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A B S T R A C T   

Image data collected after natural disasters play an important role in the forensics of structure failures. However, 
curating and managing large amounts of post-disaster imagery data is challenging. In most cases, data users still 
have to spend much effort to find and sort images from the massive amounts of images archived for past decades 
in order to study specific types of disasters. This paper proposes a new machine learning based approach for 
automating the labeling and classification of large volumes of post-natural disaster image data to address this 
issue. More specifically, the proposed method couples pre-trained computer vision models and a natural lan
guage processing model with an ontology tailed to natural disasters to facilitate the search and query of specific 
types of image data. The resulting process returns each image with five primary labels and similarity scores, 
representing its content based on the developed word-embedding model. Validation and accuracy assessment of 
the proposed methodology was conducted with ground-level residential building panoramic images from Hur
ricane Harvey. The computed primary labels showed a minimum average difference of 13.32% when compared 
to manually assigned labels. This versatile and adaptable solution offers a practical and valuable solution for 
automating image labeling and classification tasks, with the potential to be applied to various image classifi
cations and used in different fields and industries. The flexibility of the method means that it can be updated and 
improved to meet the evolving needs of various domains, making it a valuable asset for future research and 
development.   

1. Introduction 

How the post-hurricane damage data is collected, assessed, and 
archived builds the foundation for developing community resilience, 
codes, and engineering design. Precise damage assessment is paramount 
for all facets of disaster management [1]. Over the past decades, a 
notable transition has occurred from traditional manual damage 
assessment techniques [2–4] to the adoption of remote sensing tech
nologies such as Unmanned Aerial Vehicles (UAV) [5–7], Light Detec
tion and Ranging (LiDAR) [8–10], and satellite imagery [11–13] for 
gathering hurricane damage data. Although these technologies rapidly 
capture extensive affected areas, their accessibility remains limited 
because few researchers and governmental entities possess the capacity 
to deploy such broad-scope remote sensing equipment. The significant 
accumulation of archived disaster data, coupled with high demand, has 
led to the emergence of numerous disaster data repositories, project 
hubs, and individual websites, heralding a “Big Data” era in natural 
hazard research. Information-rich hurricane reconnaissance mission 
data is now readily available from renowned repositories such as 

Structural Extreme Events Reconnaissance (StEER) Data Depot [14], 
Automated Reconnaissance Image Organizer (ARIO) [15], United States 
Geological Survey, and National Oceanic and Atmospheric Administra
tion. Although these data exist in abundance, they do not provide 
meaningful information before a complex processing effort, which 
brings Data Rich Information Poor (DRIP) situation. 

The processing and extraction of useful information from complex 
datasets present a significant challenge for many researchers. Often, 
these datasets are stored in large, unorganized blocks without proper 
data provenance, making it difficult for researchers to locate specific 
data. For instance, in repositories like DesignSafe, post-hurricane UAV 
images are typically stored without any systematic ordering or classifi
cation. The metadata associated with these images, primarily derived 
from UAV data collection, offers limited informational value. This lim
itation creates road blocks for efficiently using these archived disaster 
images in various civil engineering tasks. To illustrate, when creating a 
fragility curve to characterize the performance of a specific type of 
building or building components, such as windows, during windstorm 
events, structural engineers often face the arduous task of searching for 
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images depicting these specific types of damages within a vast disaster 
data repository. The additional challenge of locating these images from 
multiple historical storm events further complicates the process. There is 
a need for formal methods to automate image/information search to 
support these engineering applications. 

The traditional approach to large-scale image classification began 
with Content-Based Image Retrieval (CBIR) during the 90 s [16,17]. 
CBIR primarily targeted the extraction of visual features, like color, 
texture, and shape, from images. However, its emphasis on low-level 
visual features frequently resulted in mismatches. The advent of early 
semantic image search aimed to address these shortcomings by focusing 
on the image’s context or content rather than just comparing basic el
ements like color histograms and texture patterns [18,19]. Still, foun
dational data processing beyond this stage necessitated manual labeling. 
Manual annotation involves marking or labeling objects within an image 
to serve as ground truth. For instance, in LSCOM [20], over 10,000 h of 
manual effort produced 33 million labels denoting the presence or 
absence of specific features. Web search engines grappled with similar 
challenges. For example, a pioneering framework was devised to 
autonomously augment the textual labels of an image, leveraging its 
initial keywords and content [21,22]. Yet, the scalability of these 
methods for general images remains questionable, as the quality of the 
augmented labels might vary depending on the image type and the 
presence of fitting seed keywords. 

Natural disaster image classification has encountered similar chal
lenges. Many studies have been conducted to automatically classify 
large volumes of natural disaster images stored in online image archives. 
However, past studies approached a way to classify large images by 
annotating a natural disaster type as a label, and no object detection was 
performed [23–25]. Few studies successfully generated a multi-label 
database that continued natural disaster type and location as the pri
mary categories [26]. Nevertheless, the previous work can only provide 
a preliminary classification of images based on the incident type, lacking 
actual object information that each image contains and cannot be used 
to perform detailed image classification based on the objects or at the 
component level. This gap underscores the need for more advanced 
computational methods in image classification that not only recognize 
disaster types but also delve into detailed content within the image, 
aligning with the evolving requirements of domain-specific applications 
in disaster management. 

Recent advancements in deep learning have revolutionized image 
classification. It is now possible to automatically detect and interpret 
higher-level features in images with precision. More specifically, deep 
learning-based object detection models are favored for rapid but accu
rate image data processing in image classification. Object detection, 
considered extremely challenging in the early 2000 s, became much 
easier with recent advancements in computer vision and AI algorithms 
such as You Only Look Once (YOLO) [27], regional convolutional neural 
network (Mask R-CNN) [28], and transformer neural network [29]. 
Object detection in natural disaster damage assessment aims to identify 
and locate critical targets, including infrastructures and buildings 
[13,30–32], camouflaged objects [33,34], search and rescue [35–38], 
change detection [39–41], crack detection [42–44], and flood damage 
[45–47]. Although computers can process information much faster than 
humans, object detection still requires initial data to train the model, 
which typically includes manual annotation. While this process is labor- 
intensive and time-consuming, it is essential for crafting high-quality 
datasets pivotal for training, validating, and testing computer vision 
models. 

