. 2020; Antoniadis 2021).
The emergence of multimessenger astronomy has led to

additional focus on a range of relativistic binaries incorporating
neutron stars (e.g., Margutti & Chornock 2021). The LIGO/
Virgo experiment has identified several gravitational wave
sources consistent with the merger of a neutron star with a
stellar-mass BH (e.g., Abbott et al. 2020a, 2020b), but a local
pulsar–BH binary has yet to be detected at any orbital period.
Pol et al. (2021) predict the number of potentially detectable
short-period binaries (Pb� 10 days) in the Galaxy based on
LIGO/Virgo estimates of event-based and population-based
merger rates, finding a range between ∼1 and ∼13 detectable
binaries. Here, in contrast, we investigate the possibility of a
long-period binary (Pb 2 kyr) hiding in the known pulsar
population.
The ATNF Pulsar catalog v1.65 (PSRCAT;4 Manchester

et al. 2005) lists ∼3000 rotation-powered pulsars, ∼10% of
which are known to be in binary systems. The longest “closed”
orbit (with a data span longer than the binary period) listed is
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5.3 yr (PSR J1638−4725; Lorimer et al. 2006); however,
longer-period binaries have been identified through anomalous
timing behavior. PSR J2032+4127 is in a highly eccentric orbit
(e= 0.978) with a 40−50 yr period (Lyne et al. 2015; Ho et al.
2017). PSR B1620−26 is in a hierarchical triple system,
orbiting a white dwarf with a 191 day period and a Jupiter-like
planet with a ∼60 yr period (Thorsett & Arzoumanian 1999).
PSR J1024–0719 is in a long-period binary orbit with a low-
mass main-sequence star, identified via an unusually low-spin-
period derivative; estimates on the orbital period are from
0.2–20 kyr (Bassa et al. 2016; Kaplan et al. 2016). The
discovery of previously undetected long-period binary compa-
nions could explain anomalous timing behavior in other
systems. Such a system could also help in understanding
varied formation channels for neutron star binaries. This work
is particularly timely given modern optical surveys and greatly
increased pulsar timing programs through instruments like the
Canadian H I Mapping Experiment (CHIME; CHIME/Pulsar
Collaboration et al. 2021), the upgraded Molonglo Observatory
Synthesis Telescope (UTMOST; Lower et al. 2020), and the
future Deep Synoptic Array (DSA-2000; Hallinan et al. 2019).

The pulsar timing model characterizes time delays and
effects in the data, fitting more parameters depending on the
complexity of the system (Lorimer & Kramer 2012). If a
particular effect is unmodeled, its resulting delays can be
absorbed by other fit parameters, with the power reduced by
this fitting quantified by the transmission function (e.g.,
Blandford et al. 1984). While short-period binaries would be
detectable due to a clear periodic signal in the timing residuals,
effects from a long-period binary could be masked by other
timing delay effects (e.g., pulse spin-down and timing noise),
allowing them to go undetected (e.g., Bassa et al. 2016; Kaplan
et al. 2016). A long-period binary measured over comparably
short timescales that is unaccounted for in the timing model
could instead be fit out through a sum of polynomial terms (i.e.,
frequency derivatives).

In this paper, we assess the possibility of unknown long-
period pulsar binaries in the pulsar catalog. We find no
particularly convincing cases, and put constraints on the range
of binary properties that may remain undetected in current data,
but that may be detectable with further observations. We derive
relations to known pulsar parameters to constrain possible
hidden systems in Section 2. We put limits on orbital period
and companion mass using the pulsar magnetic field and
published constraints on frequency derivatives while incorpor-
ating a transmission function to account for power loss to other
parameters in the timing model in Section 3. We discuss the
detectability of candidates and plans for future candidate
confirmation in Section 4.

