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A B S T R A C T

Dynamic crop models are widely used to simulate crop production, but are often complex and thus face
parameter non-identifiability issues. In this study, we demonstrate a simple dynamic model for crop growth
within a Bayesian hierarchical framework and quantify improvements in predicted crop growth patterns
by inclusion of a dynamic water balance. Seven crop parameters and four water balance parameters were
estimated by the model from data on leaf area index, biomass, yield, and plant available water over the
growing season across multiple environments. Posterior median values for Willmott agreement index (𝑑) and
Nash–Sutcliffe efficiency (𝑁𝑆𝐸) showed that the model predicted leaf area index (LAI; 𝑑=0.89; 𝑁𝑆𝐸=0.62)
and biomass well (𝑑=0.98; 𝑁𝑆𝐸=0.92) with less success for plant available water (PAW; 𝑑=0.75; 𝑁𝑆𝐸=-0.03)
and grain yield (𝑑=0.90; 𝑁𝑆𝐸=0.40). Inclusion of a water balance component raised median 𝑁𝑆𝐸 from 0.57
to 0.62 for LAI, 0.74 to 0.92 for biomass, and −0.58 to 0.40 for grain yield. The median and highest density
interval (HDI) were biologically plausible for the parameters canopy light extinction coefficient (median=0.46;
HDI=[0.38, 0.55]), maximum leaf area index (median=6.66; HDI=[6.06, 7.24]), and crop evapotransipration
coefficients for the initial (median=0.03; HDI=[0.000004, 0.08]) and mid-season (median=0.32; HDI=[0.23,
0.42]) growth stages. Posterior values for the potential radiation use efficiency (𝑅𝑈𝐸𝑝; g MJ−1 (◦C-d)−1)
parameter (median=2.17; HDI=[1.99, 2.34]) were not biologically plausible indicating a need for model
improvement.
1. Introduction

Crop models are commonly used to simulate growth and yield
and to understand the mechanistic interplay between crops and en-
vironments (Attia et al., 2016; Asseng et al., 2014). Successful usage
of these models require a thorough understanding of the biological
system, along with accurate parameter estimation, calibration, and vali-
dation. However, complete understanding of all underlying mechanistic
processes is difficult to achieve in complex systems such as cropping
systems. In addition, specifying ordinary differential equations (ODEs)
for numerous processes in order to mechanistically represent the full
system results in a level of model complexity that frequently renders
such models non-identifiable due to the dearth of sufficiently informa-
tive data to fit them (Lamsal et al., 2018). Standard crop growth models
such as DSSAT-CSM (Jones et al., 2003), APSIM (Keating et al., 2003),
WOFOST (Van Diepen et al., 1989) and CropSyst (Stöckle et al., 2003)
have a large number of parameters and input data requirements that
are beyond the scope of many field-based studies. As a result, a more
parsimonious approach that incorporates a minimum level of detail
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required to represent the system under study may be preferable in many
situations. In this study, we propose such a parsimonious approach to
crop growth modeling by introducing a simple mechanistic ODE model
into a Bayesian hierarchical framework.

The approach we propose can accommodate parameter uncertainty
and random noise in the cropping system probabilistically. In so doing,
we simultaneously account for the incomplete knowledge of the sys-
tem and non-systematic sources of variability in a way that standard
crop growth models cannot. This type of hybrid approach is gaining
attention in other scientific areas such as food science (Yang et al.,
2021) and medicine (Mascheroni et al., 2021). While it is important
to specify the fundamental processes in a manner consistent with a
mechanistic understanding of the system dynamics, accounting for
random noise with a stochastic model component allows for modeling
sources of variation not explicitly handled by the deterministic com-
ponents of the model. Along with accounting for random noise, the
Bayesian approach also allows us to inform the parameter estimation
process with prior knowledge about the system and characterize the full
joint distribution of parameters of interest, including their associated
vailable online 19 January 2024
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uncertainties, rather than point estimates alone. This approach provides
a more holistic perspective on how individual parameters which govern
key processes relate to each other to affect the evolution of the system
as a whole over the growing season.

This study is conducted in the southern Great Plains (SGP) of the
United States. Winter wheat (Triticum aestivum L.) is an important crop
rown in this region and soil water balance is one of the important
rivers of yield variability (Munaro et al., 2020). Precipitation patterns
ary both temporally and spatially which results in diverse environ-
ents across the region (Maulana et al., 2019). It is thus reasonable to
onsider modeling soil water balance as a component within a crop
rowth model for this region even within a minimalist crop growth
odel. Crop models accounting for soil water effects on crop growth
ange from relatively simple models, such as AquaCrop (Steduto et al.,
009) to more complex models such as DSSAT-CERES (Jones et al.,
003). Although varying in complexity, they are fundamentally similar
n simulating water balance as a function of a drained upper limit (field
apacity) and a lower limit (permanent wilting point). Most of these
odels simulate soil water balance for multiple layers within a soil
rofile, although some models simulate the soil water in the rooting
one as a single layer (Steduto et al., 2009). As recently reviewed
y Tenreiro et al. (2020), the methods for simulating infiltration in
crop models range from the relatively simple runoff curve number
method (United States Department of Agriculture, Soil Conservation
Service, Engineering Division, 1986) to more mechanistic approaches
based on the Richard’s equation (Richards, 1931). For simulating evap-
otranspiration, many crop models use an approach derived from the
Penman–Monteith equation (Penman, 1948; Monteith, 1965), while
some also provide implementations of the Priestley-Taylor (Priestley
and Taylor, 1972) or Hargreaves methods (Hargreaves and Samani,
1982).

These types of dynamic simulation models are frequently used to
explain genotype by environment interaction for multiple genotypes
across years. With extensive datasets from multi-environment experi-
mental trials, it becomes particularly important to account for random
noise or non-systematic sources of variability in a system. Poudel et al.
(2022) presented initial work in the integration of mechanistic and ran-
dom components to model repeated measures data on LAI and biomass
over time for irrigated and rainfed winter wheat in the SGP. The specific
objective of this study is to present a new, re-conceptualized model to
better represent the underlying processes related to vernalization, plant
available water (PAW) and grain yield.

2. Methodology

2.1. The ODE crop growth model

Table 1 presents a description of the state variables, parameters, and
input variables in the ODE model. The table is followed by description
of the equations.

2.1.1. Thermal time
The development of the crop is expressed the function of tempera-

ture over time as well as the vernalization status of the crop. The rate
of change of thermal time is specified as:
𝑑𝑇𝑇𝑡
𝑑𝑡

= 𝑓𝑇𝑇 𝑡 ⋅ 𝑓𝑣𝑟𝑛 𝑡 (1)

where,
𝑑𝑇𝑇𝑡
𝑑𝑡 is the rate of change of thermal time at time 𝑡.

𝑓𝑇𝑇 𝑡 is the thermal time factor, calculated as shown below.
𝑓𝑣𝑟𝑛 𝑡 is factor corresponding to the vernalization requirement, cal-

ulated as shown below.
2

Table 1
Description of the state variables, inputs, and parameters in the ODE model.
Notation Units Type Description

𝑇𝑇𝑡 ◦C-d State variable Cumulative
thermal time at
time 𝑡

𝑉 𝑅𝑁𝑡 d State variable Cumulative
vernalization at
time 𝑡

𝐿𝐴𝐼𝑡 m2 m−2 State variable Leaf area index
at time 𝑡

𝐵𝑀𝑡 g m−2 State variable Biomass at time
𝑡

𝑌 𝐿𝐷𝑡 g m−2 State variable Grain mass at
time 𝑡

𝑃𝐴𝑊𝑡 mm State variable Plant available
water content at
time 𝑡

𝛼 (◦C-d)−1 Parameter Relative rate of
LAI increase

𝑇𝑇𝐿 ◦C-d Parameter Thermal time to
the end of leaf
expansion

𝑅𝑈𝐸𝑝 g MJ−1 (◦C-d)−1 Parameter Potential
radiation use
efficiency

𝐾 dimensionless Parameter Light extinction
coefficient

𝐿𝐴𝐼𝑀𝐴𝑋 m2 m−2 Parameter Maximum leaf
area index

𝑠𝑒𝑛𝑟𝑎𝑡𝑒 (◦C-d)−1 Parameter Relative rate of
senescence

𝑣𝑟𝑒𝑞 d Parameter Vernalization
requirement

𝑤𝑠𝑒𝑛 dimensionless Parameter Water stress
sensitivity

𝐾𝑐 𝑖𝑛𝑖 dimensionless Parameter Early season
crop coefficient

𝐾𝑐 𝑚𝑖𝑑 dimensionless Parameter Mid season crop
coefficient

𝐾𝑐 𝑒𝑛𝑑 dimensionless Parameter Late season crop
coefficient

𝑇 𝑎𝑣𝑔𝑡 ◦C d−1 Model input Observed daily
temperature at
time 𝑡

𝑆𝑅𝐴𝐷𝑡 MJ m−2 d−1 Model input Observed daily
solar radiation at
time 𝑡

𝑃𝑡 mm d−1 Model input Observed daily
precipitation at
time 𝑡

𝐼𝑡 mm d−1 Model input Irrigation at
time 𝑡

𝐴𝑊𝐻𝐶 mm Model input Available water
holding capacity

2.1.2. Thermal time factor
The factor 𝑓𝑇𝑇 𝑡 represents the biochemical pathways that are

urely controlled by temperature:

