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Abstract 17 

Uncertainty in future climate change challenges water infrastructure development decisions. 18 
Flexible infrastructure development, in which infrastructure is proactively designed to be 19 
changed in the future, can reduce the risk of overbuilding unnecessary infrastructure while 20 
maintaining reliable water supply. Flexible strategies assume that water planners will learn over 21 
time, updating future climate projections and using that new information to change plans. 22 
Previous work has developed methods to incorporate learning using climate observations into 23 
flexible planning but has not quantified the impact of different amounts of learning on the 24 
effectiveness of flexible planning. In this work, we develop a framework to assess how 25 
differences in the amount of learning about climate uncertainty affect the value of flexible water 26 
infrastructure planning. In the first part of our framework, we design climate scenarios with 27 
different amounts of learning using an exploratory Bayesian modeling approach. Then, we 28 
quantify the impacts of learning on flexibility using simulated costs and infrastructure decisions. 29 
We demonstrate this framework on a stylized case study of the Mwache Dam near Mombasa, 30 
Kenya. Flexible planning is more effective in avoiding over- or underbuilding under high-31 
learning scenarios, especially in avoiding overbuilding in wet climates. This framework provides 32 
insight on the climate conditions and learning scenarios that make flexible infrastructure most 33 
valuable. 34 

1 Introduction 35 

Climate change uncertainty challenges water supply planning (Gleick, 1989, 2000). 36 
Infrastructure systems, which are designed to last for many decades, must perform well under 37 
highly uncertain conditions (Cosgrove & Loucks, 2015; IPCC, 2022). Traditional water supply 38 
planning approaches usually oversize water infrastructure using a safety factor to account for 39 
uncertainty and reduce the chance of system failure (Stakhiv, 2011). However, overbuilding adds 40 
costs and environmental impacts, which are especially detrimental in more resource-scarce 41 
regions. One strategy to plan under uncertainty is flexible planning. Flexible, or adaptive, 42 
planning approaches can help mitigate infrastructure over- or underbuilding by changing the 43 
design or operations of infrastructure to respond to evolving conditions over time (Bertoni et al., 44 
2021; Culley et al., 2016; Hui et al., 2018). For example, flexible plans may respond to 45 
hydrologic shifts, like a climate trending drier (Kumar et al., 2013), or changing societal values, 46 
such as a focus towards sustainability and ecological benefits (Kermisch & Taebi, 2017). 47 
Flexible plans also have downsides. They require identifying signs of system vulnerability 48 
(Dewar et al., 1994; Haasnoot et al., 2013) to trigger adaptations (Walker et al., 2001), which 49 
assumes that we can identify a reliable signpost for when to adapt. This may not be the case in 50 
many systems (Raso et al., 2019). Flexible plans also are expensive and may require additional 51 
costs for monitoring systems or repetitive structural elements to allow for future adaptations 52 
(Moore & McCarthy, 2010; Spiller et al., 2015; Walters, 1997). 53 

How much we can learn about uncertainty in the future informs whether a flexible 54 
approach is favorable. To take a flexible approach, we must have an iterative process where new 55 
information becomes available, the system processes that information, and then changes 56 
accordingly (Pahl-Wostl, 2007). In this context, the value of learning depends on how much new 57 
information improves decision making (Williams, 2011). We categorize learning mechanisms, or 58 
types of information integration, through which we can learn. One mechanism is learning by 59 
model improvement, where epistemic uncertainty is improved through the development of better 60 
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models (Walters, 1997; Williams & Brown, 2016). This type of learning reduces uncertainty 61 
through the improved understanding of physical and socioeconomic processes. Another 62 
mechanism is learning by active information incorporation, by seeking out and including 63 
additional sources of information. Examples include developing and incorporating short- and 64 
long-term precipitation forecasts (Zaniolo et al., 2021) and developing new groundwater 65 
monitoring systems (Storck et al., 1997). A last mechanism is learning by observation, in which 66 
monitoring of relevant system variables, such as climate trends, are used to update future 67 
projections (Conroy et al., 2011; Ekholm, 2018; Giuliani et al., 2019; Pulwarty & Melis, 2001). 68 
In learning by observation, the ability to learn is informed by how correlated near-term 69 
observations are with long-term trends. For example, if near-term and long-term trends are 70 
highly correlated, observing an upward trend in a climate variable in recent years indicates a 71 
long-term upward trend in the future. In this case, ongoing climate observations reduce future 72 
climate uncertainty, and the climate has a high learning rate. Conversely, when the correlation is 73 
low, a recent trend does not indicate a future long-term trend, future climate uncertainty remains 74 
unchanged, and learning does not occur, or occurs slowly.  75 