2. Method

For an apparently isolated pulsar, the time-dependent phase
of the pulse due to spin-down can be expressed as
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where t and t0 are the current and reference times respectively,
and fn is the nth timing frequency derivative (e.g., Lorimer &
Kramer 2012). The inclusion of a binary model adds additional

terms to the phase, with the binary model amplitude
characterized as ∝(a/c)/Pb where a is the semimajor axis of
the binary orbit and Pb is the binary period. The amplitude of
binary motion will be quite small as binary period increases,
making its effect on pulsar timing residuals harder to detect.
Any timing parameters that are present but unmodeled in the

data will have power absorbed by other parameters in the
model; depending on the scale and shape of the residuals due to
a particular effect, residuals due to that parameter may be
completed absorbed. This absorption not only removes traces
of this effect, but also incorrectly skews other parameters in the
timing model to account for this unmodeled effect. In the case
of unmodeled binary motion, a sufficiently small binary
amplitude may be completely absorbed by other effects, like
pulse spin-down and timing noise. Here we discuss the most
likely effects that may absorb the unmodeled binary amplitude.

2.1. Intrinsic Timing Variations

The frequency derivatives can contain contributions from
both deterministic and stochastic variations for an isolated
pulsar. For instance, there are expected to be deterministic
frequency derivatives intrinsic to the pulsar arising from
magnetic dipole radiation (i.e., pulsar spin-down). While f1
due to spin-down can typically be easily measured via timing,
this is usually only possible for f2 for very young pulsars due to
their comparatively higher f2 values. For other pulsars, we can
predict f2 due to dipole radiation as

( )f n
f

f
, 2b2;d

1
2
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=

where nb is the braking index; here we assume the canonical
value nb= 3 (e.g., Lorimer & Kramer 2012; Espinoza et al.
2017), although actual measurements of young pulsars typically
find smaller values (e.g., Chen & Li 2006; Parthasarathy et al.
2019). Higher-order spin-down terms can be calculated by
taking more derivatives of this relation with respect to f0
(Parthasarathy et al. 2019).
Stochastic spin-down variations known as “timing noise”—

often referred to as “red noise” because of its spectral content
(e.g., Goncharov et al. 2021)—can be modeled in a variety of
ways, including power-law noise processes (e.g., Lasky et al.
2015). However, it can also be modeled via a polynomial basis
function, leading to additional contributions to f2 and other
terms. Like dipole spin-down, this effect is typically stronger in
younger pulsars.
There have been numerous analyses characterizing timing

noise in the literature. Arzoumanian et al. (1994) defined the
timing stability parameter as

⎜ ⎟⎛⎝ ⎞⎠∣ ∣ ( )f

f
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where the nominal observation length is T= 108 s, giving the
commonly reported quantity Δ8 characterizing the strength of
the timing noise as essentially the logarithm of the anticipated
rms timing noise as parameterized by f2.
Shannon & Cordes (2010) asserted the need for more robust

diagnostics to characterize timing noise. After a second-order
fit for f0 and f1, the authors calculated the postfit rms σTN,
which is assumed to be due to timing noise, through maximum

2

The Astrophysical Journal, 951:20 (7pp), 2023 July 1 Jones et al.



likelihood analysis as
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where Tyr is the observing time in years, and the best-fit
parameters are C= 2.0± 0.4, α=−0.9± 0.2, β= 1.00± 0.05,
and γ= 1.9± 0.2.

Parthasarathy et al. (2019) performed a a linear least-squares
regression analysis assuming a 10 yr timing baseline to fit the
timing noise metric

( ) ∣ ∣ ( )s f f , 5b
TN 0 1s m =

where b=−0.9± 0.2 for canonical pulsars, which agrees with
the relation found by Shannon & Cordes (2010) by rotational
symmetry (Jankowski et al. 2018).

For convenience when assessing the full pulsar population,
we combine Equation (4) with the standard expression for the
dipolar magnetic field (Lorimer & Kramer 2012):
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to express the anticipated timing noise in terms of the measured
f0 and B
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Beyond the stochastic but continuous timing noise discussed
above, pulsars can exhibit discontinuous changes in their spin
evolution known as “glitches” (Radhakrishnan & Manchester
1969; Reichley & Downs 1969; Fuentes et al. 2017), and
unseen glitches may contribute to incorrect estimates of timing
noise or other variations in spin rate (e.g., Parthasarathy et al.
2020; Lower et al. 2021; Antonelli et al. 2023), especially in
younger/more energetic pulsars. For instance, the finite
sampling of timing programs could miss glitches, and these
could to incorrect estimates of the braking index (Espinoza
et al. 2017). Changes in the pulse shape (e.g., Singha et al.
2021) can also mimic stochastic timing variations. For the most
part, the empirical timing noise relations given above likely
include some small unmodeled glitches (Parthasarathy et al.
2019, 2020); larger glitches can be identified separately with
sufficient timing cadence.

