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An isotropic stochastic background of nanohertz gravitational waves creates excess residual power in
pulsar-timing-array datasets, with characteristic interpulsar correlations described by the Hellings-Downs
function. These correlations appear as nondiagonal terms in the noise covariance matrix, which must be
inverted to obtain the pulsar-timing-array likelihood. Searches for the stochastic background, which require
many likelihood evaluations, are therefore quite computationally expensive. We propose a more efficient
method: we first compute approximate posteriors by ignoring cross correlations and then reweight them to
exact posteriors via importance sampling. We show that this technique results in accurate posteriors and
marginal likelihood ratios, because the approximate and exact posteriors are similar, which makes
reweighting especially accurate. The Bayes ratio between the marginal likelihoods of the exact and
approximate models, commonly used as a detection statistic, is also estimated reliably by our method, up to
ratios of at least 106.
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I. INTRODUCTION

The nanohertz stochastic gravitational-wave (GW) back-
ground can be detected through the induced delay on the
times of arrival of pulses from millisecond pulsars [1–3].
Recent evidence that the datasets collected by the three
major pulsar-timing-array (PTA) consortia all include excess
timing noise of common amplitude and spectral shape [4–7]
suggests that we might be getting closer to detection [8,9].
However, since such common-spectrum noise may arise
from a non-GW astrophysical or terrestrial source [5,10]
(even if this seems unlikely in current data [4,11]), a GW
detection claim needs to wait for the finding that the excess
noise is correlated across pulsars with the characteristic
angular pattern known as the Hellings-Downs curve [2].
In PTA data analysis, timing noise is represented as a

Gaussian process with covariance matrix Caibj, where a, b
range over pulsars and i, j over timing measurements (or
equivalently frequency components). For common-spectrum
uncorrelated noise, the matrix factorizes as Cijδab; for an
isotropic GW background, it is given by CijΓab, with Γab ¼
ΓðθabÞ the Hellings-Downs correlation coefficient, a func-
tion of the angular separation θab between pairs of pulsars.

The PTA data model includes several other stochastic
components, but GW detection is usually formulated by
comparing a common process (CP) model that includes
common-spectrum uncorrelated noise and an “HD” model
that includes common-spectrum Hellings-Downs–correlated
noise.1 By contrast, information about the GW amplitude
and spectral shape is carried primarily by the autocorrelation
terms (the Caibj elements with a ¼ b).
Parameter estimation and model selection for the CP and

HD models are both typically handled through stochastic
sampling, which requires repeated evaluations of the data
likelihood. Since the CP excess-noise covariance matrix
factorizes across pulsars but the HD matrix does not [12],
the likelihood is significantly slower to compute for the
latter model (e.g., a factor of ∼25 for the NANOGrav
12.5 yr dataset, which will only grow larger as more pulsars
are observed). The number of likelihood evaluations is
magnified by the thinning of sample chains [typically by
Nt ∼Oð103Þ] and by the use of parallel tempering schemes
[typically by Nc ∼Oð10Þ temperatures] which require
many likelihood evaluations per CP posterior sample.
The overall cost can be prohibitive for the HD model,
particularly when multiple background analyses (e.g., “sky
scrambles” [13,14] and “phase shifts” [14]) are required to
estimate the significance of a result.*sohour@caltech.edu
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1In the NANOGrav 12.5 yr stochastic background analysis that
initially reported the evidence for a common process [4], the CP
and HD models are labeled model 2A and 3A, respectively.
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Methods to optimize PTA search strategies in both data
acquisition and modeling have been studied extensively.
On the data acquisition side, studies found the most
impactful observing cadences and radio frequency bands
for detecting a GW background (GWB) [15–17]. On the
modeling side, improvements in computational efficiency
have been made by using Fourier basis methods [18,19] to
characterize red-noise processes, as opposed to dense
covariance matrix approaches [20]. More recently, the
factorized likelihood approach reduces the wall clock time
needed to evaluate a CP-only model by a factor propor-
tional to the number of pulsars [12], and Hamiltonian
Monte Carlo methods have been implemented to improve
sampling efficiency [21].
In this study we propose an approach that further

mitigates computational cost of producing posterior samples
for the HD model in terms of both CPU and wall clock time.
Rather than exploring the HDmodel stochastically, we reuse
parameter-estimation results for the inexpensive CP model
and “reweight” them to obtain posteriors and marginal
likelihoods under the HD model. Specifically, a thinned
set ofCP-model samples yields a set of weighted HD-model
samples, with weights equal to the ratios of the HD and CP
likelihoods. The computational gains are realized by per-
forming only one HD likelihood evaluation per HD posterior
sample and parallelizing the calculation of weights.
The general reweighting formalism can be applied to any