Within water supply planning models focused on climate change uncertainty, most 76 
planning approaches do not account for learning about uncertainty. Global climate models (or 77 
general circulation models; GCMs) provide the best available projections for future climate 78 
conditions. Planning models often use ensembles of different GCMs to simulate system 79 
performance under uncertainty and identify approaches that perform well across plausible future 80 
scenarios (Brown & Wilby, 2012; Lamontagne et al., 2018; Quinn et al., 2020; Steinschneider et 81 
al., 2015). This approach uses a static representation of uncertainty, in which the range of 82 
plausible futures identified at the outset remain plausible throughout the planning period. 83 
However, it may be possible to refine the likelihood of future projections as new observations 84 
become available (Abramowitz & Bishop, 2015; Massoud et al., 2020; Sanderson et al., 2017; 85 
Urban et al., 2014; Urban & Keller, 2010). Bayesian Model Averaging (BMA) has been used to 86 
determine the influence of multiple climate models on future aggregated projections based on 87 
observational data (Duan & Phillips, 2010; Gibson et al., 2019; Massoud et al., 2020). BMA 88 
develops a set of updated climate projections by averaging prior estimates from the different 89 
climate models based on how well each model captures historical observations. 90 

In the water resources literature, closed loop planning approaches have been used to 91 
explicitly incorporate learning to inform decision making over time. Closed loop planning 92 
approaches include multiple classes of methods, including policy search and dynamic 93 
programming (Herman et al., 2020). Policy search approaches use simulation-based optimization 94 
to find a decision policy that minimizes a given objective function (see, e.g., Giuliani et al., 95 
2016). Policy search has been paired with learning by active information incorporation through 96 
the addition of exogenous information to condition policy decisions. More informed policies 97 
generally result in improved policy outcomes (e.g., Giuliani et al. 2019; Woodward, Kapelan, 98 
and Gouldby 2014). Policy search methods have been used in flood (Ceres et al., 2022; Kwakkel 99 
et al., 2015, 2016; Woodward et al., 2014) and urban water supply (Mortazavi-Naeini et al., 100 
2015; Paton et al., 2014; Zeff et al., 2016) infrastructure planning.  101 

One benefit of dynamic programming is that new information can be explicitly 102 
incorporated at each time step using a prescribed probability distribution, and the problem 103 
formulation incorporates all potential future information in determining the optimal planning 104 
decisions (Fletcher, Lickley, et al., 2019; Giuliani et al., 2016). Dynamic programming and 105 
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optimization methods with Bayesian updating frameworks have been used in flood (Doss-Gollin 106 
& Keller, 2022; Hui et al., 2018) and flexible water (Fletcher, Lickley, et al., 2019) infrastructure 107 
planning problems. Jeuland & Whittington (2014) use decision trees, which use dynamic 108 
programming as solution method but do not make the Markov assumption typical in larger 109 
problems, within an engineering options analysis simulation framework to systematically 110 
evaluate infrastructure selection, sizing, and sequencing. Fletcher, Lickley, and Strzepek (2019) 111 
develop the first planning framework to explicitly incorporate learning about climate change 112 
uncertainty into the upfront flexible infrastructure planning decision. They use Bayesian 113 
modeling (Smith et al., 2009) to develop future temperature and precipitation uncertainty 114 
projections and use learning by observation of the climate state to compare flexible and static 115 
infrastructure planning approaches. However, this work did not test how different climate 116 
learning rates impact costs and planning decisions to understand the conditions under which 117 
flexible water infrastructure is most valuable.  118 

