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A B S T R A C T   

Principles of Topological Constraint Theory (TCT) were applied to alkali borate and silicate glass systems using 
intermediate range structural models over wide compositional ranges. The structural model for lithium borate 
was derived from the Feller, Dell, and Bray model [1] and extended to the terminal composition at R = 3 where R 
is the molar ratio of lithium oxide to borate. The sodium borate structural model was built using both NMR [2] 
and Raman [3] data, and also included carbonate retention in the glass [4]. This model was extended to R = 3 
similarly to the lithium borate system. The silicate system models were created from 29Si NMR data [5] and also 
incorporated carbonate retention where necessary [6]. 

Constraint models considered the effect of intermediate range structures on the system, and also incorporated 
the effect of “loose” alkali which is not directly associated with a non-bridging oxygen. Constraint models of the 
alkali borate, silicate, and borosilicate systems were then used to predict properties such as glass transition 
temperature and fragility.   

1. Introduction 

Topological Constraint Theory (TCT) was first introduced by Phillips 
& Thorpe in 1985 [7], where it found its initial success in predicting the 
properties of chalcogenide glasses, though we find that it is successful in 
predicting the properties of oxide glasses as well. The foundation of TCT 
is the constraints, which are defined for this purpose as ways in which an 
atom’s degrees of freedom are limited. By gaining an understanding of 
the structure and finding the ways in which constraints change over a 
compositional range, we can predict properties of the glass by relating 
the change in constraints, or inversely the change in the degrees of 
freedom, to properties such as glass transition temperature, fragility, 
and elastic modulus. This method poses some advantages, one of which 
being that only one reference point is needed to fit the model to the data 
throughout its entire compositional range, assuming the structure and 
constraints are known. An unavoidable consequence of constraint the-
ory however stems from the structural knowledge that constraints are 
based upon. If the structure is not well known or deviates from the 
accepted structure, it can percolate to changes in how TCT would 
otherwise predict the constraints and properties. This work is a broad 
extension of the work on lithium borates done by Takeda et al. [8]. 

2. Borate structure 

One of the primary challenges of constraint theory comes from the 
need for an accurate structural model to base constraints upon for each 
individual glass system. Thanks to insights on the nature of constraints 
in certain borate rings from Takeda et al. [8], it was decided that an 
intermediate-range structural model would be necessary for the borate 
glass systems. 

For the lithium borate system, the structural model was derived from 
the previously existing Feller, Dell, and Bray model [1]. The borate 
network is divided up into a series of ring structures, where the struc-
tural model describes the fraction of each unit present at a given 
composition. The units are as follows: Boroxol (B3); Tetraborate, which 
is a Pentaborate ring connected to a Triborate ring (T3, T4); Diborate (D3, 
D4); Metaborate (M3); Pyroborate (P3); Orthoborate (O3); Loose 4-coor-
dinated Boron (L4). These are then subdivided into three and four co-
ordinated borons corresponding to each unit, portrayed by the 
superscript on each unit label. Lewis diagrams of each ring structure are 
portrayed in Fig. 1 [1]. The overall glass structure shown as fractions of 
borate units is shown in Fig. 2 [1]. From these fractions the structure can 
be simplified into a set of network forming species that each have their 
own unique constraints. These network forming species for the borate 
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glass systems are classified as follows: standard 4-coordinated borons 
(B4*); 4-coordinated borons that exist in a diborate ring (D4*); standard 
3-coordinated borons (B3*); bridging oxygens (OB); cluster forming 
modifier ions attached to non-bridging oxygens (MNB, where M is the 
modifier ion, such as Na+ or Li+); ‘Loose’ modifier ions which are not 
directly associated with a non-bridging oxygen (ML). 4-coordinated 
borons in diborate rings are classified separately because as shown by 
Takeda et al. [8]. A redundant angular constraint is counted on one of 
the 4-coordinated borons in the diborate ring when only considering 
short range order. Evolution of the fractions of each network forming 
species throughout the lithium borate glass composition are shown in 
Fig. 3. 

