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ABSTRACT: A-site cations in lead halide perovskite (LHP) can
significantly impact the optoelectronic device efficiency and
stability. These efficiency impacts have not been correlated to
cation structural features because it is difficult to isolate the
independent contributions from the sizes of these A-site cations
and hydrogen—halide interaction between the A-site cations and
PbX4 octahedra. To address this, we designed two isoelectronic
cationic ligands (guanidinium and uronium) that are nearly
identical in size but have different numbers of N—H moieties
that can interact with PbX, octahedra and studied their differences
in passivating LHP solar cell interfaces. While the solar cells
showed little improvement after being treated by the alkylated
uronium ligand, the alkylated guanidinium ligand increased both

H-X interaction in lead halide perovskite
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the fill factor (from 72.4% to ~80%) and power conversion efficiency (from 15.4% to 17.7%) compared to the untreated device,
along with an increased hysteresis index (from 0.02 to 0.12). While the guanidinium-based ligand or uronium-based ligand does not
have significant impacts on the morphology of the LHP, the guanidinium-based ligand demonstrated a much more pronounced
effect on surface passivation of the (Csg;;FAggs)Pb(Iy75Brgss); films (FA = formamidinium). NMR and XRD data together
suggested the guanidinium-based ligand interacts with the (Csg;;FAgg3)Pb(Iy7sBry,s); and the CsPbl, lattice with S H—X
interactions, while the uronium-based ligand interacts with 4 due to the different lattice sizes. Raman spectra indicate that the H—X
interaction between the cations and the PbX4 octahedra alters the electron distribution of the resulting materials. By using a pair of
isoelectronic organic cations, we excluded other variables and demonstrated the importance of the hydrogen—halide interactions
between cations and PbX, octahedra on the surface passivation and optoelectronic properties of the LHP materials.

Bl INTRODUCTION

A-site cations in lead halide perovskite (LHP), at first, were
primarily viewed as a means to charge balance the negatively
charged PbX octahedra (X = Cl, Br, or I).'™> However, they
have been found to have significant impact on the electronic
structures’™® and ambient stability’”'® of LHP materials.
Cesium, methylammonium, formamidinium, and guanidinium
ions are the common cations in LHPs.” However, they have
different sizes and varied numbers of hydrogen atoms
interacting with the surrounding PbX, octahedra (as shown
in Scheme 1), which leads to ambiguous results in both
simulations and experiments explaining how cation size and
hydrogen—halide interaction independently affect the proper-
ties of LHP materials. For example, in 2014, when Snaith et al.
first used formamidinium in thin film LHP solar cells to
achieve a power conversion efficiency (PCE) of 14.2%, they
attributed the absorption red-shift and increased charge
diffusion length to the larger size of formamidinium compared
to the methylammonium.”> The above hypothesis was
supported by the ab initio simulation by Borriello et al
conducted in 2008 suggesting that cation size influences the
electronic properties of LHP materials via modulating the
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deformation and tilting of the surrounding PbXy octahedra.'
On the other hand, the first-principles modeling by De Angelis
et al. suggested that the improved charge transport and red-
shifted absorption in formamidinium lead iodide was an
interplay between cation size and hydrogen—halide inter-
action.”

Currently, while most of the efficient and stable LHP solar
cells'>"*~" and light-emitting diodes'""®
formamidinium and/or guanidinium instead of methylammo-
nium when thin film LHP devices were first reported,'® the
debate on hydrogen—halide interaction in LHP materials
remains highly active in both simulation®~”?°7** and
experimental research.”®'"*'~>* Common methods include
varing the cations (Cs ion, methylammonium, formamidinium,
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Scheme 1. (a) Size Comparison of the A-Site Cations Used in LHP Perovskite;** (b) Synthetic Routes of GA and UA ligands
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and/or the anions (ClI~, Br~, and
[7)777292% in the LHP composition, pressure,25 or temper-
ature to study certain trends as conditions change.
However, these methods led to changes in lattice parame-
ter’~>?%**7* or phase transitions,”**** which impedes the
correlation between LHP properties and hydrogen—halide
interaction. By not controlling for other variables, these
experiments sometimes lead to contradicting conclusions.
For example, in the past two years, Wilks et al. indicated the
existence of hydrogen—halide interaction in LHP by using
density functional theory in conjunction with soft X-ray
scattering,” whereas a recent paper by Muydinov et al. ruled
out the existence of hydrogen—halide interaction through
Raman spectra and density functional theory.”'

