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Image data collected after natural disasters play an important role in the forensics of structure failures. However,
curating and managing large amounts of post-disaster imagery data is challenging. In most cases, data users still
have to spend much effort to find and sort images from the massive amounts of images archived for past decades
in order to study specific types of disasters. This paper proposes a new machine learning based approach for
automating the labeling and classification of large volumes of post-natural disaster image data to address this
issue. More specifically, the proposed method couples pre-trained computer vision models and a natural lan-
guage processing model with an ontology tailed to natural disasters to facilitate the search and query of specific
types of image data. The resulting process returns each image with five primary labels and similarity scores,
representing its content based on the developed word-embedding model. Validation and accuracy assessment of
the proposed methodology was conducted with ground-level residential building panoramic images from Hur-
ricane Harvey. The computed primary labels showed a minimum average difference of 13.32% when compared
to manually assigned labels. This versatile and adaptable solution offers a practical and valuable solution for
automating image labeling and classification tasks, with the potential to be applied to various image classifi-
cations and used in different fields and industries. The flexibility of the method means that it can be updated and
improved to meet the evolving needs of various domains, making it a valuable asset for future research and

development.

1. Introduction

How the post-hurricane damage data is collected, assessed, and
archived builds the foundation for developing community resilience,
codes, and engineering design. Precise damage assessment is paramount
for all facets of disaster management [1]. Over the past decades, a
notable transition has occurred from traditional manual damage
assessment techniques [2-4] to the adoption of remote sensing tech-
nologies such as Unmanned Aerial Vehicles (UAV) [5-7], Light Detec-
tion and Ranging (LiDAR) [8-10], and satellite imagery [11-13] for
gathering hurricane damage data. Although these technologies rapidly
capture extensive affected areas, their accessibility remains limited
because few researchers and governmental entities possess the capacity
to deploy such broad-scope remote sensing equipment. The significant
accumulation of archived disaster data, coupled with high demand, has
led to the emergence of numerous disaster data repositories, project
hubs, and individual websites, heralding a “Big Data” era in natural
hazard research. Information-rich hurricane reconnaissance mission
data is now readily available from renowned repositories such as
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Structural Extreme Events Reconnaissance (StEER) Data Depot [14],
Automated Reconnaissance Image Organizer (ARIO) [15], United States
Geological Survey, and National Oceanic and Atmospheric Administra-
tion. Although these data exist in abundance, they do not provide
meaningful information before a complex processing effort, which
brings Data Rich Information Poor (DRIP) situation.

The processing and extraction of useful information from complex
datasets present a significant challenge for many researchers. Often,
these datasets are stored in large, unorganized blocks without proper
data provenance, making it difficult for researchers to locate specific
data. For instance, in repositories like DesignSafe, post-hurricane UAV
images are typically stored without any systematic ordering or classifi-
cation. The metadata associated with these images, primarily derived
from UAV data collection, offers limited informational value. This lim-
itation creates road blocks for efficiently using these archived disaster
images in various civil engineering tasks. To illustrate, when creating a
fragility curve to characterize the performance of a specific type of
building or building components, such as windows, during windstorm
events, structural engineers often face the arduous task of searching for
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images depicting these specific types of damages within a vast disaster
data repository. The additional challenge of locating these images from
multiple historical storm events further complicates the process. There is
a need for formal methods to automate image/information search to
support these engineering applications.

The traditional approach to large-scale image classification began
with Content-Based Image Retrieval (CBIR) during the 90 s [16,17].
CBIR primarily targeted the extraction of visual features, like color,
texture, and shape, from images. However, its emphasis on low-level
visual features frequently resulted in mismatches. The advent of early
semantic image search aimed to address these shortcomings by focusing
on the image’s context or content rather than just comparing basic el-
ements like color histograms and texture patterns [18,19]. Still, foun-
dational data processing beyond this stage necessitated manual labeling.
Manual annotation involves marking or labeling objects within an image
to serve as ground truth. For instance, in LSCOM [20], over 10,000 h of
manual effort produced 33 million labels denoting the presence or
absence of specific features. Web search engines grappled with similar
challenges. For example, a pioneering framework was devised to
autonomously augment the textual labels of an image, leveraging its
initial keywords and content [21,22]. Yet, the scalability of these
methods for general images remains questionable, as the quality of the
augmented labels might vary depending on the image type and the
presence of fitting seed keywords.

Natural disaster image classification has encountered similar chal-
lenges. Many studies have been conducted to automatically classify
large volumes of natural disaster images stored in online image archives.
However, past studies approached a way to classify large images by
annotating a natural disaster type as a label, and no object detection was
performed [23-25]. Few studies successfully generated a multi-label
database that continued natural disaster type and location as the pri-
mary categories [26]. Nevertheless, the previous work can only provide
a preliminary classification of images based on the incident type, lacking
actual object information that each image contains and cannot be used
to perform detailed image classification based on the objects or at the
component level. This gap underscores the need for more advanced
computational methods in image classification that not only recognize
disaster types but also delve into detailed content within the image,
aligning with the evolving requirements of domain-specific applications
in disaster management.

Recent advancements in deep learning have revolutionized image
classification. It is now possible to automatically detect and interpret
higher-level features in images with precision. More specifically, deep
learning-based object detection models are favored for rapid but accu-
rate image data processing in image classification. Object detection,
considered extremely challenging in the early 2000 s, became much
easier with recent advancements in computer vision and Al algorithms
such as You Only Look Once (YOLO) [27], regional convolutional neural
network (Mask R-CNN) [28], and transformer neural network [29].
Object detection in natural disaster damage assessment aims to identify
and locate critical targets, including infrastructures and buildings
[13,30-32], camouflaged objects [33,34], search and rescue [35-38],
change detection [39-41], crack detection [42-44], and flood damage
[45-47]. Although computers can process information much faster than
humans, object detection still requires initial data to train the model,
which typically includes manual annotation. While this process is labor-
intensive and time-consuming, it is essential for crafting high-quality
datasets pivotal for training, validating, and testing computer vision
models.