Despite advances in object detection algorithms, automated natural 
disaster damage assessment on the building component level (e.g., 
windows, roofs, doors, walls) [4,9] is still limited, while community- 
level damage (overall affected area) [12,13,48,49] and property-level 
damage (individual structure) [50–53] is a common practice. This lim
itation is not due to data scarcity but challenges in accurately classifying 
vast image datasets for training data. Image classification refers to 

assigning categories to image sets based on specific characteristics, 
which is crucial for understanding the damage dynamics in disaster 
assessment. For instance, the training data must specifically originate 
from wind damage events to develop a model detecting hurricane- 
induced roof damage on residential buildings. Using commercial 
building imagery from earthquake incidents would be inappropriate, as 
the damage mechanisms are fundamentally different. Another case may 
involve studying the correlation between hurricane damage to elevated 
buildings and their front doors. It is essential to filter images showing the 
front view of such buildings. Side or nadir views merely contribute as 
noise data. The main challenge is not just in locating post-hurricane 
damage data but in the labor-intensive process of filtering images to 
pinpoint specific events and their associated damages. 

To date, no large-scale image databases exist for natural disaster 
classification. Despite recent advancements in AI-driven image curation 
and classification techniques—including automated image tagging [54], 
image quality assessment [55], and duplicate image detection [56]— 
most natural disaster repositories remain focused on raw storage 
without systematic curation. For researchers and practitioners 
leveraging these repositories for deep learning-based damage assess
ment, the major challenge comes from the infeasibility of manually 
sorting hundreds of labels into countless images and their categories. It 
is extremely laborious and time-consuming and cannot be completed by 
a small group of researchers. As a result, most studies end up with micro- 
level hazard analysis, failing to accomplish both micro and macro levels 
of image data analysis and classification. 

Most recently, the advancement of transformer networks and 
OpenAI’s Contrastive Language-Image Pre-Training (CLIP) [57] has 
facilitated the development of rapid semantic image search engines 
[58]. CLIP, trained on a wide array of internet images using natural 
language supervision, has the capability to produce zero-shot classifiers 
from textual descriptions. This means that a semantic image search 
engine leveraging CLIP can extract text embeddings or labels from an 
image, like identifying objects and content (e.g., dogs and cats), without 
needing custom training data. However, two main challenges persist to 
be applied on post-natural disaster images with complex and intricate 
objects. First, while large pre-trained models like CLIP can identify 
generic objects, they might struggle with specifics; for instance, they can 
recognize a building but might fail to discern its structural type or assess 
damage. Secondly, we currently lack a reliable method to determine the 
accuracy of the labels assigned by these models, meaning there is no 
clear way to gauge how closely a label correlates with the actual content 
of an image. 

To address these challenges, this study proposes a new approach to 
automatically classify large volumes of natural disaster damage images. 
It aims to automating disaster image search to support civil engineering 
tasks that include, but are not limited to, characterizing hazard expo
sure, damage assessment and modeling, and debris quantification. The 
approach couples pre-trained computer vision models and a natural 
language processing model with an ontology tailored to natural disasters 
to facilitate the search and query of specific image data types. More 
specifically, image labels are first extracted automatically using pre- 
trained models from computer vision recognition platforms, which 
minimizes manual image labeling work by utilizing the largest image 
label pre-trained model. Then, extracted labels will be incorporated into 
a developed word-vector query system, which quantifies the label in
tensity to the image, resulting in four primary labels with numerical 
values that can inform types of natural disasters, images, locations, and 
entities. 

This research contributes to the field of natural disaster image data 
curation, addressing gaps in existing methodologies. It introduces an 
approach for automated curation of natural disaster images, reducing 
the reliance on manual labeling. This area, particularly in the context of 
automated data curation and efficient image classification for natural 
disasters, has seen limited exploration. This study introduces a method 
to improve data curation from large disaster repositories. The 
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methodological innovation of this research is the integration of 
advanced computer vision techniques with natural language processing. 
This combination is not commonly seen in current disaster management 
research. The proposed method enhances the curating and utilization of 
data in disaster management repositories, which have traditionally 
struggled with handling large-scale disaster data efficiently. By 
improving data curation processes and search capabilities, this research 
aids in more effective use of post-disaster data, facilitating robust post- 
disaster forensic studies and making extensive datasets more accessible 
for comprehensive disaster analysis. The final contribution of this study 
is to address the underutilized potential of natural disaster image data. 
Unlike the general object recognition models developed by companies 
like Google or Amazon, which rely on extensive labeled datasets, there is 
a lack of datasets specifically labeled for natural disaster damage 
assessment. This research is a step towards creating a tailored dataset for 
natural disaster AI research, filling a notable gap in the field and paving 
the way for more nuanced AI-driven disaster analysis and response 
strategies. 

2. Proposed methodology 

The overall workflow is shown in Fig. 1. The workflow begins with 
image uploads to cloud storage. Once uploaded, image label extraction 
is automatically initiated using the large pre-trained recognition models. 
These models may include custom labels for data gaps and can signifi
cantly reduce the need for manual labeling. This process also involves 
using pre-trained models for both face and text detection, with the 
identified areas subjected to Gaussian blurring to anonymize sensitive 
information like faces and license plates. All extracted labels are stored 
back in the cloud. These labels serve as a secondary layer in the work
flow. The secondary labels undergo processing to prepare them for 
natural language word embedding models. This includes converting all 
text to lowercase, trimming unnecessary punctuation marks, and 
filtering out irrelevant labels (e.g., labels like lobster or pilot are not 
helpful in the context of natural disaster damage assessment). The labels 
are then evaluated against word embeddings, generating tf-idf scores for 
each label. The outcome of this process is a set of primary labels, each 
associated with a numerical value. These labels provide comprehensive 
insights into the nature of the natural disaster, image content, location, 

and entities depicted, offering a streamlined, automated approach to 
image analysis in disaster management scenarios. 