For the sodium borate system, a structural model was built using 
NMR data from Jellison and Bray [2] alongside Raman spectroscopy 
data from Kamitsos and Karakassides [3]. The NMR data was used to 
provide a fraction of 4-coordinated borons (N4) throughout the 
compositional range while the Raman data was used to determine which 
intermediate range structural units were present in each compositional 

region in the glass. Stoichiometric conservation principles were then 
used to derive the full structural model seen in Fig. 4. It should be noted 
that unlike the lithium borate system, the sodium borate system has 
some added complexity in the form of two new borate ring structures, 
ditriborate (Dt3, Dt4) and dipentaborate (Dp3, Dp4), which are struc-
turally similar to their counterpart triborate and pentaborate rings but 
with an extra 4-coordinated boron, and carbon retention in the form of 
CO3

2−. The amount of carbonate retained in the glass was modeled as 
linear after insights by Kasper et al. [4]. In calculating the fraction of 
network forming species, CO3

2- ions were taken to have no impactful 
β-constraints and have one associated MNB. As with the lithium borate 
system, this was then broken down into the series of network forming 
species to be used in considering constraints, as shown in Fig. 5. 

3. Silicate structure 

The structure for the alkali silicate glass systems can be described 
using simpler short range ordered units since unlike in the borate 
network, there are no known silicate structures that would cause 
redundant counting of constraints. This means that we can describe 
units in the silicate network by simply looking at the number of bridging 
oxygens that exist in a silicon tetrahedra, otherwise known as Qn units, 
where n is the number of bridging oxygens attached to the silicon atom. 
In lithium silicate, only these Qn units exist in the glass, and can range 
from Q4 units, which have only bridging oxygens, to Q0 units, which are 
completely saturated with non-bridging oxygens. The lithium silicate 
structural model shown in Fig. 6 was derived from NMR data from 
Maekawa et al. [5] and Larson et al. [9]. This was then used to derive the 
network forming species fractions shown in Fig. 7, like how was done for 
the borate systems. In this system the network forming species simply 
consist of each of the Q units as well as the corresponding bridging 
oxygens and alkali ions. 

Sodium silicate behaves very similarly to lithium silicate in terms of 
its structure, but like the sodium borate system, retains carbon in the 
form of carbonate [6]. Not only does this add another unit, but because 
the carbonate ion requires two accompanying sodium ions that would 
otherwise be incorporated into the silicate network, the glass forming 
range is extended from R = 2 to approximately R = 3. The sodium sil-
icate structural model shown in Fig. 8 was derived from NMR data from 
Maekawa et al. [5] and Barrow et al. [6]. This was then used to derive 
the network forming species fractions shown in Fig. 9. 

4. Constraints 

When identifying the constraints that exist in an oxide glass struc-
ture, there are 4 primary types of constraints that have typically been 

Fig. 1. Structural diagrams of borate rings [1]. (a) Boroxol; (b) Pentaborate; (c) 
Triborate; (d) Diborate; (e) Metaborate; (f) Pyroborate; (g) Orthoborate; (h) 
Loose N4. 

Fig. 2. Intermediate Range Structural Model of Lithium Borate Glass (RLi2O * B2O3).  
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Fig. 3. Fraction of Network Forming Species in Lithium Borate Glass (RLi2O * B2O3).  

Fig. 4. Intermediate Range Structural model of Sodium Borate Glass (RNa2O*B2O3).  

Fig. 5. Fraction of Network Forming Species in Sodium Borate Glass (RNa2O * B2O3).  

N. Keninger and S. Feller                                                                                                                                                                                                                      



Journal of Non-Crystalline Solids 624 (2024) 122731

4

Fig. 6. Structural model of Lithium Silicate Glass (RLi2O * SiO2).  

Fig. 7. Network forming species in Lithium Silicate Glass (RLi2O * SiO2).  

Fig. 8. Structural Model of Sodium Silicate Glass (RNa2O * SiO2). CO3
2− values are reported as a molar fraction of the total amount of Si in the glass.  
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considered in oxide glasses [8,10,11]. α-constraints, which are linear, 
bond-stretching constraints between the glass former atoms and oxygen 
atoms. β-constraints, which are angular constraints between two oxy-
gens with the glass former atom as the vertex. γ-constraints, which are 
angular constraints where oxygen is the vertex, either between two 
network former atoms or a network former and a modifier ion. And 
finally, μ-constraints, which come from alkali clustering effects. Table 1 
shows what each constraint represents, with G being the glass former, 
such as boron or silicon, O being oxygen, and M* being modifier ions. 