Despite advances in object detection algorithms, automated natural
disaster damage assessment on the building component level (e.g.,
windows, roofs, doors, walls) [4,9] is still limited, while community-
level damage (overall affected area) [12,13,48,49] and property-level
damage (individual structure) [50-53] is a common practice. This lim-
itation is not due to data scarcity but challenges in accurately classifying
vast image datasets for training data. Image classification refers to
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assigning categories to image sets based on specific characteristics,
which is crucial for understanding the damage dynamics in disaster
assessment. For instance, the training data must specifically originate
from wind damage events to develop a model detecting hurricane-
induced roof damage on residential buildings. Using commercial
building imagery from earthquake incidents would be inappropriate, as
the damage mechanisms are fundamentally different. Another case may
involve studying the correlation between hurricane damage to elevated
buildings and their front doors. It is essential to filter images showing the
front view of such buildings. Side or nadir views merely contribute as
noise data. The main challenge is not just in locating post-hurricane
damage data but in the labor-intensive process of filtering images to
pinpoint specific events and their associated damages.

To date, no large-scale image databases exist for natural disaster
classification. Despite recent advancements in Al-driven image curation
and classification techniques—including automated image tagging [54],
image quality assessment [55], and duplicate image detection [56]—
most natural disaster repositories remain focused on raw storage
without systematic curation. For researchers and practitioners
leveraging these repositories for deep learning-based damage assess-
ment, the major challenge comes from the infeasibility of manually
sorting hundreds of labels into countless images and their categories. It
is extremely laborious and time-consuming and cannot be completed by
a small group of researchers. As a result, most studies end up with micro-
level hazard analysis, failing to accomplish both micro and macro levels
of image data analysis and classification.

Most recently, the advancement of transformer networks and
OpenAl’s Contrastive Language-Image Pre-Training (CLIP) [57] has
facilitated the development of rapid semantic image search engines
[58]. CLIP, trained on a wide array of internet images using natural
language supervision, has the capability to produce zero-shot classifiers
from textual descriptions. This means that a semantic image search
engine leveraging CLIP can extract text embeddings or labels from an
image, like identifying objects and content (e.g., dogs and cats), without
needing custom training data. However, two main challenges persist to
be applied on post-natural disaster images with complex and intricate
objects. First, while large pre-trained models like CLIP can identify
generic objects, they might struggle with specifics; for instance, they can
recognize a building but might fail to discern its structural type or assess
damage. Secondly, we currently lack a reliable method to determine the
accuracy of the labels assigned by these models, meaning there is no
clear way to gauge how closely a label correlates with the actual content
of an image.

To address these challenges, this study proposes a new approach to
automatically classify large volumes of natural disaster damage images.
It aims to automating disaster image search to support civil engineering
tasks that include, but are not limited to, characterizing hazard expo-
sure, damage assessment and modeling, and debris quantification. The
approach couples pre-trained computer vision models and a natural
language processing model with an ontology tailored to natural disasters
to facilitate the search and query of specific image data types. More
specifically, image labels are first extracted automatically using pre-
trained models from computer vision recognition platforms, which
minimizes manual image labeling work by utilizing the largest image
label pre-trained model. Then, extracted labels will be incorporated into
a developed word-vector query system, which quantifies the label in-
tensity to the image, resulting in four primary labels with numerical
values that can inform types of natural disasters, images, locations, and
entities.

This research contributes to the field of natural disaster image data
curation, addressing gaps in existing methodologies. It introduces an
approach for automated curation of natural disaster images, reducing
the reliance on manual labeling. This area, particularly in the context of
automated data curation and efficient image classification for natural
disasters, has seen limited exploration. This study introduces a method
to improve data curation from large disaster repositories. The
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methodological innovation of this research is the integration of
advanced computer vision techniques with natural language processing.
This combination is not commonly seen in current disaster management
research. The proposed method enhances the curating and utilization of
data in disaster management repositories, which have traditionally
struggled with handling large-scale disaster data efficiently. By
improving data curation processes and search capabilities, this research
aids in more effective use of post-disaster data, facilitating robust post-
disaster forensic studies and making extensive datasets more accessible
for comprehensive disaster analysis. The final contribution of this study
is to address the underutilized potential of natural disaster image data.
Unlike the general object recognition models developed by companies
like Google or Amazon, which rely on extensive labeled datasets, there is
a lack of datasets specifically labeled for natural disaster damage
assessment. This research is a step towards creating a tailored dataset for
natural disaster Al research, filling a notable gap in the field and paving
the way for more nuanced Al-driven disaster analysis and response
strategies.

2. Proposed methodology

The overall workflow is shown in Fig. 1. The workflow begins with
image uploads to cloud storage. Once uploaded, image label extraction
is automatically initiated using the large pre-trained recognition models.
These models may include custom labels for data gaps and can signifi-
cantly reduce the need for manual labeling. This process also involves
using pre-trained models for both face and text detection, with the
identified areas subjected to Gaussian blurring to anonymize sensitive
information like faces and license plates. All extracted labels are stored
back in the cloud. These labels serve as a secondary layer in the work-
flow. The secondary labels undergo processing to prepare them for
natural language word embedding models. This includes converting all
text to lowercase, trimming unnecessary punctuation marks, and
filtering out irrelevant labels (e.g., labels like lobster or pilot are not
helpful in the context of natural disaster damage assessment). The labels
are then evaluated against word embeddings, generating tf-idf scores for
each label. The outcome of this process is a set of primary labels, each
associated with a numerical value. These labels provide comprehensive
insights into the nature of the natural disaster, image content, location,
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and entities depicted, offering a streamlined, automated approach to
image analysis in disaster management scenarios.

A. Automated Label Extraction

Over the last decade, numerous advanced cloud-based computer
vision recognition platforms have been developed. These platforms
utilize various deep learning techniques, including convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and transformer
networks, to classify images and provide labels for the contents within
them. Several computer vision platforms offer advanced pre-trained
models based on large datasets that can be conveniently accessed and
employed for research purposes. These include Google Cloud Vision API,
Amazon Web Services (AWS) Rekognition, Facebook Contrastive
Language-Image Pre-Training (CLIP), Microsoft Azure Computer Vision
API, and IBM Watson Visual Recognition. These pre-trained models can
be utilized to conduct the initial automated image label extraction
pipeline. Common detection features are label, face, and text detection,
making it a comprehensive solution for various image-related tasks.
Example label extraction results from AWS Rekogntion and Google
Cloud Vision on an aerial photo of post-hurricane Michael are shown in
Fig. 2. Label Detection Results on AWS Rekognition and Google Cloud
Vision

. Additionally, custom labels can be used in filling data gaps, espe-
cially when pre-trained models lack specific labels or unique identifiers.

