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Dynamic crop models are widely used to simulate crop production, but are often complex and thus face
parameter non-identifiability issues. In this study, we demonstrate a simple dynamic model for crop growth
within a Bayesian hierarchical framework and quantify improvements in predicted crop growth patterns
by inclusion of a dynamic water balance. Seven crop parameters and four water balance parameters were
estimated by the model from data on leaf area index, biomass, yield, and plant available water over the
growing season across multiple environments. Posterior median values for Willmott agreement index (4) and
Nash-Sutcliffe efficiency (N.SE) showed that the model predicted leaf area index (LAI; d=0.89; N.SE=0.62)
and biomass well (d=0.98; NS E=0.92) with less success for plant available water (PAW; d=0.75; N.S E=-0.03)
and grain yield (d=0.90; N.SE=0.40). Inclusion of a water balance component raised median NSE from 0.57
to 0.62 for LAIL 0.74 to 0.92 for biomass, and —0.58 to 0.40 for grain yield. The median and highest density
interval (HDI) were biologically plausible for the parameters canopy light extinction coefficient (median=0.46;
HDI=[0.38, 0.55]), maximum leaf area index (median=6.66; HDI=[6.06, 7.24]), and crop evapotransipration
coefficients for the initial (median=0.03; HDI=[0.000004, 0.08]) and mid-season (median=0.32; HDI=[0.23,
0.42]) growth stages. Posterior values for the potential radiation use efficiency (RUE,; g MJ1 (eC-d)™)
parameter (median=2.17; HDI=[1.99, 2.34]) were not biologically plausible indicating a need for model
improvement.

1. Introduction required to represent the system under study may be preferable in many
situations. In this study, we propose such a parsimonious approach to

Crop models are commonly used to simulate growth and yield crop growth modeling by introducing a simple mechanistic ODE model

and to understand the mechanistic interplay between crops and en-
vironments (Attia et al., 2016; Asseng et al., 2014). Successful usage
of these models require a thorough understanding of the biological
system, along with accurate parameter estimation, calibration, and vali-
dation. However, complete understanding of all underlying mechanistic
processes is difficult to achieve in complex systems such as cropping
systems. In addition, specifying ordinary differential equations (ODEs)
for numerous processes in order to mechanistically represent the full
system results in a level of model complexity that frequently renders
such models non-identifiable due to the dearth of sufficiently informa-
tive data to fit them (Lamsal et al., 2018). Standard crop growth models
such as DSSAT-CSM (Jones et al., 2003), APSIM (Keating et al., 2003),
WOFOST (Van Diepen et al., 1989) and CropSyst (Stockle et al., 2003)
have a large number of parameters and input data requirements that
are beyond the scope of many field-based studies. As a result, a more
parsimonious approach that incorporates a minimum level of detail
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into a Bayesian hierarchical framework.

The approach we propose can accommodate parameter uncertainty
and random noise in the cropping system probabilistically. In so doing,
we simultaneously account for the incomplete knowledge of the sys-
tem and non-systematic sources of variability in a way that standard
crop growth models cannot. This type of hybrid approach is gaining
attention in other scientific areas such as food science (Yang et al.,
2021) and medicine (Mascheroni et al., 2021). While it is important
to specify the fundamental processes in a manner consistent with a
mechanistic understanding of the system dynamics, accounting for
random noise with a stochastic model component allows for modeling
sources of variation not explicitly handled by the deterministic com-
ponents of the model. Along with accounting for random noise, the
Bayesian approach also allows us to inform the parameter estimation
process with prior knowledge about the system and characterize the full
joint distribution of parameters of interest, including their associated
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uncertainties, rather than point estimates alone. This approach provides
a more holistic perspective on how individual parameters which govern
key processes relate to each other to affect the evolution of the system
as a whole over the growing season.

This study is conducted in the southern Great Plains (SGP) of the
United States. Winter wheat (Triticum aestivum L.) is an important crop
grown in this region and soil water balance is one of the important
drivers of yield variability (Munaro et al., 2020). Precipitation patterns
vary both temporally and spatially which results in diverse environ-
ments across the region (Maulana et al., 2019). It is thus reasonable to
consider modeling soil water balance as a component within a crop
growth model for this region even within a minimalist crop growth
model. Crop models accounting for soil water effects on crop growth
range from relatively simple models, such as AquaCrop (Steduto et al.,
2009) to more complex models such as DSSAT-CERES (Jones et al.,
2003). Although varying in complexity, they are fundamentally similar
in simulating water balance as a function of a drained upper limit (field
capacity) and a lower limit (permanent wilting point). Most of these
models simulate soil water balance for multiple layers within a soil
profile, although some models simulate the soil water in the rooting
zone as a single layer (Steduto et al.,, 2009). As recently reviewed
by Tenreiro et al. (2020), the methods for simulating infiltration in
crop models range from the relatively simple runoff curve number
method (United States Department of Agriculture, Soil Conservation
Service, Engineering Division, 1986) to more mechanistic approaches
based on the Richard’s equation (Richards, 1931). For simulating evap-
otranspiration, many crop models use an approach derived from the
Penman-Monteith equation (Penman, 1948; Monteith, 1965), while
some also provide implementations of the Priestley-Taylor (Priestley
and Taylor, 1972) or Hargreaves methods (Hargreaves and Samani,
1982).

These types of dynamic simulation models are frequently used to
explain genotype by environment interaction for multiple genotypes
across years. With extensive datasets from multi-environment experi-
mental trials, it becomes particularly important to account for random
noise or non-systematic sources of variability in a system. Poudel et al.
(2022) presented initial work in the integration of mechanistic and ran-
dom components to model repeated measures data on LAI and biomass
over time for irrigated and rainfed winter wheat in the SGP. The specific
objective of this study is to present a new, re-conceptualized model to
better represent the underlying processes related to vernalization, plant
available water (PAW) and grain yield.

2. Methodology
2.1. The ODE crop growth model

Table 1 presents a description of the state variables, parameters, and
input variables in the ODE model. The table is followed by description
of the equations.