2.2. Extrinsic Timing Variations

Torque variations, whether inside the neutron star or in the
magnetosphere (Antonelli et al. 2023) will contribute to higher
spin derivatives of neutron stars. There also can be external
causes for timing variations. For instance, changes in the
interstellar dispersion (Lam et al. 2015; Jones et al. 2017) can
contribute to timing noises. However, here we focus on the
presence of an unmodeled binary companion.

When not explicitly characterized by the timing model,
unmodeled binary motion will introduce pulse residuals
represented as sinusoids (for circular orbits); however, if
T= Pb then the residuals can instead be modeled as pulse
frequency derivatives (Joshi & Rasio 1997). These derivatives
can be expressed via Doppler shifts (and higher-order terms)
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where M̃ = ( )M M MPBH
3

BH
2+ with MBH as the BH mass, MP

is the pulsar mass, ω is the longitude of periastron, and i is
the binary inclination (e.g., Bhattacharyya & Nityananda
2008). This expression for fn;b can be used with Equation (1)
to calculate the induced rms timing residuals σrms≈
〈Δf(t)2〉1/2/f0. Note that Equation (8) assumes a circular
binary for simplicity, whether or not this is a good physical
assumption; given the formation mechanisms discussed
earlier, we would likely not expect a circular binary (e.g.,
DeCesar et al. 2015). An eccentric system can be straight-
forwardly approximated by adding an additional eccentricity
factor ( ( ) ( )e e1 cos 1 2l= + - , where λ is the longitude
of the companion from pericenter (Joshi & Rasio 1997).
For all pulsars, we specifically look for canonical sources

that are not in a known binary and are not associated with a
globular cluster, as cluster dynamics could introduce their own
frequency derivative components (e.g., Phinney 1993). While
present, contributions to f2 due to Shklovskii acceleration,
Galactic motion, and differential acceleration will not suffi-
ciently contribute to the frequency derivatives for canonical
pulsars considered here, but are likely relevant effects for MSPs
(Shklovskii 1970; Guillemot et al. 2016; Liu et al. 2018; Pathak
& Bagchi 2021).

2.3. Intrinsic versus Extrinsic Frequency Derivatives

When looking for unmodeled binary motion (Equation (8)),
we must compare the expected frequency derivatives from such
binaries to those expected from intrinsic sources (spin-down
and timing noise, to start). A comparison of the induced timing
residuals over time for dipole radiation, intrinsic timing noise,
and an unmodeled binary can be seen in Figure 1. For the first
frequency derivative, f1 due to a binary would be overwhelmed
by spin-down effects (Lamb & Lamb 1976, and Figure 1). We
therefore focus on the second derivative f2 as it is the first term

Figure 1. Induced rms residuals over observation span T for various effects.
We assume f0 = 10 Hz, f1 = 10−15 Hz/s, B = 3.2 × 1010 G, f2 calculated using
Equation (2), MBH = 10Me, and Pb=100 yr. The top panel shows the
comparison for f1 while the bottom panel compares different contributions to f2;
a comparison to timing noise can be seen for both. The hatched regions show
where residuals due to an unmodeled circular, edge-on binary companion will
be overwhelmed by spin-down. The timing residuals from f1 due to binary
motion f1;b surpass those from f1 due to dipole radiation f1;d around ∼0.4Pb,
whereas those from f2;b surpass those from f2;d after ∼0.06Pb, making the
search for a binary using f2 more feasible than using f1.
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that is potentially larger than the dipole radiation contribution.
For a binary to be detectable, the orbital period must be short
enough that the induced timing residuals stand out with respect
to other sources of timing offsets, but long enough that the
binary motion is not obvious from the residuals (i.e., T= Pb).
Predicted f2 values for various spin frequencies and orbital
periods can be seen in Figure 2 along with the necessary pulsar
magnetic field to account for the induced f2 due to a binary
orbit.

3. Limits for Known Pulsars

Given the constraints on binary detectability via frequency
derivatives as well as intrinsic timing effects, we determine an
orbital parameter phase space in which we are sensitive for the
known pulsar population. We will determine these limits on
detectability through several methods in the next sections
depending on the highest-order frequency derivative published
for a given pulsar that meets these criteria.