𝑇𝑇 𝑡 =
⎛

⎜

⎜

⎝

1

1 + 𝑒
−𝑟𝑇𝑇

(

𝑇 𝑎𝑣𝑔𝑡
𝑚𝑇𝑇

−1
) ⋅ 20

⎞

⎟

⎟

⎠

(2)

where,
𝑟𝑇𝑇 = 5 is a fixed constant representing the rate that determines

steepness of the sigmoid curve.
𝑚𝑇𝑇 = 10 is a fixed constant representing the midpoint in the

igmoid curve.
𝑇 𝑎𝑣𝑔𝑡 is the input variable representing observed daily average air

emperature at time 𝑡 for environment 𝑘.
In general, crop growth and development rates are expected to

increase with temperature. However, once the temperature reaches a
point at which the change in conformational states (e.g. denaturation)
of enzymes involved in growth and development offsets the increase
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in the rates per se, the net effect is a leveling-off of the overall
growth and development. Further increases in temperature beyond this
inflection point can in some cases result in a decline of the overall
growth and development rates, however for the range of temperatures
considered here we assume a sigmoidal response for 𝑓𝑇𝑇 𝑡 (Eq. (2)).
This is consistent with the approach taken by other models such as
CropSyst (Stöckle et al., 2003), WOFOST (Van Diepen et al., 1989),
and DSSAT-CROPSIM-CERES-Wheat (Jones et al., 2003). These other
models make use of piecewise linear functions, however, such functions
are not continuously differentiable, a requirement for estimation with
Hamiltonian Monte Carlo (HMC). Further explanation of the utility of
HMC in the context of crop models is provided below in Section 2.5
and in Poudel et al. (2022). The curve given in Eq. (2) is specified such
that the thermal time accumulation is less than 0.2 for temperatures
less than zero, has a value of 10 ◦C-days at 10 ◦C and approaches a
value of 20 ◦C-days at temperatures at or above 20 ◦C (Fig. S1 of the
Supplementary Materials).

2.1.3. Vernalization factor
For winter wheat, a period of exposure to cold temperatures is re-

quired to trigger the transition from vegetative to reproductive growth
(Robertson et al., 1996; Ritchie, 1991). This threshold, frequently
referred to as the vernalization requirement, varies between cultivars
and is represented here by the parameter 𝑣𝑟𝑒𝑞. If the period of ex-
posure to cold temperatures is less than the 𝑣𝑟𝑒𝑞, the transition to
reproductive growth (including flowering) will be delayed. To capture
this phenomenon we specified a vernalization factor (𝑓𝑣𝑟𝑛 𝑡) calculated
as a function of cumulative vernalization at time 𝑡 (𝑉 𝑅𝑁𝑡; i.e., the
cumulative exposure of the plant to vernalizing temperatures from
𝑡 = 0 to time 𝑡), the parameter for vernalization requirement (𝑣𝑟𝑒𝑞),
cumulative thermal time at time 𝑡 (𝑇𝑇𝑡) and the parameter 𝑇𝑇𝐿:

𝑓𝑣𝑟𝑛 𝑡 =
1

1 + 𝑒−𝑟𝑣𝑇𝑇
(

𝑇𝑇𝑡
𝑇 𝑇𝑆 −1

) +

⎛

⎜

⎜

⎝

1 − 1

1 + 𝑒−𝑟𝑣𝑇𝑇
(

𝑇𝑇𝑡
𝑇 𝑇𝑆 −1

)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1

1 + 𝑒−𝑟𝑣𝑟𝑒𝑞
(

𝑉 𝑅𝑁𝑡−
𝑣𝑟𝑒𝑞
2

)

⎞

⎟

⎟

⎠

(3)

here,
𝑇𝑇𝑡 is state variable for thermal time at time 𝑡 for environment 𝑘.
𝑇𝑇𝑆 is thermal time to terminal spikelet and assumed to be 𝑇𝑇𝐿

2
◦C-d.

𝑇𝑇𝐿 is the parameter representing cumulative thermal time until
the end of leaf expansion (i.e. end of vegetative growth), ◦C d.

𝑣𝑟𝑒𝑞 is the parameter representing vernalization requirement, ver-
nalization days.

𝑉 𝑅𝑁𝑡 is the state variable for cumulative vernalization at time 𝑡,
calculated below.

𝑟𝑣𝑇𝑇 is a constant (assumed to be 100) that specifies the rate of
transition from cumulative vernalization having an effect on plant
development to having no effect.

𝑟𝑣𝑟𝑒𝑞 is the rate that determines the shape of the relationship be-
tween cumulative vernalization and 𝑓𝑣𝑟𝑛 𝑡 and is calculated as

2𝑙𝑜𝑔(99)
𝑣𝑟𝑒𝑞

The equation for 𝑓𝑣𝑟𝑛 𝑡 was intended to provide an approximately
inear transition from nearly 0 to nearly 1 as 𝑉 𝑅𝑁𝑡 increased from
to 𝑣𝑟𝑒𝑞 (Fig. S2 of the Supplementary Materials). The equation
lso included a switch function to force 𝑓𝑣𝑟𝑛 𝑡 to be approximately 1
hen plant development progressed past the terminal spikelet stage
represented here by 𝑇𝑇𝑡 ≥ 𝑇𝑇𝑆) based on the fact that the effect
f vernalization on the rate of development is only active until that
tage (Slafer and Rawson, 1994). The use of sigmoid instead of piece-
ise linear forms for these relationships was for compatibility with
MC (see discussion in Section 2.5).
3

p

2.1.4. Cumulative vernalization
The rate of change of cumulative vernalization (i.e. vernalization

rate) was calculated as a sigmoidal function of daily average tempera-
ture with vernalization rate at nearly one when temperature was at or
below 4 ◦C and nearly zero when temperature was above 12 ◦C:
𝑑𝑉 𝑅𝑁𝑡

𝑑𝑡
= 1 − 1

1 + 𝑒
−𝑟𝑉 𝑅𝑁

(

𝑇 𝑎𝑣𝑔𝑡
𝑚𝑉 𝑅𝑁

−1
) (4)

where,
𝑇 𝑎𝑣𝑔𝑡 is as defined above.
𝑟𝑉 𝑅𝑁 = 5 is a fixed constant representing the rate that determines

the steepness of the sigmoid curve.
𝑚𝑉 𝑅𝑁 = 8 is a fixed constant representing the mid point in the

sigmoid curve, i.e. the mid point between 4 ◦C and 12 ◦C.
For the range of temperatures addressed in this study, this shape

approximates that of other modeling and experimental studies (Wang
and Zhao, 2013; Porter and Gawith, 1999). An illustration of this curve
s shown in S3 of the Supplementary Materials.

.1.5. Leaf area index
Leaf area index (LAI) determines the amount of light captured by

he crop canopy and, thereby, largely determines the potential growth
ate of the crop. The rate of change in LAI ( 𝑑𝐿𝐴𝐼𝑡𝑑𝑡 ) was calculated as
the difference between relative net leaf growth (𝐺𝐿𝐴𝐼𝑡) and senescence
(𝑆𝐿𝐴𝐼𝑡):
𝑑𝐿𝐴𝐼𝑡
𝑑𝑡

=𝐺𝐿𝐴𝐼𝑡 − 𝑆𝐿𝐴𝐼𝑡 (5)

𝐺𝐿𝐴𝐼𝑡 =𝑓𝑇𝑇 𝑡 ⋅ 𝐿𝐴𝐼𝑡 ⋅ 𝛼 ⋅ (𝐿𝐴𝐼𝑀𝐴𝑋 − 𝐿𝐴𝐼𝑡)⋅
(

1 − 1

1 + 𝑒−𝑟𝐿𝐴𝐼 (
𝐿𝐴𝐼𝑡

𝐿𝐴𝐼𝑀𝐴𝑋 −1)

)

⋅ (1 − 𝑓𝑔𝑓 ) ⋅ 𝑓𝑤𝑠 (6)

𝑆𝐿𝐴𝐼𝑡 =𝑓𝑇𝑇 𝑡 ⋅ 𝐿𝐴𝐼𝑡 ⋅ 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 ⋅ 𝑓𝑔𝑓 (7)

where,
𝑑𝐿𝐴𝐼𝑡
𝑑𝑡 is the rate of change of LAI at time 𝑡.

𝑓𝑇𝑇 𝑡 is as described in Eq. (2).
𝐿𝐴𝐼𝑡 is leaf area index at time 𝑡.
𝛼 is the parameter representing relative rate of LAI growth.
𝑓𝑤𝑠 is a factor representing the factor for water stress, calculated as

shown below in Eq. (9).
𝑟𝐿𝐴𝐼 is the rate that determines the abruptness of the switch to

restrict leaf area growth once LAI reaches 𝐿𝐴𝐼𝑀𝐴𝑋 (assumed to be
100).

𝐿𝐴𝐼𝑀𝐴𝑋 is the parameter representing maximum LAI.
𝑓𝑔𝑓 is the factor to indicate a switch to grain filling, calculated as

shown in Eq. (8).
𝑠𝑒𝑛𝑟𝑎𝑡𝑒 is the parameter representing the relative rate of senescence

per unit thermal time.
Rates of leaf growth and senescence both tend increase with tem-

perature, hence 𝑓𝑇𝑇 𝑡 is the first term in Eq. (5). Including 𝐿𝐴𝐼𝑡 as
a term in Eq. (5) is based on the fact that the potential rates of
growth and senescence both depend on current LAI. In the case of
growth, this is due to the fact that the photosynthate available for leaf
growth is largely dependent on light capture by the current canopy. For
senescence, the potential amount of leaf area that can be senesced on
a given day is limited by the current leaf area.