2.1.1. Thermal time

The development of the crop is expressed the function of tempera-
ture over time as well as the vernalization status of the crop. The rate
of change of thermal time is specified as:

dTT,
T:fTTt'furnt @

where,
% is the rate of change of thermal time at time 7.
Sfrr ¢ is the thermal time factor, calculated as shown below.
Sorn ¢+ 18 factor corresponding to the vernalization requirement, cal-

culated as shown below.
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Table 1
Description of the state variables, inputs, and parameters in the ODE model.
Notation Units Type Description
TT, °C-d State variable Cumulative
thermal time at
time ¢
VRN, d State variable Cumulative
vernalization at
time ¢
LAI, m? m~2 State variable Leaf area index
at time ¢
BM, g m~? State variable Biomass at time
t
YLD, g m2 State variable Grain mass at
time ¢
PAW, mm State variable Plant available
water content at
time ¢
a (°c-d)! Parameter Relative rate of
LAI increase
TTL °C-d Parameter Thermal time to
the end of leaf
expansion
RUE, g MJ! (°C-d)! Parameter Potential
radiation use
efficiency
K dimensionless Parameter Light extinction
coefficient
LAIMAX m? m—2 Parameter Maximum leaf
area index
senrate cc-d)! Parameter Relative rate of
senescence
vreq d Parameter Vernalization
requirement
wsen dimensionless Parameter Water stress
sensitivity
i dimensionless Parameter Early season
crop coefficient
K, g dimensionless Parameter Mid season crop
coefficient
K. ona dimensionless Parameter Late season crop
coefficient
Tavg, °c d! Model input Observed daily
temperature at
time ¢
SRAD, MJ m—2 d! Model input Observed daily
solar radiation at
time ¢
P, mm d-! Model input Observed daily
precipitation at
time ¢
1, mm d-! Model input Irrigation at
time ¢
AWHC mm Model input Available water

holding capacity

2.1.2. Thermal time factor
The factor f;;, represents the biochemical pathways that are
purely controlled by temperature:

frri= —7”‘1_1(M71) 20 @
1+e mTT
where,

rpp = 5 is a fixed constant representing the rate that determines
steepness of the sigmoid curve.

mpr = 10 is a fixed constant representing the midpoint in the
sigmoid curve.

Tavg, is the input variable representing observed daily average air
temperature at time ¢ for environment k.

In general, crop growth and development rates are expected to
increase with temperature. However, once the temperature reaches a
point at which the change in conformational states (e.g. denaturation)
of enzymes involved in growth and development offsets the increase
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in the rates per se, the net effect is a leveling-off of the overall
growth and development. Further increases in temperature beyond this
inflection point can in some cases result in a decline of the overall
growth and development rates, however for the range of temperatures
considered here we assume a sigmoidal response for f;;, (Eq. (2)).
This is consistent with the approach taken by other models such as
CropSyst (Stockle et al., 2003), WOFOST (Van Diepen et al., 1989),
and DSSAT-CROPSIM-CERES-Wheat (Jones et al., 2003). These other
models make use of piecewise linear functions, however, such functions
are not continuously differentiable, a requirement for estimation with
Hamiltonian Monte Carlo (HMC). Further explanation of the utility of
HMC in the context of crop models is provided below in Section 2.5
and in Poudel et al. (2022). The curve given in Eq. (2) is specified such
that the thermal time accumulation is less than 0.2 for temperatures
less than zero, has a value of 10 °C-days at 10 °C and approaches a
value of 20 °C-days at temperatures at or above 20 °C (Fig. S1 of the
Supplementary Materials).

2.1.3. Vernalization factor
For winter wheat, a period of exposure to cold temperatures is re-
quired to trigger the transition from vegetative to reproductive growth
(Robertson et al.,, 1996; Ritchie, 1991). This threshold, frequently
referred to as the vernalization requirement, varies between cultivars
and is represented here by the parameter vreq. If the period of ex-
posure to cold temperatures is less than the vreq, the transition to
reproductive growth (including flowering) will be delayed. To capture
this phenomenon we specified a vernalization factor (f,,, ,) calculated
as a function of cumulative vernalization at time ¢ (V RN,; i.e., the
cumulative exposure of the plant to vernalizing temperatures from
t = 0 to time ¢), the parameter for vernalization requirement (vreq),
cumulative thermal time at time ¢ (T'7;) and the parameter 7T L:
Sorn t =+TTY+
1o
1 1 1
1+ e_r”TT(%_l) 1+ e_r”’e‘f(VRN’_%) @

where,

TT, is state variable for thermal time at time 7 for environment k.

TTS is thermal time to terminal spikelet and assumed to be lzL
°C-d.

TTL is the parameter representing cumulative thermal time until
the end of leaf expansion (i.e. end of vegetative growth), °C d.

vreq is the parameter representing vernalization requirement, ver-
nalization days.

VRN, is the state variable for cumulative vernalization at time 7,
calculated below.

ryrr is a constant (assumed to be 100) that specifies the rate of
transition from cumulative vernalization having an effect on plant
development to having no effect.

Tureq 1S the rate that determines the shape of the relationship be-
tween cumulative vernalization and f,,, , and is calculated as 21%229)

The equation for f,,, , was intended to provide an approximately
linear transition from nearly O to nearly 1 as V RN, increased from
0 to vreq (Fig. S2 of the Supplementary Materials). The equation
also included a switch function to force f,,,, to be approximately 1
when plant development progressed past the terminal spikelet stage
(represented here by TT, > TTS) based on the fact that the effect
of vernalization on the rate of development is only active until that
stage (Slafer and Rawson, 1994). The use of sigmoid instead of piece-
wise linear forms for these relationships was for compatibility with
HMC (see discussion in Section 2.5).
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2.1.4. Cumulative vernalization

The rate of change of cumulative vernalization (i.e. vernalization
rate) was calculated as a sigmoidal function of daily average tempera-
ture with vernalization rate at nearly one when temperature was at or
below 4 °C and nearly zero when temperature was above 12 °C:

dV RN, 1
=1- . 4
dt ,,VRN(M,I)
l+e my RN
where,

Tavg, is as defined above.

ryrny = D is a fixed constant representing the rate that determines
the steepness of the sigmoid curve.

myry = 8 is a fixed constant representing the mid point in the
sigmoid curve, i.e. the mid point between 4 °C and 12 °C.

For the range of temperatures addressed in this study, this shape
approximates that of other modeling and experimental studies (Wang
and Zhao, 2013; Porter and Gawith, 1999). An illustration of this curve
is shown in S3 of the Supplementary Materials.

2.1.5. Leaf area index
Leaf area index (LAI) determines the amount of light captured by

the crop canopy and, thereby, largely determines the potential growth
rate of the crop. The rate of change in LAI (de’:[’) was calculated as
the difference between relative net leaf growth (G, 4;,) and senescence
(Span):
dLAI,

ar =Gran = Sran (5)

Gran =frr - LAIL -a - (LAIMAX — LAIL)-

1
<1——M,,)-(1—fgf)-fws ©
1+ e "tarlTamax — D
Span =frr - LAIL - senrate - for 7
where,
dLAI,

- is the rate of change of LAI at time 7.

frr . is as described in Eq. (2).

LAI, is leaf area index at time ¢.

«a is the parameter representing relative rate of LAI growth.

fws is @ factor representing the factor for water stress, calculated as
shown below in Eq. (9).

rpa; is the rate that determines the abruptness of the switch to
restrict leaf area growth once LAI reaches LAIM AX (assumed to be
100).