A. Automated Label Extraction 
Over the last decade, numerous advanced cloud-based computer 

vision recognition platforms have been developed. These platforms 
utilize various deep learning techniques, including convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), and transformer 
networks, to classify images and provide labels for the contents within 
them. Several computer vision platforms offer advanced pre-trained 
models based on large datasets that can be conveniently accessed and 
employed for research purposes. These include Google Cloud Vision API, 
Amazon Web Services (AWS) Rekognition, Facebook Contrastive 
Language-Image Pre-Training (CLIP), Microsoft Azure Computer Vision 
API, and IBM Watson Visual Recognition. These pre-trained models can 
be utilized to conduct the initial automated image label extraction 
pipeline. Common detection features are label, face, and text detection, 
making it a comprehensive solution for various image-related tasks. 
Example label extraction results from AWS Rekogntion and Google 
Cloud Vision on an aerial photo of post-hurricane Michael are shown in 
Fig. 2. Label Detection Results on AWS Rekognition and Google Cloud 
Vision 

. Additionally, custom labels can be used in filling data gaps, espe
cially when pre-trained models lack specific labels or unique identifiers. 

B. Label Taxonomy. 
Although many labels are extracted from image label detection, 

image classification and ordering sorely by these labels are inefficient. 
This is because each image typically produces 20 to 30 non-identical 
labels, and the number would increase with custom labels. With the 
increasing number of images, manually sorting hundreds of labels into 
countless images and their categories is still a labor intensive task. To 
reduce such human efforts, a label taxonomy is designed to facilitate 
image processing through natural language processing. From now on, 
the labels extracted from computer vision recognition are referred to as 
“secondary labels.” This section aims to elect “primary labels” from the 
secondary labels in a similar group and topic, which can efficiently 
represent the characteristics of the image by merging the notion of the 
secondary labels. 

To develop an ontology-based label classification system that can 
effectively classify post-natural disaster images, label taxonomy should 

Fig. 1. The Overall Workflow of Proposed Label Extraction and Classification.  
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be considered first. Initially, images with metadata already include time, 
GPS, and camera settings. Therefore, this information does not need to 
be labeled and is excluded from the taxonomy. Overall, five main aspects 
are considered for modeling label taxonomy: 

(1) Entity: Representation of objectively existing units of informa
tion. Examples are, humans, structures, vehicles, trees, roads, traffic 
signs, lights, and debris. 

(2) Hazard: Possible natural hazards related to the state of damage. 
Examples are, wind, flood, tornado, rain, current, and storm surge. 

(3) Image type: Describes the type of image. Examples are, ground, 
aerial oblique, nadir, satellite, and panorama. 

(4) Land Use: Describe the type of the affected area. Examples are, 
residential, commercial, vegetation, agriculture, coastal, and 
infrastructure. 

(5) Component: Possible structural and non-structural building 
components present. Examples are, roof, window, door, wall, garage, 
column, foundation, ventilation, HVAC, and sheathing. 

Table 1 presents the final list of primary for each label type, which 
will be the main information to classify, group, and sort out a large 
volume of images effectively. This is because multiple primary labels are 
needed that can be stacked to describe the image in the way of hazard 
language. Frequent labels from AWS label extraction results were 
compacted into the ten (E1, E2, E3, H1, H2, I1, I2, L1, L2, and L3) pri
mary labels in four categories. A set of custom labels was introduced for 
the “Building Component” category to streamline the classification 
process. While a wide array of structural and non-structural components 
are easily recognizable to the human eye, it is not feasible to identify, 
label, and train a model for every single one. This is especially true for 
smaller or less visible components (like gutters, vents, railings, and 
cladding elements) and those not typically exposed (such as columns, 
beams, foundations) or severely damaged components that no longer 
retain their original form. To facilitate a more manageable and practical 
classification, five key custom labels were defined: door, window, roof, 
wall, and garage door. A total of 1,220 images from post-Hurricane 
Harvey were manually labeled, encompassing a mix of damaged and 
undamaged buildings. These images were sourced from ground-level 
digital photographs taken by the reconnaissance teams of Rutgers Uni
versity, Princeton University, and the University of Texas at Austin [59]. 

C. Natural Language Model. 
To develop a word-vector query system to quantify the similarity 

between primary and secondary labels (i.e., to extract word vector 

Fig. 2. Label Detection Results on AWS Rekognition and Google Cloud Vision.  

Table 1 
Word Embeddings for the Query System.  

Label Type Primary 
label 

Word Embeddings 

Entity 1 
(E1) 

People people, human, men, women, boy, girl, 
child 

Entity 2 
(E2) 

Building building, house, villa, condo, duplex, 
apartment, structure, property, porch, 
balcony, roof, door, wall, window, garage, 
lawn, driveway, mailbox, garden 

Entity 3 
(E3) 

Vehicle vehicle, car, truck, wheel, motor, 
automobile 

Hazard 1 
(H1) 

Hurricane hurricane, typhoon, cyclone, storm, wind, 
tornado, destruction, emergency, damage, 
landfall, weather, surge, flood, disaster, 
debris 

Hazard 2 
(H2) 

Flood flooding, flood, water, river, storm, mud, 
submerge, surge, plunge, tide, landslide, 
rain, torrential, downpours, tsunami, 
disaster, debris 

Image Type 1 
(I1) 

Ground ground, street, road, lane, route, roadway, 
panorama 

Image Type 2 
(I2) 

Aerial aerial, air, drone, UAV, scenic, drone, 
flying, satellite, vertical, nadir 

Land Use 1 
(L1) 

Residential residential, resident, property, urban, 
suburban, neighborhood, house, home, 
apartment, condo, townhouse, duplex, villa, 
garden 

Land Use 2 
(L2) 

Commercial commercial, business, office, retail, 
warehouse, hotel, industrial, urban, street, 
parking, parkinglot, mall, shopping 

Land Use 3 
(L3) 

Vegetation vegetation, landscape, greenery, nature, 
forest, tree, habitat, plant, green, park, 
flora, woodland, shrubs 

BuildingComponent  
(C1) 

Roof roof 

BuildingComponent  
(C2) 

Wall wall 

BuildingComponent  
(C3) 

Window window 

BuildingComponent  
(C4) 

Door door 

BuildingComponent  
(C5) 

Garage garage  
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representation and categorize image labels into four classes described 
above), word embedding models from natural language processing can 
be implemented. They can learn vector representations of words to 
capture the semantic meaning and relationships with other words. 
Popular word embedding models trained on large amounts of text data 
include Global Vectors for Word Representation (GloVe) [60] and 
Word2Vec [61]. Although state-of-the-art transformer network-based 
natural language models like GPT [62] and BERT [63] have advanced 
self-attention mechanisms that enable them to process entire sentences 
or paragraphs, this research employs conventional natural language 
models because the current technology for automated label extraction 
can only return single or multi-letter labels rather than descriptions of 
the contents within images. 