In the context of this model, 𝐺𝐿𝐴𝐼𝑡 was treated as a combined
process (gross growth minus senescence) until the transition to repro-
ductive growth (defined by 𝑓𝑔𝑓 ) after which senescence was assumed
to become the dominant process affecting the change in LAI. The use of
𝑓𝑔𝑓 here forced the effect of 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 on

𝑑𝐿𝐴𝐼𝑡
𝑑𝑡 to effectively zero prior

to 𝑇𝑇𝐿 and the effect of 𝐺𝐿𝐴𝐼𝑡 on
𝑑𝐿𝐴𝐼𝑡
𝑑𝑡 to effectively zero after 𝑇𝑇𝑡

xceeded 𝑇𝑇𝐿 + 400 ◦C-d (meant to represent the beginning of grain
illing; see discussion of Eq. (8) below) with a gradual shift from one
rocess to the other in between.
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Apart from temperature and current LAI effects, the net leaf growth
rate was primarily driven by the parameter for the relative rate of leaf
area expansion (𝛼) in units of (◦C-d)−1. This primary rate was then
imited by light interception and soil water availability. At full canopy
losure nearly all light will be intercepted at the top of the canopy
nd older leaves lower in the canopy will senesce due to insufficient
ight to sustain maintenance respiration (i.e. light intensity falls below
he light compensation point). In effect, this imposes a constraint on
he maximum LAI that can be sustained by the plant. To represent
his maximum LAI constraint two terms were added to Eq. (6): the
ifference between current LAI and maximum LAI (𝐿𝐴𝐼𝑀𝐴𝑋) and
sigmoidal switch which triggered as 𝐿𝐴𝐼𝑡 approached or slightly
xceeded the parameter 𝐿𝐴𝐼𝑀𝐴𝑋. Finally, because leaf area growth is
estricted in the presence of water stress, a water stress factor (𝑓𝑤𝑠) was
ntroduced to slow down leaf growth when soil moisture drops below
given threshold (see Eq. (9) below for the exact calculation).
Figures S5 and S6 in the Supplementary Materials illustrate the

effect of current LAI on 𝑑𝐿𝐴𝐼𝑡
𝑑𝑡 before anthesis (when 𝐺𝐿𝐴𝐼𝑡 dominated)

and after anthesis (when 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 dominated).

2.1.6. Grain filling factor
The grain filling factor (𝑓𝑔𝑓 ) was a phenology-related factor spec-

fied to regulate shifts from vegetative to reproductive growth within
he model. The equation was specified as a function of 𝑇𝑇𝑡 and the
arameter representing thermal time to end of leaf expansion (𝑇𝑇𝐿):

𝑔𝑓 = 1
1 + 𝑒−𝑟𝑔𝑓 (𝑇𝑇𝑡−(𝑇𝑇𝐿+200))

(8)

here,
𝑇𝑇𝑡 and 𝑇𝑇𝐿 are defined above.
𝑟𝑔𝑓 = 𝑙𝑜𝑔(99)

200 is the rate that controls the shape of the sigmoid curve.
The value for 𝑟𝑔𝑓 was specified such that Eq. (8) would approximate

a piecewise linear function that transitions from 0 at or below 𝑇𝑇𝐿 +
100 ◦C-d to 1 at 𝑇𝑇𝐿 + 300 ◦C-d. By assuming that 𝑇𝑇𝐿 represents
a developmental stage shortly after booting, 𝑇𝑇𝐿 + 100 ◦C-d was
ssumed to be equivalent to 50% heading, 𝑇𝑇𝐿 + 200 ◦C-d equivalent
to 50% anthesis and 𝑇𝑇𝐿 + 300 ◦C-d equivalent to end of grain
et (McMaster et al., 2019). An illustration of the curve is provided in
4 of the Supplementary Materials.

.1.7. Water stress factor
The water stress factor (𝑓𝑤𝑠) was calculated to introduce the effect

f water stress on LAI and biomass:

𝑤𝑠 =
1

1 + 𝑒𝑟𝑤𝑠⋅(
𝑃𝐴𝑊𝑡
𝐴𝑊𝐻𝐶 −𝑤𝑠𝑒𝑛)

(9)

where,
𝑤𝑠𝑒𝑛 is a parameter representing water stress sensitivity.
𝑃𝐴𝑊𝑡 is the plant available water at time 𝑡.
𝐴𝑊𝐻𝐶 is the available water holding capacity.
𝑟𝑤𝑠 is the rate that determines the shape of the sigmoid curve and

specified equal to −𝑙𝑜𝑔(99)
𝑤𝑠𝑒𝑛 to ensure that 𝑓𝑤𝑠 was equal to 0.01 at

𝑃𝐴𝑊𝑡 = 0 and 0.99 at 𝑃𝐴𝑊𝑡 = 𝑤𝑠𝑒𝑛.
The value of 𝑓𝑤𝑠 varied between 0 and 1 following a sigmoidal rela-

tionship with soil moisture, where 0 indicated severe water stress and
1 indicated no water stress. The shape of the curve was determined by
the parameter 𝑤𝑠𝑒𝑛 which is the inflection point at which 𝑓𝑤𝑠 is equal
to 0.5. Thus, the crop began to experience water stress as soil moisture
dropped below 2𝑤𝑠𝑒𝑛. The theory behind this formulation is that for
each given soil profile there is a threshold of soil moisture above which
water is freely available to the crop. However, as soil moisture drops
below this threshold the resistance of soil to the transport of water
to the root surface may become limiting resulting in the root system
being unable to supply atmospheric demand for transpiration. In such
a case, the plant will experience a water deficit, which will inhibit
transpiration, leaf area expansion, and plant growth overall.

S7 of the Supplementary Materials shows the curve for 𝑓𝑤𝑠 with
a value of 0.175 for 𝑤𝑠𝑒𝑛 and 150 mm for 𝐴𝑊𝐻𝐶. For instance, the
value of 0.175 for 𝑤𝑠𝑒𝑛 indicates that the crop starts experiencing water
stress when at 35% (2 × 0.175 = 0.35) of AWHC.
4

2.1.8. Plant available water content
Plant available water content (𝑃𝐴𝑊 ) is important for crop growth.

nder exposure to inadequate 𝑃𝐴𝑊 stomata close and thereby shut
own crop evapotranspiration, photosynthesis and growth. To repre-
ent the water balance for 𝑃𝐴𝑊 , we propose a single layer lumped
odel which is relatively simple in terms of model formulation and
mplementation. The rate of change in 𝑃𝐴𝑊𝑡 was calculated as the
ifference between infiltration and crop evapotranspiration. Infiltration
as calculated as a function of precipitation, irrigation, and runoff.
rop evapotranspiration was adjusted to account for water stress.
𝑑𝑃𝐴𝑊𝑡

𝑑𝑡
= 𝑃𝑡 + 𝐼𝑡 − 𝑅𝑡 − 𝐸𝑇𝑐 𝑡 ⋅ 𝑓𝑤𝑠 (10)

where,
𝑑𝑃𝐴𝑊𝑡

𝑑𝑡 is the rate of change of plant available soil water content.
𝑃𝑡 is the input variable representing observed precipitation.
𝐼𝑡 is the input variable representing irrigation.
𝑅𝑡 is runoff at time 𝑡 calculated following the runoff curve number

method. The runoff calculations are shown in Eq. S1 to S9 in the
Supplementary Materials and follow the procedures in United States
Department of Agriculture, Soil Conservation Service, Engineering Di-
vision (1986) and Williams (1991).

𝑃𝐴𝑊𝑡, and 𝑓𝑤𝑠 are as defined above.
𝐸𝑇𝑐 𝑡 is the crop evapotranspiration at time 𝑡, calculated as shown

below.

2.1.9. Crop evapotranspiration (𝐸𝑇𝑐)

𝐸𝑇𝑐 𝑡 = 𝐸𝑇0 𝑡 ⋅𝐾𝑐 𝑡 (11)

where,
𝐸𝑇0 𝑡 is reference evapotranspiration at time 𝑡, mm day−1, calcu-

lated following the procedures in Allen et al. (1998) and shown in
Eq. S10 to S22 in the Supplementary Materials.

𝐾𝑐 𝑡 is the crop coefficient at time 𝑡, calculated below.

2.1.10. Crop coefficient (𝐾𝑐)
The crop coefficient curve described here was constructed to mimic

the piecewise linear approach described in Allen et al. (1998):

𝐾𝑐 𝑡 =𝐾𝑐 𝑚𝑖𝑛 𝑡 +
(

1 − 𝑒−𝐾 𝐿𝐴𝐼𝑡
) (

𝐾𝑐 𝑚𝑖𝑑 −𝐾𝑐 𝑚𝑖𝑛 𝑡
)

(12)

𝐾𝑐 𝑚𝑖𝑛 𝑡 =𝐾𝑐 𝑖𝑛𝑖 −
𝐾𝑐 𝑖𝑛𝑖 −𝐾𝑐 𝑒𝑛𝑑

𝑒−𝑟𝐾𝑐

(

𝑇𝑇𝑡
𝑇 𝑇𝐴−1

)

+ 1
(13)

𝐾𝑐 𝑖𝑛𝑖, 𝐾𝑐 𝑚𝑖𝑑 , and 𝐾𝑐 𝑒𝑛𝑑 are the crop coefficients at initial, mid-
season, and end-season stages and specified as parameters estimated
by the model.