LAIM AX is the parameter representing maximum LAIL

fq is the factor to indicate a switch to grain filling, calculated as
shown in Eq. (8).

senrate is the parameter representing the relative rate of senescence
per unit thermal time.

Rates of leaf growth and senescence both tend increase with tem-
perature, hence f;r , is the first term in Eq. (5). Including LAI, as
a term in Eq. (5) is based on the fact that the potential rates of
growth and senescence both depend on current LAI In the case of
growth, this is due to the fact that the photosynthate available for leaf
growth is largely dependent on light capture by the current canopy. For
senescence, the potential amount of leaf area that can be senesced on
a given day is limited by the current leaf area.

In the context of this model, G, 4, was treated as a combined
process (gross growth minus senescence) until the transition to repro-
ductive growth (defined by fef) after which senescence was assumed
to become the dominant process affecting the change in LAI The use of

fr here forced the effect of senrate on LAl 1 effectively zero prior
to TTL and the effect of G 4;, on dL;:I’ to effectively zero after T'T,
exceeded TTL + 400 °C-d (meant to represent the beginning of grain
filling; see discussion of Eq. (8) below) with a gradual shift from one

process to the other in between.
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Apart from temperature and current LAI effects, the net leaf growth
rate was primarily driven by the parameter for the relative rate of leaf
area expansion (a) in units of (°C-d)~1. This primary rate was then
limited by light interception and soil water availability. At full canopy
closure nearly all light will be intercepted at the top of the canopy
and older leaves lower in the canopy will senesce due to insufficient
light to sustain maintenance respiration (i.e. light intensity falls below
the light compensation point). In effect, this imposes a constraint on
the maximum LAI that can be sustained by the plant. To represent
this maximum LAI constraint two terms were added to Eq. (6): the
difference between current LAI and maximum LAI (LAIMAX) and
a sigmoidal switch which triggered as LAI, approached or slightly
exceeded the parameter LAI M AX. Finally, because leaf area growth is
restricted in the presence of water stress, a water stress factor (f,,,) was
introduced to slow down leaf growth when soil moisture drops below
a given threshold (see Eq. (9) below for the exact calculation).

Figures S5 and S6 in the Supplementary Materials illustrate the
effect of current LAI on % before anthesis (when G ,;, dominated)
and after anthesis (when senrate dominated).

2.1.6. Grain filling factor

The grain filling factor (f,,) was a phenology-related factor spec-
ified to regulate shifts from vegetative to reproductive growth within
the model. The equation was specified as a function of T'7; and the
parameter representing thermal time to end of leaf expansion (TTL):
for = : ®

1+e—rgf(TT,—(TTL+200))

where,

TT, and TTL are defined above.

Fer = % is the rate that controls the shape of the sigmoid curve.

The value for r, , was specified such that Eq. (8) would approximate
a piecewise linear function that transitions from 0 at or below TTL +
100 °C-d to 1 at TTL + 300 °C-d. By assuming that TT L represents
a developmental stage shortly after booting, TTL + 100 °C-d was
assumed to be equivalent to 50% heading, TT L + 200 °C-d equivalent
to 50% anthesis and TTL + 300 °C-d equivalent to end of grain
set (McMaster et al., 2019). An illustration of the curve is provided in
S4 of the Supplementary Materials.

2.1.7. Water stress factor
The water stress factor (f,,,) was calculated to introduce the effect
of water stress on LAI and biomass:

Fus = ————— )

PAW;
1+ er,l,5~(m—wscn)
where,

wsen is a parameter representing water stress sensitivity.

PAW, is the plant available water at time ¢.

AW HC is the available water holding capacity.

rus is the rate that determines the shape of the sigmoid curve and
specified equal to _,%29) to ensure that f,,, was equal to 0.01 at
PAW, =0 and 0.99 at PAW, = wsen.

The value of f,,, varied between 0 and 1 following a sigmoidal rela-
tionship with soil moisture, where 0 indicated severe water stress and
1 indicated no water stress. The shape of the curve was determined by
the parameter wsen which is the inflection point at which f,,, is equal
to 0.5. Thus, the crop began to experience water stress as soil moisture
dropped below 2wsen. The theory behind this formulation is that for
each given soil profile there is a threshold of soil moisture above which
water is freely available to the crop. However, as soil moisture drops
below this threshold the resistance of soil to the transport of water
to the root surface may become limiting resulting in the root system
being unable to supply atmospheric demand for transpiration. In such
a case, the plant will experience a water deficit, which will inhibit
transpiration, leaf area expansion, and plant growth overall.

S7 of the Supplementary Materials shows the curve for f,,, with
a value of 0.175 for wsen and 150 mm for AW HC. For instance, the
value of 0.175 for wsen indicates that the crop starts experiencing water
stress when at 35% (2 x 0.175 = 0.35) of AWHC.
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2.1.8. Plant available water content

Plant available water content (PAW) is important for crop growth.
Under exposure to inadequate PAW stomata close and thereby shut
down crop evapotranspiration, photosynthesis and growth. To repre-
sent the water balance for PAW, we propose a single layer lumped
model which is relatively simple in terms of model formulation and
implementation. The rate of change in PAW, was calculated as the
difference between infiltration and crop evapotranspiration. Infiltration
was calculated as a function of precipitation, irrigation, and runoff.
Crop evapotranspiration was adjusted to account for water stress.

dPAW,
dt :PI+II_RI_ETct'fws 10)

where,
dPA

TW’ is the rate of change of plant available soil water content.

P, is the input variable representing observed precipitation.

I, is the input variable representing irrigation.

R, is runoff at time ¢ calculated following the runoff curve number
method. The runoff calculations are shown in Eq. S1 to S9 in the
Supplementary Materials and follow the procedures in United States
Department of Agriculture, Soil Conservation Service, Engineering Di-
vision (1986) and Williams (1991).

PAW,, and f,, are as defined above.

ET, , is the crop evapotranspiration at time ¢, calculated as shown
below.

2.1.9. Crop evapotranspiration (ET,)

ET, , = ET,,-K,, a1

where,

ET,, is reference evapotranspiration at time ¢, mm day~!, calcu-
lated following the procedures in Allen et al. (1998) and shown in
Eq. S10 to S22 in the Supplementary Materials.

K. , is the crop coefficient at time #, calculated below.

2.1.10. Crop coefficient (K,)
The crop coefficient curve described here was constructed to mimic
the piecewise linear approach described in Allen et al. (1998):

Kct= cmint+(1 _e_K LA,I) (K

=K _ Kc ini — Kc end 13)

c i e_rkﬁ(%_]) + 1

K, inis K, mig> and K, ,,, are the crop coefficients at initial, mid-
season, and end-season stages and specified as parameters estimated
by the model.

