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ABSTRACT: We copolymerize a norbornene monomer bearing a pendant
naphthalene diimide with a norbornene bearing a cinnamate pendant moiety to
synthesize a crosslinkable electron-transporting polymer and study its use in solution-
processed n—i—p perovskite solar cells. The crosslinked material exhibits over 90%
transparency in the visible region and higher thermal stability (>300 °C) and lower
surface energy than the corresponding homopolymer of the naphthalene diimide
functionalized norbornene. Coating an ITO surface with the photo-crosslinked
copolymer yields a slightly lower work function than homopolymer-coated ITO. We
show that the morphologies of the perovskite films deposited on both polymers are
similar (~300 nm features) based upon scanning electron microscopy. Our solar-cell
device results show that the crosslinked naphthalene diimide polymer gives a higher
open-circuit voltage (1.08 vs 1.0S V), fill factor (average 64.43 vs 58.77%), and
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stabilized power conversion efficiency (12.28 vs 10.33%) compared to its non-crosslinked homopolymer counterpart, as well as
reduced hysteresis. We attribute the improved performance to decreased work function, reduced nonradiative recombination, and

higher shunt resistance.

B INTRODUCTION

suboptimal transparency in the visible. Furthermore, fullerenes

Hybrid organic—inorganic lead halide perovskite solar cells are
a rapidly emerging photovoltaic technology that has reached
power conversion efficiencies (PCEs) exceeding 26%."
Typically perovskite solar cells incorporate transport layers
between the perovskite absorber and the charge-collecting
electrodes to improve carrier selectivity. Metal-oxide-based
electrontransport layers (ETLs) have been widely used in n—
i—p perovskite solar cells for a variety of reasons including their
moderate to high electron mobilities, good energy alignment
with the perovskite conduction band, and wide bandgaps that
reduce parasitic absorption and offer hole-blocking capabil-
ity.”? TiO, remains the most common ETL used in state-of-
the-art n—i—p cells but requires high processing temperatures
and exhibits photoinstability.

Organic electron transport materials represent a possible
alternative to metal oxides. Organic semiconductors offer
processing flexibility, tunable energy level alignment, and may
offer decreased nonradiative recombination losses at the
electron-extraction interface.”® Of the existing organic semi-
conductor ETLs, fullerenes have been widely adopted and have
produced efficient devices in both normal (n—i—p)” and more
commonly in inverted (p—i—n) architectures.” Fullerenes offer
good charge-transport properties but have poor solubility and

© 2024 American Chemical Society

7 ACS Publications

795

can be a substantial source of interfacial recombination
losses,”” and devices incorporating fullerenes as ETLs can
suffer from issues of long-term stability.' "’

Alternative nonfullerene organic ETLs have been employed
as small molecules and polymers including perylene
diimides,">"? naphthalene diimides,"*™'° and azaacenes.'”'®
Herein, we pursue the strategy of crosslinkable naphthalene
diimide-based electron transport layers. We chose naphthalene
diimides because they possess high transparency throughout
the visible region and electron affinities comparable with those
of perovskites combined with high hole-blocking ionization
energies, and, in some cases, good electron transport
properties.'” Furthermore, the synthesis of naphthalene
diimides is straightforward and can be readily modified to
tune both their solubility and electron affinity via substitution
at the imide and naphthalene core positions.”” Naphthalene
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Figure 1. Synthesis and molecular structure of NDI-1 and the cinnamate copolymer (NDI-CL).