𝑇𝑇𝐴 is thermal time to anthesis and assumed to be 𝑇𝑇𝐿 plus
200 ◦C-d.

𝑟𝐾𝑐 is the rate that determines the shape of the 𝐾𝑐 curve (assumed
to be 100 to create an abrupt transition)

In Eq. (12), fractional light interception (as calculated based on
LAI and 𝐾 previously shown in Eq. (14)) is used as a proxy for
canopy development/decline with low interception representative of
𝐾𝑐 𝑡 values near the minimum value (𝐾𝑐 𝑚𝑖𝑛 𝑡) and full interception
(near 1) representative of the mid-season (maximum 𝐾𝑐) stage. The
𝐾𝑐 𝑚𝑖𝑛 𝑡 term itself varied across the season with rapid transition from
𝐾𝑐 𝑖𝑛𝑖 when 𝑇𝑇𝑡 < 𝑇𝑇𝐴 to 𝐾𝑐 𝑒𝑛𝑑 when 𝑇𝑇𝑡 > 𝑇𝑇𝐴. The overall
effect was that the increase in light interception as a result of leaf area
growth early in the season resulted in the transition from 𝐾𝑐 𝑖𝑛𝑖 to 𝐾𝑐 𝑚𝑖𝑑
during what (Allen et al., 1998) termed the crop development stage,
and the subsequent decline in interception (due to leaf senescence)
resulted in the transition from 𝐾𝑐 𝑚𝑖𝑑 to 𝐾𝑐 𝑒𝑛𝑑 during what (Allen et al.,
1998) termed the late season stage. Illustration of 𝐾𝑐 as a function
of LAI before and after anthesis is provided in S9 and S10 of the

Supplementary Materials.
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2.1.11. Biomass
Biomass at a given point in time is the cumulative prior growth of

the crop across the growing season. In this model the rate of change in
biomass (i.e. crop growth rate) was calculated as a function of potential
RUE, incident solar radiation (SRAD), fractional light interception,
temperature and water stress according to the following equation:
𝑑𝐵𝑀𝑡
𝑑𝑡

= 𝑅𝑈𝐸𝑝 ⋅ 𝑆𝑅𝐴𝐷𝑡 ⋅ (1 − 𝑒−𝐾⋅𝐿𝐴𝐼𝑡 ) ⋅ 𝑓𝑇𝑇 𝑡 ⋅ 𝑓𝑤𝑠 (14)

here,
𝑑𝐵𝑀𝑡
𝑑𝑡 is the rate of change of biomass at time 𝑡.

𝑓𝑤𝑠, 𝑓𝑇𝑇 𝑡, and 𝐿𝐴𝐼𝑡 are defined above.
𝐾 is the parameter representing light extinction coefficient.
𝑅𝑈𝐸𝑝 is the parameter representing potential radiation use effi-

ciency in units of g MJ−1 (◦C-d)−1
𝑆𝑅𝐴𝐷𝑡 is observed solar radiation at time 𝑡.
The amount of growth at a given time is limited by the amount of

light intercepted by the crop canopy, which is largely determined by
the LAI. Thus, we include the term 1 − 𝑒−𝐾⋅𝐿𝐴𝐼𝑡 in Eq. (14) (i.e. the
Beer–Lambert equation; Monsi and Saeki, 2005) to limit growth to
the amount of light intercepted by the canopy. The 𝑅𝑈𝐸𝑝 parameter
represents the combined efficiency of crop photosynthesis and growth
and maintenance respiration with which a given crop can produce
biomass per unit of intercepted solar radiation per ◦C-d. The product
of 𝑅𝑈𝐸𝑝, 𝑆𝑅𝐴𝐷𝑡, and fractional light interception can be considered
the potential growth rate (◦C-d)−1. By further multiplying this value
y 𝑓𝑇𝑇 𝑡 we achieved the temperature-adjusted biomass growth rate.
The multiplication by 𝑓𝑤𝑠 imposed a further soil moisture constraint on
iomass growth following the reasoning that if water stress is sufficient
o reduce transpiration then photosynthesis (and subsequent growth)
ould also be correspondingly reduced. S8 of the Supplementary Ma-
erials shows how biomass changes with respect to LAI when everything
lse is held constant.

.1.12. Grain weight
The grain growth rate is the dominant form of growth during late

eproductive growth (i.e. grain-filling period). The majority of biomass
ncrease during this period is allocated to the grain. As such, the rate of
hange of grain weight was calculated as the product of biomass growth
ate at time 𝑡 and 𝑓𝑔𝑓 :

𝑑𝑌 𝐿𝐷𝑡
𝑑𝑡

=
𝑑𝐵𝑀𝑡
𝑑𝑡

⋅ 𝑓𝑔𝑓 (15)

where,
𝑑𝑌 𝐿𝐷𝑡

𝑑𝑡 is the rate of change of grain yield at time 𝑡.
𝑑𝐵𝑀𝑡
𝑑𝑡 and 𝑓𝑔𝑓 are defined above.

The assumption of this approach is that all grain weight is directly
erived from photosynthesis during the grain-filling period. While this
oes not represent the full biological reality, it was intended as a
irst-order approximation suitable for the present application.

.1.13. Full ODE model
Fig. 1 provides a Forrester diagram that illustrates the full ODE
odel. From this diagram it is clear that temperature is a major
river of the model. The 𝑓𝑇𝑇 𝑡 factor, which is calculated from 𝑇 𝑎𝑣𝑔𝑡,
directly or indirectly affects terms in the rate of change of four of the
six state variables (𝑇𝑇𝑡, 𝐿𝐴𝐼𝑡, 𝐵𝑀𝑡 and 𝑌 𝐿𝐷𝑡). 𝑉 𝑅𝑁𝑡 also depends
on temperature and affects the rate of change of 𝑇𝑇𝑡 through 𝑓𝑣𝑟𝑛 𝑡,
but both of these state variables are otherwise independent of other
parts of the model. 𝑇𝑇𝑡 affects the rest of the model through 𝑓𝑔𝑓 ,
which marks the transition from vegetative to reproductive growth and
thereby ceases leaf growth (𝐺𝐿𝐴𝐼𝑡), initiates leaf senescence (𝑆𝐿𝐴𝐼𝑡) and
allocation of biomass toward grain yield ( 𝑑𝑌 𝐿𝐷𝑡

𝑑𝑡 ). Temperature also has
an indirect effect on 𝑃𝐴𝑊𝑡 through the effect of 𝑇𝑇𝑡 on 𝐸𝑇𝑐 𝑡. The effect
of water stress is transferred through the 𝑓𝑤𝑠 factor to 𝐺𝐿𝐴𝐼𝑡, which
creates a balancing loop in which 𝑓𝑤𝑠 reduces 𝐺𝐿𝐴𝐼𝑡, which restricts
𝐿𝐴𝐼 , which then restricts 𝐸𝑇 . This 𝑓 factor directly affects 𝑑𝐵𝑀𝑡 ,
5

𝑡 𝑐 𝑡 𝑤𝑠 𝑑𝑡
but also has an indirect effect on 𝑑𝐵𝑀𝑡
𝑑𝑡 by restricting light interception

through the effect of 𝑓𝑤𝑠 on 𝐿𝐴𝐼𝑡. Both of these effects on
𝑑𝐵𝑀𝑡
𝑑𝑡 have

potential to affect 𝑑𝑌 𝐿𝐷𝑡
𝑑𝑡 if they occur during the reproductive phase of

growth.

2.2. Euler integration

At each time step, the value of the state variables were updated for
each 𝑘th environment using Euler integration according to:

𝐒𝑘 𝑡+1 = 𝐒𝑘 𝑡 +
𝑑𝐒𝑘 𝑡
𝑑𝑡

𝛥𝑡 (16)

where, 𝐒𝑘 𝑡 = (𝑉 𝑅𝑁𝑘 𝑡, 𝑇𝑇𝑘 𝑡, 𝐿𝐴𝐼𝑘 𝑡, 𝐵𝑀𝑘 𝑡, 𝑌 𝐿𝐷𝑘 𝑡, 𝑃𝐴𝑊𝑘 𝑡) are
the observed state variables for environment 𝑘 at time 𝑡, 𝐒𝑘 𝑡+1 =
𝑉 𝑅𝑁𝑘 𝑡+1, 𝑇𝑇𝑘 𝑡+1, 𝐿𝐴𝐼𝑘 𝑡+1, 𝐵𝑀𝑘 𝑡+1, 𝑌 𝐿𝐷𝑘 𝑡+1, 𝑃𝐴𝑊𝑘 𝑡+1) at time
𝑡 + 1, and 𝛥𝑡 is the fixed time step of one day.

The output of the ODE model is then represented by:

𝛽0𝑖𝑘𝑡 = 𝑓 (𝐈𝑘,𝝓,𝐒0) (17)

where, 𝑓 represents the numerical integration of the ODE system from
time 0 to time 𝑡, 𝐈𝑘 is a matrix of input variables, 𝝓 is a vector of the
ODE model parameters as described above, and 𝐒0 is the vector of state
variables at time 0.