TTA is thermal time to anthesis and assumed to be TTL plus
200 °C-d.

rg. is the rate that determines the shape of the K. curve (assumed
to be 100 to create an abrupt transition)

In Eq. (12), fractional light interception (as calculated based on
LAI and K previously shown in Eq. (14)) is used as a proxy for
canopy development/decline with low interception representative of
K, , values near the minimum value (XK, ,,;,,) and full interception
(near 1) representative of the mid-season (maximum K,) stage. The
K, ,.in  term itself varied across the season with rapid transition from
K. ;; when TT; < TTA to K, ,,, when TT, > TTA. The overall
effect was that the increase in light interception as a result of leaf area
growth early in the season resulted in the transition from K, ;,; to K, ;4
during what (Allen et al., 1998) termed the crop development stage,
and the subsequent decline in interception (due to leaf senescence)
resulted in the transition from K, ,,;, to K, ,,; during what (Allen et al.,
1998) termed the late season stage. Illustration of K, as a function
of LAI before and after anthesis is provided in S9 and S10 of the
Supplementary Materials.

K 12)

¢ mid = ¢ min t)

K,

¢ min t
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2.1.11. Biomass

Biomass at a given point in time is the cumulative prior growth of
the crop across the growing season. In this model the rate of change in
biomass (i.e. crop growth rate) was calculated as a function of potential
RUE, incident solar radiation (SRAD), fractional light interception,
temperature and water stress according to the following equation:

dBM,
dt

where,
dBM,

=RUE,- SRAD, - (1 - e~KLALY frr 1 fus (14

— is the rate of change of biomass at time 7.

fwss frr 1o and LAI, are defined above.

K is the parameter representing light extinction coefficient.

RUE, is the parameter representing potential radiation use effi-
ciency in units of g MJ~! (°C-d)~!

SRAD, is observed solar radiation at time 7.

The amount of growth at a given time is limited by the amount of
light intercepted by the crop canopy, which is largely determined by
the LAL Thus, we include the term 1 — e~ X'LAl in Eq. (14) (i.e. the
Beer-Lambert equation; Monsi and Saeki, 2005) to limit growth to
the amount of light intercepted by the canopy. The RU E, parameter
represents the combined efficiency of crop photosynthesis and growth
and maintenance respiration with which a given crop can produce
biomass per unit of intercepted solar radiation per °C-d. The product
of RUE,, SRAD,, and fractional light interception can be considered
the potential growth rate (°C-d)~!. By further multiplying this value
by frr . we achieved the temperature-adjusted biomass growth rate.
The multiplication by f,,, imposed a further soil moisture constraint on
biomass growth following the reasoning that if water stress is sufficient
to reduce transpiration then photosynthesis (and subsequent growth)
would also be correspondingly reduced. S8 of the Supplementary Ma-
terials shows how biomass changes with respect to LAI when everything
else is held constant.

2.1.12. Grain weight

The grain growth rate is the dominant form of growth during late
reproductive growth (i.e. grain-filling period). The majority of biomass
increase during this period is allocated to the grain. As such, the rate of
change of grain weight was calculated as the product of biomass growth
rate at time ¢ and f,:

dYLD, _dBM,

15
dr ar e (15)
where,

% is the rate of change of grain yield at time 7.

dBM,

- and f,, are defined above.

The assumption of this approach is that all grain weight is directly
derived from photosynthesis during the grain-filling period. While this
does not represent the full biological reality, it was intended as a
first-order approximation suitable for the present application.

2.1.13. Full ODE model

Fig. 1 provides a Forrester diagram that illustrates the full ODE
model. From this diagram it is clear that temperature is a major
driver of the model. The f;; , factor, which is calculated from Tavg,,
directly or indirectly affects terms in the rate of change of four of the
six state variables (TT,, LAI,, BM, and YLD,). VRN, also depends
on temperature and affects the rate of change of T7, through f,,, ,,
but both of these state variables are otherwise independent of other
parts of the model. 77, affects the rest of the model through f,,,
which marks the transition from vegetative to reproductive growth and
thereby ceases leaf growth (G 4;,), initiates leaf senescence (S} 4;,) and
allocation of biomass toward grain yield (dYLtD’ ). Temperature also has
an indirect effect on PAW, through the effect of TT, on ET, ,. The effect
of water stress is transferred through the f,, factor to G, ,;,, which
creates a balancing loop in which f,,, reduces G, ,;,, which restricts

LAI,, which then restricts ET, ,. This f,,, factor directly affects %,
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dBM,
dt
through the effect of f,,, on LAI,. Both of these effects on % have
dYLD,
dr

but also has an indirect effect on by restricting light interception

potential to affect
growth.

if they occur during the reproductive phase of

2.2. Euler integration

At each time step, the value of the state variables were updated for
each kth environment using Euler integration according to:
dS; ;

dt

where, S, , = (VRN ,, TT, ,, LAl ,, BM; ,, YLD, ,, PAW, ,) are
the observed state variables for environment k at time 7, S; ,,; =
(VRN 1415 TTy 1415 LAL 1415 BMy 11y, YLDy 1y, PAW, ) at time
t+ 1, and 4 is the fixed time step of one day.

The output of the ODE model is then represented by:

Boike = [ Ly, d,S0) a7

where, f represents the numerical integration of the ODE system from
time 0 to time 7, I, is a matrix of input variables, ¢ is a vector of the
ODE model parameters as described above, and S, is the vector of state
variables at time 0.

S 1 =Si, + At (16)

2.3. Integration of the ODE model into a Bayesian hierarchical framework

The ODE model was integrated into a Bayesian hierarchical frame-
work as follows for LAI, biomass, and PAW:

Yike = Boire + Plot[Env]jpg + € (18)

where,

Y,k is the observed value of the ith response variable (i = 1 for LAI,
i = 2 for biomass, and i = 3 for PAW), corresponding to jth plot in the
kth environment at time z. To recall, an environment is defined as a
location-year-treatment combination.

Boix: 1s the predicted value of the ith response variable from the ODE
model for environment k and time 1.

Plot[Env);jy is the differential effect of jth plot within an en-
vironment on the ith response variable, assumed Plot[Env];py ~
NIIDO,0%, ).

¢ is residual error, assumed e ~ N11 D(o-e2 D

For grain yield, the plot effect was excluded as it contains informa-
tion at only the final time point. Thus, the equation for grain yield was:

Yijie = Poire + € 19

where, Y, € are as defined above with i = 4 for grain yield, and ),
is the state variable for grain weight (i = 4) for environment k at t =
time of harvest.

The Bayesian approach allowed us to quantify uncertainty around
the parameters for both the dynamic model and the hierarchical sta-
tistical model. It also allowed us to incorporate pre-existing knowledge
about the parameters into the model in the form of prior specification,
which is especially useful in the case of dynamic model parameters

because of their biological meaning.
2.4. Prior specification

The prior distributions for the ODE model parameters except for
senrate were estimated based on literature and were specified as trun-
cated normals in the form of N(u,c?). These parameters were specified
to have a lower bound of zero and no upper bound.

a ~ N(0.016,0.007%) truncated at zero (Rodriguez et al., 1998).