diimide acceptors have been incorporated in a number of
polymeric architectures for various applications in organic
electronics™ but less widely in perovskite photovoltaics.
Herein, we also focus on crosslinking the naphthalene
diimide-based ETLs because crosslinking offers many possible
processing and stability advantages. For example, crosslinked
charge transport layers can be used to increase the robustness
of derived organic electronic devices toward degrada-
tion.'”*»** Crosslinking also imparts solvent resistance,
which can allow for the deposition of subsequent layers from
solution in nonorthogonal solvents.” Numerous crosslinking
approaches have been used for transport layers in the
literature.”* Here, we chose a copolymerization strategy
incorporating a cinnamate containing comonomer. The
cinnamate functional group is relatively easily incorporated
into monomers bearing a polymerizable group and is
compatible with a wide range of polymerization methods.”
Cinnamates are particularly attractive crosslinking groups
because they undergo selective dimerization, avoiding the
need for an added photoinitiator and preventing unwanted
functionalization of electroactive portions of the polymer.*®
Additionally, they are tolerant of molecular redox dopants,
allowing for doping before or after insolubilization. Cross-
linking can be achieved via mild photoirradiation with a hand-
held UV lamp.””~*" Photo-crosslinking offers advantages
compared to thermal crosslinking as the process does not
require high temperature annealing and thus can be used on
plastic substrates or in top (rear) charge selective contacts
without degrading the underlying perovskite layer.
Developing new nonfullerene organic ETLs for perovskite
solar cells remains a considerable challenge. The Marder and
Bach groups previously reported the use of a naphthalene
diimide side chain homopolymer that achieved stabilized PCEs
of >13.5% in n—i—p perovskite solar cells.”” Here, we report
the synthesis, characterization, and material properties of a
related new copolymer (NDI-CL) which incorporates
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cinnamate crosslinking groups. We demonstrate this polymer’s
high transparency, thermal stability, photo-crosslinking, and n-
doping via solution and sequential processing. We demonstrate
its applicability in perovskite solar cells through character-
ization of solar cell device performance relative to its
uncrosslinked homopolymeric counterpart (NDI-1) in n—i—p
devices with an MA-free perovskite absorber (MA
methylammonium).

B RESULTS AND DISCUSSION

Figure 1 shows the polymer structures and their syntheses. The
naphthalene diimide monomer (1) and the corresponding
homopolymer (NDI-1, see Figure S1 for its molecular
structure) were synthesized for this work (M, = 54.5 kDa, D
1.50) following methods previously reported.’® The
cinnamate norbornene monomer was synthesized over two
steps (Figure S2): the commercially available methyl 4-
hydroxycinnmate (2) was etherified to methyl 4-(3-
hydroxypropoxy)cinnamate (3) by deprotonation with anhy-
drous potassium carbonate and alkylation with 3-bromo-1-
propanol in N,N-dimethylformamide (DMF). The norbornene
cinnamate monomer (4) was then synthesized by a Steglich
esterification with exo-5-norbornenecarboxylic acid using
dicyclohexylcarbodiimide (DCC) and catalytic 4-dimethylami-
nopyridine (DMAP). The polymer (NDI-CL) was synthesized
by ring-opening metathesis polymerization (ROMP) of the
naphthalene diimide monomer and cinnamate monomer in a
7:3 ratio (Figure SS), respectively, with a Grubbs first
generation catalyst in dichloromethane (DCM) (M, = 45.4
kDa, D = 1.17). The SEC (GPC) traces of both polymers in
chloroform are shown in Figure S7. The polymer exhibited
good solubility in low polarity solvents commonly used in
device processing such as chloroform, chlorobenzene, and
dichlorobenzene.

We characterized the optical properties and crosslinking of
thin films of NDI-CL cast from chlorobenzene. The UV—vis
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Figure 2. (a) UV—vis absorption spectrum of NDI-CL film on glass with increasing irradiation time with 365 nm hand-held UV lamp. (b)
Conductivity of solution and sequentially doped NDI-1 and NDI-CL films; LOD represents limit of detection. (c) Thermogravimetric analysis
(TGA) of NDI-CL polymer and derivative weight. (d) Differential scanning calorimetry of NDI-CL polymer.