combination of models, though convergence and low
sampling error depend on stochastic chains for the original
posterior having a sufficient number of samples in the
support of the target posterior. This is the case for the
HD and CP posteriors, since both are dominated by single-
pulsar autocorrelation terms. Additionally, the two models
share the same parameters and corresponding priors. In this
paper we apply the reweighting formalism to simulated PTA
data and compare posteriors and marginal likelihoods
obtained by reweighting and by brute-force sampling. We
find that (i) the posteriors recovered through reweighting are
statistically unbiased; and that (ii) the HD vs CP Bayes
factors (the ratios of marginal likelihoods) agree with the
“hypermodel”method typically used in PTA analyses [22] to
within 10% uncertainty for Bayes factors ∈ ½10−3; 107%.
The rest of the paper is organized as follows. In Sec. II we

introduce the general reweighting formalism following [23].
In Sec. III we describe the HD and CP models in more
detail. In Sec. IV we present results from simulated data that
validate the reweighting approach. In Sec. V we conclude
by discussing the application of our method and its
computational gains.

II. POSTERIOR REWEIGHTING

Samples distributed according to one posterior distribu-
tion can, under some circumstances, be reweighted to
estimate a second posterior distribution; this is a form of
importance sampling. In this section, we present the general

methodology behind this posterior reweighting following
Ref. [23] and describe how it can be used to also estimate
the marginal likelihood of a model and the Bayes factor
between models.
The posterior distribution, pðθjd; TÞ for a target model T

with parameters θ given data d can be written explicitly in
terms of the Bayes theorem,

pðθjd; TÞ ¼ Lðdjθ; TÞπðθjTÞ
ZT

; ð1Þ

where Lðdjθ; TÞ is the likelihood, πðθjTÞ is the prior, and
ZT is the marginal likelihood (also known as evidence,
though we do not use this term here). We rewrite this target
posterior distribution in terms of the likelihood and prior for
another “approximate” model A,

pðθjd; TÞ ¼
Lðdjθ; AÞ Lðdjθ;TÞLðdjθ;AÞ πðθjAÞ

πðθjTÞ
πðθjAÞ

ZT
ð2Þ

¼ wLðdjθÞwπðθÞ
Lðdjθ; AÞπðθjAÞ

ZT
: ð3Þ

In the last line we have introduced weights given by the
ratio of the likelihoods and priors of the two models

wLðdjθÞ ¼
Lðdjθ; TÞ
LðdjθAÞ

; ð4Þ

wπðθÞ ¼
πðθjTÞ
πðθjAÞ

; ð5Þ

we can also combine the weights to get

wðdjθÞ ¼ wLðdjθÞwπðθÞ: ð6Þ

Given Ns posterior samples θs ∼ pðθjd; AÞ for model A,
we can resample them with weights wðdjθsÞ to obtain a
posterior sampling of model T; the marginal likelihood ZT
can also be estimated as

ZT ¼
Z

dθLðdjθ; TÞπðθjTÞ ð7Þ

¼ ZA

Z
dθwLðdjθÞwπðθÞpðθjd; AÞ: ð8Þ

The integral in Eq. (8) can be approximated with
Monte Carlo integration

ZT ≈
ZA

Ns

XNs

s¼1

wLðdjθsÞwπðθsÞ ¼ ZAw̄; ð9Þ

where w̄ is the mean of the weights, wðdjθÞ. If we are
interested in model selection between the approximate
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and target models, the Bayes factor between them is
then simply

BT
A ¼ w̄: ð10Þ

Though the reweighting procedure is mathematically
exact, it is subject to sampling errors, especially if the
approximate and target posteriors are too disjoint. We
quantify sampling error with the “effective number of
samples” neff—the approximate number of samples drawn
independently from the target posterior that would approxi-
mate ZT as accurately as the reweighting estimate (9).
Reference [24] estimates neff as