B. Label Taxonomy.

Although many labels are extracted from image label detection,
image classification and ordering sorely by these labels are inefficient.
This is because each image typically produces 20 to 30 non-identical
labels, and the number would increase with custom labels. With the
increasing number of images, manually sorting hundreds of labels into
countless images and their categories is still a labor intensive task. To
reduce such human efforts, a label taxonomy is designed to facilitate
image processing through natural language processing. From now on,
the labels extracted from computer vision recognition are referred to as
“secondary labels.” This section aims to elect “primary labels” from the
secondary labels in a similar group and topic, which can efficiently
represent the characteristics of the image by merging the notion of the
secondary labels.

To develop an ontology-based label classification system that can
effectively classify post-natural disaster images, label taxonomy should
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Fig. 1. The Overall Workflow of Proposed Label Extraction and Classification.
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AWS Rekognition Google Cloud Vision

Label Confidence Label Confidence
Nature 99.6% Building 95%
Landscape 99.6% Property 94%
Outdoors 99.6% Window 88%
Scenery 99.4% Urban Design 86%
Aerial View 93% House 84%
Roof 92.1% Tree 84%
Neighborhood 83.4% Neighborhood 82%
Building 83.4% Residential Area 81%
Urban 83.4% Landscape 80%
Earthquake 61.8% Roof 78%
Soil 60.1% Facade 77%
Land 57.8% Bird's-eye View 72%
Housing 56.5% Event 66%
Ground 55% Aerial Photo 63%

(b) Label detection outcome

(a) Input aerial image

Fig. 2. Label Detection Results on AWS Rekognition and Google Cloud Vision.

be considered first. Initially, images with metadata already include time,
GPS, and camera settings. Therefore, this information does not need to
be labeled and is excluded from the taxonomy. Overall, five main aspects

Table 1

Word Embeddings for the Query System.

are considered for modeling label taxonomy: Label Type Primary Word Embeddings

(1) Entity: Representation of objectively existing units of informa- label
tion. Examples are, humans, structures, vehicles, trees, roads, traffic Entity 1 People people, human, men, women, boy, girl,
signs, lights, and debris. . (]?1)2 Buildi Cbhl_llj_ N - o, dusl

. t , , villa, s ,
(2) Hazard: Possible natural hazards related to the state of damage. nuty uidmg uiiding, ouse, vita, condo, dupiex
A ; (E2) apartment, structure, property, porch,
Examples are, wind, flood, tornado, rain, current, and storm surge. balcony, roof, door, wall, window, garage,

(3) Image type: Describes the type of image. Examples are, ground, lawn, driveway, mailbox, garden
aerial oblique, nadir, satellite, and panorama. Entity 3 Vehicle vehicle, car, truck, wheel, motor,

(4) Land Use: Describe the type of the affected area. Examples are, (E3) . aum.mObﬂe .

. . N . . Hazard 1 Hurricane hurricane, typhoon, cyclone, storm, wind,
residential, commercial, vegetation, agriculture, coastal, and 1) tornado, destruction, emergency, damage,
infrastructure. landfall, weather, surge, flood, disaster,

(5) Component: Possible structural and non-structural building debris
components present. Examples are, roof, window, door, wall, garage, Hiﬁ;‘; 2 Flood ﬂ"g’d‘“g’ flood, Walter’ “"f,r& St;’r“;’ ;f‘(rd’
column, foundation, ventilation, HVAC, and sheathing. submerse, surge, punge, tide, :ancside,

. K K . rain, torrential, downpours, tsunami,

Table 1 presents the final list of primary for each label type, which disaster, debris
will be the main information to classify, group, and sort out a large Image Type 1 Ground ground, street, road, lane, route, roadway,
volume of images effectively. This is because multiple primary labels are an ) panorama )
needed that can be stacked to describe the image in the way of hazard Im(";g‘; Type 2 Aerial g‘;ﬁ‘; :;rte ﬁ:&niel:gcvé stgicr’ drone,
language. F.'requent labels from AWS label extraction results were Land Use 1 Residential residential, resident, property, urban,
compacted into the ten (E1, E2, E3, H1, H2, I1, 12, L1, L2, and L3) pri- (L1) suburban, neighborhood, house, home,
mary labels in four categories. A set of custom labels was introduced for apartment, condo, townhouse, duplex, villa,
the “Building Component” category to streamline the classification garden

. . Land Use 2 Commercial commercial, business, office, retail,
process. While a wide array of structural and non-structural components ) .

; X o ) k K (L2) warehouse, hotel, industrial, urban, street,
are easily recognizable to the human eye, it is not feasible to identify, parking, parkinglot, mall, shopping
label, and train a model for every single one. This is especially true for Land Use 3 Vegetation vegetation, landscape, greenery, nature,
smaller or less visible components (like gutters, vents, railings, and 3) forest, tree, habitat, plant, green, park,
cladding elements) and those not typically exposed (such as columns, BuildineCombonent  Roof ?:;? woodland, shrubs
beams, foundations) or severely damaged components that no longer N gromp
retain their original form. To facilitate a more manageable and practical BuildingComponent ~ Wall wall
classification, five key custom labels were defined: door, window, roof, (€2)
wall, and garage door. A total of 1,220 images from post-Hurricane B“(‘(l%‘)ngcomponent Window window
Harvey were m.an'ually labelet.i, encompassing a mix of damaged and BuildingComponent  Door door
undamaged buildings. These images were sourced from ground-level (C4)
digital photographs taken by the reconnaissance teams of Rutgers Uni- BuildingComponent ~ Garage garage

versity, Princeton University, and the University of Texas at Austin [59].
C. Natural Language Model.
To develop a word-vector query system to quantify the similarity
between primary and secondary labels (i.e., to extract word vector

(C5)
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representation and categorize image labels into four classes described
above), word embedding models from natural language processing can
be implemented. They can learn vector representations of words to
capture the semantic meaning and relationships with other words.
Popular word embedding models trained on large amounts of text data
include Global Vectors for Word Representation (GloVe) [60] and
Word2Vec [61]. Although state-of-the-art transformer network-based
natural language models like GPT [62] and BERT [63] have advanced
self-attention mechanisms that enable them to process entire sentences
or paragraphs, this research employs conventional natural language
models because the current technology for automated label extraction
can only return single or multi-letter labels rather than descriptions of
the contents within images.