absorption spectrum of NDI-CL prior to crosslinking shows a
vibronically structured feature similar to that of small-molecule
unsubstituted NDIs (Figure 2a),”° with a broad unstructured
absorption peaking at ca. 310 nm attributable to the absorption
of the para-alkoxy-substituted cinnamate moiety.”® We then
photoirradiated the films at 365 nm with a hand-held UV lamp
for 25 min; the observed changes in the absorption spectrum
over time—the absorbance of the cinnamate feature decreases
to reach a near minimum after ca. 20 min irradiation (Figure
2a)—which we attribute to the [2 + 2] cycloaddition reaction
of the cinnamate. Subsequently, in Figure S9, we demonstrate
the solvent resistance of the films toward both the casting
solvent and the perovskite ink solvent mixture, chlorobenzene,
and 4:1 DMF:DMSO (DMSO = dimethyl sulfoxide),
respectively, by spin coating each solvent atop the crosslinked
films and showing negligible changes in the absorption
spectrum.

Once we had established an effective crosslinking protocol,
we sought to investigate the charge-transport properties of
these materials. In the absence of doping, the conductivities
were below the limit of detection (<107'° S/cm) of our
apparatus. We used the highly reducing but moderately air-
stable dimeric benzimidazole dopant, (N-DMBI),, as a
reducing agent.”" Solution doping was carried out on NDI-1
(9 mol % dimeric dopant) without the addition of a
crosslinker. Solution doping of the copolymer (9 mol %
dimeric dopant) was followed by crosslinking. We also
investigated a sequential doping protocol where a dopant
solution (6 mg/mL) was applied to the crosslinked film
followed by chlorobenzene washing step. For sequential
doping, NDI-1 was cross-linked by 5% weight addition of an
oligomeric azide crosslinker, 4Bx, shown in Figure S1, followed
by photoirradiation at 254 nm for § min.”” Figure 2b shows
that all polymer dopant systems exhibit modest conductivities
(107°=107% S/cm). Additionally, solution-doped NDI-1
exhibited better conductivity by several orders of magnitude
compared to the solution-doped and crosslinked NDI-CL.
Sequentially-doped and crosslinked NDI-CL had slightly better
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conductivity than its solution-doped and crosslinked counter-
part, perhaps because the polymer morphology was less
interrupted by the doping process. In summary, doping of
these side chain naphthalene diimide polymers improves their
conductivity, but only achieving values of 107°—107% S/cm,
which is less than other state-of-the-art n-doped electron-
transporting polymers, which can reach conductivities of 1.1 X
1073 S/em.”

We also characterized the thermal properties of NDI-CL
(without photo-crosslinking) by thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC), shown in
Figure 2c,d, respectively. The TGA indicates the decom-
position temperature of the polymer, Ty defined as temper-
ature at which 5% of mass is lost, is ca. 335 °C. The first DSC
cycle shows a small endotherm around 80 °C which likely
reflects loss of the trapped solvent (note in Figure S6 trace of
DCM present according to "H NMR spectroscopy). Addition-
ally, a melting peak is observed around 135 °C in the first
cycle. However, after the thermal history of the polymer has
been cleared, we observe no transitions up to 200 °C in the
second cycle. The excellent thermal stability of the polymer
implies compatibility with high temperature annealing steps for
the deposition of other layers in perovskite solar cell devices.

We dissolved NDI-1 and NDI-CL in anhydrous chlor-
obenzene to form solutions with a concentration of 1 mg/mL
prior to spin coating onto the ITO substrates. The thickness of
the NDI polymer films was estimated to be ~4 nm using
atomic force microscopy (AFM) measurements (Figure S10).
In addition, the naphthalene diimide polymers cover the ITO
substrate conformally (Figure S10b). We further measured the
work function of NDI-1 and crosslinked NDI-CL modified
ITO using scanning Kevin probe microscopy (SKPM) with
highly oriented pyrolytic graphite (HOPG) as the reference.
We obtain uniform and homogeneous surface potential
distributions with both NDI-1 and NDI-CL layers, which is
beneficial for the charge collection at the interface (Figure
$11).** We measured the work function of NDI-CL/ITO to be
~4.36 eV, which is lower than that of NDI-1/ITO (~4.55 V),
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and similar to NDI-modified ITO in a previous report.”> We
performed drift-diffusion simulations with Solar Cell Capaci-
tance Simulator (SCAPS)***” to understand the impact of the
reduced work function of the electron-collecting electrode on
the perovskite solar cell’s performance. We varied the work
function of the electron-collecting electrode and found that the
reduced work function will, in theory, increase the device V¢
(Figure S12).