K ~ N(0.6,0.1%) truncated at zero (Bechini et al., 2006; Muurinen
and Peltonen-Sainio, 2006).
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Fig. 1. Forrester diagram of the full ordinary differential equations model including state variables for thermal time (7'7,), cumulative vernalization (V' RN,), leaf area index (LAI,),
crop biomass (BM,), grain yield (YLD,) and plant available water content (PAW,). State variables are represented as rectangles. Parameters and input data are underlined. Flow
of material is represented by solid arrows. Flow of information is indicated by dashed arrows. Terms related to the rate of change of state variables are represented by the valve
shape. Time-dependent intermediate factors that are calculated from a combination of state variables, parameters and input data are represented as circles. Further detail on the

definition of parameters, input data and equations are provided in Table 1 and Sections 2.1.1 to 2.1.12.

TTL ~ N(950,100%) truncated at zero (McMaster et al., 2019;
Bechini et al., 2006).
RUE, ~ N(0.07,0.0125%) truncated at zero (Bechini et al., 2006;

Muurinen and Peltonen-Sainio, 2006). The units for RUE, were changed

from g M J~! reported in literature to g MJ~! °C~! assuming an optimal
temperature of 20 °C.

vreq ~ N(42,7%) truncated at zero (Li et al., 2013; Crofts, 1989).

LAIMAX ~ N(5,2%) truncated at zero (Wagle et al., 2021; Nielsen
et al., 2012).

The prior for senrate was determined using a heuristic procedure.
It was assumed that with a peak LAI at flowering of 5 and 30 °C daily
average temperature, it would take approximately 35 days to reach full
senescence. Values of senrate were tested heuristically to determine a
range of values that resulted in plausible senescence durations. With a
rate of senescence of 0.005, it took approximately 35 days to reach an
LAI near zero from five, a senrate of 0.002 took approximately 60 days,
and a senrate of 0.008 took approximately 20 days. Thus, the prior u
was specified as 0.005 with a sigma of 0.001, thereby providing support
in the prior for a range of duration between 20 and 60 days within three
standard deviations of prior u:

senrate ~ N(0.005,0.001%) truncated at zero.

The prior means for the parameters pertaining to the water balance
component (K, ;> K, mid> Ke end> and wsen) were also specified based
on literature. The standard deviations were chosen such that the prior
allows for all practically possible parameter values without being too
vague. The priors were specified as:

K, ;i ~ N(0.7,0.22) truncated at zero (Allen et al., 1998).

K, mia ~ N(1.15,0.1%) truncated at K, ,,; (Allen et al., 1998).

K, og ~ N(0.25,0.05%) truncated at zero with upper bound K, ,,,
(Allen et al., 1998).

wsen ~ N(0.175,0.0252) truncated at zero with upper bound 1 (Amir
and Sinclair, 1991).

The priors for the hyperparameters pertaining to the hierarchical
component of the model were specified following the prior predictive
procedure described in Schad et al. (2019):

2 2
1o 14 ~ N(0,0.19) truncated at zero.

[ 2 2
it biomass ~ N (0,0.17) truncated at zero.

[ 2 2
1o paw ~ N(0,0.19) truncated at zero.
[ 2 2
65 par ~ NO,19) truncated at zero.
\/o? ., ~ N(0,100%) truncated at zero.
e biomass
[ 2 2
67 pay ~ N(0,50%) truncated at zero.
\/o?  ~ N(0,30?) truncated at zero.
e yield

2.5. Model implementation and sampling

Two separate versions of the model were implemented, one with
water balance (+WB) and another without water balance (-WB) to
assess the contribution of the water balance component on the predic-
tive ability of the model. The +WB model included Eq. (10) and (11),
whereas these equations were excluded in the -WB model, and f,,, was
fixed at 1 indicating no water stress.

The data used for parameter estimation were obtained from a
previous study by Lollato and Edwards (2015). It includes observed
data at multiple time points throughout a growing season for LAI,
biomass, PAW, and yield from multiple environments. Weather data for
average daily temperature, precipitation, solar radiation, wind speed
at 2 m, relative humidity, and atmospheric pressure were obtained
from Oklahoma Mesonet stations (McPherson et al., 2007). A detailed
description of the data is presented in the supplementary materials
and Lollato and Edwards (2015).

Samples were drawn from the posterior distribution of interest
using a dynamic HMC sampler as implemented within Stan (Stan
Development Team, 2020b). Dynamic HMC is a type of Markov Chain
Monte Carlo (MCMC) algorithm that utilizes gradient-based sampling
of the typical set of the joint posterior density (Betancourt, 2017). This
gradient-based approach has been shown to efficiently sample high-
dimensional parameter spaces with complex geometries (Betancourt
and Girolami, 2015) similar to the complex interactions between the
parameters of a dynamic crop simulation model. Because HMC utilizes
the gradient for sampling, all model components must be continuously
differentiable so that the gradient can be calculated at any point in the
parameter space. Although this imposes a constraint on model forms
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that can be used, the gains in sampling efficiency were considered to
be worth the inconvenience of adopting HMC-compatible functional
forms. Further discussion regarding HMC and its application in crop
modeling can be found in Poudel et al. (2022).

The models were implemented in Stan version 2.25.0 (Stan Devel-
opment Team, 2020b) with the command-line interface to the Stan
modeling language, CmdStan version 2.25.0 (Stan Development Team,
2020a). Four MCMC chains were run with 20,000 iterations including
50% burn-in, resulting in a total of 40,000 saved iterations. Sampling
was performed at the Oklahoma State University High Performance
Computing Center (OSU-HPCC) using the Pete supercomputer and post-
sampling analysis was performed on a Linux virtual machine hosted
on The Interactive Graphical Environment for Research (TIGER) re-
search cloud at OSU-HPCC. Two common convergence diagnostics,
traceplots and R-hat values, were used to monitor chain convergence.
The effective sample size (ESS) for the ODE model parameters and the
hierarchical model hyperparameters were greater than 6,000 in both
models.

For cleaning and organizing the data, R package tidyverse was
used (Wickham et al., 2019; Wickham, 2017). The posterior samples
were processed with the R statistical software environment (R Core
Team, 2020). The highest density intervals (HDIs) of the posterior
distributions of the parameters were computed using the HDInter-
val package (Meredith and Kruschke, 2018). The tables were gen-
erated using the R packages knitr (Xie, 2020) and kableExtra (Zhu,
2019). The figures were created using the ggplot2 (Wickham, 2016),
gridExtra (Auguie, 2017) packages in R.