This gap is the motivation for our current work. We develop a framework to assess how 119 
differences in the amount of learning about climate uncertainty affect the value of flexible water 120 
infrastructure in providing low-cost, reliable water supply. One key contribution is the use of 121 
information theory metrics to quantify uncertainty changes. We demonstrate this framework on a 122 
stylized dam planning case study. To assess the effect of variable learning rates, we design future 123 
climate scenarios with different rates of learning by observation using an exploratory Bayesian 124 
modeling approach. Then, we develop an approach to quantify the impacts of learning about 125 
climate change uncertainty on flexible and static infrastructure designs. We demonstrate this 126 
framework on the Mwache Dam near Mombasa, Kenya. GCMs in this region have diverging 127 
future precipitation projections with long-term uncertainty on whether this area will become 128 
wetter or drier. We find that a high-learning climate often increases the value of flexibility and 129 
better avoids over- or underbuilding infrastructure compared to a low-learning climate. We also 130 
find that flexible infrastructure is most valuable under wet climate conditions by avoiding 131 
overbuilding. 132 

2 Methods 133 

2.1 Case study: Mwache Dam in Mombasa, Kenya 134 

We apply our framework to the Mwache Dam near Mombasa, Kenya. The Mwache Dam 135 
site, Mwache River, and associated tributaries are shown in Figure 1a. The dam is about 22 136 
kilometers west of Mombasa, Kenya. The dam’s main purposes are to meet water supply for 137 
growing urban and agricultural demands in the region. Over the next 15 to 20 years, urban water 138 
demands are expected to double in Mombasa (Ojwang et al., 2017). Additionally, as part of the 139 
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infrastructure project, planned irrigation districts will receive water from the dam (State 140 
Department of Natural Water Services, 2016), as highlighted on the map. 141 

 142 
Figure 1. Case study location. a) Map of Mwache River and tributaries, b) RCP4.5 and RCP8.5 GCM 143 
projections for 20-year precipitation moving averages near Mombasa, Kenya. 144 

Figure 1b shows the projected precipitation change in Mombasa relative to a 1990 145 
baseline under 21 GCMs for RCP4.5 and RCP8.5 emissions pathways. Table S1 in the 146 
Supplementary Information (SI) includes the full GCM list. The diverging trend for different 147 
GCMs highlights the large uncertainty in future precipitation trends in this region due to climate 148 
change. This diverging trend challenges water supply planning and motivates the use of flexible 149 
water infrastructure to avoid over- or underbuilding.  150 

2.2 Framework Overview 151 

We develop a novel framework to assess how different rates of learning about 152 
precipitation affect the value of flexible infrastructure in low-cost, reliable water supply. Our 153 
approach has three key steps, illustrated in Figure 2. First, in panel a, we develop two contrasting 154 
climate learning scenarios: a high-learning climate scenario where new observations are 155 
correlated with past observations and substantially reduce future uncertainty, and a low-learning 156 
climate scenario where new observations are uncorrelated and therefore less informative. In 157 
parallel, we design two infrastructure alternatives: a static dam that cannot be modified once 158 
built, and a flexible dam that can be expanded at most once during the planning period. Second, 159 
we develop an infrastructure planning model using stochastic dynamic programming (SDP) 160 
(hereafter termed infrastructure planning SDP) to evaluate the infrastructure and shortage costs 161 
of the optimized static and flexible dam alternatives in the high- and low-learning climate 162 
scenarios. We use a 100-year time horizon with new climate information incorporated and 163 
actions updated every 20 years. Finally, in panel b, we use these results to quantify the value of 164 
flexibility, defined as the cost savings of the flexible dam compared to the static dam. We then 165 
quantify the value of learning for flexibility, defined as the difference in the value of flexibility 166 
in the high-learning climate compared to the low-learning climate. This framework allows us to 167 
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assess the interaction between learning about climate uncertainty and infrastructure flexibility, 168 
and to quantify the degree to which greater learning improves the value of flexible planning. 169 

 170 
Figure 2. Schematic illustrating framework for quantifying the value of learning about climate uncertainty for 171 
flexible water infrastructure   172 