2.3. Integration of the ODE model into a Bayesian hierarchical framework

The ODE model was integrated into a Bayesian hierarchical frame-
work as follows for LAI, biomass, and PAW:

𝑌𝑖𝑗𝑘𝑡 = 𝛽0𝑖𝑘𝑡 + 𝑃 𝑙𝑜𝑡[𝐸𝑛𝑣]𝑗[𝑘] + 𝜖 (18)

where,
𝑌𝑖𝑗𝑘𝑡 is the observed value of the 𝑖th response variable (i = 1 for LAI,

i = 2 for biomass, and i = 3 for PAW), corresponding to 𝑗th plot in the
𝑘th environment at time 𝑡. To recall, an environment is defined as a
location-year-treatment combination.

𝛽0𝑖𝑘𝑡 is the predicted value of the 𝑖th response variable from the ODE
odel for environment 𝑘 and time 𝑡.
𝑃 𝑙𝑜𝑡[𝐸𝑛𝑣]𝑖𝑗[𝑘] is the differential effect of 𝑗th plot within an en-

vironment on the 𝑖th response variable, assumed 𝑃 𝑙𝑜𝑡[𝐸𝑛𝑣]𝑖𝑗[𝑘] ∼
𝑁𝐼𝐼𝐷(0, 𝜎2𝑃 𝑙𝑜𝑡 𝑖).

𝜖 is residual error, assumed 𝜖 ∼ 𝑁𝐼𝐼𝐷(𝜎2𝑒 𝑖).
For grain yield, the plot effect was excluded as it contains informa-

tion at only the final time point. Thus, the equation for grain yield was:

𝑌𝑖𝑗𝑘𝑡 = 𝛽0𝑖𝑘𝑡 + 𝜖 (19)

where, 𝑌𝑖𝑗𝑘𝑡, 𝜖 are as defined above with i = 4 for grain yield, and 𝛽0𝑖𝑘𝑡
is the state variable for grain weight (i = 4) for environment 𝑘 at 𝑡 =
time of harvest.

The Bayesian approach allowed us to quantify uncertainty around
the parameters for both the dynamic model and the hierarchical sta-
tistical model. It also allowed us to incorporate pre-existing knowledge
about the parameters into the model in the form of prior specification,
which is especially useful in the case of dynamic model parameters
because of their biological meaning.

2.4. Prior specification

The prior distributions for the ODE model parameters except for
𝑠𝑒𝑛𝑟𝑎𝑡𝑒 were estimated based on literature and were specified as trun-
cated normals in the form of 𝑁(𝜇, 𝜎2). These parameters were specified
to have a lower bound of zero and no upper bound.

𝛼 ∼ 𝑁(0.016, 0.0072) truncated at zero (Rodriguez et al., 1998).
𝐾 ∼ 𝑁(0.6, 0.12) truncated at zero (Bechini et al., 2006; Muurinen

and Peltonen-Sainio, 2006).
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Fig. 1. Forrester diagram of the full ordinary differential equations model including state variables for thermal time (𝑇𝑇𝑡), cumulative vernalization (𝑉 𝑅𝑁𝑡), leaf area index (𝐿𝐴𝐼𝑡),
rop biomass (𝐵𝑀𝑡), grain yield (𝑌 𝐿𝐷𝑡) and plant available water content (𝑃𝐴𝑊𝑡). State variables are represented as rectangles. Parameters and input data are underlined. Flow
f material is represented by solid arrows. Flow of information is indicated by dashed arrows. Terms related to the rate of change of state variables are represented by the valve
hape. Time-dependent intermediate factors that are calculated from a combination of state variables, parameters and input data are represented as circles. Further detail on the
efinition of parameters, input data and equations are provided in Table 1 and Sections 2.1.1 to 2.1.12.
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𝑇𝑇𝐿 ∼ 𝑁(950, 1002) truncated at zero (McMaster et al., 2019;
echini et al., 2006).
𝑅𝑈𝐸𝑝 ∼ 𝑁(0.07, 0.01252) truncated at zero (Bechini et al., 2006;
uurinen and Peltonen-Sainio, 2006). The units for 𝑅𝑈𝐸𝑝 were changed
rom g𝑀𝐽−1 reported in literature to g MJ−1 ◦C−1 assuming an optimal
emperature of 20 ◦C.

𝑣𝑟𝑒𝑞 ∼ 𝑁(42, 72) truncated at zero (Li et al., 2013; Crofts, 1989).
𝐿𝐴𝐼𝑀𝐴𝑋 ∼ 𝑁(5, 22) truncated at zero (Wagle et al., 2021; Nielsen

t al., 2012).
The prior for 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 was determined using a heuristic procedure.

t was assumed that with a peak LAI at flowering of 5 and 30 ◦C daily
verage temperature, it would take approximately 35 days to reach full
enescence. Values of 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 were tested heuristically to determine a
ange of values that resulted in plausible senescence durations. With a
ate of senescence of 0.005, it took approximately 35 days to reach an
AI near zero from five, a 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 of 0.002 took approximately 60 days,
nd a 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 of 0.008 took approximately 20 days. Thus, the prior 𝜇
as specified as 0.005 with a sigma of 0.001, thereby providing support
n the prior for a range of duration between 20 and 60 days within three
tandard deviations of prior 𝜇:

𝑠𝑒𝑛𝑟𝑎𝑡𝑒 ∼ 𝑁(0.005, 0.0012) truncated at zero.
The prior means for the parameters pertaining to the water balance

omponent (𝐾𝑐 𝑖𝑛𝑖, 𝐾𝑐 𝑚𝑖𝑑 , 𝐾𝑐 𝑒𝑛𝑑 , and 𝑤𝑠𝑒𝑛) were also specified based
n literature. The standard deviations were chosen such that the prior
llows for all practically possible parameter values without being too
ague. The priors were specified as:
𝐾𝑐 𝑖𝑛𝑖 ∼ 𝑁(0.7, 0.22) truncated at zero (Allen et al., 1998).
𝐾𝑐 𝑚𝑖𝑑 ∼ 𝑁(1.15, 0.12) truncated at 𝐾𝑐 𝑖𝑛𝑖 (Allen et al., 1998).
𝐾𝑐 𝑒𝑛𝑑 ∼ 𝑁(0.25, 0.052) truncated at zero with upper bound 𝐾𝑐 𝑚𝑖𝑑

(Allen et al., 1998).
𝑤𝑠𝑒𝑛 ∼ 𝑁(0.175, 0.0252) truncated at zero with upper bound 1 (Amir

nd Sinclair, 1991).
The priors for the hyperparameters pertaining to the hierarchical

omponent of the model were specified following the prior predictive
rocedure described in Schad et al. (2019):
√

𝜎2𝑃 𝑙𝑜𝑡 𝐿𝐴𝐼 ∼ 𝑁(0, 0.12) truncated at zero.
√

𝜎2 ∼ 𝑁(0, 0.12) truncated at zero.
6

𝑃 𝑙𝑜𝑡 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
√

𝜎2𝑃 𝑙𝑜𝑡 𝑃𝐴𝑊 ∼ 𝑁(0, 0.12) truncated at zero.
√

𝜎2𝑒 𝐿𝐴𝐼 ∼ 𝑁(0, 12) truncated at zero.
√

𝜎2𝑒 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ∼ 𝑁(0, 1002) truncated at zero.
√

𝜎2𝑒 𝑃𝐴𝑊 ∼ 𝑁(0, 502) truncated at zero.
√

𝜎2𝑒 𝑦𝑖𝑒𝑙𝑑 ∼ 𝑁(0, 302) truncated at zero.

2.5. Model implementation and sampling

Two separate versions of the model were implemented, one with
water balance (+WB) and another without water balance (-WB) to
assess the contribution of the water balance component on the predic-
tive ability of the model. The +WB model included Eq. (10) and (11),
hereas these equations were excluded in the -WB model, and 𝑓𝑤𝑠 was
ixed at 1 indicating no water stress.
The data used for parameter estimation were obtained from a

revious study by Lollato and Edwards (2015). It includes observed
ata at multiple time points throughout a growing season for LAI,
iomass, PAW, and yield from multiple environments. Weather data for
verage daily temperature, precipitation, solar radiation, wind speed
t 2 m, relative humidity, and atmospheric pressure were obtained
rom Oklahoma Mesonet stations (McPherson et al., 2007). A detailed
escription of the data is presented in the supplementary materials
nd Lollato and Edwards (2015).
Samples were drawn from the posterior distribution of interest

using a dynamic HMC sampler as implemented within Stan (Stan
Development Team, 2020b). Dynamic HMC is a type of Markov Chain
Monte Carlo (MCMC) algorithm that utilizes gradient-based sampling
of the typical set of the joint posterior density (Betancourt, 2017). This
gradient-based approach has been shown to efficiently sample high-
dimensional parameter spaces with complex geometries (Betancourt
and Girolami, 2015) similar to the complex interactions between the
parameters of a dynamic crop simulation model. Because HMC utilizes
the gradient for sampling, all model components must be continuously
differentiable so that the gradient can be calculated at any point in the

parameter space. Although this imposes a constraint on model forms
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that can be used, the gains in sampling efficiency were considered to
be worth the inconvenience of adopting HMC-compatible functional
forms. Further discussion regarding HMC and its application in crop
modeling can be found in Poudel et al. (2022).