D. Primary Labels and Word Embeddings.

The world embeddings for each primary label are provided in
Table 1Table 1. Word embeddings, a learned representation for text with
the same or similar representation, were determined by analyzing the
context in which words appear within large text corpora, thereby
capturing their semantic meaning and relationships to one another
(example shown in Fig. 5). For instance, when the “People” primary
label is used, related terms within that semantic field—such as human,
men, women, boy, girl, and child—are selected as word embeddings.
These terms are chosen based on their contextual relevance and simi-
larity to the primary label, creating a cluster of words with shared
meanings. The initial clusters of closely associated words form the pre-
liminary word embeddings. These preliminary embeddings are further
refined through manual intervention to ensure relevance and accuracy.
This process involves reviewing and adjusting the associations to better
reflect the nuanced relationships between words, particularly in the
context of disaster response and damage assessment.

Unlike other primary labels, the world embeddings for Building
Components C1, C2, C3, C4, and C5 are unique in that they only
encompass the exact terms corresponding to each component. This
design is intentional and serves the specific purpose of detecting the
presence of these particular building components without the inclusion
of broader or related terms.

The generation of primary labels relies on pre-trained recognition
models, but it is important to understand the nuances of this process. For
example, identifying the specific type of natural disaster based solely on
the “Hazard” primary label and visible damage in the images can be
quite challenging. This is because the process is not a supervised
detection method and largely depends on recognizing common patterns
of damage. For instance, flood patterns are indicative of hurricanes,
while severe structural collapses might suggest earthquakes. However,
these damage patterns can often overlap or be similar across different
disaster types. Therefore, relying exclusively on the “Hazard” primary
label might not always yield accurate results. It is advisable to use this
label in conjunction with other primary labels to get a more compre-
hensive understanding of the disaster.

The term frequency-inverse document frequency (tf-idf) is used to
associate the secondary labels with the primary labels. Tf-idf score is a
numerical statistic intended to reflect how important a word is to a
document in a collection. It is a famous method to rank the content of
data, focusing on term frequency rather than simple keyword counts of
observing a word occurrence in specific topics. For example, in this
study, if a secondary label, roof, extracted from the framework, is
inputted to the query system, the output is a score on how similar the
roof is to the word embeddings.

N
TFIDF,, = TF, 4log(——
td td Og(DFI)
For the text t in a document d from the document set N is calculated
as the multiplication of the term frequency of a word in a document TF, 4
and the inverse document frequency of the word across a set of docu-
ments log(D%) where DFt is the number of documents containing the
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input text [64]. For example, if the word truck occurs five times in a
1,000-word document, TF (term frequency) is 5/1000 = 0.005.
Considering the GloVe model, which utilizes a comprehensive corpus
size of 804 billion, the IDF (inverse document frequency) would be
calculated as log(804 billion / N). In detail, this extensive corpus was
employed over world embeddings of each primary label and computing
the term frequency scores for the secondary labels inputted. At the end
of the process, images are classified into four classes (i.e., entity, hazard,
image type, and location) based on the ontology model word vector
result.

Now, if the primary labels are utilized as designed, the desired result
should be as shown in Table 2Table 2. Suppose we want to use the three
images below that are found in online image archives and lack metadata
(stock.adobe.com). The first image shows an aerial view of a flooded
residential area. We can easily assume that the image was taken after a
flood event with a drone or helicopter. Therefore, with the label clas-
sification, the desired result would show a high tf-idf score for aerial
image type, flood for hazard type, residential for land use, and building
for entity type. The second image shows a road and a connected bridge
near a water body. The sky darkens ominously, and the sea surges,
indicating a severe hurricane scene. From this image, the desired result
would show high tf-idf scores of ground for image type and hurricane for
hazard type. The last image shows damaged buildings and debris in the
residential area with some vegetation. From a human perspective, we
can see that the roads are clear, which means the initial recovery effort
has been completed to get the road access. Therefore, the desired pri-
mary label detection result for the last image would have high tf-idf
scores of ground for the image type, residential and vegetation for
land use, and building and vehicle for the entity type.

The type of data shown in Table 2 can be pivotal for post-disaster
decision-making, primarily due to its role in enhancing Al and deep
learning algorithms through the efficient categorization of disaster-
related images. Creating a structured dataset from various images,
regardless of their origin or metadata, significantly improves AI's ac-
curacy in object detection and automation of disaster responses. This
adaptability ensures a comprehensive understanding of diverse disaster
scenarios, which is crucial for effective damage assessment and resource
allocation. Furthermore, the labeling process not only facilitates ma-
chine learning advancements but also supports historical analysis and
trend prediction. This is essential in forecasting future disaster patterns,
thereby aiding in the development of more informed and efficient
response strategies. Addressing the gap in disaster-specific Al, this
research equips decision-makers with nuanced, Al-driven analysis tools,
paving the way for more accurate and rapid disaster response and pre-
paredness measures.

3. Hurricane Harvey use case

As previously discussed, the foremost objective in creating the pri-
mary label set is to develop a novel workflow designed for categorizing
and classifying a vast array of natural disaster images—a task that has
not been feasible until now. The introduction of primary labels to these
images paves the way for their use as foundational training data in
research on natural disaster hazards. Two main datasets were utilized
for the comparison of data characteristics: reconnaissance images from
Hurricane Harvey, enriched with metadata, and a collection of search
results featuring buildings impacted by the hurricane, which lack
metadata.