A particularly notable property that requires separating these con-
straints beyond that of linear and angular constraints comes from the 
temperature dependence of constraints, an advancement in the practice 
of TCT from Mauro and Gupta [11]. In essence, temperature dependence 
of constraints is the property of certain constraints to lose their rigidity, 
or constraining effect, as temperatures increase. This change from rigid 
to floppy can be modeled as a discrete, binary transition after a certain 
temperature is reached for the purpose of calculating properties like 
glass transition. This is important in the case of predicting glass transi-
tion temperatures (Tg), as the temperatures at Tg are taken to be higher 
than that of the γ-constraint’s onset temperature. This means that when 
calculating constraints for use in Tg predictions, γ-constraints are not 
considered. 

This study has also called into place another constraint not accoun-
ted for in previous studies on oxide glass system constraints. These 
constraints are assumed to arise from linear interactions with alkali ions 
that are not directly associated with a non-bridging oxygen and have 
been dubbed δ constraints for the purposes of this research. 

5. Counting constraints 

In relating a structural model to a constraint curve, we need to 
address all the constraints that come with each structural species. To do 
this we assign a set type and number of constraints to each structural 
unit. α-constraints are counted only at the bridging oxygens, with two 
constraints for each. It should be specifically noted here that non- 

bridging oxygens are not included for the purposes of α constraints 
since the linear motion that would typically be restricted by an α 
constraint would not be of any effect on the network structure overall. 
β-constraints are counted at the network formers where their vertex lies. 
The formula 2〈r〉 − 3, where 〈r〉 is the average coordination of the 
network former, can be used to find the number of β-constraints asso-
ciated with each network former. From this we find that each 3-coordi-
nated trigonal planar network forming atom has 3 associated 
β-constraints and each 4-coordinated tetrahedral network forming atom 
has 5 associated β-constraints. γ-constraints are counted as one per ox-
ygen, and unlike the α-constraints this does include NBOs, though again 
for the purposes of calculating Tg these constraints are not considered. 

When calculating the two types of alkali constraints, μ and δ, we must 
split the modifier ions into two different species, ‘non-bridging’ (MNB) 
and ‘loose’ (ML) modifier ions respectively. MNB ions are ions that are 
directly associated with NBOs in the network structure. The number of 
MNB ions associated with each structural unit for use in calculating 
μ-constraints was taken from previous work on constraint models for the 
lithium and sodium borate systems [8,10]. For each MNB ion there are 
assumed to be 2 μ-constraints, this number was also taken from previous 
work [8,10]. The ML ions were assumed to be all modifier ions not 
associated with μ clustering effects, and 2.5 δ-constraints are assigned to 
each ML ion. The number 2.5 comes from the linear coordination of 
alkali ions in the glass, which 23Na NMR data for sodium borate [12], 
silicate [13], and tellurite [14] glass systems all show to be approxi-
mately 5. For systems where carbon is retained in the form of carbonate 
(CO3

2−) ions, these ions were taken to have no impactful β-constraints 
and 1 associated MNB ion. 

6. Borate constraints 

The constraints in a borate glass are relatively simple to calculate 
from the network forming species shown in Figs. 3 and 5. Using the 
counting methods described above, we find that each network forming 

Fig. 9. Network forming species in Sodium Silicate Glass (RNa2O * SiO2).  

Table 1 
Constraints in Oxide Glasses.  

Constraint Constraint Type 

α linear G-O 
β angular O-G-O 
γ angular G-O-G/G-O-M* 
μ linear O-M* 
δ linear M*-M*  

Table 2 
Number of Constraints Associated with Network Forming Species.  

Species Number of Constraints Type of Constraint 

B4* 5 β 
D4* 4.5 β 
B3* 3 β 
OB 2 α 
MNB 2 μ 
ML 2.5 δ  

N. Keninger and S. Feller                                                                                                                                                                                                                      
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unit has the number of constraints associated with it shown in Table 2. It 
is worth reminding that the D4* units (4-coordinated borons in a 
diborate ring configuration) are counted with an abnormal 4.5 con-
straints instead of the standard 5 β-constraints for a tetrahedral unit 
because of the redundantly counted β-constraint inside of the diborate 
ring shown by Takeda et al. [8]. Plots of the average number of con-
straints per atom as a function of R for the lithium borate and sodium 
borate glass systems are shown in Figs. 10 and 11 respectively. For the 
sodium borate system in Fig. 11 calculations for both glasses with and 
without retained carbonate are shown. 