To address the above problems in understanding the
hydrogen—halide interaction, we designed an alkylated
guanidinium ligand (GA) and an alkylated uronium ligand
(UA), as shown in Scheme 1, and studied their differences in
interacting with the LHP lattice as a surface passivation layer.
It was reported the cation radii of NH;OH" and NH;NH," are
216 and 217 pm, respectively.””*” This suggests that
guanidinium and uronium can be considered as a pair of
isoelectronic cations with nearly identical sizes. On the other
hand, the NH group in guanidinium provides an extra site for
N—H--X interaction with the surrounding PbXy octahedra
compared to the O atom in uronium. Because urea is a very
weak base with a pK, of 13.9,” compared to 2.5 of
formamidine™ and 0.4 of guanidine,” the OH group on the
C(NH,),(OH)* cation is considered strongly acidic and could
lead to unwanted etching of the active layer. To address this,
we used an alkyl chain (—C,,H,;) to ensure that the cation had
a positive charge without acidity. We applied the same alkyl
chain to the guanidinium cation to be consistent. Furthermore,
these two ligands (GA and UA shown in Scheme 1) share the
same counterion (methanesulfonic group). These deliberate
designs allowed us to exclusively investigate the effects of the
hydrogen—halide interaction in LHP without other inferences.

When we spin-coated GA and UA on top of the
formamidinium-based LHP thin film in solar cell devices, GA

21,22
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and UA led to drastically different results in device perform-
ance. The GA surface treatment increased the resulting solar
cells’ fill factor (FF) from 72.4% to 79.6% and boosted the
PCE from 15.5% to 17.7%. The FF and PCE of the UA-treated
device were largely unchanged. Scanning electron microscopy
(SEM) and X-ray diffraction (XRD) suggest that morpho-
logical differences between the UA-passivated and GA-
passivated LHP films are minimal. On the other hand, 'H
nuclear magnetic resonance (NMR) and XRD together
indicate (1) GA interacts with the PbXy in (Csy,FAyg3)Pb-
(Io.7sBro25)3 and CsPbl; through S N—H---X interactions, while
through 4 in the case of CsPbBr;, as CsPbBr; has small cation
sites that could only partially contain the guanidinium cation;
(2) UA interacts with the PbX, with 4 N—H:--X interactions in
the case of (Csy,,FAg3s3)Pb(Iy-sBrg,s)3, CsPbBr; and CsPbl,.
Moreover, our Raman data indicate the N—H---X interaction
between the cations and the PbX, octahedra changed the
electron distribution and bond parameters of the guanidinium
and uronium cations, and thus it is reasonable to infer that N—
H---X interaction change the electron distribution of the PbXj
octahedra as well. These results fully exclude the effects of
cation size to demonstrate that hydrogen—halide interactions
have a profound effect on the structural and electronic
properties of LHP materials, a result that will inform further
development of these important optoelectronic materials.

B EXPERIMENTAL SECTION

Materials. All of the starting materials for ligand synthesis were
used without further purification and stored under ambient
conditions. Cyanamide (99%), methanesulfonic acid (99%), tetrabu-
tylammonium hydroxide (99%), dodecyl amine (98%), and
dodecanol (98%) were purchased from Sigma-Aldrich. Ethyl ether
used in the precipitation and recrystallization is an ACS grade solvent.

All precursors for solar cell fabrication were used without further
purification, stored, and mixed in a nitrogen-filled glovebox.
Formamidinium iodide (FAI, 99.99%, Greatcell), cesium iodide
(Csl, 99.999%, Sigma), lead iodide (Pbl,, 99.999%, Sigma), and lead
bromide (PbBr,, 99.999%, Sigma) were dissolved in a mixture of
anhydrous N,N-dimethylformamide (DMF) and dimethyl sulfoxide
(DMSO) (ratio of 4:1 v/v) to prepare a 1.45 M solution of

https://doi.org/10.1021/acs.chemmater.3c01149
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Figure 1. XPS spectra of (a) C 1s and (b) Pb 4f core levels of (Cs;,FAqs3)Pb(Iy5Brg,5); LHP films before and after passivation with UA or GA.