A. Data Sets.

Major data sources come from images of post-Hurricane Harvey,
2017, at Port Aransas and Rockport, Texas. Streel-level images were
taken from a mobile system equipped with a Ladybug spherical digital
camera. The camera’s multi-sensor captures six views with 1024 x 768
pixels: one vertical view and five circularly configured horizontal views.
Roughly 80 pixels were overlapped between the views to be composited
into a pharaonic image.
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Table 2
Desired Primary Label Result.

Advanced Engineering Informatics 60 (2024) 102427

Type Hazard Location Entity
Hurricane

Aerial Flood Residential Building
Hurricane

Ground Flood - -
. . . Building
Ground Hurricane Re5|den_t|al Vehicle
Earthquake Vegetation Debris

The second data comes from a collection of web-searchable hurri-
cane-affected building images from web search engines. Web crawling
or scraping often refers to a subset of the web scraping tool for creating a
large web dataset, such as URLs, images, video, text, etc. In recent years,
image crawling tools have been designed specifically for large search
engines (e.g., Google, Bing, Naver) to discover automatically, scan, and
download targeted web data. In order to automatically download hur-
ricane images from online archives and create a large image database
with image crawling, CygnusX1(Google crawling) [65] and
AutoCrwaler (Naver crawling) [66] have been implemented. During the
crawling process, images that are too dark or in poor resolution have
been neglected from the selection. Lastly, a simple Laplacian of the
Gaussian algorithm [67] was used to filter out blurred images. In the
end, 3,721 images and 782 images each from Google and Naver, a total
of 4,053 images, have been collected with keywords of ’hurricane’ +
"building’ as a sample online archive dataset (careful selection of key-
words can result in much difference in the tendency of crawled images as
shown in Fig. 3).

B. Methodology implementation

A cloud-based computer vision platform, Amazon Web Services
(AWS) Rekognition, was implemented to construct the initial automated
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image label extraction due to its accurate recognition model and
convenient connection with cloud storage and detection event trigger.
Recent studies have demonstrated the high accuracy of AWS Rekogni-
tion’s pre-trained model, further validating its effectiveness for image
labeling and classification. [68,69]. AWS S3, a web service interface for
object storage, is mainly used for image upload and response storage.
AWS Lambda is linked between Rekognition and S3 to manage and
connect event triggers. AWS Lambda is an event-driven computing
service that runs in response to other AWS events via AWS software
development kits (SDKs).

The four major steps for label extraction are: (1) add five custom
labels, including roof, wall, window, door, and garage; (2) upload
image: input images are uploaded to a designated folder in an S3 bucket.
During this initial process, image EXIF data are stored as Amazon S3
Object Metadata (e.g., camera information, location, time); (3) detect
request: Lambda function allows automatic analysis when images are
uploaded to S3 Bucket. When the Lambda function is triggered, it calls
StartLabelDetection to start the label detection of uploaded images; (4)
response data: once StartLabelDetection is finished, the second Lambda
function, GetLabelDetection, is called to store the analysis result back in
S3 Bucket. Both Start and Get functions are repeated for

huricane (0]

‘.
)
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Why Hurricane Dotian Defied
wirad.com

2020 Hurricane Forecast Hurricane Dorian: Path of destruction

Below Average Start Amid Record Heat Wave

Fig. 3. Image search results with keywords hurricane’ + ’building’ on the left and ’hurricane’ on the right. A combination of keywords can easily lead to images of
hurricane-damaged buildings, while using a single ‘hurricane’ often shows satellite view or general hurricane images (google.com).
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TextDetectionand FaceDetection.

In this study, the choice to employ a minimum confidence threshold
of 50 % for detection accuracy, as opposed to the typical 70-80 %, is
informed by the specific objectives of label extraction rather than pre-
cise object detection. The confidence score is a measure typically used to
determine the accuracy of detection results, often associated with
creating bounding boxes around recognized objects in an image. How-
ever, our focus is on extracting simple text labels associated with the
overall image, which is a less stringent requirement than identifying and
delineating objects. By setting the confidence threshold at a lower level,
we allow for a greater number of potential labels to be included. The
response of the label detection API is saved in the JSON structure, which
includes the detected object, bounding box location, label, and confi-
dence. Bounding box locations from text and face detection are later
used for personal information blurring, as shown in Fig. 4.

The extracted labels are returned in JSON format for each image.
While 2,580 image labels are offered from the pre-trained Rekognition
model, not all labels are particularly useful for building damage
assessment. Small object labels, such as pencil and shrimp, or irrelevant
labels, such as surgeon and elephant, can cause possible interruptions to
the later analysis. Therefore, the selected 654 labels related to building
and natural disaster damage were filtered to be used for post-hurricane
building damage image label classification. Lastly, an additional step to
combine multi-letter words with single-letter words was performed to
minimize vector weight confusion for the label classification.

GloVe’s pre-trained model was implemented to develop a word-
vector query system for label classification. GloVe is modeled for
dimensionality reduction on the co-occurrence count matrix to find the
lower-dimensional representations. It allows one to take a corpus of text
and intuitively transform each word into a high-dimensional space. It
can capture the context of a word in a document, semantic and syntactic
similarity, and relation with other words. In other words, pre-trained
word weight will count the vector relationship between labels,
providing a direction of similarity between the labels. Fig. 5Err or!
Reference source not found. shows a similarity visualization among
common secondary labels extracted from AWS using the Hurricane
Harvey reconnaissance mission. GloVe pre-trained word vector with 840
billion token corps, 2.2 million vocabularies, and 300 dimensions was
used and visualized with the t-distributed stochastic neighbor embed-
ding (t-SNE) method. As a result, words with similar topics are placed
closer together. For example, words clustered in a red circle are related
to natural disaster terms: storm, wind, flooding, hurricane, and cyclone.
The yellow circle also shows a cluster of buildings and their components.
The green circle also shows a cluster of representations of humans, such
as women, men, boy, and girl.