The models were implemented in Stan version 2.25.0 (Stan Devel-
pment Team, 2020b) with the command-line interface to the Stan
odeling language, CmdStan version 2.25.0 (Stan Development Team,
020a). Four MCMC chains were run with 20,000 iterations including
0% burn-in, resulting in a total of 40,000 saved iterations. Sampling
as performed at the Oklahoma State University High Performance
omputing Center (OSU-HPCC) using the Pete supercomputer and post-
ampling analysis was performed on a Linux virtual machine hosted
n The Interactive Graphical Environment for Research (TIGER) re-
earch cloud at OSU-HPCC. Two common convergence diagnostics,
raceplots and R-hat values, were used to monitor chain convergence.
he effective sample size (ESS) for the ODE model parameters and the
ierarchical model hyperparameters were greater than 6,000 in both
odels.
For cleaning and organizing the data, R package tidyverse was

sed (Wickham et al., 2019; Wickham, 2017). The posterior samples
were processed with the R statistical software environment (R Core
Team, 2020). The highest density intervals (HDIs) of the posterior
distributions of the parameters were computed using the HDInter-
val package (Meredith and Kruschke, 2018). The tables were gen-
erated using the R packages knitr (Xie, 2020) and kableExtra (Zhu,
2019). The figures were created using the ggplot2 (Wickham, 2016),
gridExtra (Auguie, 2017) packages in R.

2.6. Model predictive performance

A cross-validated dataset was generated with leave-one-group out
cross-validation where each environment was considered a group,
hence there were a total of ten groups. For each iteration of the cross-
validation, one group was held out and parameters were estimated
based on the remaining nine groups. The parameter estimates were then
used to predict the data from the withheld group. The predictions were
used to calculate three statistical metrics:

2.6.1. Relative Root Mean Square Error (𝑟𝑅𝑀𝑆𝐸):

𝑟𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸𝑠

𝑦̄
(20)

𝑅𝑀𝑆𝐸𝑠 =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1
(𝑦𝑛 − 𝑦̂𝑠𝑛)2 (21)

here, 𝑁 = Total number of data points, 𝑦𝑛 is the 𝑛th observation
n=1,2,. . . ,N), 𝑦̄ is the average of the observed data points, and 𝑦̂𝑠𝑛 is the
redicted value for the 𝑛th observation obtained from the 𝑠th MCMC
teration. Models with smaller values of RMSE are preferable.

.6.2. Willmott agreement index (d; Willmott, 1981):

𝑠 = 1 −
∑𝑁

𝑛=1(𝑦𝑛 − 𝑦̂𝑠𝑛)
2

∑𝑁
𝑛=1(|𝑦̂𝑠𝑛 − 𝑦̄| + |𝑦𝑛 − 𝑦̄|)2

(22)

where, 𝑁 , 𝑦𝑛, and 𝑦̂𝑠𝑛, and 𝑦̄ are as described above. This statistic ranges
between 0 to 1 with values closer to 1 indicating good model fit.

2.6.3. Nash–Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970):

𝑁𝑆𝐸𝑠 = 1 −
∑𝑁

𝑛=1(𝑦𝑛 − 𝑦̂𝑠𝑛)
2

∑𝑁
𝑛=1(𝑦𝑛 − 𝑦̄)2

(23)

here, 𝑁 , 𝑦𝑛, 𝑦̂𝑠𝑛, and 𝑦̄ are as described above. The values of NSE
an range from −∞ to 1 and values closer to 1 indicate a better-fitting
odel.
7

This process was repeated for all groups one at a time and for
oth versions of the model i.e. with and without the water balance
omponent. Model comparison was done to identify how water balance
nfluences estimations and predictions of different state variables.

. Results

.1. Model comparison for LAI, biomass, PAW, and yield predictions

To quantify the differences between the two models, Fig. 2 shows
he density plots of the prediction statistics, 𝑟𝑅𝑀𝑆𝐸, 𝑑, and𝑁𝑆𝐸 com-
uted under the 10-fold cross validation. Fig. 2 shows that adding the
ater balance component had a larger impact on grain yield compared
o LAI or biomass as indicated by differences in the prediction statistics
etween the models. The posterior median values of 𝑟𝑅𝑀𝑆𝐸, 𝑑, and
𝑆𝐸 for the +WB model were 0.67, 0.89, and 0.62 for LAI, 0.32, 0.98,
nd 0.92 for biomass, 0.52, 0.75, and −0.03 for PAW, and 0.23, 0.9,
nd 0.4 for grain yield. The +WB model version had higher values for
𝑆𝐸 and 𝑑 and lower values for 𝑟𝑅𝑀𝑆𝐸 for all variables. For example,
edian 𝑁𝑆𝐸 increased from 0.57 to 0.62 for LAI, 0.74 to 0.92 for
iomass, and −0.58 to 0.40 for grain yield.
Fig. 3 shows median values for cross-validation predicted grain

ield from both models along with observed yield data. The model
redicted grain yields for rainfed environments differed substantially
rom observed values. The over-prediction of yield was most evident
n cases of rainfed environments, particularly in 2014 (Fig. 3) when
he crop experienced severe water deficit stress. Unlike biomass, the
ifference between estimated and predicted yields were negligible for
ield. Furthermore, the yield values predicted by the -WB model were
lustered between 500 to 600 g m−2 for all environments (Fig. 3).
Contrastingly, median yields predicted by the +WB model ranged be-
tween 100 and 800 g m−2 depending on environment. Taken together,
the resulting trend across environments was qualitatively more similar
to the observed data (i.e. correspondence between low versus high
yielding environments) for the +WB model than the -WB model.

3.2. Joint posterior distribution of ODE model parameters

Fig. 4 shows the correlation between the ODE model parameters
from both models. Varying degrees of correlations were observed be-
tween the posterior samples of the ODE model parameters. Specifically,
correlations were observed between 𝛼 and 𝐿𝐴𝐼𝑀𝐴𝑋 (𝑟̂ = −0.96), 𝑇𝑇𝐿
and 𝑣𝑟𝑒𝑞 (𝑟̂ = −0.8), 𝑅𝑈𝐸𝑝 and 𝐾 (𝑟̂ = −0.66), and 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 and 𝐾
(𝑟̂ = 0.52) in the +WB model. Similar correlation pattern followed
among these parameters in the -WB model. In addition, correlations
were observed between 𝑅𝑈𝐸𝑝 and 𝐾𝑐 𝑚𝑖𝑑 (𝑟̂ = 0.83), 𝐾 and 𝐾𝑐 𝑚𝑖𝑑 (𝑟̂
= 0.65), 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 and 𝐾𝑐 𝑚𝑖𝑑 (𝑟̂ = 0.53), 𝐾𝑐 𝑚𝑖𝑑 and 𝑤𝑠𝑒𝑛 (𝑟̂ = 0.50), and
𝑈𝐸𝑝 and 𝑤𝑠𝑒𝑛 (𝑟̂ = 0.51) in the +WB model. The biggest differences
n the posterior densities of the two models were observed in 𝑅𝑈𝐸𝑝, 𝐾
nd 𝑠𝑒𝑛𝑟𝑎𝑡𝑒. The parameters 𝑅𝑈𝐸𝑝 and 𝐾 were estimated to be higher
hereas 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 was lower for the model including water balance
ompared to the -WB model.

.3. Crop growth parameters from the ODE component of the model

Table 2 shows posterior HDI and median for the crop growth
arameters from the +WB model. The HDI for 𝛼 ranged from 0.0010
o 0.0012 with a median of 0.0011, which indicates that the rate of
AI increase is 0.11% per ◦C-d before 𝑇𝑇𝐿. For a 20 ◦C-d, that would
mount to 2.2% of LAI increase per day. Likewise, the posterior median
or the canopy light extinction coefficient (𝐾) was estimated to be 0.46.
he model estimated that it takes around 737 ◦C-d to reach end of
eaf expansion as indicated by the median for 𝑇𝑇𝐿, and the average
ernalization requirement as indicated by the posterior median for 𝑣𝑟𝑒𝑞
as 42.8 days. The parameter 𝑠𝑒𝑛𝑟𝑎𝑡𝑒 had a median of 0.0053, which
ndicates that it takes 36 days for the canopy to reach from maximum
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Fig. 2. Predictive performance of models including and excluding the water balance component for leaf area index (LAI), biomass, plant available water (PAW), and grain yield
assessed with three statistical metrics: relative root mean squared error (rRMSE), Willmott agreement index (d), and Nash–Sutcliffe efficiency (NSE).
f

Table 2
Posterior HDI and median for the ODE model parameters related to crop growth
obtained from the model with water balance.
Parameter Description HDI Median

𝛼 Relative rate of
LAI increase before
the end of leaf
expansion

(0.0010, 0.0012) 0.0011

𝐾 Light interception
coefficient

(0.38, 0.55) 0.46

𝑇𝑇𝐿 Thermal time to
the end of leaf
expansion

(693, 784) 737

𝑠𝑒𝑛𝑟𝑎𝑡𝑒 Rate of senescence (0.0049, 0.0057) 0.0053
𝑅𝑈𝐸𝑝 Potential radiation

use efficiency
(0.100, 0.117) 0.109

𝑣𝑟𝑒𝑞 Vernalization
requirement

(28.8, 56.7) 42.8

𝐿𝐴𝐼𝑀𝐴𝑋 Maximum leaf area
index

(6.06, 7.24) 6.66

leaf area to an LAI of less than 0.1 at a daily average temperature of
30 ◦C. Radiation use efficiency is more commonly expressed in units
of g MJ−1, which could be obtained by multiplying 𝑅𝑈𝐸𝑝 by 20 ◦C-d
hich would result in potential RUE (g MJ−1) with median of 2.17 and
DI of (1.99, 2.34).
Fig. 5 shows the smoothed densities of posterior and prior distri-

ution samples of the crop growth parameters from the +WB model.
8

he parameters 𝛼, 𝐾, and 𝑇𝑇𝐿 shifted lower than specified prior, o
whereas 𝑅𝑈𝐸𝑝 shifted higher, which indicates that the data were
informative in estimating the parameters. Likewise, the densities of
posterior distributions were considerably narrowed compared to that
of prior distributions for all parameters except 𝑣𝑟𝑒𝑞 showing that the
data helped reduce uncertainties around those parameters.