2.6. Model predictive performance

A cross-validated dataset was generated with leave-one-group out
cross-validation where each environment was considered a group,
hence there were a total of ten groups. For each iteration of the cross-
validation, one group was held out and parameters were estimated
based on the remaining nine groups. The parameter estimates were then
used to predict the data from the withheld group. The predictions were
used to calculate three statistical metrics:

2.6.1. Relative Root Mean Square Error (rRM SE):

_ RMSE,
FRMSE = ——— (20)
y
1 N
— —- — $55)2
RMSE, = |+ Z;(yn ) (1)

where, N = Total number of data points, y, is the nth observation
(n=1,2,...,N), y is the average of the observed data points, and J, is the
predicted value for the nth observation obtained from the sth MCMC
iteration. Models with smaller values of RMSE are preferable.

2.6.2. Willmott agreement index (d; Willmott, 1981):

N 552
=10 =9
dy=1-— 21 On =Sy (22)
Y195 =3l + 1y, = 92
where, N, y,, and j7, and y are as described above. This statistic ranges
between 0 to 1 with values closer to 1 indicating good model fit.

2.6.3. Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970):

st 0 = 92
s 0 = 92
where, N, y,, ), and y are as described above. The values of NSE

can range from —oo to 1 and values closer to 1 indicate a better-fitting
model.

NSE, =1- (23)

N
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This process was repeated for all groups one at a time and for
both versions of the model i.e. with and without the water balance
component. Model comparison was done to identify how water balance
influences estimations and predictions of different state variables.

3. Results
3.1. Model comparison for LAI, biomass, PAW, and yield predictions

To quantify the differences between the two models, Fig. 2 shows
the density plots of the prediction statistics, rRM SE, d, and NS E com-
puted under the 10-fold cross validation. Fig. 2 shows that adding the
water balance component had a larger impact on grain yield compared
to LAI or biomass as indicated by differences in the prediction statistics
between the models. The posterior median values of rfRM SE, d, and
N SE for the +WB model were 0.67, 0.89, and 0.62 for LAI, 0.32, 0.98,
and 0.92 for biomass, 0.52, 0.75, and —0.03 for PAW, and 0.23, 0.9,
and 0.4 for grain yield. The +WB model version had higher values for
N SE and d and lower values for rRM SE for all variables. For example,
median NSE increased from 0.57 to 0.62 for LAI, 0.74 to 0.92 for
biomass, and —0.58 to 0.40 for grain yield.

Fig. 3 shows median values for cross-validation predicted grain
yield from both models along with observed yield data. The model
predicted grain yields for rainfed environments differed substantially
from observed values. The over-prediction of yield was most evident
in cases of rainfed environments, particularly in 2014 (Fig. 3) when
the crop experienced severe water deficit stress. Unlike biomass, the
difference between estimated and predicted yields were negligible for
yield. Furthermore, the yield values predicted by the -WB model were
clustered between 500 to 600 g m~2 for all environments (Fig. 3).
Contrastingly, median yields predicted by the +WB model ranged be-
tween 100 and 800 g m~2 depending on environment. Taken together,
the resulting trend across environments was qualitatively more similar
to the observed data (i.e. correspondence between low versus high
yielding environments) for the +WB model than the -WB model.

3.2. Joint posterior distribution of ODE model parameters

Fig. 4 shows the correlation between the ODE model parameters
from both models. Varying degrees of correlations were observed be-
tween the posterior samples of the ODE model parameters. Specifically,
correlations were observed between « and LAIMAX (# =-0.96), TTL
and vreq ( = —0.8), RUE, and K (# = —0.66), and senrate and K
(7 = 0.52) in the +WB model. Similar correlation pattern followed
among these parameters in the -WB model. In addition, correlations
were observed between RUE, and K, ,,;, (? = 0.83), K and K, ,,;y (7
= 0.65), senrate and K, ,,;; ( = 0.53), K, ;s and wsen (# = 0.50), and
RUE, and wsen (7 = 0.51) in the +WB model. The biggest differences
in the posterior densities of the two models were observed in RUE,, K
and senrate. The parameters RUE, and K were estimated to be higher
whereas senrate was lower for the model including water balance
compared to the -WB model.

3.3. Crop growth parameters from the ODE component of the model

Table 2 shows posterior HDI and median for the crop growth
parameters from the +WB model. The HDI for « ranged from 0.0010
to 0.0012 with a median of 0.0011, which indicates that the rate of
LAI increase is 0.11% per °C-d before TT L. For a 20 °C-d, that would
amount to 2.2% of LAl increase per day. Likewise, the posterior median
for the canopy light extinction coefficient (K) was estimated to be 0.46.
The model estimated that it takes around 737 °C-d to reach end of
leaf expansion as indicated by the median for TTL, and the average
vernalization requirement as indicated by the posterior median for vreq
was 42.8 days. The parameter senrate had a median of 0.0053, which
indicates that it takes 36 days for the canopy to reach from maximum
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Fig. 2. Predictive performance of models including and excluding the water balance component for leaf area index (LAI), biomass, plant available water (PAW), and grain yield
assessed with three statistical metrics: relative root mean squared error (rRMSE), Willmott agreement index (d), and Nash-Sutcliffe efficiency (NSE).

Table 2
Posterior HDI and median for the ODE model parameters related to crop growth
obtained from the model with water balance.

Parameter Description HDI Median

a Relative rate of (0.0010, 0.0012) 0.0011
LAI increase before
the end of leaf
expansion

K Light interception (0.38, 0.55) 0.46
coefficient

TTL Thermal time to (693, 784) 737
the end of leaf
expansion

senrate Rate of senescence (0.0049, 0.0057) 0.0053

RUE, Potential radiation (0.100, 0.117) 0.109
use efficiency

vreq Vernalization (28.8, 56.7) 42.8
requirement

LAIMAX Maximum leaf area (6.06, 7.24) 6.66
index

leaf area to an LAI of less than 0.1 at a daily average temperature of
30 °C. Radiation use efficiency is more commonly expressed in units
of g MJ~1, which could be obtained by multiplying RU E, by 20 °C-d
which would result in potential RUE (g MJ~!) with median of 2.17 and
HDI of (1.99, 2.34).

Fig. 5 shows the smoothed densities of posterior and prior distri-
bution samples of the crop growth parameters from the +WB model.
The parameters «, K, and TTL shifted lower than specified prior,

whereas RUE, shifted higher, which indicates that the data were
informative in estimating the parameters. Likewise, the densities of
posterior distributions were considerably narrowed compared to that
of prior distributions for all parameters except vreq showing that the
data helped reduce uncertainties around those parameters.