<N < 2
(a) Text detection result
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4. Results discussion

Determining what constitutes a high or low tf-idf score can be
inherently challenging due to its subjective nature. This subjectivity
stems from the fact that tf-idf is a relative measure; its significance is
contextually bound to the specific dataset or corpus to which it is
applied. In different collections of documents, the same numeric tf-idf
score might represent different levels of importance. However, this
ambiguity can be mitigated by applying simple statistical measures.
Analyzing the distribution (mean, median, and standard deviation) of tf-
idf scores across a corpus makes it feasible to establish a data-driven
threshold. It allows for a more systematic approach in differentiating
between terms of varying significance, thereby providing a more
grounded and justifiable means of classifying high and low tf-idf scores
within the unique context of the given dataset. The value of 15 was
identified as the threshold for categorizing a score as high, which was
determined to be higher than both the mean and the median of the tf-idf
scores across the dataset.

Table 3 shows the tf-idf result of four common labels detected from a
sample Hurricane Harvey reconnaissance image (Fig. 6) containing
multiple buildings affected by wind and flood damage and recovery
efforts. Of the 22 secondary labels detected with a confidence of 50 % or
more, the four labels with the highest confidence level were selected for
comparison. The first secondary label identified was neighborhood,
which showed high-frequency scores of 17.81 for L1 Residential and
16.03 for L2 Commercial, indicating a high probability of the image
being located in a residential or commercial area. The second secondary
label, road, showed high-frequency scores of 16.31 for E3 Vehicle, 17.27
for I1 Ground, 15.20 for L1 Commercial, and 15.40 for L3 Vegetation.
These scores suggest that the image was taken at ground level, with the
possibility of a vehicle present near a commercial or vegetated area. The
third secondary label, car, showed a high-frequency score of 29.41 for
E3 Vehicle. The exceptionally high score for E3 indicates a very high
probability of a vehicle being present. The fourth secondary label, the
debris label, showed high-frequency scores of 16.37 for H2 Flooding and
19.26 for C1 Roof. Notably, the label returned a high score for flooding,
indicating potential debris and damages caused by the flood event. The
last two secondary labels, window and roof, showed overall exceptional
high-frequency scores for all building component primary labels. This
data suggests that both windows and roofs, being prevalent features in
various structures, significantly indicate the presence of buildings and
their other components, particularly in typical residential or commercial
areas.

All labels displayed low scores for 12 Aerial, suggesting that the
image originated from ground level, aligning with expectations.
Significantly, the high-term frequency scores derived from the input
data were compiled and stored in a distinct JSON file. These files serve
as an additional dimension for metadata analysis, offering a nuanced

N

(b) Bur on text bounding box location

Fig. 4. Text Detection and Blur.
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Fig. 5. Visualization of Similarly Among Common Secondary Labels.
Table 3
Tf-idf Score Result of Fig. 6.

Primary Label Secondary Labels

Neighborhood Road Car Debris Window Roof
Entity El People 12.24 11.76 14.29 7.52 8.24 7.56

E2 Building 11.03 12.04 13.24 10.84 16.42 7.65

E3 Vehicle 9.59 16.31 29.41 11.44 14.35 11.43
Hazard H1 Hurricane 4.10 5.76 5.02 8.45 6.72 6.60

H2 Flooding 6.09 9.63 8.56 16.37 5.94 11.48
Image
Type 11 Ground 9.24 17.27 10.43 7.98 8.26 9.16

12 Aerial 3.39 7.11 8.15 7.05 5.69 7.17
Land Use L1 Residential 17.81 12.75 13.27 6.91 15.41 9.77

L2 Commercial 16.03 15.20 14.90 7.64 16.84 9.26

L3 Vegetation 9.76 15.40 9.85 13.38 4.54 13.36
Building
Component Cl Roof 11.24 13.11 16.22 19.26 23.45 36.32

Cc2 Wall 14.20 14.78 15.41 14.24 21.87 21.14

C3 Window 13.16 11.67 17.97 13.78 30.73 23.45

C4 Door 14.41 12.99 21.18 11.34 24.55 19.82

C5 Garage 15.91 13.02 21.78 10.75 16.93 17.42

Fig. 6. Sample Reconnaissance Image for tf-idf Score Computation.
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means of comparing and categorizing images based on similar input
parameters. Its utility is particularly evident in segregating specific
subsets of images from extensive image datasets. For instance, applying
a high-score threshold for E2, 11, and L1 can effectively isolate ground-
level images predominantly featuring residential structures. Addition-
ally, incorporating specific Building Component primary labels en-
hances the precision in identifying buildings with specific components.

5. Validation of results

A manual labeling process was implemented to establish a baseline
for comparison and validate the accuracy of the computed primary la-
bels. Images are divided into four categories, with 40 images each: (1)
affected, (2) minor damage, (3) major damage, and (4) destroyed to
illustrate post-hurricane damage on residential buildings. These 160
images were manually assigned labels that should describe the overall
character of the image from a human perspective and serve as the
ground truth. The approach and list of recommended manual label as-
signments are shown in the Table 4. Eight people with sufficient expe-
rience and knowledge in hurricane damage assessment completed
manual labeling on each dataset. Building component labels (door,
window, roof, wall, and garage) were excluded from manual label
assigning because they are detected from a custom label separated from
the pre-trained Rekognition model. The results were validated by
comparing primary labels assigned manually and secondary labels
extracted from Rekognition.

Images are divided into four categories, with 40 images each: (1)
affected, (2) minor damage, (3) major damage, and (4) destroyed to
illustrate post-hurricane damage on residential buildings. These 160
images were manually assigned labels that should describe the overall
character of the image from a human perspective and serve as the
ground truth. The approach and list of recommended manual label as-
signments are shown in the table below. Eight people with sufficient
experience and knowledge in hurricane damage assessment completed
manual labeling on each dataset. Building component labels (door,
window, roof, wall, and garage) were excluded from manual label
assigning because they are detected from a custom label separated from
the pre-trained Rekognition model. The results were validated by
comparing primary labels assigned manually and secondary labels
extracted from Rekognition.

The validation aimed to assess the reliability and consistency of the
manual labeling process and determine the effectiveness of the auto-
mated labeling approach. Images from each damage category and their
secondary labels and primary labels computed from Rekognition and
manual labels are compared in Table 5. The analysis revealed that the
number of secondary labels detected by Rekognition exceeded those
obtained through manual labeling, with a wide range of categories
identified. However, it is important to note that not all of these labels
were accurate. For instance, false positives were detected as irrelevant
labels for the first affected image, such as indoors and yacht. In contrast,
the manual labeling process was found to be intuitive and efficient,
avoiding unnecessary or unrelated ones. Additionally, the manual pro-
cess enabled the identification of information-rich labels, such as tarp,

Table 4
Protocol for Manual Assignment of Image Labels.