D. Primary Labels and Word Embeddings. 
The world embeddings for each primary label are provided in 

Table 1Table 1. Word embeddings, a learned representation for text with 
the same or similar representation, were determined by analyzing the 
context in which words appear within large text corpora, thereby 
capturing their semantic meaning and relationships to one another 
(example shown in Fig. 5). For instance, when the “People” primary 
label is used, related terms within that semantic field—such as human, 
men, women, boy, girl, and child—are selected as word embeddings. 
These terms are chosen based on their contextual relevance and simi
larity to the primary label, creating a cluster of words with shared 
meanings. The initial clusters of closely associated words form the pre
liminary word embeddings. These preliminary embeddings are further 
refined through manual intervention to ensure relevance and accuracy. 
This process involves reviewing and adjusting the associations to better 
reflect the nuanced relationships between words, particularly in the 
context of disaster response and damage assessment. 

Unlike other primary labels, the world embeddings for Building 
Components C1, C2, C3, C4, and C5 are unique in that they only 
encompass the exact terms corresponding to each component. This 
design is intentional and serves the specific purpose of detecting the 
presence of these particular building components without the inclusion 
of broader or related terms. 

The generation of primary labels relies on pre-trained recognition 
models, but it is important to understand the nuances of this process. For 
example, identifying the specific type of natural disaster based solely on 
the “Hazard” primary label and visible damage in the images can be 
quite challenging. This is because the process is not a supervised 
detection method and largely depends on recognizing common patterns 
of damage. For instance, flood patterns are indicative of hurricanes, 
while severe structural collapses might suggest earthquakes. However, 
these damage patterns can often overlap or be similar across different 
disaster types. Therefore, relying exclusively on the “Hazard” primary 
label might not always yield accurate results. It is advisable to use this 
label in conjunction with other primary labels to get a more compre
hensive understanding of the disaster. 

The term frequency-inverse document frequency (tf-idf) is used to 
associate the secondary labels with the primary labels. Tf-idf score is a 
numerical statistic intended to reflect how important a word is to a 
document in a collection. It is a famous method to rank the content of 
data, focusing on term frequency rather than simple keyword counts of 
observing a word occurrence in specific topics. For example, in this 
study, if a secondary label, roof, extracted from the framework, is 
inputted to the query system, the output is a score on how similar the 
roof is to the word embeddings. 

TFIDFt,d = TFt,d log(
N

DFt
)

For the text t in a document d from the document set N is calculated 
as the multiplication of the term frequency of a word in a document TFt,d 

and the inverse document frequency of the word across a set of docu
ments log( N

DFt
) where DFt is the number of documents containing the 

input text [64]. For example, if the word truck occurs five times in a 
1,000-word document, TF (term frequency) is 5/1000 = 0.005. 
Considering the GloVe model, which utilizes a comprehensive corpus 
size of 804 billion, the IDF (inverse document frequency) would be 
calculated as log(804 billion / N). In detail, this extensive corpus was 
employed over world embeddings of each primary label and computing 
the term frequency scores for the secondary labels inputted. At the end 
of the process, images are classified into four classes (i.e., entity, hazard, 
image type, and location) based on the ontology model word vector 
result. 

Now, if the primary labels are utilized as designed, the desired result 
should be as shown in Table 2Table 2. Suppose we want to use the three 
images below that are found in online image archives and lack metadata 
(stock.adobe.com). The first image shows an aerial view of a flooded 
residential area. We can easily assume that the image was taken after a 
flood event with a drone or helicopter. Therefore, with the label clas
sification, the desired result would show a high tf-idf score for aerial 
image type, flood for hazard type, residential for land use, and building 
for entity type. The second image shows a road and a connected bridge 
near a water body. The sky darkens ominously, and the sea surges, 
indicating a severe hurricane scene. From this image, the desired result 
would show high tf-idf scores of ground for image type and hurricane for 
hazard type. The last image shows damaged buildings and debris in the 
residential area with some vegetation. From a human perspective, we 
can see that the roads are clear, which means the initial recovery effort 
has been completed to get the road access. Therefore, the desired pri
mary label detection result for the last image would have high tf-idf 
scores of ground for the image type, residential and vegetation for 
land use, and building and vehicle for the entity type. 

The type of data shown in Table 2 can be pivotal for post-disaster 
decision-making, primarily due to its role in enhancing AI and deep 
learning algorithms through the efficient categorization of disaster- 
related images. Creating a structured dataset from various images, 
regardless of their origin or metadata, significantly improves AI’s ac
curacy in object detection and automation of disaster responses. This 
adaptability ensures a comprehensive understanding of diverse disaster 
scenarios, which is crucial for effective damage assessment and resource 
allocation. Furthermore, the labeling process not only facilitates ma
chine learning advancements but also supports historical analysis and 
trend prediction. This is essential in forecasting future disaster patterns, 
thereby aiding in the development of more informed and efficient 
response strategies. Addressing the gap in disaster-specific AI, this 
research equips decision-makers with nuanced, AI-driven analysis tools, 
paving the way for more accurate and rapid disaster response and pre
paredness measures. 

3. Hurricane Harvey use case 

As previously discussed, the foremost objective in creating the pri
mary label set is to develop a novel workflow designed for categorizing 
and classifying a vast array of natural disaster images—a task that has 
not been feasible until now. The introduction of primary labels to these 
images paves the way for their use as foundational training data in 
research on natural disaster hazards. Two main datasets were utilized 
for the comparison of data characteristics: reconnaissance images from 
Hurricane Harvey, enriched with metadata, and a collection of search 
results featuring buildings impacted by the hurricane, which lack 
metadata. 