3.1. Sample Selection

3.1.1. Pulsars without Higher-order Constraints

First, we use the calculated magnetic field as the upper limit
for pulsars without published higher-order frequency deriva-
tives to predict f2 due to dipole radiation in the absence of a
measured constraint; induced f2 from binaries with periods
above this limit will be overwhelmed by spin-down effects.
Combining Equations (2) and (8) yields an upper limit
constraint on orbital period
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where Pb is in years (also see Figure 2). Because any induced f2
for sources considered in this section will be unmodeled in the
timing model, the signal due to the orbital frequency of the
binary will be reduced by a factor characterized by the
transmission function (Blandford et al. 1984; Madison et al.
2013; Hazboun et al. 2019). The transmission function
quantifying the power absorbed due to spin-down, modeled
as a quadratic function of time, goes as
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where Tobs< Pb for this equation, which is unitless, to hold
(Jennings et al. 2020). By combining Equations (8) and (10)
where f frms 2

s s= ´ , we calculate the maximum f2 that
could evade detection over the given observation span Tyr in
years using published timing residuals σrms in seconds and set a
lower limit on orbital period

⎜ ⎟⎛⎝ ⎞⎠
˜

( )


P
M
M

T2.7
10

. 11b

0.04

rms
0.12

yr
1.08s-

3.1.2. Pulsars with Published Constraints on f2

Next, we look at pulsars with published constraints on f2.
Again, we use the magnetic field to set an upper limit on
possible orbital periods. We evaluate Equation (8) for the
published f2 to calculate the minimum orbital period that could
be hidden for a given pulsar
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. 12b
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3 7
2
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Periods shorter than this limit will induce a higher f2 than the
published constraint, and are therefore unphysical for that
pulsar.

Figure 2. The f2 induced for a circular binary for a range of spin and orbital
periods. The black hole companion mass is assumed to be 10 Me, and we
assume the binary orbit is edge-on (i = 90°). The dashed lines represent the
surface magnetic field B corresponding to a specific f2 due solely to dipole
radiation (nb = 3). To use this for a particular pulsar with a single value of f0
and B, any orbital period to the left of where that f0 value crosses the
appropriate B contour may be probed in binary searches. Following
Equation (9), this suggests an upper limit on orbital period where longer
periods will be hidden by magnetic field effects. The magnetic fields necessary
to feasibly attribute unmodeled binary motion to dipole radiation are generally
higher than would be expected for most canonical pulsars.

Figure 3. P– P diagram of identified candidates. The light gray crosses show all
the known nonmillisecond pulsars (P > 30 ms) with published f1 in PSRCAT.
Unassociated isolated pulsars with published f2 constraints are represented with
green circles, and blue triangles show those observed by Jankowski et al.
(2019) without a published constraint on f2.
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3.1.3. Candidates with Published f3 and/or f4

With the availability of higher-order frequency derivatives
constraints, even more stringent limits on orbital parameters
can be made. Comparing two frequency derivatives fn and fn+1
gives a range of possible orbital periods and longitude of
periastron
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While two frequency derivatives can be used to constrain a
possible range of values for Pb and ω, using three derivatives
constrains this range of values to a single estimate for each.
There are three unassociated pulsars in PSRCATwith higher-
order frequency derivative constraints: PSR J1929+1357 has a
published f3 constraint (Lyne et al. 2017), whereas PSRs J1910
+0517 and J1913+1330 have published constraints on both f3
and f4 (Lyne et al. 2017; Bhattacharyya et al. 2018). The more
stringent limits on a possible binary in these systems are listed
in Table 1.

Depending on the longitude of the binary with respect to the
periastron, all successive frequency derivatives due to circular
binary motion should have either like or alternating signs, as
can be seen in Equation (8); this is not true for J1910+0517.
Therefore it is unlikely that these two measurements are due to
an unmodeled binary. However, this binary criterion is met for
J1913+1330 and a more constrained orbital period can be
determined. By comparing f2, f3, and f4, we solve for a value of
ω that gives a Pb that satisfies all three measurements. We find
a possible orbital period of Pb= 0.5± 0.3 yr with a longitude
of periastron of ω= 0.11± 0.06 rad. Without a constrained f4
for J1929+1357, we cannot solve for both Pb and ω, but can
identify combinations of the period and longitude of periastron
that agree with the published constraints on f2 and f3. A plot of
these two limits can be seen in Figure 4.