Entity o Is there a building present?
What type of building is it?
What other objects exist, vehicles, trees, and roads?

Hazard e Is there a natural hazard damage present?
What is the extent of building damage, intact, damaged, or
destroyed?
Image o Is the image taken from ground-level or aerial?
Type Is the image panoramic?
Land Use e What is the building use type, residential or commercial?

What environment is the building located in?
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from recovery efforts and the ability to determine whether a building is
elevated, which would be difficult to detect through an automated
approach without sufficient training datasets.

Table 6 displays the comparison between automatically computed
primary labels and manually assigned labels across a dataset that en-
compasses ten primary labels and four distinct damage categories:
affected, minor damage, major damage, and destroyed. The comparison
is quantified through a ratio, which is calculated by dividing the tf-idf
scores of the automatically generated labels by those of the manual la-
bels. Overall, the primary labels obtained through Rekognition
demonstrated consistency with the manual primary labels, with a 13.32
% difference in the tf-idf score.

A higher tf-idf score indicates a richer set of attributes related to the
primary label. However, the primary labels for Hurricane (H1) and
Flood (H2) showed significant improvement when manually labeled,
indicating that Rekognition is ineffective at identifying the relationship
between damaged buildings and natural disasters. Specifically, the dif-
ference ratio for the affected category remained at 1.25, while the
minor, major, and destroyed categories exhibited more than double the
scores. The manual labeling approach is more accurate since it is easy
and natural for humans to identify damaged buildings, their debris, and
the extent of damage and relate them to natural disasters. Primary labels
for Ground (I1) and Aerial (I2) also demonstrated higher accuracy with
manual labeling. Similar to the hazard category, it is more natural for
humans to list labels directly related to the image type (ground), while
primary labels from Rekognition act as a recomputed similarity score
based on various labels located in similar vector space. Hence, the
manual primary labels performed better than the Rekognition labels,
with an average difference of only 13.32 %. This means that the pre-
trained Rekognition model is a suitable and efficient tool for extract-
ing labels from a large number of post-hurricane images and classifying
them effectively.

The study also involved a detailed comparison between automati-
cally computed secondary labels and manually assigned labels for five
specific building component custom labels: roof, window, wall, door,
and garage. The objective was not to evaluate the final tf-idf scores of
primary labels but to assess the precision with which automated custom
labels could identify varying degrees of building damage, using manu-
ally assigned labels as a ground truth for accuracy. As illustrated in
Table 7, a minor discrepancy between automated and manual labels in
categories of affected and minor damage is observable. However, this
disparity grows more pronounced in categories of major damage, with a
difference of —16.88 %, and in the destroyed building category, with a
difference of —48.47 %. Despite the 1,120 training data and advanced
computer vision technology used in automated label generation systems,
they are still outstripped by the human eye’s ability to discern building
damage, particularly in complex scenarios.

6. Conclusions and future work

This study introduces a novel workflow capable of automatically
extracting images from large volumes of data and classifying them. By
leveraging pre-trained computer vision and natural language processing
models in conjunction with a developed word-embedding model, the
process assigns primary labels and similarity scores to each processed
image. These labels and scores can be used to efficiently search and
query specific types of image data.

The validation process and the accuracy assessment of AWS Rekog-
nition covered in many studies [68,70] enhance the credibility of the
data set and ensure that the proposed pipeline can be used effectively
and efficiently to classify images. AWS Rekognition’s pre-trained model
label detection result was modified to return 654 labels related to post-
hurricane images. Then, the GloVe-based word-vector query system was
developed to generate primary labels to classify images based on the
similarity score computed in four hazard categories. Overall, the
Rekognition primary labels demonstrated upright scores compared to



S. Ho Ro et al.

Advanced Engineering Informatics 60 (2024) 102427

Table 5
Primary Label Comparison With Unobstructed Building View.
Image Rekognition Manual Secondary Label Primary Primary
Secondary Label (Automated) Label (Manual)
Label
fx2 truck condo building El 8.96 11.67
Affected vehicle villa house E2 9.75 12.95
architecture porch residential E3 12.2 13.12
building grass car H1 3.86 4.9
housing plant vehicle H2 6.44 8.13
car pickup truck n 7.12 8.9
machine garage tree 12 5.13 6.45
wheel indoors intact L1 10.17 13.27
house balcony railing L2 10.38 12.3
city handrail ground L3 9.84 10.06
mobile yacht driveway
home
fx3 garage chair building El 8.45 10.69
Minor Damage indoors furniture house E2 10.91 12.3
architecture grass residential E3 8.87 11.03
building plant tree H1 3.29 7.63
house city debris H2 5.95 11.65
housing condo railing ! 6.89 8.48
porch balcony damaged 12 3.94 6.8
villa cottage ground L1 10.96 12.46
water door hurricane L2 10.2 11.35
waterfront L3 10.67 10.1
fx4 architecture car building El 8.75 10.69
Major Damage building vehicle house E2 10.35 12.3
house nature elevated E3 10.25 11.03
housing staircase residential H1 3.52 7.63
porch villa tree H2 6.55 11.65
gate deck tarp 11 7.4 8.84
grass cottage debris 12 4.89 8.48
plant siding damaged L1 10.44 12.46
outdoors neighbor ground L2 10.33 11.35
indoors shelter hurricane L3 10.87 10.1
garage driveway
railing
x5 architecture porch building El 10.21 10.66
Destroyed building play area house E2 9.73 12.13
house wood elevated E3 7.46 10.87
housing city residential H1 4.04 7.76
staircase country debris H2 7.08 12.09
outdoors hut destroyed 11 7.28 6.48
nature rural ground 12 4.79 6.98
handrail shelter hurricane L1 11.23 13.01
L2 10.53 11.68
L3 11.75 11.14
Table 6 Table 7

The tf-idf Score Ratio of 160 Topic Data Primary Labels, Rekognition Label vs.
Manual Label.