To compare device performance, we focused our analysis on
the mixed-cation mixed-halide perovskite FA(g;Csg,Pb-
(Tos3B10.15)3 (we denote as Cs17BrlS, FA* = formamidinium),
which has a bandgap of 1.63 eV.” Figure 3a shows the n—i—p
device architecture used in this study. As in the previous study
of NDI-1, we utilized a sparse dispersion of Al,O; nano-
particles on top of the naphthalene diimide polymers to
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improve wettability and obtain continuous perovskite films as
the neat films of both polymers were hydrophobic (Figure
S$13).*® The ALO; nanoparticles should only cover partial of
the surface area of the polymers and help improve wetting.””

We used Spiro-OMeTAD as the hole transport layer (HTL)
and gold (Au) as the top electrode. Figure 3c shows the
characteristic J—V curves for NDI-1 and NDI-CL devices
under 1 sun illumination and clearly indicates that the device
using NDI-CL gives a higher V¢ than using NDI-1, as
expected based on the work-function measurement. In
addition, NDI-CL also reduces device hysteresis. We fabricated
devices with SnO, as the ETL (Figure S14a) and without an
ETL (Figure S14b). The two devices also showed hysteresis,
indicating that the hysteresis might be associated with the
perovskite layer or perovskite/Spiro-OMeTAD interface. We
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measure a maximum Vg of ~1.08 V for the NDI-CL solar
cell. Figure 3b,d shows the statistical distribution of maximum
power point (MPP) and Vg with all other photovoltaic
parameters summarized in Table S1 and Figure S15. Overall,
when using the crosslinked polymer, we see a consistent
increase of Vo (~30 mV on average) and FF and thus PCE
based on the reverse scan. The enhanced V¢ in NDI-CL-
based solar cell devices is qualitatively consistent with the
predictions from our SCAPS drift-diffusion simulations. We
speculate that the enhanced FF might also be due to
crosslinked NDI-CL blocking the shunting path between the
perovskite and the ITO electrode or reduced nonradiative
recombination at the polymer/perovskite interface (see
below). We measured the dark J—V curve of NDI-1 and
NDI-CL devices as shown in Figure S16. The NDI-CL solar
cell device exhibits a better diode characteristic with reduced
leakage current density and a higher rectification ratio
compared to the NDI-1 device.** This indicates that the
NDI-CL solar cell device has higher shunt resistance®' and a
suppression of charge carrier recombination in the device
compared to the NDI-1 solar cell device.*” Based on the
lumped equivalent circuit model,” we estimate the shunt
resistance of the NDI-CL-based perovskite solar cell to be
5270 + 350 Q-cm?, which is double that of the NDI-1-based
device (2210 + 210 Q-cm?, Figure S17). We further fitted the
dark J—V curve to obtain the series resistances for NDI-CL and
NDI-1 devices, which are 8.5 + 1.8 and 9.9 + 0.8 Q-cm?,
respectively. In addition, we obtain stabilized power output
(SPO) efficiencies of ~12.28 and ~10.33% for solar cells using
NDI-CL and NDI-1, respectively (Figure 3b and Table S1).
To understand the differences in performance between NDI-
1 and NDI-CL devices, we examined the influence of NDI-1
and NDI-CL on the quality of perovskite film formation.
Figure 4a shows the X-ray diffraction (XRD) patterns of
perovskite Cs17BrlS on top of the NDI-1- and NDI-CL-
modified ITO substrates. The peak positions, full width at half
maximum (FWHM), and peak intensities are indistinguishable,
and we conclude therefore that the crystallinity of perovskite
Cs17BrlS remains the same. In addition, the UV-—vis
absorption spectra show nearly identical absorption for
Cs17BrlS films deposited on the two different substrates
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(Figure 4b). Figure 4c,d shows the photoluminescence (PL)
lifetime and PL emission of Cs17BrlS on NDI-1- and NDI-
CL-modified ITO substrates. We measure a longer lifetime
(~74 ns) with stretched exponential fitting for perovskite on
NDI-CL-modified ITO in comparison to that on NDI-1 (~25
ns) when excited from the ITO side with a 640 nm
wavelength. Accordingly, the PL emission of Cs17BrlS on
NDI-CL is ~6.5 times higher than that of Cs17Br15 on NDI-1,
which is consistent with an enhanced PL lifetime, suggesting a
potential reduction of defect density at the bottom interface.
The suppressed nonradiative recombination may be due to a
chemical passivation effect of NDI-CL, or simply reduced
coupling between the NDI and perovskite due to the
cinnamate, which may be partially responsible for the
improved device performance observed with NDI-CL,
especially improvements in the V.