(Csg.17FAg3)Pb(IysBry,s); according to the appropriate stoichio-
metric ratios.

Synthetic Procedures of Ligands. Guanidinium-Based Ligand
(GA). Cyanamide (1.07 g, 25 mmol) was added to dodecyl amine (15
mL) in a round-bottomed flask with a magnetic stir bar.
Methanesulfonic acid (2.4 g 25 mmol) was added to the mixture
in one portion, and the temperature of the mixture was rapidly
increased. The reaction was then put into an oil bath and heated
overnight at 60 °C. The next morning, the reaction was quenched by
pouring ethyl ether (200 mL) into the flask and putting the flask in a
freezer overnight. The white solid product was collected by filtration
and dried overnight in a vacuum oven. NMR was used to determine
the reaction purity, with specific screening for dodecylammonium
methanesulfonic with a triplet signal at 2.74 ppm. The impurity can be
easily removed by dissolving the crude product in isopropanol and
adding tetrabutylammonium hydroxide (1.05 equiv to dodecyl-
ammonium methanesulfonic), followed by another recrystallization
with ethyl ether. After filtration and drying, 3.2 g of product was
collected as a white powder (40% yield). '"H NMR (500 MHz,
toluene-dg) 6: 7.92 (d, J = 6.2 Hz, 1H), 7.38 (s, 4H), 3.31(q,J = 5.8
Hz, 2H), 2.82 (s, 3H), 1.69 (p, J = 7.5 Hz, 2H), 1.56—1.18 (m, 21H),
0.96 (t, ] = 6.7 Hz, 3H).

Uronium-Based Ligand (UA). Cyanamide (1.07 g, 25 mmol) was
added into dodecanol (15 mL) in a round-bottomed flask with a stir
bar spinning. Methanesulfonic acid (2.4 g, 25 mmol) was added to the
mixture in one portion, and immediately the temperature of the
mixture rapidly increased. The reaction was then put into an oil bath
and heated overnight at 60 °C. The next morning, the reaction was
quenched by pouring into ethyl ether (200 mL) and put into the
freezer overnight. White solid (crude product) was collected by
filtration and dried overnight in a vacuum oven. 5.4 g of product was
collected as a white powder (67% yield). '"H NMR (500 MHz,
Toluene-d8) &: 8.68 (s, 2H), 8.31 (s, 2H), 4.45 (d, J = 7.2 Hz, 2H),
2.97 (s, 3H), 1.76 (p, ] = 7.1 Hz, 2H), 1.32 (d, ] = 37.0 Hz, 18H),
0.95 (dt, ] = 23.0, 6.7 Hz, 3H).

Device Fabrication and Characterizations. Photolumines-
cence (PL) Emission and Time-Resolved PL (TRPL). An Edinburgh
FLS1000 spectrometer with a PMT-980 detector was used to measure
the PL emission and PL lifetime of these samples at room
temperature under ambient conditions. PL emission was measured
with a xenon lamp light source filtered to an excitation wavelength of
405 nm. The slit widths were the same for all of the PL
measurements, which enables quantitative comparison of the PL
intensities of all samples used in this work. The TRPL was performed
with an EPL-405 detector and a 405 nm picosecond pulsed diode
laser. The repetition rate for the TRPL is 1 MHz, which is controlled
by an internal trigger input.

UV—Vis Absorption. UV—vis absorbance spectra of the perovskite
films on glass substrates were measured in ambient conditions using
an Agilent 8453 UV—vis spectrometer in the range 200—1100 nm.

X-ray Diffraction (XRD). We used the Bruker D8 powder X-ray
diffractometer with a high-efficiency Cu anode microfocus X-ray
source and an extremely sensitive Pilatus 100K large-area 2D detector
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to investigate the perovskite films before and after surface treatment
with GA or UA at room temperature under ambient conditions.