3.4. Water balance parameters from the ODE component of the model

Fig. 6 shows the smoothed densities of samples from prior and
posterior distributions for the water balance parameters. The poste-
rior density curve for 𝐾𝑐 𝑖𝑛𝑖 shifted much lower than specified prior,
whereas the posterior density curves for 𝐾𝑐 𝑚𝑖𝑑 , 𝐾𝑐 𝑒𝑛𝑑 , and 𝑤𝑠𝑒𝑛 shifted
higher compared to their prior density curves. The posterior HDI and
median value for 𝐾𝑐 𝑖𝑛𝑖, 𝐾𝑐 𝑚𝑖𝑑 , 𝐾𝑐 𝑒𝑛𝑑 , and 𝑤𝑠𝑒𝑛 were (0.000004, 0.08)
and 0.03, (1.27, 1.47) and 1.37, (0.23, 0.42) and 0.32, and (0.21, 0.25)
and 0.26 respectively.

3.5. Parameters from the hierarchical component of the model

As we have established that the +WB model had better goodness-
of-fit and predictive ability, this and the following sections will present
results from the +WB model for making inferences.

Table 3 shows the posterior HDI and median for the plot effect
within an environment (𝑃 𝑙𝑜𝑡[𝐸𝑛𝑣]𝑖𝑗[𝑘]) and the residual variance

√

𝜎2𝑒
or LAI, biomass, and PAW. The residual variance indicates the amount
f variance unexplained by the model. The plot level effects are the
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Fig. 3. Cross-validated median estimations and predictions of grain yield comparing models with and without a water balance component to the mean observed data points for
inter wheat grown in Oklahoma at Chickasha (C), Stillwater (S), and Perkins (P) across the 2012–2013 (13) and 2013–2014 (14) seasons under irrigated (I) and rainfed (R)
onditions. Data points are uniquely identified by a four-digit code LYYM, where L represents the location (C, S, or P), YY is the two-digit year (13 or 14) and M represents
anagement (I or R). Gray arrows show the shift in predictions that result from adding the water balance component.
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Table 3
Posterior HDI and median for the parameters from the hierarchical component in the
model.
Parameter HDI Median

𝑃 𝑙𝑜𝑡[𝐸𝑛𝑣]𝑖𝑗[𝑘] for LAI (−0.51, 0.47) 0.010
𝑃 𝑙𝑜𝑡[𝐸𝑛𝑣]𝑖𝑗[𝑘] for biomass (−0.14, 0.18) 0.002
𝑃 𝑙𝑜𝑡[𝐸𝑛𝑣]𝑖𝑗[𝑘] for PAW (−0.41, 0.41) −0.150
√

𝜎2
𝑒 𝐿𝐴𝐼 (0.85, 0.98) 0.920

√

𝜎2
𝑒 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (152, 176) 164.000

√

𝜎2
𝑒 𝑠𝑤 (24.86, 28.63) 26.680

√

𝜎2
𝑒 𝑦𝑖𝑒𝑙𝑑 (86.90, 125.33) 105.000

differential effects of plots within an environment. As mentioned pre-
viously, the plot effects were defined as a fraction of the ODE-model-
simulated value for each variable. Thus, the plot effects with median
closer to zero indicate an absence of model bias whereas the plot effects
deviating from zero indicate a model bias. The posterior median for
the plot effects were close to zero for LAI and biomass, whereas we
observed a negative bias for PAW with a posterior median of −0.15.

. Discussion

In this study, we utilized an ODE crop growth model coupled with
simple water balance model to estimate certain wheat growth and
ater balance parameters in winter wheat.
9

4.1. Model comparison for LAI, biomass, PAW, and yield predictions

Comparison between the models with (+WB) and without (-WB)
the water balance component showed mixed results depending on the
variable being considered (Fig. 2). The greatest improvement in model
performance (from -WB to +WB) was seen for yield. Unexpectedly,
the results for LAI showed very little difference in model performance
between the two versions. With the +WB model, biomass showed the
best model performance, while PAW ranked worst, when comparing
across all three statistical metrics (𝑟𝑅𝑀𝑆𝐸, 𝑑, 𝑁𝑆𝐸). For all variables
𝑁𝑆𝐸 indicated poorer performance than 𝑑, most notably in the case
of PAW. The 𝑁𝑆𝐸 statistic is a comparison against the overall mean
of observations and is, thus, especially sensitive to model bias. The 𝑑
tatistic is better tuned to assess the extent to which a model captures
he overall dynamics of observed data (e.g. the timing of increasing
s. decreasing trends). These results suggest that the +WB model
ersion is representing the overall dynamics of the system well, even if
ome overall bias is present.
Despite the overall similar performance for LAI and biomass, the
odel performance for grain yield was drastically different for +WB
nd -WB (Figs. 2 and 3). The finding that grain yield predictions
were significantly improved by adding soil water balance aligns with
previous research indicating the importance of water availability for
wheat yield performance in this region (Berhe et al., 2017; Lollato et al.,
2017, 2020; Sciarresi et al., 2019). However, the discrepancy between
small improvements in LAI and biomass predictions and the substantial
improvement in yield is noteworthy.

The grain yield predictions by the -WB model did not capture the
general trend in grain yield across environments as shown by the lack
of conformity with the one to one line in Fig. 3. Specifically, the -WB
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Fig. 4. Joint posterior summary of the ODE model parameters, namely, relative rate of LAI increase before the end of leaf expansion (𝛼), light extinction coefficient (𝐾), Thermal
time to end of leaf expansion (𝑇𝑇𝐿), rate of senescence (𝑠𝑒𝑛𝑟𝑎𝑡𝑒), potential radiation use efficiency (𝑅𝑈𝐸𝑝), vernalization requirement (𝑣𝑟𝑒𝑞), maximum LAI (𝐿𝐴𝐼𝑀𝐴𝑋), crop
coefficient during initial growth stage (𝐾𝑐 𝑖𝑛𝑖), crop coefficient during mid-season (𝐾𝑐 𝑚𝑖𝑑 ), crop coefficient during end-season (𝐾𝑐 𝑒𝑛𝑑 ), and water stress sensitivity parameter (𝑤𝑠𝑒𝑛)
for the model with water balance (+WB; black) and the model without water balance (-WB; gray). The upper triangle shows correlation coefficients between the parameters for
+WB and -WB models.

Fig. 5. Density of prior and posterior distribution from the model with water balance for the ODE model parameters related to crop growth namely, relative rate of LAI increase
before the end of leaf expansion (𝛼), light extinction coefficient (𝐾), thermal time to end of leaf expansion (𝑇𝑇𝐿), relative rate of senescence (𝑠𝑒𝑛𝑟𝑎𝑡𝑒), potential radiation use
efficiency (𝑅𝑈𝐸𝑝), and vernalization requirement (𝑣𝑟𝑒𝑞).
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Fig. 6. Density of prior and posterior distribution of the water balance component parameters namely, crop coefficient during initial growth stage (𝐾𝑐 𝑖𝑛𝑖), crop coefficient during
mid-season (𝐾𝑐 𝑚𝑖𝑑 ), crop coefficient during end-season (𝐾𝑐 𝑒𝑛𝑑 ), and water stress sensitivity parameter (𝑤𝑠𝑒𝑛).
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model substantially over-predicted the grain yield in rainfed environ-
ments in 2014 (Fig. 3), when low rainfall resulted in severe water stress
late in the season. This severe water stress was captured by the +WB
model, as evidenced by the leftward shift of yield predictions when
water balance was incorporated into the model (Fig. 3). In contrast, the
rightward shift in grain yields for low water stress environments (most
sites in the 2013 season and irrigated sites in 2014 season) represented
a release of the constraint previously imposed by the -WB model. In
other words, the -WB model provided no means to distinguish between
high and low water stress environments thereby forcing the sampler
to maximize the likelihood by estimating values for model parameters
that resulted in yield predictions clustered around the average across
all environments. This phenomenon was present even when data from
all environments was used for parameter estimation (data not shown).

For the +WB model, the simulated water stress effects restricted
growth in water-stressed environments thereby allowing the sampler to
estimate values for parameters that resulted in higher yield predictions
for environments without water stress (Fig. 3). With the inclusion of
water balance and the concomitant shifts in predicted yield (higher for
irrigated sites and lower for rainfed sites), the model-predicted trend
more closely matched that of the observed data, as indicated by the
proximity of the predicted points to the one to one line. Neverthe-
less, grain yield predictions by the +WB model show some room for
improvement, particularly for rainfed sites in 2014 where predictions
were lower than observations indicating that the model may have
overestimated water stress. Unlike biomass, the grain yield predictions
for +WB differed noticeably from observed values (Fig. 3). This differ-
ence in pattern between biomass and grain yield shows that the yield
estimation was limited despite seemingly accurate biomass estimation.