7. Silicate constraints 

The silicate systems’ constraints are similarly easy to calculate from 
the network forming species assembled in Figs. 7 and 9. Since there are 
no impactful ring structures on constraints or coordination changes in 
silicate glasses, the only units to consider for constraint counting are the 
short-range order Qn units as well as the bridging oxygens and both 
types of alkali ions. The variation in the average number of constraints is 
much greater in the alkali silicate glass systems than in their borate 
counterparts, mainly due to the lack of coordination change and higher 
amount of NBO’s attached to silicate tetrahedra as opposed to borate 
units, as an increase in NBO’s corresponds to a decrease in constraints. 
Plots of the average number of constraints per atom as a function of R for 
the lithium silicate and sodium silicate glass systems are shown in 
Figs. 12 and 13 respectively. For the sodium silicate system in Fig. 13 
carbonate effects are included. 

8. Glass transition temperature 

To calculate glass transition temperature from constraints, we can 
use the following equation, where Rr is the reference composition, Tg(R)
is the glass transition temperature at composition R, and n[Tg(R), R] is 
the number of constraints at composition R [10]. 

Tg(R) = Tg(Rr)
3 − n

[
Tg(Rr),Rr

]

3 − n
[
Tg(R),R

] . (1) 

Reference compositions Rr are used to align the constraint curves to 
properties using the constraints and the value of the property at that 
point. This point is typically chosen to be a well-defined point, where 
both the structural information and property data is accurately known. 
In the case of the alkali borate glasses, this point is chosen to be Rr = 0, 
since at this point, the Tg is well defined at around 533 K and the 
structure is agreed to be made up entirely of 3-coordinated boron units 

with no NBOs. For the silicate glasses, a reference composition of Rr = 1 
is chosen. In the silicate case, pure SiO2 (R = 0) is not chosen because 
pure silicate glass is difficult to produce and its Tg can vary greatly based 
on imperfections such as the water content of the glass [15]. R = 1 is 
chosen instead as its structural data and properties are more 
well-defined. For lithium silicate, the reference Tg,r = 721K, and for 
sodium silicate, the reference Tg,r = 662K [16]. 

Glass transition temperatures were modeled from constraints using 
the above methods, and plotted against experimental data. The lithium 
borate Tg model is shown against experiment [17–19] in Fig. 14. Here 
we find the TCT model aligns to experimental data strongly both in low 
and into high alkali ranges. The model applied for sodium borate glass is 
shown against experiment [17,20–22] in Fig. 15, with a similarly strong 
agreement reaching far into the high alkali range. Alkali Silicate Glass 
transition temperature models are shown against experiment [16] in 
Figs. 16 and 17. 

9. Fragility 

Another property able to be predicted through TCT is a glass’s 
fragility, though the process is slightly more complex. In order to 
accurately predict fragility data, a continuous form of temperature 
dependence must be used in the place of the discrete model used to 
calculate glass transition temperature. This is because the model relating 
fragility to constraints involves the derivative of the degrees of freedom 
with respect to the composition, which is incompatible with the discrete 
“on/off” model used in calculating the glass transition. Degrees of 
freedom in this instance are calculated as f = 3− n(R), where n(R) is the 
number of constraints at composition R. The equation used model 
fragility is as follows, where m is the fragility, f(T,R) is the degrees of 
freedom at a given temperature T and composition R, and m0 is the 
fragility of a strong glass, taken to be 14.97 [23]. 

m = m0

(
1+ ∂lnf (T,R)

∂lnT

⃒⃒
⃒⃒

T=Tg(R)

)
. (2) 

Since we are using the temperature dependent model of constraint 
theory, calculating the degrees of freedom is not as trivial as in the 
discrete model, and in this instance the degrees of freedom are measured 
as the number of each type of constraint multiplied by its temperature 
dependence coefficient, 

f (T,R) =
∑

3 − nc(R)qc(T), (3)  

where c represents the different types of constraints, α, β, μ, γ, and δ. In 

Fig. 10. Average Number of Constraints per Atom in Lithium Borate Glass (RLi2O * B2O3).  
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Fig. 11. Average Number of Constraints per Atom in Sodium Borate Glass (RNa2O*B2O3).  

Fig. 12. Average Number of Constraints per Atom in Lithium Silicate Glass (RLi2O * SiO2).  