A. Data Sets. 
Major data sources come from images of post-Hurricane Harvey, 

2017, at Port Aransas and Rockport, Texas. Streel-level images were 
taken from a mobile system equipped with a Ladybug spherical digital 
camera. The camera’s multi-sensor captures six views with 1024 × 768 
pixels: one vertical view and five circularly configured horizontal views. 
Roughly 80 pixels were overlapped between the views to be composited 
into a pharaonic image. 
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The second data comes from a collection of web-searchable hurri
cane-affected building images from web search engines. Web crawling 
or scraping often refers to a subset of the web scraping tool for creating a 
large web dataset, such as URLs, images, video, text, etc. In recent years, 
image crawling tools have been designed specifically for large search 
engines (e.g., Google, Bing, Naver) to discover automatically, scan, and 
download targeted web data. In order to automatically download hur
ricane images from online archives and create a large image database 
with image crawling, CygnusX1(Google crawling) [65] and 
AutoCrwaler (Naver crawling) [66] have been implemented. During the 
crawling process, images that are too dark or in poor resolution have 
been neglected from the selection. Lastly, a simple Laplacian of the 
Gaussian algorithm [67] was used to filter out blurred images. In the 
end, 3,721 images and 782 images each from Google and Naver, a total 
of 4,053 images, have been collected with keywords of ’hurricane’ +

’building’ as a sample online archive dataset (careful selection of key
words can result in much difference in the tendency of crawled images as 
shown in Fig. 3). 

B. Methodology implementation 
A cloud-based computer vision platform, Amazon Web Services 

(AWS) Rekognition, was implemented to construct the initial automated 

image label extraction due to its accurate recognition model and 
convenient connection with cloud storage and detection event trigger. 
Recent studies have demonstrated the high accuracy of AWS Rekogni
tion’s pre-trained model, further validating its effectiveness for image 
labeling and classification. [68,69]. AWS S3, a web service interface for 
object storage, is mainly used for image upload and response storage. 
AWS Lambda is linked between Rekognition and S3 to manage and 
connect event triggers. AWS Lambda is an event-driven computing 
service that runs in response to other AWS events via AWS software 
development kits (SDKs). 

The four major steps for label extraction are: (1) add five custom 
labels, including roof, wall, window, door, and garage; (2) upload 
image: input images are uploaded to a designated folder in an S3 bucket. 
During this initial process, image EXIF data are stored as Amazon S3 
Object Metadata (e.g., camera information, location, time); (3) detect 
request: Lambda function allows automatic analysis when images are 
uploaded to S3 Bucket. When the Lambda function is triggered, it calls 
StartLabelDetection to start the label detection of uploaded images; (4) 
response data: once StartLabelDetection is finished, the second Lambda 
function, GetLabelDetection, is called to store the analysis result back in 
S3 Bucket. Both Start and Get functions are repeated for 

Table 2 
Desired Primary Label Result.  

Fig. 3. Image search results with keywords ’hurricane’ + ’building’ on the left and ’hurricane’ on the right. A combination of keywords can easily lead to images of 
hurricane-damaged buildings, while using a single ’hurricane’ often shows satellite view or general hurricane images (google.com). 
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TextDetectionand FaceDetection. 
In this study, the choice to employ a minimum confidence threshold 

of 50 % for detection accuracy, as opposed to the typical 70–80 %, is 
informed by the specific objectives of label extraction rather than pre
cise object detection. The confidence score is a measure typically used to 
determine the accuracy of detection results, often associated with 
creating bounding boxes around recognized objects in an image. How
ever, our focus is on extracting simple text labels associated with the 
overall image, which is a less stringent requirement than identifying and 
delineating objects. By setting the confidence threshold at a lower level, 
we allow for a greater number of potential labels to be included. The 
response of the label detection API is saved in the JSON structure, which 
includes the detected object, bounding box location, label, and confi
dence. Bounding box locations from text and face detection are later 
used for personal information blurring, as shown in Fig. 4. 

The extracted labels are returned in JSON format for each image. 
While 2,580 image labels are offered from the pre-trained Rekognition 
model, not all labels are particularly useful for building damage 
assessment. Small object labels, such as pencil and shrimp, or irrelevant 
labels, such as surgeon and elephant, can cause possible interruptions to 
the later analysis. Therefore, the selected 654 labels related to building 
and natural disaster damage were filtered to be used for post-hurricane 
building damage image label classification. Lastly, an additional step to 
combine multi-letter words with single-letter words was performed to 
minimize vector weight confusion for the label classification. 

GloVe’s pre-trained model was implemented to develop a word- 
vector query system for label classification. GloVe is modeled for 
dimensionality reduction on the co-occurrence count matrix to find the 
lower-dimensional representations. It allows one to take a corpus of text 
and intuitively transform each word into a high-dimensional space. It 
can capture the context of a word in a document, semantic and syntactic 
similarity, and relation with other words. In other words, pre-trained 
word weight will count the vector relationship between labels, 
providing a direction of similarity between the labels. Fig. 5Err or! 
Reference source not found. shows a similarity visualization among 
common secondary labels extracted from AWS using the Hurricane 
Harvey reconnaissance mission. GloVe pre-trained word vector with 840 
billion token corps, 2.2 million vocabularies, and 300 dimensions was 
used and visualized with the t-distributed stochastic neighbor embed
ding (t-SNE) method. As a result, words with similar topics are placed 
closer together. For example, words clustered in a red circle are related 
to natural disaster terms: storm, wind, flooding, hurricane, and cyclone. 
The yellow circle also shows a cluster of buildings and their components. 
The green circle also shows a cluster of representations of humans, such 
as women, men, boy, and girl. 

4. Results discussion 

Determining what constitutes a high or low tf-idf score can be 
inherently challenging due to its subjective nature. This subjectivity 
stems from the fact that tf-idf is a relative measure; its significance is 
contextually bound to the specific dataset or corpus to which it is 
applied. In different collections of documents, the same numeric tf-idf 
score might represent different levels of importance. However, this 
ambiguity can be mitigated by applying simple statistical measures. 
Analyzing the distribution (mean, median, and standard deviation) of tf- 
idf scores across a corpus makes it feasible to establish a data-driven 
threshold. It allows for a more systematic approach in differentiating 
between terms of varying significance, thereby providing a more 
grounded and justifiable means of classifying high and low tf-idf scores 
within the unique context of the given dataset. The value of 15 was 
identified as the threshold for categorizing a score as high, which was 
determined to be higher than both the mean and the median of the tf-idf 
scores across the dataset. 