Solar Cell Fabrication. Patterned indium tin oxide (ITO)
substrates and glass substrates were cleaned by sequential sonications
in water containing ~2% Micro-90 detergent, DI water, acetone, and
isopropanol (IPA) for 10 min, followed by plasma-cleaning for S min.
The hole transport layer (HTL) used in this work is MeO-2PACz,
which was dissolved in anhydrous ethanol with a concentration of 0.1
mM and spin-coated at 3000 rpm for 30 s in a nitrogen glovebox,
followed by annealing at 100 °C for 10 min. The perovskite precursor
solution (1.45 M) was deposited on top of the substrate and spin-
coated at 4000 rpm for 60 s. After ~35 s anhydrous chlorobenzene
(CB) antisolvent was dispensed onto the the top of the spinning
substrate. The resulting perovskite films were then annealed at 100 °C
for 40 min. All perovskite films were prepared in a nitrogen-filled
glovebox. For surface treatment, GA and UA solutions were prepared
in anhydrous IPA with a concentration of 1 or 3 mg/mL. Surface
treatments were performed by dynamically depositing ~70 uL of GA
and UA solutions onto the perovskite films while the substrate was
spun at 2000 rpm for 40 s. Afterward, the half-stack devices were
transferred into an Angstrom evaporator for the deposition of Cg, (30
nm), BCP (S nm), and Ag (100 nm).

Solar Cell Testing. Current—voltage (J—V) characteristics under 1
sun equivalent illumination were recorded using an ORIEL LSH-7320
ABA LED solar simulator in a nitrogen-filled glovebox, which is
calibrated with a filtered KG3 silicon reference solar cell certified by
NREL. Solar cells were masked during the measurement, creating an
effective area of 0.0453 cm’. J—V scans were performed with a
Keithley 2400 instrument controlled by a program written in
LabView. The voltage values are scanned at a 0.02 V step in the
range of —0.1 to 1.2 V.

Scanning Electron Microscopy (SEM). SEM images were recorded
with a FEI Apreo SEM at 2 kV accelerating voltage. The samples were
prepared on ITO substrates to avoid charging.

Atomic Force Microscope (AFM) Modulus Measurements. The
force—distance point spectra were collected using a Bruker Dimension
Icon in PeakForce quantitative nanomechanical mapping (QNM)
mode with a RTESPA-525 tip (k = 200 N/m, Bruker). The elastic
modulus was obtained by fitting with the Hertzian model by using the
Nanoscope software. Obtaining the absolute value for the Young’s
modulus requires a more in-depth calibration; however, the relative
modulus change between the different samples is validated by using
the same experimental parameters for each sample. The AFM
topography was measured using an Asylum Research MFP3D
mounted on an inverted optical microscope with a 75 kHz tip.

Bl RESULTS AND ANALYSIS
Design and Syntheses of GA and UA. Scheme 1

summarizes the synthetic routes used to make GA and UA
ligands. In the presence of methanesulfonic acid, the amine and
alcohol precursors reacted with cyanamide to yield GA and
UA, respectively. The reactions were completed overnight, and
the final products could be easily purified through simple

https://doi.org/10.1021/acs.chemmater.3c01149
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Figure 2. Comparison of PL intensity (a) and time-resolved PL decay (b) of the LHP films on glass substrates before and after surface treatment
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Figure 3. Performance of wide-bandgap LHP solar cells with or without ligand passivation. In the J—V curve (a), solid dots mark the reversed scan
and empty dots mark the forward scan. PCE (b), FF (c), and V¢ (d) values are based on reversed scans. Detailed numbers are given in Table S1.

precipitation and recrystallization procedures. We chose the
sulfonic group as the anion considering sulfonic groups have
been demonstrated effective passivators for anion vacancies in
LHP lattices.’**

Different Passivation Efficacy of GA and UA in LHP
Solar Cells. GA and UA were spin-coated on top of the
(Csp.17FA53)Pb(Iy75Bry,s); LHP films. We used this methyl-
ammonium-free wide-bandgap LHP composition considering
its crucial roles in stable tandem LHP solar cells***® and its
tolerance factor of 0.968, which is important to circumvent
undesired phase charge during surface treatment or character-
ization.