It is worth noting that these three pulsars show time-variable
emission and are categorized as rotating radio transients
(RRATs). While constraints on binary parameters can be
obtained using measured frequency derivatives, confirming
companions may be difficult given the transient nature of these
pulsars and the irregular timing of the pulses, although in some
cases deeper observations may be able to reveal more regular
emission (e.g., Mickaliger et al. 2018).

3.2. Constraining Binaries within the Population

For pulsars with a published constraint on f2, we apply our
f2-based limits to the full isolated pulsar population in
PSRCAT. Due to the large number of isolated pulsars without
a measured f2 in PSRCAT, we focus on a subset of the
population observed in Jankowski et al. (2019) without
published f2 measurements to ensure more uniform observa-
tions for the evaluation of the rms timing residuals and
therefore calculate a lower limit on minimum orbital period
using Equation (11). The range of spin periods and period
derivatives for these two populations can be seen in Figure 3.
To reduce the number of degrees of freedom, we assume the
mean value of 2/π for ( )nsin 2w p+ for this analysis.
Comparing Equation (8) to the published frequency

derivatives in both populations above, we predict the fraction
of sources that could hide a binary with some minimum orbital
period based on published constraints on the frequency
derivative. Assuming a Poisson distribution for the anticipated
percentage of pulsars hiding a binary, we calculate the probable
ranges for the population fraction hiding binary companions
with a given minimum orbital period. Ranges are given for
pulsars both with and without a published f2, seen in Figure 5.
Note that these ranges are empirically derived from population
parameters and are not physically motivated from binary
formation.
By examining the percentage of pulsars with measured f2

that could hide a binary with various orbital periods, we fit the
following relation to our populations to yield an upper limit on
the number of sources with orbital periods above a given
minimum orbital period Pb;min:

( )P xlog , 14b10 ;min a b= +

where x is the percentage of the population that could hide a
corresponding Pb;min (in years). Applying a least-squares fit to

Table 1
Unassociated Pulsars with Published f3 and/or f4

J1910+0517a J1913+1330b J1929+1357a

f2 (s−2) 7.5(6)×10−24 6(5)×10−27 1.00(2)×10−23

f3 (s−3) −1.8(3)×10−31 −6.9(3)×10−33 −4.2(4)×10−31

f4 (s−5) −2.6(3)×10−38 7(1)×10−41 L
ω (rad) L 0.11(6) <0.52(3)
Pb (yr) L 0.5(3) >3.0(6)

Notes. Limits on orbital period and orientation based on published constraints
on higher-order frequency derivatives for unassociated pulsars in PSRCAT.
Signs on frequency derivatives due to a binary would need to alternate positive
and negative or all be the same sign to be physical; therefore, an estimate on
orbital parameters could not be made for PSR J1910+0517.
a Lyne et al. (2017).
b Bhattacharyya et al. (2018).

Figure 4. Limits on Pb as a function of longitude of periastron for PSRs 1913
+1330 and 1929+1357. Using constraints on higher-order derivatives, we
identify the range of combinations in longitude of periastron and orbital period
that satisfy these constraints. In the top panel, J1913+1330 has published
constraints up to f4, which allows for more constrained orbital parameters
compared to J1929+1357 in the bottom panel, which only has published
derivatives up to f3. The gray line in the bottom panel shows the timing
baseline from Jankowski et al. (2019) for comparison as a lower limit on a
potential binary period. Note that using the ratio of frequency derivatives
cancels out the companion mass, causing the limits calculated here to be
independent of mass.

5

The Astrophysical Journal, 951:20 (7pp), 2023 July 1 Jones et al.



the 177 PSRCAT sources with a published f2 finds α= 2.17(5)
and β= 3.2(2). Similarly, for the 158 sources without f2 this fit
yields α= 1.95(2) and β= 0.99(5); with these values for α and
β, we find ∼35% as an upper limit in our sample that could
hide a binary with P 200 yrb;min . Note that our analysis
found 100% of pulsars in Jankowski et al. (2019) could hide a
binary with a minimum orbital period of ∼1 kyr; therefore,
Equation (14) breaks down when investigating minimum
periods above this value without a constraint on f2.