Table 3 shows the tf-idf result of four common labels detected from a 
sample Hurricane Harvey reconnaissance image (Fig. 6) containing 
multiple buildings affected by wind and flood damage and recovery 
efforts. Of the 22 secondary labels detected with a confidence of 50 % or 
more, the four labels with the highest confidence level were selected for 
comparison. The first secondary label identified was neighborhood, 
which showed high-frequency scores of 17.81 for L1 Residential and 
16.03 for L2 Commercial, indicating a high probability of the image 
being located in a residential or commercial area. The second secondary 
label, road, showed high-frequency scores of 16.31 for E3 Vehicle, 17.27 
for I1 Ground, 15.20 for L1 Commercial, and 15.40 for L3 Vegetation. 
These scores suggest that the image was taken at ground level, with the 
possibility of a vehicle present near a commercial or vegetated area. The 
third secondary label, car, showed a high-frequency score of 29.41 for 
E3 Vehicle. The exceptionally high score for E3 indicates a very high 
probability of a vehicle being present. The fourth secondary label, the 
debris label, showed high-frequency scores of 16.37 for H2 Flooding and 
19.26 for C1 Roof. Notably, the label returned a high score for flooding, 
indicating potential debris and damages caused by the flood event. The 
last two secondary labels, window and roof, showed overall exceptional 
high-frequency scores for all building component primary labels. This 
data suggests that both windows and roofs, being prevalent features in 
various structures, significantly indicate the presence of buildings and 
their other components, particularly in typical residential or commercial 
areas. 

All labels displayed low scores for I2 Aerial, suggesting that the 
image originated from ground level, aligning with expectations. 
Significantly, the high-term frequency scores derived from the input 
data were compiled and stored in a distinct JSON file. These files serve 
as an additional dimension for metadata analysis, offering a nuanced 

Fig. 4. Text Detection and Blur.  
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Fig. 5. Visualization of Similarly Among Common Secondary Labels.  

Table 3 
Tf-idf Score Result of Fig. 6.  

Primary Label Secondary Labels         
Neighborhood Road Car Debris Window Roof   

Entity E1 People 12.24 11.76 14.29 7.52 8.24 7.56  

E2 Building  11.03  12.04  13.24  10.84  16.42  7.65  
E3 Vehicle  9.59  16.31  29.41  11.44  14.35  11.43 

Hazard H1 Hurricane  4.10  5.76  5.02  8.45  6.72  6.60  
H2 Flooding  6.09  9.63  8.56  16.37  5.94  11.48 

Image         
Type I1 Ground  9.24  17.27  10.43  7.98  8.26  9.16  

I2 Aerial  3.39  7.11  8.15  7.05  5.69  7.17 
Land Use L1 Residential  17.81  12.75  13.27  6.91  15.41  9.77  

L2 Commercial  16.03  15.20  14.90  7.64  16.84  9.26  
L3 Vegetation  9.76  15.40  9.85  13.38  4.54  13.36 

Building         
Component C1 Roof  11.24  13.11  16.22  19.26  23.45  36.32  

C2 Wall  14.20  14.78  15.41  14.24  21.87  21.14  
C3 Window  13.16  11.67  17.97  13.78  30.73  23.45  
C4 Door  14.41  12.99  21.18  11.34  24.55  19.82  
C5 Garage  15.91  13.02  21.78  10.75  16.93  17.42  

Fig. 6. Sample Reconnaissance Image for tf-idf Score Computation.  
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means of comparing and categorizing images based on similar input 
parameters. Its utility is particularly evident in segregating specific 
subsets of images from extensive image datasets. For instance, applying 
a high-score threshold for E2, I1, and L1 can effectively isolate ground- 
level images predominantly featuring residential structures. Addition
ally, incorporating specific Building Component primary labels en
hances the precision in identifying buildings with specific components. 

5. Validation of results 

A manual labeling process was implemented to establish a baseline 
for comparison and validate the accuracy of the computed primary la
bels. Images are divided into four categories, with 40 images each: (1) 
affected, (2) minor damage, (3) major damage, and (4) destroyed to 
illustrate post-hurricane damage on residential buildings. These 160 
images were manually assigned labels that should describe the overall 
character of the image from a human perspective and serve as the 
ground truth. The approach and list of recommended manual label as
signments are shown in the Table 4. Eight people with sufficient expe
rience and knowledge in hurricane damage assessment completed 
manual labeling on each dataset. Building component labels (door, 
window, roof, wall, and garage) were excluded from manual label 
assigning because they are detected from a custom label separated from 
the pre-trained Rekognition model. The results were validated by 
comparing primary labels assigned manually and secondary labels 
extracted from Rekognition. 

Images are divided into four categories, with 40 images each: (1) 
affected, (2) minor damage, (3) major damage, and (4) destroyed to 
illustrate post-hurricane damage on residential buildings. These 160 
images were manually assigned labels that should describe the overall 
character of the image from a human perspective and serve as the 
ground truth. The approach and list of recommended manual label as
signments are shown in the table below. Eight people with sufficient 
experience and knowledge in hurricane damage assessment completed 
manual labeling on each dataset. Building component labels (door, 
window, roof, wall, and garage) were excluded from manual label 
assigning because they are detected from a custom label separated from 
the pre-trained Rekognition model. The results were validated by 
comparing primary labels assigned manually and secondary labels 
extracted from Rekognition. 

The validation aimed to assess the reliability and consistency of the 
manual labeling process and determine the effectiveness of the auto
mated labeling approach. Images from each damage category and their 
secondary labels and primary labels computed from Rekognition and 
manual labels are compared in Table 5. The analysis revealed that the 
number of secondary labels detected by Rekognition exceeded those 
obtained through manual labeling, with a wide range of categories 
identified. However, it is important to note that not all of these labels 
were accurate. For instance, false positives were detected as irrelevant 
labels for the first affected image, such as indoors and yacht. In contrast, 
the manual labeling process was found to be intuitive and efficient, 
avoiding unnecessary or unrelated ones. Additionally, the manual pro
cess enabled the identification of information-rich labels, such as tarp, 

from recovery efforts and the ability to determine whether a building is 
elevated, which would be difficult to detect through an automated 
approach without sufficient training datasets. 