neff ≈
½
P

swLðdjθsÞwπðθsÞ%2P
s½wLðdjθsÞwπðθsÞ%2

¼ Ns

1þ ðσww̄ Þ
2
; ð11Þ

where σw is the standard deviation of the weights. We also
define the efficiency

E ≡ neff
Ns

: ð12Þ

It follows from Eq. (10) that the error σB on the mean BT
A is

σB ¼ σwffiffiffiffiffiffiffi
neff

p ¼ σwffiffiffiffiffiffiffiffiffi
ENs

p : ð13Þ

If we represent the target posterior by a set of equal-
weight samples by performing a weighted redraw from the
approximate distribution, then Eq. (11) makes intuitive
sense. It implies that a few samples with high weights
(relative to w̄), will result in the same sample being drawn
many times and lead to comparatively lower neff.
Equivalently, such high individual weights (relative to w̄)
increase σw and thus decrease neff . In the limit of vanishing
variance, neff → Ns, while as variance grows neff → 0.
We can also use the weights to estimate the statistical

distance between the approximate and target posteriors in
the form of the Kullback-Leibler (KL) divergence. That is,

DKLðAjjTÞ≡
Z

dθpTðθÞ ln
pAðθÞ
pTðθÞ

; ð14Þ

≈
X

θ∼pA

1

Ns
ln
pAðθÞ
pTðθÞ

; ð15Þ

¼ lnðw̄Þ − lnðwÞ; ð16Þ

where we have written the posteriors pKðθÞ≡ pðθjd;KÞ
for K ∈ fA; Tg and lnðwÞ is the average of the log of the
weights. This equation can be used in combination with
Eq. (11) to provide guidance when reweighting leads to low
efficiency.

The main reason for low efficiency is that a region of low
posterior for the approximate model overlaps with a region
of high posterior for the target model. Samples in this region
get very high weights and can lead to poor reconstruction of
the target posterior. Understanding when and where this can
occur is an area of active research and has led to other forms
of importance sampling [25].

III. THE PULSAR-TIMING-ARRAY MODELS
FOR STOCHASTIC GRAVITATIONAL WAVES

In this section we discuss the statistical framework used
to detect a stochastic GW background with an array of
regularly timed millisecond pulsars. We first introduce a
Gaussian likelihood that includes the full interpulsar
correlations induced by GWs (the Hellings-Downs
model). We then introduce a secondary model that ignores
interpulsar correlations and includes GWs as a common
(but uncorrelated) power-law spectrum in each pulsar’s
residuals (a common process model). We claim evidence
for GWs when a dataset significantly favors HD over CP.
These two models contain the same parameters and

priors; furthermore, the posterior distributions of model
parameters are not affected strongly by the inclusion of
interpulsar correlations. This makes the CP likelihood a
good approximate distribution for the HD likelihood. As we
discuss below, the CP model is significantly faster to
evaluate, and so we will use CP as our approximate
likelihood LA, while the HD model will be the target LT .
An added bonus of our choice of these models is that, in
implementing the reweighting scheme discussed above to
speed up computation of the HD posterior, we naturally also
calculate Bayes factors that can be used as a GW detection
statistic.

A. Pulsar-timing-array likelihood

A detailed presentation of the PTA likelihood derivation
can be found in Refs. [3,14,18,19,26,27]; in this section we
describe only the relevant details. A reader familiar with
PTA analyses can skip to Sec. III C.
Pulse arrival times [time(s) of arrival (TOA)] are affected

by both deterministic and stochastic processes. The deter-
ministic contribution (described more fully in [14]) contains
terms relating to the motion of the pulsar, such as sky
location, rotation period, etc., as well as individually
resolvable GW sources such as continuous waves. An
initial solution for the timing model is subtracted from
the measured TOA, leaving behind the fit residuals δt. The
uncertainties on this timing model are described by a Taylor
expansion in timing parameters ϵ with partial derivatives
(comprising the design matrix) M evaluated at the initial
timing solution.
The stochastic contribution to the TOA is due to a

combination of the intrinsic low-frequency spin noise (or
“red noise”) of individual pulsars (IRN) and a common,
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stochastic process induced by a GW background. We
model both as stationary zero-mean Gaussian random
processes with Fourier vector bases. It follows that the
Fourier coefficients a (the basis weights) are described
entirely by their covariance ϕjη ¼ haaiabji. Here indices a,
b index pulsars, i, j index frequencies, brackets indicate the
ensemble average, and the η are the “hyperparameters”
associated with the distribution of a.
With both the deterministic and stochastic contributions

to the noise modeled, the timing residuals r are

r ¼ δt −Mϵ − Fa ¼ δt − Tb; ð17Þ

where the matrix F collects the Fourier basis vectors
evaluated at the TOA and where we have introduced