Fig. 13. Average Number of Constraints per Atom in Sodium Silicate Glass (RNa2O * SiO2).  
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the temperature dependent constraint model proposed by Mauro et al. 
[24], the temperature dependence coefficient takes the form of Eq. (4). 

qc(T) =
(

1 − exp
(ΔF∗

c
kt

))vt

, (4)  

where vt is the number of escape attempts (a fitting parameter corre-
sponding to the sharpness of the curve, set in this case to 1000 in cor-
respondence with our borate reference point), and ΔF∗

c is the activation 
free energy for each constraint c. ΔF∗

c is defined by Eq. (5): 

ΔF∗
c = −kTcln

(
1− 2−1

vt

)
, (5)  

where k is Boltzmann’s constant and Tc is the onset temperature for each 
constraint c, where the constraint begins to change from rigid to floppy, 
and are dependent on both glass composition and constraint type. For 
borate glasses, constraint onset temperatures were taken to be Tα =

921K, Tβ = 750K, Tγ = 328K, and Tμ = 900K [24]. The onset temper-
ature of the δ constraints can be roughly estimated within a given range 
through comparing its physical significance with other constraint onset 
temperatures. As described by Bødker et al. [25] linear constraints are 
shown to have higher constraint onset temperatures than their angular 
counterparts, as corresponding to the strength of the bonds and modes 
which they represent, taking the order of Tγ < Tβ < Tμ < Tα. Given that 
we take δ constraints to represent linear modes, it makes sense that 
Tβ < Tδ, though given that inter-alkali connections should in theory be 
weaker than the ionic constraint between a modifier ion and an NBO, it 
should therefore follow that Tδ < Tμ. This gives us our range for the 
constraint onset temperature, which was set at Tδ = 850K. Further 
work may be necessary to affirm the validity of this value, which as 
shown by Wilkinson et al. [26] and Potter et al. [15] can be determined 
through fittings of the Young’s modulus and through molecular dy-
namics simulations. 

Results for the lithium borate glass fragility are shown against 

Fig. 14. Glass Transition Temperature for Lithium Borate Glass (RLi2O*B2O3). The error in the data is +/- 4 K. The data markers are larger than the error.  

Fig. 15. Glass Transition Temperature for Sodium Borate Glass (RNa2O * B2O3). The error in the data is +/- 4 K. The data markers are larger than the error.  

N. Keninger and S. Feller                                                                                                                                                                                                                      



Journal of Non-Crystalline Solids 624 (2024) 122731

9

experimental data [19,27] in Fig. 18. Results for fragility calculations 
both with and without δ constraints are plotted here to show the added 
effects it has on the fragility model. Results for the sodium borate system 
plotted against experimental data [20,21] are shown in Fig. 19. Results 
for the sodium borate system include δ constraint calculations. 

10. δ constraint defense & implication 

The successful introduction of a new type of alkali constraint gives 
some insights into the role of alkali ions in glass structure. These addi-
tional constraints were able to greatly improve the accuracy of each 
system, especially at high alkali ranges, where previous models have 
begun to falter [8,23], which points to these constraints having some 
real-world significance. These constraints make use of the ions that are 
not considered in the clustering effects which are considered for 
μ-constraints. This split between clustering modifier ions and 
non-clustering ‘loose’ ions proposes that some alkali ions are not as 
directly associated with the glass structure, the number of which appears 

to be dependent on individual structural units and the localization of 
their charge. A possible example of the real-world effect that corre-
sponds to δ constraints may come from a metallic interaction between 
multiple of these loose alkali ions, or also possibly a polar interaction 
between bridging oxygens and the alkali ions. This idea is supported 
further by the fact that the number of δ constraints per loose alkali ion 
that produced the best results was directly related to the average coor-
dination of alkali ions in oxide glasses as shown in 23Na NMR [13]. 

As shown in Takeda et al. [8], the number of these ‘loose’ ions can 
also have some correlation to the conductivity of the glass, though this 
model is not accurate for all compositions of the glass, namely at high 
alkali content. Fig. 20 shows a comparison of the model from this work, 
labelled the “δ constraint model”, versus previous constraint theory 
models for the lithium borate glass system, which shows the significant 
effect that the δ constraint has, particularly at high R values. The model 
of Takeda et al. [8] was based, in part, on the work of Smedskjaer et al. 
[10]. The present model is a refinement of the Smedskjaer model and the 
result is an improvement in the fit, especially at high R values due to the 

Fig. 16. Glass Transition Temperature for Lithium Silicate Glass (RLi2O*SiO2). The error in the data is +/- 4 K. The data markers are larger than the error.  