Table 6 displays the comparison between automatically computed 
primary labels and manually assigned labels across a dataset that en
compasses ten primary labels and four distinct damage categories: 
affected, minor damage, major damage, and destroyed. The comparison 
is quantified through a ratio, which is calculated by dividing the tf-idf 
scores of the automatically generated labels by those of the manual la
bels. Overall, the primary labels obtained through Rekognition 
demonstrated consistency with the manual primary labels, with a 13.32 
% difference in the tf-idf score. 

A higher tf-idf score indicates a richer set of attributes related to the 
primary label. However, the primary labels for Hurricane (H1) and 
Flood (H2) showed significant improvement when manually labeled, 
indicating that Rekognition is ineffective at identifying the relationship 
between damaged buildings and natural disasters. Specifically, the dif
ference ratio for the affected category remained at 1.25, while the 
minor, major, and destroyed categories exhibited more than double the 
scores. The manual labeling approach is more accurate since it is easy 
and natural for humans to identify damaged buildings, their debris, and 
the extent of damage and relate them to natural disasters. Primary labels 
for Ground (I1) and Aerial (I2) also demonstrated higher accuracy with 
manual labeling. Similar to the hazard category, it is more natural for 
humans to list labels directly related to the image type (ground), while 
primary labels from Rekognition act as a recomputed similarity score 
based on various labels located in similar vector space. Hence, the 
manual primary labels performed better than the Rekognition labels, 
with an average difference of only 13.32 %. This means that the pre- 
trained Rekognition model is a suitable and efficient tool for extract
ing labels from a large number of post-hurricane images and classifying 
them effectively. 

The study also involved a detailed comparison between automati
cally computed secondary labels and manually assigned labels for five 
specific building component custom labels: roof, window, wall, door, 
and garage. The objective was not to evaluate the final tf-idf scores of 
primary labels but to assess the precision with which automated custom 
labels could identify varying degrees of building damage, using manu
ally assigned labels as a ground truth for accuracy. As illustrated in 
Table 7, a minor discrepancy between automated and manual labels in 
categories of affected and minor damage is observable. However, this 
disparity grows more pronounced in categories of major damage, with a 
difference of −16.88 %, and in the destroyed building category, with a 
difference of −48.47 %. Despite the 1,120 training data and advanced 
computer vision technology used in automated label generation systems, 
they are still outstripped by the human eye’s ability to discern building 
damage, particularly in complex scenarios. 

6. Conclusions and future work 

This study introduces a novel workflow capable of automatically 
extracting images from large volumes of data and classifying them. By 
leveraging pre-trained computer vision and natural language processing 
models in conjunction with a developed word-embedding model, the 
process assigns primary labels and similarity scores to each processed 
image. These labels and scores can be used to efficiently search and 
query specific types of image data. 

The validation process and the accuracy assessment of AWS Rekog
nition covered in many studies [68,70] enhance the credibility of the 
data set and ensure that the proposed pipeline can be used effectively 
and efficiently to classify images. AWS Rekognition’s pre-trained model 
label detection result was modified to return 654 labels related to post- 
hurricane images. Then, the GloVe-based word-vector query system was 
developed to generate primary labels to classify images based on the 
similarity score computed in four hazard categories. Overall, the 
Rekognition primary labels demonstrated upright scores compared to 

Table 4 
Protocol for Manual Assignment of Image Labels.  

Entity  • Is there a building present? 
What type of building is it? 
What other objects exist, vehicles, trees, and roads? 

Hazard  • Is there a natural hazard damage present? 
What is the extent of building damage, intact, damaged, or 

destroyed? 
Image 

Type  
• Is the image taken from ground-level or aerial? 

Is the image panoramic? 
Land Use  • What is the building use type, residential or commercial? 

What environment is the building located in?  
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the manual primary labels, with a minimum average difference of 13.32 
%. This indicates that the pre-trained Rekognition model is a good fit 
and can be used effectively and efficiently to extract labels from a large 
volume of post-hurricane images for classification. However, Rekogni
tion’s labels are inefficient in identifying the relationship between nat
ural disasters and damaged buildings, and custom data supplementation 
is necessary. 

Yet, the use of custom labels showed clear limitations on damage- 

building component detection. This limitation is deeply rooted in the 
intricate and nuanced process of damage assessment, where visual in
dicators can be subtle, complex, and heavily reliant on context. Auto
mated detection struggles to grasp the full extent of these contextual 
subtleties, a feat that the human eye can manage more adeptly. This is 
particularly true in cases of severe destruction or when buildings are 
reduced to rubble. Identifying completely damaged or collapsed struc
tures using computer vision remains a formidable challenge, as these 
systems often fail to recognize the chaotic and unpredictable nature of 
such devastation. Consequently, while automated tools are indispens
able for processing data on a large scale, the discerning judgment of 
human evaluators is essential for the accurate detection and evaluation 
of severely damaged or collapsed building components. 

Table 5 
Primary Label Comparison With Unobstructed Building View.  

Image Rekognition Manual Secondary Label  Primary Primary   

Secondary   Label (Automated) Label (Manual)   
Label      

fx2 truck condo building E1 8.96 11.67 
Affected vehicle villa house E2 9.75 12.95  

architecture porch residential E3 12.2 13.12  
building grass car H1 3.86 4.9  
housing plant vehicle H2 6.44 8.13  
car pickup truck I1 7.12 8.9  
machine garage tree I2 5.13 6.45  
wheel indoors intact L1 10.17 13.27  
house balcony railing L2 10.38 12.3  
city handrail ground L3 9.84 10.06  
mobile yacht driveway     
home      

fx3 garage chair building E1 8.45 10.69 
Minor Damage indoors furniture house E2 10.91 12.3  

architecture grass residential E3 8.87 11.03  
building plant tree H1 3.29 7.63  
house city debris H2 5.95 11.65  
housing condo railing I1 6.89 8.48  
porch balcony damaged I2 3.94 6.8  
villa cottage ground L1 10.96 12.46  
water door hurricane L2 10.2 11.35  
waterfront   L3 10.67 10.1 

fx4 architecture car building E1 8.75 10.69 
Major Damage building vehicle house E2 10.35 12.3  

house nature elevated E3 10.25 11.03  
housing staircase residential H1 3.52 7.63  
porch villa tree H2 6.55 11.65  
gate deck tarp I1 7.4 8.84  
grass cottage debris I2 4.89 8.48  
plant siding damaged L1 10.44 12.46  
outdoors neighbor ground L2 10.33 11.35  
indoors shelter hurricane L3 10.87 10.1  
garage  driveway       

railing    
fx5 architecture porch building E1 10.21 10.66 
Destroyed building play area house E2 9.73 12.13  

house wood elevated E3 7.46 10.87  
housing city residential H1 4.04 7.76  
staircase country debris H2 7.08 12.09  
outdoors hut destroyed I1 7.28 6.48  
nature rural ground I2 4.79 6.98  
handrail shelter hurricane L1 11.23 13.01     

L2 10.53 11.68     
L3 11.75 11.14  

Table 6 
The tf-idf Score Ratio of 160 Topic Data Primary Labels, Rekognition Label vs. 
Manual Label.   