X-ray photoelectron spectroscopy (XPS) was used to
investigate whether the ligands had attached to the perovskite
surface after passivation (Figure 1). In the C s spectra, we
observed a large intensity increase of the peak at 285 eV after
passivation, indicating an increase of the sp® C—C bond
component in the UA- and GA-passivated samples. We believe
this increase is from the long alkyl chains of the GA and UA
ligands, while the weak sp® C—C bond signal in the
unpassivated sample is from carbon contamination. The
signals with larger binding energies are from the C—N and

8420

C—O bonds of uronium, guanidinium, and formamidinium
cations. In the Pb 4f spectra, we observed the binding energy
decreases by ~0.2 eV after passivation with UA and GA, and
such shifts were observed in the I 3d and Br 3d spectra as well
(Figure S1). It is hard to distinguish whether such a shift is
from the passivation of the positively charged halide vacancies
on the surface by CH;SO;™ or by the change in the surface
dipole that bends the vacuum level after introducing the
passivation layers.

PL and PL lifetime measurements were used for the
preliminary evaluation of the ligands’ efficacy in LHP surface
passivation, as shown in Figure 2. After passivating the LHP
film with GA, we observed a 12-fold increase in PL intensity
along with an increase in PL lifetime from 134 to 337 ns
compared to the untreated film. On the other hand, the
passivation efficacy of UA is less pronounced, with a S times
enhancement in the PL intensity and a slight improvement of
the PL lifetime (134—176 ns). There was no shift observed in
the normalized PL and normalized absorbance profiles of the
LHP films before and after passivation (Figure S2), suggesting
that the surface treatment has a negligible impact on the bulk
perovskite optical properties.

https://doi.org/10.1021/acs.chemmater.3c01149
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Figure 4. SEM images of (a) the as-fabricated LHP films (control) and after surface treatment with (b) GA and (c) UA (the white scale bar is 1
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We then fabricated solar cell devices with or without GA-
treated LHP films. Figure 3 shows the performance of the
respective devices, and the GA-passivated LHP films showed
the best performance among the three devices. When the
concentrations of the ligand solutions were 1 mg/mL, we
observed a significant increase in the fill factor (FF) of the GA-
passivated device, to an average of 78.7% from 72.4% of the
untreated devices. On the other hand, we observed a slight
drop in the open-circuit voltage (Voc) in the GA-passivated
devices, from 1.13 to 1.12 V, while the change in short-circuit
current (Jgc) was negligible. As a result, the power-conversion
efficiency (PCE) of the GA-passivated devices was mildly
increased to 16.9% compared with 15.5% of the unpassivated
references. However, the changes in FF, V, and Jsc in UA-
treated devices were insignificant, and thus the average PCE of
the UA-treated devices is similar to the reference devices
without surface treatment. The Jg- of both devices remains
nearly unchanged compared to untreated devices, which is
consistent with other reports of LHP solar cells passivated with
a long or bulky insulating side chain.’’ ™’ When we further
increased the concentration of the GA ligand to 3 mg/mL, we
observed a further increase in Jgc and FF, to 20.4 mA cm™ and
79.6%, respectively, leading to a PCE of ~18%, along with a
high hysteresis index of 0.41. Our mechanistic hypothesis of
the mechanism of the high hysteresis of the GA-treated solar
cells will be discussed later in the paper.

These drastically different solar cell performance indicate
that GA and UA adopt different mechanisms for LHP thin-film
passivation. Considering their nearly identical sizes, we believe
that the greater N—H---X interactions between the cation and
the PbX4 octahedra lead to better LHP passivation. Therefore,
in the next section, we evaluate this hypothesis using XRD,
SEM, NMR, and Raman spectra to investigate the interaction
mechanism between the ligands and the LHP films.