Fig. 17. Glass Transition Temperature for Sodium Silicate Glass (RNa2O*SiO2). The error in the data is +/- 4 K. The data markers are larger than the error.  
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added δ constraints. 

11. Future study & plans 

The Methods outlined in this paper should also be applicable to other 
glass systems, which may also explore the intricacies of how TCT can 
relate to glass properties. One such system is the alkali borosilicate 
glasses, which could be used to explore the role and significance of the 
impact of the reference point and composition used to predict properties 
when multiple glass forming networks are at play. TCT can also be used 
to predict properties other than glass transition temperature such as 
Vickers Hardness, as seen in Fig. 21 which was produced alongside 
hardness data collected at Coe College by Bragatto [28] for the lithium 
borate glass system. A noteworthy property of this data is that some of 
the glasses used were melted in alumina crucibles, which likely led to 
the contamination of alumina in the glass. This contamination would 
disrupt the structure and misalign the structural model with the physical 
structure of the glasses used to find data points. Even still it is a good 
example of how TCT can be used to predict other properties, as well as 
an example of TCT’s potential shortcomings in real world applications. 

12. Conclusions 

In both alkali borate glasses studied we see a very strong agreement 
between the constraint based model and experimental Tg values, how-
ever the alkali silicate glasses have significantly worse agreement, 
particularly in the low-alkali region. In dissecting the reason for the 
discrepancy between our model and experimental data, we first notice 
that the average number of constraints per atom for pure SiO2 glass (R =
0), which is made up entirely of tetrahedral Q4 units will all bridging 
oxygens, has exactly 3 constraints per atom. Alternatively, it has zero 
degrees of freedom, and in Eq. (1) which we use to calculate the Tg this 
results in an infinite asymptote as we approach pure SiO2. While at first 
this disagreement may seem irreconcilable, understanding it can both 
lead to an interesting observation about silicate glass as well as insight 
into the limitations of TCT. The infinite asymptote for the Tg causes some 
deviation between model and experiment at low R values. The proposed 
culprit for the disagreement between model and experiment may pri-
marily come in the form of chemical impurities, specifically water. It has 
been shown by Potter et al. that in acting as a modifier, small amounts of 
water can impact the number of constraints seen in silicate glass and 
bring Tg predictions much more in line with experimental data [15]. The 
effect a small impurity can have on the predicted value highlights an 
important limitation of TCT. Since the model relies so heavily on a 

Fig. 18. Fragility for Lithium Borate Glass (RLi2O*B2O3).  

Fig. 19. Fragility for Sodium Borate Glass (RNa2O*B2O3).  
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strong understanding of the molecular structure of the glass, any devi-
ation between that structural model and the actual molecular structure 
of the glass, whether it come in the form of impurities, defects, or a 
simple misunderstanding of the structure, can have a strong impact on 
how the model can predict properties. In the case of low-alkali silicate 
glasses the degrees of freedom is very small, so any change to the con-
straints can seem disproportionately impactful, though this is still 
something that should be considered as a source of error in any pre-
dictive model using constraint theory. Other constraints affecting the 
alkali oxides are possible at high R. We believe that this would be a small 
effect and ignore it here. Another possibility could be a deviation in the 
amount of non-bridging alkali ions, or in the inter-alkali coordination 
that arise under saturated conditions seen at high R values. This could 
potentially impact the behavior of the μ constraints and affect δ con-
straints, respectively. Inversely, given the strong agreement between 
model and experiment with the alkali borate glasses, we can assume that 
there is also likely a very strong agreement between our structural model 

and the true molecular structure of the glass systems. 
While not as strong of an agreement as the glass transition temper-

ature, results for the fragility model are successfully able to recreate the 
trends shown in experimental data. The notable difference between 
model and experiment is shown at low alkali, where the model rises 
significantly faster than the experiment, especially in the lithium borate 
glass system. At high alkali regions it is also apparent that the model falls 
significantly below experiment. It is unclear at this time what is causing 
the inaccuracies in the model. Investigations into parts of the model such 
as the temperature dependence for each constraint and the role of a 
fictive temperature could potentially shed light on this discrepancy. 
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