Affected Minor Damage Major Damage Destroyed 

E1 
E2 
E3 
H1 
H2 
I1 
I2 
L1 
L2 
L3 

1.36 
1.31 
1.07 
1.25 
1.27 
1.29 
1.30 
1.34 
1.21 
1.00 

1.30 
1.21 
1.24 
2.30 
1.94 
1.26 
1.75 
1.15 
1.09 
0.92 

1.21 
1.18 
1.08 
2.21 
1.75 
1.18 
1.74 
1.27 
1.05 
0.98 

1.03 
1.28 
1.41 
2.07 
1.85 
0.87 
1.40 
1.17 
1.10 
0.90  

Table 7 
Average Building Component Labels Detected on 160 Topic Data Topic Data, 
Rekognition/Custom Label vs. Manual Label.   

Automatic Label Manual Label Difference 

Affected  3.875 4.425  −12.43 % 
Minor damage  3.725 4.15  −10.24 % 
Major damage  3.325 4  −16.88 % 
Destroyed  2.1 4.075  −48.47 %  
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The framework also showed low capital and quick processing time, 
as it takes about four minutes and costs $2.80 to process 1,000 images. 
In the long term, a stand-alone pre-trained weight should be created for 
post-hurricane image classification using custom-labeled data and other 
computer vision pre-trained models, which can be used in various hur
ricane research and applications. To develop this weight, images should 
be retrained with primary labels. Although the framework relies on AWS 
systems due to the impracticality of manually training over 600 labels, 
an independent training weight can be established with enough primary 
and secondary labels. As a result, the AWS system or other computer 
vision pre-trained models can be eliminated from the framework. Ulti
mately, this independent and original framework can be utilized for 
various offline projects, including reconnaissance missions and image 
classification simultaneously from the site. 

The proposed method offers an advanced system for automatically 
labeling and classifying large volumes of post-natural disaster image 
data, including images with and without metadata that have been 
archived for decades. The reconnaissance images with metadata can be 
curated to a higher level to enhance their management and organization 
in natural disaster data repositories and infrastructures. Even images 
without metadata from online archives can be classified using the pro
posed method to filter specific sets of images and create valuable 
training datasets for deep learning-based object detection applications. 
By automating this process, the proposed method saves time and effort 
that would otherwise be spent manually labeling and sorting images 
while ensuring that the resulting training datasets are accurate and 
relevant. This not only improves the efficiency of the training process 
but also helps to improve the overall performance of deep learning- 
based object detection systems. In particular, the methodology excels 
in reducing the typically daunting task of extracting suitable data for 
specific research needs, which often involves laboriously sifting through 
an extensive pool of images. For instance, it simplifies locating images 
depicting key aftermath scenarios, such as debris identification [71,72], 
multilevel segmentation with aerial footage [50], flood damage 
modeling [73], and wildfire damage pattern analysis [74]. This targeted 
data extraction capability is highly sought after by researchers and 
practitioners in the field of disaster management. 

This study did not involve any innovation of the object detection or 
image classification algorithm because this is not in the sense of model 
improvement but more about rearranging the return and utilizing it in a 
new perspective to extract and classify labels of post-natural disaster 
images automatically. It is the first attempt to curate abundant natural 
disaster images to add supplementary but forefront information to 
organize the hazard database. The key contribution of this study is sig
nificant in that the proposed method can be applied to a wide range of 
image classifications. This method is versatile and adaptable, provided 
that the word embedding can be updated to meet the standard of the 
domain being targeted. Making the method applicable to various image 
classifications can be utilized in diverse fields and industries, offering a 
practical and valuable solution for image labeling and classification 
tasks. Moreover, the inherent flexibility of this method ensures that it 
can evolve alongside the changing needs of various domains. These 
evolutionary potential positions the method not just as a solution for 
current challenges but also as a foundational asset for future research 
and development. 

In considering the potential for future development and the recog
nition of existing limitations in the proposed methodology, the following 
points emerge as key areas:  

• Mitigating data quality dependence: The method’s effectiveness 
heavily relies on the quality and volume of available data. In areas 
with scarce or poor-quality data, performance may falter. Future 
enhancements could involve merging multiple data sources and al
gorithms to overcome this limitation, ensuring consistent perfor
mance regardless of data quality. This approach is particularly 
pertinent in the context of detecting damaged building components, 

ensuring more reliable and consistent performance across diverse 
data conditions. 

• Enhanced object detection and damage assessment: Current limita
tions in detecting and classifying complex objects, particularly in 
varied disaster types and damaged building components, highlight 
the need for improved models. Future work could develop deep 
learning models that not only identify damage but also assess its 
severity, incorporating extensive custom data to cover various 
damage patterns and building components.  

• Real-time disaster monitoring and response: While suited for post- 
disaster analysis, the method’s application in real-time monitoring 
is limited. Future advancements could focus on developing real-time 
image analysis capabilities that align with ongoing data acquisition 
at disaster sites, enhancing immediate response strategies.  

• Predictive analysis applications: Utilizing classified image data for 
predictive analytics presents a significant opportunity for future 
research. This could involve developing models to predict the impact 
of imminent disasters using historical image data, which would be 
instrumental in improving disaster preparedness and mitigation 
strategies.  

• Application to different disaster contexts: adapting the current 
workflow for use in various natural disasters like earthquakes and 
fires. This may include categorizing building damages and compo
nents specific to earthquakes and fires, such as structural faults from 
earthquakes or burn path patterns from fires. 
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