T ≡ ½MF%; b≡
"
ϵ

a

#
; ð18Þ

for ease of notation. The residuals r should now be white
and Gaussian, with a covariance matrixN that describes the
uncertainty associated with each TOA observation. The
likelihood is then

LðδtjbÞ ¼
exp ð− 1

2 r
TN−1rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2πN

p : ð19Þ

We complement the likelihood with the Gaussian-process
prior for the Fourier components,

πðajηÞ ¼
expð− 1

2 a
Tϕj−1η aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2πϕjη

q : ð20Þ

The Gaussian form of the likelihood and prior means that
we can marginalize analytically over the a, leaving only the
hyperparameters η. A similar choice is made for the timing
model correction prior πðϵÞ [14]. The marginalized like-
lihood is then

LðδtjηÞ ¼
Z

dbLðδtjbÞπðajηÞπðϵÞ; ð21Þ

∝
exp ð− 1

2 δt
TC−1δtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2πCÞ

p ; ð22Þ

where C ¼ N þ TBTT is the covariance kernel, and

B ¼
"∞ 0

0 ϕ

#
: ð23Þ

Here ∞ represents a formal limit of covariance for a
uniform unbounded prior on ϵ.

B. Pulsar-timing-array stochastic models

We model both the IRN and the GWB as power laws in
the frequency domain.2 The model hyperparameters are
then η ¼ ðAa; γa; AGW; γGWÞ where γa, γGW and Aa, AGW
are the negative spectral indices and amplitudes of the
IRN and GW power laws, respectively. We split ϕ into its
two contributions; one from the IRN and the other the
common GWB

ϕ ¼ ϕIRN þ ϕGW: ð24Þ

By stationarity, both the IRN and the GWB are uncorrelated
between frequencies. Therefore ϕ will contain no cross-
frequency terms, and ϕai;bj ∝ δij.
By definition, the IRN is an independent process in each

pulsar,

ϕjIRNηðaiÞ;ðbjÞ ¼ κiðηaÞδabδij: ð25Þ

The IRN power κiðηaÞ in frequency bin i for pulsar a is
modeled as the power law

κiðηaÞ ¼ κiðAa; γaÞ ¼
A2
a

12π2
1

T

$
νi
yr−1

%−γa
yr2; ð26Þ

where T is the total observation time and νi is the frequency
associated with bin i.
In contrast to the IRN, the GW background is correlated

between pulsars,

ϕjGWη ðaiÞ;ðbjÞ ¼ ΓabκiðηGWÞδij: ð27Þ

Here κi is again given by Eq. (26), except that every
pulsar has the same amplitude AGW and spectral index
γGW. The function Γab describes GW correlations between
pulsars a and b and is known as the Hellings-Downs
curve [[2], Eq. (5)].
The a ¼ b components of Eq. (27) represent the excess-

noise power induced by the GWB in each pulsar. Half of
this power is caused by the “Earth term” in the pulsar GW
response and contributes to interpulsar correlations; the
other half is caused by the “pulsar term” and is statistically
uncorrelated among pulsars. The first indications of a GWB
in PTA data will appear through these diagonal self-
correlations [8,30], so they could be detected using the
CP model as well as the HD model. However, evidence for
CP could also be caused by physical effects such as the
solar wind [31] or by model misspecification, such as

2Power laws are not the only choice for the distribution of
Fourier coefficients. Other choices include (but are not limited to)
a free spectral model with independent densities for each Fourier
frequency and a broken power law [4,28,29].
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incorrect priors [10] or poor IRN models [11]. Other
mechanisms can induce interpulsar correlations that are
inconsistent with the Hellings-Downs curve, such as clock
errors with monopolar correlations [31,32] or Solar System
ephemeris errors with dipolar correlations [33–36]. Thus,
the detection of HD correlations through the off-diagonal
terms of ϕGW is considered the decisive factor in claiming a
GWB detection, and theCP vs HD Bayes factor is used as a
GWB detection statistic [4,6,7,11].