Understanding the Interactions between the LHP
Lattices and Cations. We first used SEM to study the
morphology of the LHP films before and after passivation,
considering it is widely observed that post-treatments with
ligands often modify the morphology of the LHP films.*>*' As
shown in Figure 4, the grain size of the LHP films slightly
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increased after UA or GA treatment, and the average grain
sizes of the UA- and GA-treated films are very comparable.
This result excludes differences in grain sizes as the origin of
the better efficacy of GA in LHP thin film passivation.
Cations with long alkyl chains have been exploited to
passivate LHP thin films by forming 2D perovskites at grain
boundaries.*””** Due to the difference in lattice parameters
between 2D and 3D perovskites, XRD is commonly used to
probe the existence of 2D perovskites at interfaces. However,
as shown in Figure 5, the XRD patterns before and after ligand
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Figure S. XRD patterns of the LHP thin film with and without surface
treatment.

treatments are nearly identical. This experiment shows that the
ligand treatment does not modify the perovskite crystal
structure in a way that can be detected by this measurement
and rules out the passivation mechanism of the 2D perovskite
formation at the interface.

Despite the significant differences in optoelectronic perform-
ances (PL intensity, PL lifetime, PCE, and hysteresis),
crystallinity and morphology characterizations with XRD and
SEM showed the morphologies of the UA- and GA-passivated
films are very similar. We thus used NMR and Raman spectra
to study the N—H:--X interaction between the LHP lattice and
GA and UA on a molecular interaction level. In the NMR and
Raman experiments, cesium lead halide nanocrystals (NCs)
were used instead of LHP thin films in the experiment (1) to
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obtain clear NMR signals via a solution-based NMR technique
and (2) to eliminate the interference of formamidinium signals
within crystal grain to exclusively study the ligand—LHP
interaction at the surface, where the passivation takes place.
Figure 6 compares the '"H NMR spectra of the GA and UA

012H25\NH a C17H75\0
g Nsz cH;N/gNH(;Dl]
—— GA — UA
—— GA-CsPbBr; —— UA-CsPbBr3
—— GA-CsPbl3
a

b
85 80 75 7.0 2.0 8.0 7.0
Frequency (ppm) Frequency (ppm)

Figure 6. '"H NMR spectra of the GA and UA ligands, GA-passivated
CsPbl; NCs, GA-passivated CsPbBr; NCs, and UA-passivated
CsPbBr; NCs, taken at room temperature with toluene-dg as the
solvent. The broadening of the NMR peaks indicates that the
hydrogen atoms interact with the LHP lattice. The NH in the GA-
CsPbBr; sample remains sharp compared to the NH, peaks,
indicating no direct interaction with the LHP lattice.

ligands and their passivated cesium lead halide NCs. The
broadening of the NH, and NH signals in the GA-passivated
CsPbl; NCs indicates that both the NH, and NH groups are
interacting with adjacent Pbl octahedra. Although GA is larger
than the common cations used in LHP, the NMR results
presented above show that the whole guanidinium cation could
fit into the cation site of the CsPbl; lattice. On the other hand,
the guanidinium cation could only partially fit into the cation
site of the CsPbBr; lattice; as shown in the NMR only the NH,
signals are broadened. All of the NH, signals of UA are
broadened after being incorporated into the CsPbBrj; lattice. It
is worth mentioning that we were not able to perform ligand
exchange with CsPbl; NCs, as UA induced a transformation to
the non-perovskite yellow phase. Considering the position of
the (100) diffraction peaks of CsPbBry and CsPbl are
respectively 14.9° and 14.4°,*% while it is 14.1° for
(Csp.17FAg3)Pb(Io75Bro.s)s (Figure 5), (Cso.17FAqg3)Pb-
(Ip7sBroas); possesses larger lattice parameters compared to
CsPbl;, which means that the guanidinium cation can fully fit
into the cation site of (Csg ;FAgs3)Pb(Iy5Brg,s);. In addition,
we observed a small decrease in the V¢ in the GA-passivated
solar cells, which could be attributed to the extra N—H---X
interaction between guanidinium and PbXy octahedra that
promotes spin—orbit coupling in LHP and narrows its
bandgap.*

Raman spectra were used to further investigate the
interaction between the ligands and the perovskite lattice,
and results are shown in Figure 7. We used CsPbBr; for this
analysis because the 785 nm laser used in our Raman setup is
close to the bandgap of (Csy;FAgs3)Pb(Io7sBrg,s)s This led
to strong fluorescence that impeded our ability to effectively
characterize the material with this technique. The CsPbBr;
thin film sample, which has no ligand, shows no significant
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Figure 7. Raman spectra of the different ligands and CsPbBr;
samples. Peak attribution: (a) symmetric stretching of CN; and
CN,0, (b) CH, twisting, (c) CH, scissoring, (d) NH, scissoring, and
(e) asymmetric stretching of CN; and CN,O.