Average Building Component Labels Detected on 160 Topic Data Topic Data,
Rekognition/Custom Label vs. Manual Label.

Affected Minor Damage Major Damage Destroyed Automatic Label Manual Label Difference

El 1.36 1.30 1.21 1.03 Affected 3.875 4.425 —-12.43 %

E2 1.31 1.21 1.18 1.28 Minor damage 3.725 4.15 ~10.24 %

E3 1.07 1.24 1.08 1.41 Major damage 3.325 4 —16.88 %

H1 1.25 2.30 2.21 2.07 Destroyed 2.1 4.075 —48.47 %

H2 1.27 1.94 1.75 1.85

n 1.29 1.26 1.18 0.87

12 1.30 1.75 1.74 1.40 building component detection. This limitation is deeply rooted in the

L1 1.34 L15 1.27 117 intricate and nuanced process of damage assessment, where visual in-

L2 1.21 1.09 1.05 1.10 . . .

L3 1.00 0.92 0.98 0.90 dicators can be subtle, complex, and heavily reliant on context. Auto-

the manual primary labels, with a minimum average difference of 13.32
%. This indicates that the pre-trained Rekognition model is a good fit
and can be used effectively and efficiently to extract labels from a large
volume of post-hurricane images for classification. However, Rekogni-
tion’s labels are inefficient in identifying the relationship between nat-
ural disasters and damaged buildings, and custom data supplementation
is necessary.

Yet, the use of custom labels showed clear limitations on damage-

mated detection struggles to grasp the full extent of these contextual
subtleties, a feat that the human eye can manage more adeptly. This is
particularly true in cases of severe destruction or when buildings are
reduced to rubble. Identifying completely damaged or collapsed struc-
tures using computer vision remains a formidable challenge, as these
systems often fail to recognize the chaotic and unpredictable nature of
such devastation. Consequently, while automated tools are indispens-
able for processing data on a large scale, the discerning judgment of
human evaluators is essential for the accurate detection and evaluation
of severely damaged or collapsed building components.

10
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The framework also showed low capital and quick processing time,
as it takes about four minutes and costs $2.80 to process 1,000 images.
In the long term, a stand-alone pre-trained weight should be created for
post-hurricane image classification using custom-labeled data and other
computer vision pre-trained models, which can be used in various hur-
ricane research and applications. To develop this weight, images should
be retrained with primary labels. Although the framework relies on AWS
systems due to the impracticality of manually training over 600 labels,
an independent training weight can be established with enough primary
and secondary labels. As a result, the AWS system or other computer
vision pre-trained models can be eliminated from the framework. Ulti-
mately, this independent and original framework can be utilized for
various offline projects, including reconnaissance missions and image
classification simultaneously from the site.

The proposed method offers an advanced system for automatically
labeling and classifying large volumes of post-natural disaster image
data, including images with and without metadata that have been
archived for decades. The reconnaissance images with metadata can be
curated to a higher level to enhance their management and organization
in natural disaster data repositories and infrastructures. Even images
without metadata from online archives can be classified using the pro-
posed method to filter specific sets of images and create valuable
training datasets for deep learning-based object detection applications.
By automating this process, the proposed method saves time and effort
that would otherwise be spent manually labeling and sorting images
while ensuring that the resulting training datasets are accurate and
relevant. This not only improves the efficiency of the training process
but also helps to improve the overall performance of deep learning-
based object detection systems. In particular, the methodology excels
in reducing the typically daunting task of extracting suitable data for
specific research needs, which often involves laboriously sifting through
an extensive pool of images. For instance, it simplifies locating images
depicting key aftermath scenarios, such as debris identification [71,72],
multilevel segmentation with aerial footage [50], flood damage
modeling [73], and wildfire damage pattern analysis [74]. This targeted
data extraction capability is highly sought after by researchers and
practitioners in the field of disaster management.

This study did not involve any innovation of the object detection or
image classification algorithm because this is not in the sense of model
improvement but more about rearranging the return and utilizing it in a
new perspective to extract and classify labels of post-natural disaster
images automatically. It is the first attempt to curate abundant natural
disaster images to add supplementary but forefront information to
organize the hazard database. The key contribution of this study is sig-
nificant in that the proposed method can be applied to a wide range of
image classifications. This method is versatile and adaptable, provided
that the word embedding can be updated to meet the standard of the
domain being targeted. Making the method applicable to various image
classifications can be utilized in diverse fields and industries, offering a
practical and valuable solution for image labeling and classification
tasks. Moreover, the inherent flexibility of this method ensures that it
can evolve alongside the changing needs of various domains. These
evolutionary potential positions the method not just as a solution for
current challenges but also as a foundational asset for future research
and development.

In considering the potential for future development and the recog-
nition of existing limitations in the proposed methodology, the following
points emerge as key areas:

e Mitigating data quality dependence: The method’s effectiveness
heavily relies on the quality and volume of available data. In areas
with scarce or poor-quality data, performance may falter. Future
enhancements could involve merging multiple data sources and al-
gorithms to overcome this limitation, ensuring consistent perfor-
mance regardless of data quality. This approach is particularly
pertinent in the context of detecting damaged building components,

11
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ensuring more reliable and consistent performance across diverse
data conditions.

Enhanced object detection and damage assessment: Current limita-
tions in detecting and classifying complex objects, particularly in
varied disaster types and damaged building components, highlight
the need for improved models. Future work could develop deep
learning models that not only identify damage but also assess its
severity, incorporating extensive custom data to cover various
damage patterns and building components.

Real-time disaster monitoring and response: While suited for post-
disaster analysis, the method’s application in real-time monitoring
is limited. Future advancements could focus on developing real-time
image analysis capabilities that align with ongoing data acquisition
at disaster sites, enhancing immediate response strategies.
Predictive analysis applications: Utilizing classified image data for
predictive analytics presents a significant opportunity for future
research. This could involve developing models to predict the impact
of imminent disasters using historical image data, which would be
instrumental in improving disaster preparedness and mitigation
strategies.

Application to different disaster contexts: adapting the current
workflow for use in various natural disasters like earthquakes and
fires. This may include categorizing building damages and compo-
nents specific to earthquakes and fires, such as structural faults from
earthquakes or burn path patterns from fires.
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