C. Implementation and computational considerations

The standard PTA likelihood (22) requires the
inverse noise covariance matrix C−1 and therefore the
inverse of ϕjη. Although the PTA analysis software, such
as ENTERPRISE [37], is optimized to speed up the like-
lihood evaluation, inversion becomes the most expensive
computation when ϕjη is not pulsar diagonal. For instance,
for the NANOGrav 12.5 yr dataset each HD-model like-
lihood is ∼25 slower than the corresponding CP like-
lihood. This factor applies to 45 pulsars over a 12.9 yr
dataset and will increase with the number of pulsars.
The current workhorse method to compute BHD

CP is a
hypermodel Markov chain Monte Carlo sampler [22,38,39].
In such an analysis, a discrete metaparameter tracks the
current model (HD orCP) while the sampler jumps between
them. The final Bayes factor is the number of samples in the
HD model divided by the number of samples in the CP
model. The two posteriors are also selected by the value of
the metaparameter. As the evidence for a GWB becomes
stronger, the HD model will be sampled more often than the
CP model, slowing down calculations further.3

Despite the difference in likelihood functions and com-
putation time, the posteriors for CP and HD are generally
quite similar. Figure 1 displays the marginalized one- and
two-dimensional γGW and AGW posteriors and the lnL
distributions for CP (blue) and HD (green), as recovered by
hypermodel sampling. The similarity between the posteri-
ors and the ∼25x likelihood speedup suggest that this
problem is well suited for the reweighting method intro-
duced in Sec. II.4 The HD posterior created by reweighting
the CP posterior is plotted in orange and is almost identical
to the direct-sampling HD posterior. The efficiency of the
reweighting method as posterior differences is discussed in
the next section.

IV. DEMONSTRATION OF THE METHOD

To show that we can safely reweight CP to HD, we
simulate PTA datasets containing GWBs with different
amplitudes and demonstrate that reweighting yields
unbiased Bayes factors and posteriors.

A. Bayes factors

To test BHD
CP recovery, we simulate 100 datasets for 45

pulsars over 12.9 years, using maximum-likelihood red-
noise hyperparameters from the 12.5 yr NANOGrav
dataset [8,40].5 Each simulation includes a power-law
GWB with log10 AGW varying uniformly between −15 and
−14. We set γGW to 13=3, the theoretical value for a GW
background from supermassive black-hole binaries [41]. For
each simulated dataset, we obtain a thinned set of CP
posterior samples using PTMCMCSampler [38]. We reweight
the CP posterior sample to the HD model and calculate
BHD
CP following Eq. (10). To verify the accuracy of these

reweighted BHD
CP ’s, we obtain an independent estimate from

hypermodel runs on the same simulations. We compare the
reweighted and hypermodel Bayes factors in Fig. 2, finding

FIG. 1. Posteriors for γGW and log10 AGW and lnL distribution
for simulated PTA data with a log10ðAGWÞ ¼ −14.8 GWB. We
show histograms for direct sampling of CP (blue), HD (green),
and for CP-to-HD reweighting (orange). Black lines indicate the
injected values. For this plot we selected one of our simulations
with the most visually different CP and HD GW posteriors.
Even so, the direct-sampling and reweighted HD posteriors are
almost identical. The reweighted posterior is well sampled, with
51% efficiency.

3A constant added to the CP log-likelihood can mitigate this
particular issue and result in a comparable number of samples in
each model. That constant should be close to the Bayes factor,
which is unknown a priori in real data. In our study we estimated
this constant by using the likelihood ratio between the CP and
HD models evaluated at the injected parameters. This ensured
that both models contained enough samples particularly in high
Bayes factor regimes.

4Here we use identical priors between the target and the
original distribution, meaning the prior weights wπðθÞ ¼ 1.

5The NANOGrav 12.5 yr dataset is actually 12.9 years in
length.
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them in excellent agreement. The top panel shows the BHD
CP

estimates plotted against log10 AGW; the bottom panel shows
the relative difference of the BHD

CP estimates (reweighted
minus hypermodel, divided by their average). Marker colors
encode reweighting efficiency. The mean relative difference
is −0.5' 4%, so we observe no systematic effect. The
maximum relative difference is 10%, small enough that it
could not affect a GWB detection claim. Error bars are
computed by combining (in quadrature) reweighted Bayes
factor errors from Eq. (13) and hypermodel Bayes factor
errors from the bootstrap method of [42]. Bayes factor
differences are not strongly correlated with the injected GW
amplitude or the Bayes factor, although the difference
uncertainties are inversely correlated with efficiency
[see Eq. (13)].
Figure 2 shows also that as we increase the simulated

amplitude, the sampling efficiency tends to decrease. This

is expected; as the amplitude of the GWB increases, the off-
diagonal terms in Eq. (27) become more significant. The
likelihood can then change between the two models
significantly, which affects w̄, and can even be maximized
in different parts of parameter space. Such conditions can
lead to a large spread in the weights as some points get
heavily upweighted and others get downweighted. From
Eq. (11), a large spread in the weights means that neff will
decrease, and more samples from the CP distribution will
be needed in order to faithfully represent the HD posterior
and calculate BHD