The morphology and grain structure of perovskite films also
play an important role in device performance.*** We used
scanning electron microscopy (SEM) imaging to investigate
the morphology of Cs17BrlS perovskite films deposited on
NDI-1- and NDI-CL-modified ITO substrates. Figure Sab
shows top view SEM images of Cs17BrlS perovskite films on
NDI-1 and NDI-CL. The perovskite films are dense and
pinhole-free on both NDI-1- and NDI-CL-modified ITO
substrates with smooth and clean surfaces, indicating good film
quality. Figure Sc,d shows the corresponding grain size
distributions for the two cases (approximating that SEM
morphology corresponds to the grain structure, while acknowl-
edging that this approximation can be inaccurate®). The
average grain sizes obtained from the SEM images (~324 + 99
vs ~289 + 108 nm) are similar for Cs17BrlS perovskite on
NDI-1- and NDI-CL-modified ITO substrates. The surface
roughness of the perovskite film on NDI-CL-modified ITO is
~13.6 nm, slightly lower than that of perovskite on NDI-1,
which is ~18.5 nm (Figure S18). A slightly smoother
perovskite film on NDI-CL should also be beneficial for
device performance.

Bl CONCLUSIONS

In summary, we report a photo-crosslinkable naphthalene
diimide copolymer as ETL for solution processed perovskite
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solar cells. The crosslinked ETL, NCI-CL, exhibits both high
transparency of over 90% in the visible region and high thermal
stability (~ 300 °C). NDI-CL-modified ITO shows a slightly
lower work function than ITO modified with the non-
crosslinked NDI-1. Our solar cell device results show that
the crosslinked NDI-CL polymer leads to slightly higher Vi,
FF, PCE, and less hysteresis than its non-crosslinkable NDI-1
counterpart. The average V¢ is enhanced to ~1.08 V from
~1.05 V with stabilized PCE increasing to 12.28% from
10.33% on average. We ascribe the improved performance to
the decreased work function of the NDI-CL-modified ITO,
and higher shunt resistance with crosslinked naphthalene
diimide polymer-based perovskite solar cells. This work
demonstrates that a crosslinked polymer ETL works for
perovskite solar cells, which provides insights into the design of
polymer electron-transport materials for perovskite solar cells.

B METHODS

Materials. All chemicals were purchased from commercial sources
and used as received unless stated otherwise. Column chromatog-
raphy was carried out using silica gel (46—63 ym, Sorbent) as the
stationary phase, and thin-layer chromatography (TLC) was
performed on precoated silica-gel plates (0.25 mm thick, 60F254,
EMD, Germany) and visualized under UV light. Nuclear magnetic
spectroscopy measurements were carried out on Bruker Avance III
400 or Avance III HD 500 MHz instruments and calibrated using the
solvent residual as an internal reference (CHC;, 7.26 ppm 'H NMR,
77.16 ppm C NMR). Polymers were analyzed using a Tosoh
EcoSEC HLC 8320 GPC system equipped with a TSKgel SuperHZ-L
column with a CHCl; eluant containing 0.25% NEt; at a flow rate of
0.45 mL/min at 40 °C. All number-average molecular weights and
dispersities were calculated from refractive index chromatograms
using PStQuick Mp-M polystyrene standards. Elemental analyses were
carried out by Atlantic Microlabs using a LECO 932 CHNS elemental
analyzer.