4. Discussion and Conclusions

Building on historical work, we developed relations between
effects on measured parameters and unmodeled binary motion.
Using published constraints on higher-order frequency deriva-
tives, we identified a range of orbital periods and longitudes of
periastron for one pulsar, and placed a more stringent constraint
on these parameters for another pulsar. A third pulsar had
published frequency derivatives that are not congruent with
binary motion.

Using limits on orbital period, we found that a long-period
binary could not be ruled out for roughly 30% of pulsars with
nonzero f2 constraints, and that binary periods greater than
∼1 kyr could not be ruled out for pulsars analyzed here without
a constrained f2. Sources that do not have published higher-
order frequency derivatives may still produce measurable
constraints on these derivatives with further timing, particular
through high-cadence programs like CHIME and the future
DSA-2000 (CHIME/Pulsar Collaboration et al. 2021; Hallinan
et al. 2019). The lower limit on orbital period given an
observing time Tyr and a detected f2 due to a binary can be

determined from

⎜ ⎟⎛⎝ ⎞⎠ ∣ ∣ ( )P f
T

5.89 10 , 15b
3

2;b
1 6 yr

toa

3 2

s
´

where ( )S W P W Ptoa rms
1s sµ -n

- , Sν is the frequency-
dependent flux, and W and P are the pulse width and period
respectively (Lorimer & Kramer 2012). For example, a 10Me

binary companion in a 100 yr orbit with a pulsar having a 10Hz
spin frequency, 10ms pulse width, and 100mJy flux at 843MHz
would be detectable with monthly 30minute observations in
∼5 yr assuming an instrument like UTMOST (Lower et al. 2020).
With this observing strategy, higher-order derivatives like f3 and f4
would be detectable in ∼7 and ∼10 yr respectively.
However, we note that this analysis assumes that timing is

performed with sufficient cadence to capture any glitches, and
that any timing variations due to changes in pulse shape or
interstellar dispersion are small. For the most part, the latter
effects are only detectable for precision timing of millisecond
pulsars (e.g., Jones et al. 2017) used for detecting gravitational
waves, and are unlikely to be significant for younger, noisier
pulsars considered here. Unmodeled glitches may set a floor for
the detectability of any binary to the extent that they are not
already included in the empirical timing noise models used
above. In that case our analysis may be overly conservative,
and so the true fraction of binaries that we cannot exclude
could be lower than 30%.
Follow-up of candidates with Gaia, while excellent for shorter

binary periods (Mingarelli et al. 2018), will heavily depend on
binary orbital period and distance to the pulsar. For example,
Andrews et al. (2022) utilize Data Release 3 astrometry to
identify potential neutron star–BH binaries, with orbital periods
of ∼0.9–3.8 yr. Gaia lists an upper limit of 40 yr on detectable
orbits and therefore is not feasible for the orbital period ranges
identified here, but could still be useful in finding stellar
companions by identifying common proper motion pairs.
Unmodeled binary motion will cause a deviation from linear

proper motion. Multiple observations over time with instru-
ments like the Very Long Baseline Array and ngVLA could
hypothetically track the proper motion over time; however, the
motions described here will induce deviations in proper motion
that are smaller than published measurement errors. For
example, a pulsar with a proper motion of 10 mas yr−1 and a
distance of 1 kpc in a 20 yr binary would see a change in proper
motion of ∼10−5 mas yr−1 after 5 yr of observing. For this
method to successfully follow up on candidates and comple-
ment timing constraints on proper motion in the line of sight,
constraints on motion in the plane of the sky would require
higher precision of ∼10−3–10−2 mas yr−1.
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Figure 5. The percentage of isolated pulsars that could hide a pulsar–BH
binary at a given orbital period, assuming the binary is edge-on with MBH =
10 Me. The shaded and hatched regions show where the likelihood level is
within 95%. The gray region includes pulsars with a published f2, while the
blue hatched region shows pulsars without published higher-order frequency
derivatives. As the percentage of pulsars with potential hidden binaries
increases, the likelihood for a fixed period decreases. With the availability of
higher-order frequency constraints, the probable region decreases substantially.
For instance, for pulsars with a published f2 and Pb = 300 yr, we can exclude
that more than 10% of pulsars hide such a binary, while up to ∼60% of pulsars
without f2 could hide such a binary.
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In the published article, we explored the presence of undetected long-period (where the orbital period is much greater than the data
span) binaries in the existing pulsar catalog. These would be systems where binary motion was instead modeled as a series of secular
frequency derivatives. While we did not identify any likely binary systems, we did set out a methodology for evaluating candidates
based on their frequency derivatives and found that long-period (�2 kyr) binaries could be present in as much as 35% of the
population based on observed period derivatives and limits.