3.4. Water balance parameters from the ODE component of the model

Fig. 6 shows the smoothed densities of samples from prior and
posterior distributions for the water balance parameters. The poste-
rior density curve for K, ,,; shifted much lower than specified prior,
whereas the posterior density curves for K, ;4> K, onq> @a0d wsen shifted
higher compared to their prior density curves. The posterior HDI and
median value for K, ;,;, K. nia> K. end> and wsen were (0.000004, 0.08)
and 0.03, (1.27, 1.47) and 1.37, (0.23, 0.42) and 0.32, and (0.21, 0.25)

and 0.26 respectively.
3.5. Parameters from the hierarchical component of the model

As we have established that the +WB model had better goodness-
of-fit and predictive ability, this and the following sections will present
results from the +WB model for making inferences.

Table 3 shows the posterior HDI and median for the plot effect
within an environment (Plot[ Env]; ;1) and the residual variance 4/c?2
for LAI, biomass, and PAW. The residual variance indicates the amount
of variance unexplained by the model. The plot level effects are the
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Fig. 3. Cross-validated median estimations and predictions of grain yield comparing models with and without a water balance component to the mean observed data points for
winter wheat grown in Oklahoma at Chickasha (C), Stillwater (S), and Perkins (P) across the 2012-2013 (13) and 2013-2014 (14) seasons under irrigated (I) and rainfed (R)
conditions. Data points are uniquely identified by a four-digit code LYYM, where L represents the location (C, S, or P), YY is the two-digit year (13 or 14) and M represents
management (I or R). Gray arrows show the shift in predictions that result from adding the water balance component.

Table 3
Posterior HDI and median for the parameters from the hierarchical component in the
model.

Parameter HDI Median
Plot[Env];;py for LAI (-0.51, 0.47) 0.010
Plot[Env),yy for biomass (-0.14, 0.18) 0.002
Plot[Env),, for PAW (-0.41, 0.41) —-0.150
N (0.85, 0.98) 0.920
V02 iomass (152, 176) 164.000
NC (24.86, 28.63) 26.680
\/o? Jield (86.90, 125.33) 105.000

differential effects of plots within an environment. As mentioned pre-
viously, the plot effects were defined as a fraction of the ODE-model-
simulated value for each variable. Thus, the plot effects with median
closer to zero indicate an absence of model bias whereas the plot effects
deviating from zero indicate a model bias. The posterior median for
the plot effects were close to zero for LAI and biomass, whereas we
observed a negative bias for PAW with a posterior median of —0.15.

4. Discussion

In this study, we utilized an ODE crop growth model coupled with
a simple water balance model to estimate certain wheat growth and
water balance parameters in winter wheat.

4.1. Model comparison for LAI, biomass, PAW, and yield predictions

Comparison between the models with (+WB) and without (-WB)
the water balance component showed mixed results depending on the
variable being considered (Fig. 2). The greatest improvement in model
performance (from -WB to +WB) was seen for yield. Unexpectedly,
the results for LAI showed very little difference in model performance
between the two versions. With the +WB model, biomass showed the
best model performance, while PAW ranked worst, when comparing
across all three statistical metrics (rRM SE, d, NSE). For all variables
N SE indicated poorer performance than d, most notably in the case
of PAW. The N SE statistic is a comparison against the overall mean
of observations and is, thus, especially sensitive to model bias. The d
statistic is better tuned to assess the extent to which a model captures
the overall dynamics of observed data (e.g. the timing of increasing
vs. decreasing trends). These results suggest that the +WB model
version is representing the overall dynamics of the system well, even if
some overall bias is present.

Despite the overall similar performance for LAI and biomass, the
model performance for grain yield was drastically different for +WB
and -WB (Figs. 2 and 3). The finding that grain yield predictions
were significantly improved by adding soil water balance aligns with
previous research indicating the importance of water availability for
wheat yield performance in this region (Berhe et al., 2017; Lollato et al.,
2017, 2020; Sciarresi et al., 2019). However, the discrepancy between
small improvements in LAI and biomass predictions and the substantial
improvement in yield is noteworthy.

The grain yield predictions by the -WB model did not capture the
general trend in grain yield across environments as shown by the lack
of conformity with the one to one line in Fig. 3. Specifically, the -WB
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model substantially over-predicted the grain yield in rainfed environ-
ments in 2014 (Fig. 3), when low rainfall resulted in severe water stress
late in the season. This severe water stress was captured by the +WB
model, as evidenced by the leftward shift of yield predictions when
water balance was incorporated into the model (Fig. 3). In contrast, the
rightward shift in grain yields for low water stress environments (most
sites in the 2013 season and irrigated sites in 2014 season) represented
a release of the constraint previously imposed by the -WB model. In
other words, the -WB model provided no means to distinguish between
high and low water stress environments thereby forcing the sampler
to maximize the likelihood by estimating values for model parameters
that resulted in yield predictions clustered around the average across
all environments. This phenomenon was present even when data from
all environments was used for parameter estimation (data not shown).

For the +WB model, the simulated water stress effects restricted
growth in water-stressed environments thereby allowing the sampler to
estimate values for parameters that resulted in higher yield predictions
for environments without water stress (Fig. 3). With the inclusion of
water balance and the concomitant shifts in predicted yield (higher for
irrigated sites and lower for rainfed sites), the model-predicted trend
more closely matched that of the observed data, as indicated by the
proximity of the predicted points to the one to one line. Neverthe-
less, grain yield predictions by the +WB model show some room for
improvement, particularly for rainfed sites in 2014 where predictions
were lower than observations indicating that the model may have
overestimated water stress. Unlike biomass, the grain yield predictions
for +WB differed noticeably from observed values (Fig. 3). This differ-
ence in pattern between biomass and grain yield shows that the yield
estimation was limited despite seemingly accurate biomass estimation.

Another contributing factor might be the fact that the model does
not represent drought response mechanisms such as enhanced root
growth, stomatal closure or carbohydrate remobilization, any of which

11

might have come into play to affect the yield formation in the actual
crop. In particular, carbohydrate remobilization can play an important
role in grain-filling under water-limited conditions (Yang et al., 2000;
Davidson and Chevalier, 1992). Thus, a possible improvement in the
model to address this issue could be to represent the carbohydrate
remobilization process.