Materials for Halide Perovskite and Perovskite Film
Preparation. All precursors were used without any further
purification and were stored in a nitrogen-filled glovebox. For-
mamidinium iodide (FAI, Greatcell), cesium iodide (Csl, Sigma),
lead iodide (Pbl,, Sigma), and lead bromide (PbBr,, Sigma) were
dissolved in a mixture of anhydrous N,N-dimethylformamide (DMF,
Sigma) and anhydrous dimethyl sulfoxide (DMSO, Sigma) (volume
ratio of 4:1) to prepare a 1.2 M solution of FA4;Cs ;,Pb(1y-sBrg1s);
according to the stoichiometry. Patterned indium tin oxide (ITO,
from thin film devices) glass substrates and glass substrates were
cleaned by sequentially sonicating in water containing ~2% Micro-90
detergent, DI water, acetone, and 2-propanol (IPA) for 10 min,
respectively, followed by plasma-cleaning for S min. The perovskite
precursor solution was filtered with a PTFE filter before use, and 50
uL of the solution was deposited on top of the substrate and spin-
coated at 4000 rpm for 60 s. When ~3S s remained, 120 uL of
anhydrous chlorobenzene (CB, Sigma) antisolvent was dropped from
the top. The perovskite films were then annealed at 100 °C for 30 s
and at 150 °C for 10 min. The preparation of perovskite films was
carried out in a nitrogen-filled glovebox.

Fabrication of Perovskite Solar Cells. To fabricate the
Cs17Brl15 devices, NDI-1 and NDI-CL were dissolved in anhydrous
chlorobenzene (CB) at a concentration of 1 mg/mL, and 60 uL of the
solution was deposited onto the ITO substrate before spin coating at
3000 rpm for 30 s. The NDI-CL was then put under UV (UVGL-25
Compact UV Lamp) light at 365 nm (~S cm above the film) for 20
min to crosslink the polymer. The AL,O; (Sigma) was diluted in
isopropyl alcohol (IPA) with a volume ratio of 1:150, which was spin-
coated at 3000 rpm for 30 s, followed by annealing at 100 °C for ~1
min. The perovskite films were deposited in the same way as that
mentioned above. Spiro-OMeTAD (Xi'an Polymer light technology
Corp.) was used as the hole transport layer. The HTL solution was
prepared by dissolving 60 mg of Spiro-OMeTAD in 700 uL CB, with
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addition of 22.5 uL 4-tert-butylpyridine (t-BP, Sigma-Aldrich) and
15.5 uL of Li-TFSI solution (520 mg/mL in acetonitrile, ACN,
Sigma-Aldrich). The 60 uL HTL solution was spin-coated on top of
perovskite at 3000 rpm for 30 s in a nitrogen-filled glovebox.
Subsequently, the half-stacked solar cell devices were stored in a
desiccator for 24 h. To complete the device fabrication, 80 nm of Au
was thermally evaporated onto the devices.

Structural and Optical Characterization. A Bruker D8 Powder
X-ray diffractometer (XRD) with a high-efficiency Cu anode
microfocus X-ray source and sensitive Pilatus 100 K large-area 2D
detector was used to study the crystal information on perovskite films.
PL emission (excited at 640 nm) was measured using an Edinburgh
FLS1000 spectrometer with a xenon lamp light source. A PMT-980
detector was used for the PL measurements. SEM images were
acquired by using a FEI Sirion SEM instrument at a 2 kV accelerating
voltage. The sample structure was ITO/NDI/AI,O;/perovskite.

See the Supporting Information for more information on the
synthesis and other characterizations.
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