CP accurately: see Eq. (13). In our simulated
datasets, however, the recovered Bayes factor remains
within 10% of that calculated with the hypermodel even
in regions where BHD

CP > 106.
In order to study the relation between the model posterior

similarity and the efficiency of the reweighting procedure,
we compute the Kullback-Leibler divergence [43], which
quantifies the difference between two distributions. We plot
the relationship between the KL divergence and the effi-
ciency in Fig. 3. The upper plot shows total KL divergence
[Eq. (16)] vs efficiency [Eq. (12)] for the CP and HD
posteriors. As the KL divergence increases, the posteriors
becomemore distinct and the sampling efficiency decreases.
The bottom plot shows the fractional contributions of
different model parameters to the total KL divergence.6

We split the 92 parameters into four sets: the IRN
amplitudes and spectral indices (pink and red, respectively)
and the GW background amplitude and spectral index (blue
and gold, respectively). We compute the partial KL diver-
gence of the CP and HD marginalized posteriors for each
parameter and sum those of the IRN parameters. The
fractional contribution is then obtained by dividing those
partial KL divergences by the total. The set of all red-noise
parameters contributes more to the total divergence than do
the GWB parameters individually. The set of all IRN
amplitude posteriors is the major contributor to the diver-
gence (55' 11%), followed by the set of all IRN spectral
indices (27' 8%); the contribution from AGW and γGW are
roughly equivalent at percent level, 9' 8% each.

B. Posterior recovery

Figure 1 offered visual confirmation that the GWB
parameter posteriors under the HD model are recovered
without bias via reweighting. In this section we confirm
these initial findings through a more extensive percentile-
percentile (P-P) test [44]. We generate 100 simulations
similar to those described in Sec. IVA, except that each

FIG. 2. Top: BHD
CP vs simulated GWB amplitude. Bayes factors

recovered via reweighting, Eq. (10), are colored by their
efficiency E, Eq. (12). Bayes factors recovered via the hyper-
model are plotted as coral X’s. The hypermodel error is calculated
with a bootstrap method described in [42] whereas the reweight-
ing error is estimated with Eq. (13), although both errors are too
small to see. Bottom: relative difference in the hypermodel and
recovered Bayes factors, again colored by efficiency. The error
bars are propagated from the hypermodel and reweighting errors
above. As the GWB amplitude increases, the efficiency decreases
due to the distribution of the weights broadening as in Eq. (11).
The relative difference between these Bayes factors is usually
small, typically −0.5' 4%, but can be as large as 10%. A 10%
difference in BHD

CP is not large enough to change a detection
conclusion to a nondetection conclusion or vice versa and
therefore we can consider the difference small. For instance, a
Bayes factor of 100 would lead to the same qualitative conclusion
as a Bayes factor of 110. The pink vertical line in both plots is
log10 AGW ¼ −14.8, the posterior plotted in Fig. 1 to demonstrate
that this posterior is typical.

6The total KL divergences are not directly comparable to the
KL divergences of the various marginalized posteriors; the total
KL divergence is equal to the sum of the marginalized KL
divergences only when parameters are uncorrelated. Although
this is not the case in our analysis, the normalized marginal KL
divergences still inform us of parameters that most greatly
influence the total KL divergence.
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simulated parameter is drawn from its analysis prior, as
required to achieve Bayesian coverage. The priors for the
spectral indices are γGW, γa ∈ U½2; 6%, and the priors for the
amplitudes are log10 AGW ∈ U½−15;−12% and log10 Aa ∈
U½−16;−14%. We recover CP posteriors from these simu-
lations with direct sampling, and then reweight and
resample those posteriors to the HD model.
The P-P test is a standard measure of bias in recovered

posteriors. Datasets are first simulated by drawing param-
eters from their priors and adding Gaussian noise. The
posterior of each dataset is then sampled. The percentile of
each of the “true” or injected values is calculated in the
marginalized, one-dimensional posterior of each parameter.
For a set of unbiased posteriors, the injected value will be
distributed according to each posterior. That is, the percen-
tile of where each injected value lands in a 1D marginalized
posterior will be distributed uniformly between the 0th and
100th percentile, the x-axis of Fig. 4. This test of uniformity
in posterior space is represented with the cumulative