4.2. Crop growth parameters from the ODE component of the model

The model yielded biologically plausible values for most parame-
ters, except RUE,, for which the estimated values were higher than
plausible. The posterior median for the light extinction coefficient
parameter (K) was estimated to be 0.46 which is biologically plau-
sible but lower than most literature reported values that were used
to formulate the priors. A study by Pradhan et al. (2018) in India
obtained light extinction coefficient values between 0.47 to 0.65 under
irrigated conditions, and reported that the irrigation did not have a
significant effect on light extinction coefficient. Another study by Kukal
and Irmak (2020) in Nebraska, USA obtained light extinction coefficient
values of 0.36 and 0.66 across two growing seasons for wheat. Low
light extinction coefficient indicates that it requires more leaf area to
intercept the same amount of light compared to canopies with high
light extinction coefficient. The parameter K also negatively correlated
with RUE, (7 = -0.66). The estimated RUE expressed in g MJ~! (as cal-
culated in Section 3.3) was substantially higher than the range of values
(0.7 to 1.8 g MJ~!) reported by other studies (Caviglia et al., 2004;
Albrizio and Steduto, 2005). Notably, the posterior density for RUE,
also shifted higher than the specified prior distribution. At first glance,
it seemed that the water stress was overestimated by the model since
the RU E, from the -WB model was within a biologically plausible range
(Fig. 4) and the grain yields for rainfed environments were predicted to
be lower than observed for 2014, the year with severe water stress [See
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Fig. 3 of the Supplementary Materials]. Given that no such decrease was
observed in biomass [See Fig. S11 of the Supplementary Materials], it
may indicate that the higher-than-biologically-plausible RU E, values
may have compensated for the downward pressure on biomass due
to water stress. However, the temperature effect on biomass growth
may also have been a contributing factor. The ODE model in its
current form assumes the same temperature function for phenology and
biomass growth. However, Wang et al. (2017) reviewed recent research
suggesting that the range of optimum temperatures for biomass growth
may be wider than that for phenological development or photosynthesis
alone. In our case, the higher values estimated for RUE, may have
also been compensating for the negative effect of cool temperatures on
simulated growth during the early season. Hence, specifying separate
temperature response functions for phenology and biomass growth may
produce better parameter estimates for RUE,,.

The correlations between the ODE model parameters indicate some
difficulties in uniquely identifying them (Fig. 4). For example, the
interplay between TTL and vreq indicates that there is not enough
information in the data to adequately distinguish these two param-
eters. The dataset used in this study does not adequately represent
diverse conditions in terms of planting time and temperatures which
would be helpful in identifying vernalization requirement. A dataset
from environments with variable planting time and more contrasting
temperatures could potentially provide information to disambiguate
these parameters. For instance, a planting date ranging from September
to November would encompass a greater range of planting condi-
tions, which is not outside the bounds of usual planting dates for
the study region (Munaro et al., 2020). Likewise, the strong negative
correlation between a and LAIMAX (# = —0.96) indicates that the
information provided in the data was not sufficient to disambiguate
these parameters. From a biological perspective, this finding is not
especially surprising as these two parameters represent closely-related
phenomena. Future model development may involve simplifying LAI-
related equations to allow estimation of a single leaf growth parameter
in place of « and LAIMAX.

The parameters also showed considerable differences in the poste-
rior distributions compared to their prior distributions except vreq. A
heavy shift and/or narrowing down of the density curve from prior
to posterior indicates that the data were informative in estimating the
parameters. For instance, the time to end of leaf expansion (7T L) was
estimated to be shorter (posterior median of 737 °C-d) than our prior
expectation. Likewise, the parameter a was estimated to be consider-
ably lower than the prior we specified. The posterior density curve
for the parameter vreq mostly overlapped with its prior density curve
which indicates that there was essentially no additional information
regarding vernalization requirement in the data. This is most likely
because the planting dates across these environments were similar
and there is a robust prior knowledge to appropriately represent the
vernalization requirement with these typical planting dates.

4.3. Water balance parameters from the ODE component of the model

The water balance parameters (K, ;,i» K, mid> Ke end» and wsen)
were estimated to be different from the priors as indicated by the
differences in prior and posterior samples density curves (Fig. 6). The
parameter K, ;,; shifted much lower with a median of 0.03 compared
to prior mean of 0.7. It indicates that the crop coefficient during early
season is much lower than the tabulated value in FAO-56 for Oklahoma
conditions. A study by Ko et al. (2009) to determine crop coefficients
with the lysimeter method reported that K, values ranged from 0.1 to
1.7 across the growing seasons in south Texas conditions. By contrast,
the estimates for K, ,,;;, were higher (median of 1.37) than the specified
priors pointing towards higher evapotranspiration than expected. The
high K. ,,, estimates could partially be due to the functional form of

the model whereby the light interception asymptotically approaches 1

but never reaches 1. The parameter K, ,;; was positively correlated
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with the crop growth parameters RUE, and wsen and negatively
correlated with K and senrate. These correlations suggest that the
relationship between water stress and crop growth can be manifested
through RUE,, K, and senrate.

The posterior density curve for K, ,,, also shifted higher but with
a great overlap with the prior density. The water stress sensitivity
parameter (wsen) for the sigmoid curve to calculate f,; was higher than
the specified prior with the posterior median of 0.26. It indicates that
the crop started experiencing water stress at about 52% of AWHC. The
management allowable depletion of is reported to be 55% for barley
and oats which indicates that these species start experiencing water
stress when 55% of the AWHC is depleted (Datta et al., 2017).

4.4. Parameters from the hierarchical component of the model

The hierarchical stochastic component allowed us to account for
random effects in the system, the plot effect in this case, thus decom-
posing the residual error. In this case the plot effects for LAI, biomass,
and yield were small, but in other cases the model structure outlined
here could be readily extended to allow for modeling random block or
location effects that are not modeled in a mechanistic manner (e.g. site-
specific disease pressure and pest infestation). The negative bias in the
plot effect for soil moisture (Table 3) indicates that the model should
be improved to better characterize the changes in soil moisture. The
low value of NSE for PAW also points towards a potential model
bias, whereas the relatively high value of d suggests that the model
is accurate in predicting the overall trend (Fig. 2).

5. Model limitations

The model we presented is a simple minimalist crop growth model
and cannot mechanistically accommodate the impact of different man-
agement practices such as fertilizer application and tillage. However,
the hierarchical component of the model would still be able to account
for the effects of different treatments. In addition, the model is pre-
sented in the form of a mathematical system rather than as software. In
its current form, modelers who have experience with R (R Core Team,
2020) and Stan (Stan Development Team, 2020b) will be able to utilize
the model and modify it to fit their experimental design.

6. Summary and conclusions

The methodology we presented in this article can be successfully
used to estimate crop growth parameters and to understand system
dynamics of a winter wheat cropping system. The model predicted LAI
and biomass with more success than PAW and yield. Model evaluation
statistics indicated overall satisfactory performance of the +WB model,
however, potential approaches for further improvements of the model
were identified such as accounting for carbohydrate remobilization
during grain filling and specifying separate temperature functions for
RUE, and phenology. The biologically meaningful parameters allow
crop scientists to make direct physiological interpretations. Estimating
parameters along with their uncertainties provides a fuller picture of
accuracy and reliability of the estimates. This approach of modeling
allows mechanistic representation of physiological processes while also
accounting for experimental design factors (such as plot within block
effects) that are not typically represented within purely deterministic
models. Thus, this modeling approach can be adapted to specific needs
and circumstances of a given project.
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