However, we have identified an error in the derivation of a key equation of the published article. This does not change the
conclusions qualitatively, but does alter some of the results for individual pulsars. Below we rederive the key equation of the
published article, Equation (8), and update the results for PSRs J1910+0517, J1913+1330, and J1929+1357.

As described by Lange et al. (2001), the Römer delay for near-circular orbits

 ( )x sin
2

sin 2
2

cos 2 , 1R ⎛⎝ ⎞⎠L
D x ' + ' - '

where x is the projected size of the pulsar’s semimajor axis, κ and ò are terms proportional to the eccentricity, and

( ) ( ) ( )T n T T 2b asc' = -

is the orbital phase (mean anomaly, to within a constant offset) as a function of time. Here nb= 2π/Pb is the orbital frequency for
period Pb, and the time of the ascending node can be computed as

( )T T n , 3basc 0 w= -

where T0 is the time of periastron (also see Lorimer & Kramer 2012). Taking the circular case (ò= κ= 0), we find

( ) ( ) ( )T n T T
n

n T T 4b
b

b0 0⎜ ⎟⎛⎝ ⎞⎠w
w' = - + = - +

and

( ( ) ) ( )x n T Tsin . 5R b 0 wD = - +

We define t= T− T0 and write the circular Römer delay as

( ) ( ) ( )t x n tsin . 6R b wD = +

From this result, we can get the line-of-sight velocity,

( ) ( )v
d
dt

xn n tcos , 7R
b b w=

D
= +

and acceleration,

( ) ( )a
d
dt

xn n tsin . 8R
b b

2

2
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This is the same as given in Equation (8.26) of Lorimer & Kramer (2012), although here we only give it for zero eccentricity. We can
also identify further derivatives:
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and so on. We then look at Joshi & Rasio (1997), where their Equation (3) states
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where c is the speed of light, the spin frequency is f, and so on. To compute the values of the apparent frequency derivatives now, we
evaluate Equations (8) and (9) at t= 0 to find
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Overall, we find the nth frequency derivative to be
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Note that this differs from Equation (8) in the published article: the n! in the denominator is not present, the signs are flipped, and the
dependence on ω is flipped between sin and cos (see Table 1 for an explicit comparison).

The sign swap and the sin/cos swap are not consequential for the conclusions of the published article, since a replacement of
ω→− ω− π/2 will accomplish that. This means that ω would be redefined but since it is a nuisance variable, it does not change the
conclusions. The ratios between successive terms keep the correct behavior.

The lack of n! in the correct terms does change the conclusions slightly, but not qualitatively. For instance, constraints on ̈f f2=
would change by a factor of 2, and using the ratio between successive terms to constrain Pb (Equation (13) of the published article)
would be correct except for the removal of n+ 1 in the denominator. The majority of the figures in the published article are
essentially unchanged. The exception is Figure 4 (a revised Figure 4 is presented here). One of the pulsars (PSR J1913+1330)
included in that figure cannot be solved using the correct expressions for the frequency derivatives as the signs of the measured

Table 1
Comparison of Frequency Derivative Terms with Those from the Published Article

Order n Term Value Jones et al. Value

1 f f ( )xn c sinb
2 w ( )xn c cosb

2 w-
2 ̈f f ( )xn c cosb

3 w ( )xn c2 sinb
3 w-

3 ⃛f f ( )xn c sinb
4 w- ( )xn c6 cosb

4 w
4 ⃜f f ( )xn c cosb

5 w- ( )xn c24 sinb
5 w

Note. The xn cb
n 1+ prefactor given in the published article is written differently but has the same magnitude.
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f2/f3/f4 are not consistent, but one of the pulsars originally excluded is solvable.
We have verified our calculations using a python script to simulate an ELL1 binary and fit it with just frequency derivatives in

PINT (Luo et al. 2021). The results are consistent with those presented here.
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