distribution function (CDF) of the posterior’s percentile.
Since the CDF of a uniform distribution between 0 and 1
(0th and 100th percentile) is a line of slope 1, the P-P plot is
usually represented this way. A P-P plot showing a line
consistently below (above) the line x ¼ y is indicative of
parameter bias of overestimating (underestimating) the
parameter value. An S-curve going above (below) then
below (above) the diagonal is indicative of a overestimate
(underestimate) of the posterior’s standard deviation.
Figure 4 shows the corresponding P-P plots. The 92

different parameters (γa, Aa for 45 pulsars as well as γGW,
AGW for the GWB) are plotted in teal. The expected 1-, 2-,
and 3-σ confidence intervals are plotted in black. The
recovered posteriors agree with expectations; only two lines
briefly leave the three-sigma error bars. This suggests that
the reweighting method neither over- nor underestimates
parameters systematically, as would be the case if some
parameters were always above or below the diagonal; nor
does it recover incorrect variance, as would be indicated by
S-curves around the diagonal.

C. Bayes factor recovery on extended dataset

To this point, we have demonstrated that likelihood
reweighting is a promising tool for recovering accurate
Bayes factors and unbiased posteriors in a simulated dataset
with 12.9 years of timing data, 45 pulsars, and a range of
injected GWB amplitudes. As PTAs continue to collect
more data, it becomes natural to ask at what point the
reweighting scheme could fail, either by misestimating
Bayes factors or by exhibiting low efficiencies. We examine

FIG. 4. P-P plots for all 92 reweighted, HD-model parameters
(teal) with the 1-, 2-, and 3-σ standard deviations (black). The y-
axis is the percentile of each parameter’s injected value in its
marginalized posterior. The x-axis is the percentile of the sorted
y-axis values. The recovered posteriors are consistent with
expectations, suggesting that the posterior recovery is unbiased.

FIG. 3. Top: total KL divergence, Eq. (16), vs efficiency,
Eq. (12), between the CP and the reweighted HD posterior.
As the KL divergence increases, the posteriors become more
distinct, and the sampling efficiency decreases. Bottom: frac-
tional contributions to total KL divergence from sets of param-
eters including all the IRN amplitudes and spectral indices (pink
and red, respectively) and the GWB amplitude and spectral index
(blue and gold, respectively). The set of all IRN parameters
contribute more to the total divergence than the GWB parameters
individually.
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the performance of likelihood reweighting after the addition
of additional pulsars and additional observation time to the
dataset. We find that, even for 80 pulsars and 22 years of
data, the efficiency remains above 20% and the errors
between the Bayes factor calculated with direct sampling
and reweighting are comparable to those in Sec. IVA.
To create this extended dataset, we simulate realistic

pulsars and add additional observing time to each pulsar.
To create new pulsars, we sample sky locations by fitting
existing pulsar locations with a kernel density estimate
and sample from it. Each new pulsar is assigned white-
noise parameters and observing epochs (plus Gaussian
scatter) from an existing pulsar. To simulate additional
years of data, to each pulsar we add TOA with Gaussian
scatter. The red-noise parameters for the new pulsars are
drawn from the IRN prior. For existing pulsars, the red-
noise amplitudes were set from the maximum-likelihood
draw as in Sec. IVA. The GWB was injected with
AGW ¼ 1.92 × 10−15, the median posterior amplitude of
the NANOGrav 12.5 yr analysis [4]. In total, we simulated
22 years of data in 80 pulsars; below we present results
based subsets of that data.

In Fig. 5 we plot BHD
CP as a function of the number of

pulsars N and for different observation durations Tobs. We
find that the relative difference between the BHD

CP recovered
by direct sampling and by reweighting remain within 10%
of each other, suggesting that the reweighting scheme
remains valid for these extended datasets. Moreover, we
find that while the ratio between the HD and CP likelihood
computation times is approximately constant across
extended observation time, the ratio scales with the number
of pulsars (ranging between 10 and 40). Thus, as more
pulsars are added to the dataset, reweighting becomes more
important.