Another contributing factor might be the fact that the model does
not represent drought response mechanisms such as enhanced root
growth, stomatal closure or carbohydrate remobilization, any of which
11
might have come into play to affect the yield formation in the actual
crop. In particular, carbohydrate remobilization can play an important
role in grain-filling under water-limited conditions (Yang et al., 2000;
Davidson and Chevalier, 1992). Thus, a possible improvement in the
model to address this issue could be to represent the carbohydrate
remobilization process.

4.2. Crop growth parameters from the ODE component of the model

The model yielded biologically plausible values for most parame-
ters, except 𝑅𝑈𝐸𝑝, for which the estimated values were higher than
lausible. The posterior median for the light extinction coefficient
arameter (𝐾) was estimated to be 0.46 which is biologically plau-
ible but lower than most literature reported values that were used
o formulate the priors. A study by Pradhan et al. (2018) in India
btained light extinction coefficient values between 0.47 to 0.65 under
rrigated conditions, and reported that the irrigation did not have a
ignificant effect on light extinction coefficient. Another study by Kukal
nd Irmak (2020) in Nebraska, USA obtained light extinction coefficient
alues of 0.36 and 0.66 across two growing seasons for wheat. Low
ight extinction coefficient indicates that it requires more leaf area to
ntercept the same amount of light compared to canopies with high
ight extinction coefficient. The parameter 𝐾 also negatively correlated
ith 𝑅𝑈𝐸𝑝 (𝑟̂ = −0.66). The estimated RUE expressed in g MJ−1 (as cal-
ulated in Section 3.3) was substantially higher than the range of values
0.7 to 1.8 𝑔 𝑀𝐽−1) reported by other studies (Caviglia et al., 2004;
lbrizio and Steduto, 2005). Notably, the posterior density for 𝑅𝑈𝐸𝑝
lso shifted higher than the specified prior distribution. At first glance,
t seemed that the water stress was overestimated by the model since
he 𝑅𝑈𝐸𝑝 from the -WB model was within a biologically plausible range
(Fig. 4) and the grain yields for rainfed environments were predicted to
be lower than observed for 2014, the year with severe water stress [See
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Fig. 3 of the Supplementary Materials]. Given that no such decrease was
observed in biomass [See Fig. S11 of the Supplementary Materials], it
may indicate that the higher-than-biologically-plausible 𝑅𝑈𝐸𝑝 values
may have compensated for the downward pressure on biomass due
to water stress. However, the temperature effect on biomass growth
may also have been a contributing factor. The ODE model in its
current form assumes the same temperature function for phenology and
biomass growth. However, Wang et al. (2017) reviewed recent research
suggesting that the range of optimum temperatures for biomass growth
may be wider than that for phenological development or photosynthesis
alone. In our case, the higher values estimated for 𝑅𝑈𝐸𝑝 may have
also been compensating for the negative effect of cool temperatures on
simulated growth during the early season. Hence, specifying separate
temperature response functions for phenology and biomass growth may
produce better parameter estimates for 𝑅𝑈𝐸𝑝.

The correlations between the ODE model parameters indicate some
difficulties in uniquely identifying them (Fig. 4). For example, the
interplay between 𝑇𝑇𝐿 and 𝑣𝑟𝑒𝑞 indicates that there is not enough
information in the data to adequately distinguish these two param-
eters. The dataset used in this study does not adequately represent
diverse conditions in terms of planting time and temperatures which
would be helpful in identifying vernalization requirement. A dataset
from environments with variable planting time and more contrasting
temperatures could potentially provide information to disambiguate
these parameters. For instance, a planting date ranging from September
to November would encompass a greater range of planting condi-
tions, which is not outside the bounds of usual planting dates for
the study region (Munaro et al., 2020). Likewise, the strong negative
correlation between 𝛼 and 𝐿𝐴𝐼𝑀𝐴𝑋 (𝑟̂ = −0.96) indicates that the
information provided in the data was not sufficient to disambiguate
these parameters. From a biological perspective, this finding is not
especially surprising as these two parameters represent closely-related
phenomena. Future model development may involve simplifying LAI-
related equations to allow estimation of a single leaf growth parameter
in place of 𝛼 and 𝐿𝐴𝐼𝑀𝐴𝑋.

The parameters also showed considerable differences in the poste-
rior distributions compared to their prior distributions except 𝑣𝑟𝑒𝑞. A
heavy shift and/or narrowing down of the density curve from prior
to posterior indicates that the data were informative in estimating the
parameters. For instance, the time to end of leaf expansion (𝑇𝑇𝐿) was
estimated to be shorter (posterior median of 737 ◦C-d) than our prior
expectation. Likewise, the parameter 𝛼 was estimated to be consider-
ably lower than the prior we specified. The posterior density curve
for the parameter 𝑣𝑟𝑒𝑞 mostly overlapped with its prior density curve
which indicates that there was essentially no additional information
regarding vernalization requirement in the data. This is most likely
because the planting dates across these environments were similar
and there is a robust prior knowledge to appropriately represent the
vernalization requirement with these typical planting dates.

4.3. Water balance parameters from the ODE component of the model

The water balance parameters (𝐾𝑐 𝑖𝑛𝑖, 𝐾𝑐 𝑚𝑖𝑑 , 𝐾𝑐 𝑒𝑛𝑑 , and 𝑤𝑠𝑒𝑛)
were estimated to be different from the priors as indicated by the
differences in prior and posterior samples density curves (Fig. 6). The
parameter 𝐾𝑐 𝑖𝑛𝑖 shifted much lower with a median of 0.03 compared
to prior mean of 0.7. It indicates that the crop coefficient during early
season is much lower than the tabulated value in FAO-56 for Oklahoma
conditions. A study by Ko et al. (2009) to determine crop coefficients
with the lysimeter method reported that 𝐾𝑐 values ranged from 0.1 to
1.7 across the growing seasons in south Texas conditions. By contrast,
the estimates for 𝐾𝑐 𝑚𝑖𝑑 were higher (median of 1.37) than the specified
priors pointing towards higher evapotranspiration than expected. The
high 𝐾𝑐 𝑚𝑖𝑑 estimates could partially be due to the functional form of
the model whereby the light interception asymptotically approaches 1
12

but never reaches 1. The parameter 𝐾𝑐 𝑚𝑖𝑑 was positively correlated c
with the crop growth parameters 𝑅𝑈𝐸𝑝 and 𝑤𝑠𝑒𝑛 and negatively
correlated with 𝐾 and 𝑠𝑒𝑛𝑟𝑎𝑡𝑒. These correlations suggest that the
relationship between water stress and crop growth can be manifested
through 𝑅𝑈𝐸𝑝, 𝐾, and 𝑠𝑒𝑛𝑟𝑎𝑡𝑒.

The posterior density curve for 𝐾𝑐 𝑒𝑛𝑑 also shifted higher but with
a great overlap with the prior density. The water stress sensitivity
parameter (𝑤𝑠𝑒𝑛) for the sigmoid curve to calculate 𝑓𝑤𝑠 was higher than
the specified prior with the posterior median of 0.26. It indicates that
the crop started experiencing water stress at about 52% of AWHC. The
management allowable depletion of is reported to be 55% for barley
and oats which indicates that these species start experiencing water
stress when 55% of the AWHC is depleted (Datta et al., 2017).

4.4. Parameters from the hierarchical component of the model

The hierarchical stochastic component allowed us to account for
random effects in the system, the plot effect in this case, thus decom-
posing the residual error. In this case the plot effects for LAI, biomass,
and yield were small, but in other cases the model structure outlined
here could be readily extended to allow for modeling random block or
location effects that are not modeled in a mechanistic manner (e.g. site-
specific disease pressure and pest infestation). The negative bias in the
plot effect for soil moisture (Table 3) indicates that the model should
be improved to better characterize the changes in soil moisture. The
low value of 𝑁𝑆𝐸 for PAW also points towards a potential model
bias, whereas the relatively high value of 𝑑 suggests that the model
is accurate in predicting the overall trend (Fig. 2).

5. Model limitations

The model we presented is a simple minimalist crop growth model
and cannot mechanistically accommodate the impact of different man-
agement practices such as fertilizer application and tillage. However,
the hierarchical component of the model would still be able to account
for the effects of different treatments. In addition, the model is pre-
sented in the form of a mathematical system rather than as software. In
its current form, modelers who have experience with R (R Core Team,
2020) and Stan (Stan Development Team, 2020b) will be able to utilize
the model and modify it to fit their experimental design.

6. Summary and conclusions

The methodology we presented in this article can be successfully
used to estimate crop growth parameters and to understand system
dynamics of a winter wheat cropping system. The model predicted LAI
and biomass with more success than PAW and yield. Model evaluation
statistics indicated overall satisfactory performance of the +WB model,
however, potential approaches for further improvements of the model
were identified such as accounting for carbohydrate remobilization
during grain filling and specifying separate temperature functions for
𝑅𝑈𝐸𝑝 and phenology. The biologically meaningful parameters allow
rop scientists to make direct physiological interpretations. Estimating
arameters along with their uncertainties provides a fuller picture of
ccuracy and reliability of the estimates. This approach of modeling
llows mechanistic representation of physiological processes while also
ccounting for experimental design factors (such as plot within block
ffects) that are not typically represented within purely deterministic
odels. Thus, this modeling approach can be adapted to specific needs
nd circumstances of a given project.
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