peaks across the 250—2250 cm™ range. The free UA and free
GA ligands show very similar Raman profiles due to their
isoelectronic nature (see Figure S4 for the full spectra).
According to Sension et al,*” in the free ligand spectra of GA
and UA, the sharp peaks around 1037 and 1048 cm ™" originate
from the symmetric in-plane stretching of the CN; and CN,O
skeleton of guanidinium and uronium, respectively. When UA
and GA interact with the CsPbBr; lattice, we observe a
significant reduction in the intensity of CN; and CN,O
symmetric stretching, with the appearance of the two new
peaks at 1610 and 1658 cm™', which originate respectively
from the scissoring of NH,** and the asymmetric out-of-plane
stretching of the CNj; and CN,O skeleton.** The above results
indicate that the H—X interactions between the cations and the
PbX, octahedra have changed the electron distribution of the
cations, which means it is reasonable to infer that such
interactions change the electron distribution of the PbXj
octahedra as well. On the other hand, the change in the
CH, signals is insignificant,*® indicating that the alkyl chains
have trivial interaction with the perovskite lattice.

Such an interaction between the cation ligand and the PbXj
octahedron could explain the high hysteresis in the GA-
passivated device, as ligands have a significant impact on the
mobility and diffusivity of surface ions on the inorganic
crystals. Nelson et al. investigated optoelectronic behaviors of
PbS quantum dots (Pb**-rich surface) capped with carboxylate,
amine, and thiolate ligands.49 Due to the strong interaction
between thiolate and Pb** (comparable Pb—S interaction
within the QD lattice), the thiolate ligands were able to extract
the Pb>* from the QD surface via coordination. Furthermore,
the mobility of the alkyl chain allows the extracted Pb ** to
further diffuse into the ligand layer and create trap states at the
interface, which was evidenced by the formation of a low-
intensity PL peak at longer wavelengths at room temperature.
However, both carboxylate and amine bind weakly to Pb**, and
they are not able to compete with the Pb—S interaction within
the QD lattice. Therefore, neither carboxylate nor amine
ligands can extract Pb** from the QD surface, and no trap-state
emission was observed. The above interaction mechanism
between the inorganic lattice and weakly/strongly binding
ligands could explain the mechanisms of the more pronounced
hysteresis in the GA-treated LHP sample. While GA interacts
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with PbXy octahedra with 5 hydrogen atoms, UA and the
formamidinium interact with 4. GA binds to the PbXj
octahedra more strongly than the formamidinium within the
perovskite grain and can extract the PbXg octahedra from the
inorganic lattice. Along with the mobility endowed by the long
alkyl chain, the PbX, octahedra can rearrange easily at the GA-
passivated interface, which could lead to more pronounced
hysteresis in solar cell devices (Figure 3). Moreover, the
hysteresis index was further increased when the GA
concentration was increased from 1 to 3 mg/mL. The UA—
PbX; interaction and formamidinium—PbX; interaction are of
similar strength, and thus, we observed a relatively smaller
hysteresis in the UA-treated device, which however is still
higher than the ones of the untreated solar cells.

B CONCLUSION

In conclusion, by using a pair of isoelectronic organic cations
(GA and UA), we excluded other variables to only study how
the hydrogen—halide interactions between cations and PbXg
octahedra affect the surface passivation and the optoelectronic
properties of LHP materials. While GA and UA do not
significantly change the morphology of the LHP, GA had a
much more pronounced effect on surface passivation of the
(Csp17FA3)Pb(Iy-5Brg,s); films. NMR showed GA interacts
with the (Csyi7FAgss)Pb(IpssBroys)s lattice with § H-X
interactions while UA interacts with 4, and Raman spectra
indicated that the H—X interaction between the cations and
the PbXy octahedra could alter the electron distribution and
the bond parameters of the resulting materials. The findings
presented above indicate that H—X interactions between
cations and PbX octahedra play a key role in the properties of
LHP materials.
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