V. DISCUSSION AND CONCLUSIONS

We have introduced a reweighting method to efficiently
and reliably obtain GW posterior and marginal likelihood
for a GWBmodel in PTA data analysis. We first compute an
inexpensive approximate posterior (CP) that omits pulsar-
pulsar correlations, then reweight it to a full posterior (HD)
that includes them. We have validated this method by
comparing reweighted posteriors and Bayes factors with
distributions and factors obtained with direct sampling.
Reweighting appears to be reliable and unbiased. Even in
cases with low reweighting efficiency (as defined by the
reduction in the number of effective samples), the
reweighted Bayes factor estimate remained robust up to
BHD
CP > 106, far larger than required for a confident GWB

detection.
Even though our method requires evaluating the com-

putationally expensive HD likelihood, it is still much more
efficient than direct stochastic sampling. This is due to the
additional evaluations required for the latter, which do not
need to be repeated when reweighting. Direct sampling
results in very autocorrelated sample chains, which are
thinned [by factors Nt ∼Oð103Þ, on the order of the chain
autocorrelation length] to obtain quasi-independent sam-
ples. By contrast, reweighting is applied after thinning,
reducing the number of HD likelihood evaluations byNt. In
addition, the weights of Eq. (4) can be computed in parallel
on multiple cores, allowing a further wall clock speedup
(by the number NP of parallel processes). Finally, if parallel
tempering was used to sample the approximate model, only
samples from the coldest chain should need be reweighted,
decreasing the necessary number of computations by a
factor of the number of chains Nc ∼Oð10Þ.
While the reweighting procedure is mathematically exact,

the method is subject to sampling error; reweighted poste-
riors could have too few effective samples to accurately
reflect the true distribution. Constructing generic diagnostic
tools for such situations can be challenging, as the effective
number of independent samples neff can vary between
applications. In such cases, estimating the Bayes factor
sampling error or inspecting posteriors visually can help
identify undersampling. If neff is low, a few strategies are
available. The simplest is to increase the number of samples

FIG. 5. Top: BHD
CP vs number of pulsars for sets of fixed

observation times between 10 and 22 years, Tobs. Bayes factors
recovered via reweighting, Eq. (10), are colored by their efficiency
E, Eq. (12). Bayes factors recovered via the hypermodel are
plotted as coral X’s. The error estimate of each point is described
in the caption of Fig. 2. For a fixed number of pulsars, an increase
in the observation time leads to a higher Bayes factor. In each case,
as N increases, the efficiency decreases. Additionally, as the
observation time increases, efficiency tends to decrease, albeit less
distinctly. The relative difference between the direct sampling and
reweighting Bayes factors remains quite small and is independent
of both Tobs and N. The small errors and high efficiencies (each
greater than 20%) imply that likelihood reweighting remains
reliable when additional time and pulsars are added.
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for the approximate model. A more sophisticated option
involves the importance sampling of the approximate model
by concentrating on the region of parameter space that the
target seems to prefer. In the most extreme case, so many
approximate-model samples are needed that the method
becomes less efficient than direct sampling. This happens
when the efficiency drops to the ratio of likelihood
computation times (e.g., to 1=25 for the NANOGrav
12.5 yr dataset). If parallel tempering is used, then “hot”
chains, with a correspondingly broader posterior, could be
used in situations where efficiency is low due to a lack of
samples from the approximate distribution available to
estimate tails in the target distribution.
The reweighting formalism is generic and can be applied

to any pair of approximate and target distributions. For
example, one could model a clock error by including a
process with monopolar correlations in addition to the HD
correlations. In this situation, extra parameters are added to
the target model, which requires drawing samples from some
proposal distribution for the new parameters (see [45,46] for
examples of reweighting between models with varying
numbers of parameters). In practice, sampling error (effi-
ciency) increases (decreases) if the approximate and target
posteriors do not overlap, as quantified in Fig. 3 using the
Kullback-Leibler divergence.
Throughout this work we have presented examples that

are based on the NANOGrav 12.5 yr analysis. Although our
simulations are consistent with the NANOGrav dataset and
our understanding of the stochastic GWB, we have not
simulated realistic radio frequency noise such as dispersion
measure variations or solar wind fluctuations. More
“advanced” noise modeling adds numerous extra parameters
to each pulsar to measure chromatic effects [31,33,47–49]
increasing the complexity of the analysis. Given that most of
these additional parameters impact only individual pulsar
measurements, a factorized-likelihood approach to estimate
the CP model, followed by this reweighting scheme could
significantly reduce the wall clock time of an analysis that
uses more advanced noise models.

In the context of PTA searches for GWBs, the reweight-
ing formalism introduced in this paper offers an accurate
and computationally efficient shortcut to GW posteriors
and HD vs CP Bayes factors. In this paper we tested the
method on simulated datasets with increasing GWB
amplitudes, which served a proxy for increased observing
time and number of pulsars. Our results suggest that
reweighting remains robust for PTA datasets with Bayes
factors of at least 106, orders of magnitude larger than
current results. Thus, our method can reliably characterize
the GWB from PTA datasets for the foreseeable future and
into the detection regime.
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