 2.3 Designing Climate Learning Scenarios 173 

First, we develop climate learning scenarios that model learning by observation using 174 
exploratory Bayesian updating, in which we systematically adjust the likelihood function to 175 
change the influence of new observations on the posterior. In our exploratory Bayesian model, 176 
the prior distribution reflects the full range of uncertainty in future precipitation projections at the 177 
outset of the planning period. As the planning period goes on, more data about how precipitation 178 
is changing becomes available, which is used to update the prior and develop a posterior 179 
distribution. The difference between the posterior and prior distributions reflects what is learned 180 
about uncertainty from the new data. Here the new data is synthetic data that corresponds to 181 
simulated precipitation in the infrastructure planning model.  182 

We design two scenarios, a high-learning climate and a low-learning climate. In the high-183 
learning climate scenario, new observations have a large influence on the prior, leading to a 184 
posterior that substantially narrows around the new data. In the low-learning climate scenario, 185 
new observations have a limited effect, and the posterior more closely resembles the prior, 186 
reflecting slow learning. In Bayes’ theorem, the likelihood function controls the degree to which 187 
the posterior is changed by new data. Therefore, we design the high- and low-learning climate 188 
scenarios by developing likelihood functions with low and high variance, respectively. In 189 
previous work that integrates climate model projections with observational data (e.g. Smith et al. 190 
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2009), the likelihood function describes the error between observed and modeled projections of 191 
precipitation change. Models with larger historical errors have likelihood functions with higher 192 
variance terms, leading to less influence on the posterior. Here, as an exploratory approach to 193 
vary the amount of learning, we directly manipulate the variance of the likelihood function to 194 
control the amount of influence the new synthetic observation has on the posterior.  195 

Our Bayesian model is presented in Equation 1. We model a single period update, where 196 
precipitation change in time t is used to update the projection for precipitation in t+1. This choice 197 
is made to align with the formulation of our stochastic infrastructure planning model, which uses 198 
single-period Markov state transitions. We develop projections to the end of the planning period 199 
by applying Monte Carlo simulation to the single period transitions. We use a normal-normal 200 
conjugate model for the single period update. The assumption of normality aligns with previous 201 
work modeling precipitation change (Ruosteenoja et al., 2007) and is validated using a 202 
Kolmogorov-Smirnov (K-S) test. The K-S test results are listed in SI Section S2.  203 

In t=1, the model is: 204 

        𝑃(∆𝑝1)~𝑁(∆𝑝0, 𝜎0
2)  (Prior in t=1) 205 

𝑃(∆𝑝0|∆𝑝1)~𝑁(𝑐𝑙∆𝑝0,  𝛼𝑙)  (Likelihood in t=1) 206 
𝑃(∆𝑝1|∆p0)~𝑁(𝜇1∆𝑝0, 𝜈1𝜎0

2) (Posterior in t=1) 207 

             where 𝜇1 =
cl∗𝜎0

2+𝛼𝑙
2

𝜎0
2+𝛼𝑙

2 , 𝜈1 =
𝛼𝑙

2

𝜎0
2+𝛼𝑙

2 208 

Equation 1  209 

This model uses a recursive approach in which the posterior from one time period becomes the 210 
prior in the next; in the t=1 model, ∆𝑝0 is the “synthetic observation” i.e. precipitation change in 211 
the previous (t=0) period that is used to update estimated precipitation change in the current (t=1) 212 
period. 213 

Using the same single-period likelihood function, 𝑃(∆𝑝𝑡−1|∆𝑝𝑡)~𝑁(𝑐𝑙∆𝑝𝑡−1,  𝛼𝑙), we 214 
derive the general posterior for any time period:  215 

𝑃(∆𝑝𝑡|∆pt−1, … , ∆p0)~N(𝜇𝑡∆𝑝𝑡−1, 𝜈𝑡𝜎0
2) ∀𝑡 ≥ 0 216 

where 𝜇𝑡 =
𝑡∗cl𝜎0

2+𝛼𝑙
2

𝑡∗𝜎0
2+𝛼𝑙

2 , 𝜈𝑡 =
𝛼𝑙

2

𝑡∗𝜎0
2+𝛼𝑙

2 217 

Equation 2 218 

We define the terms in this model as follows. ∆pt is the change in precipitation ending in 219 
time t relative to the current time period, t=0. 𝜎0

2 is the variance of the prior in t=0, reflecting 220 
current knowledge of precipitation change uncertainty. We define the mean of the likelihood 221 
using a multiplicative shifting factor, 𝑐𝑙, which controls the lag-1 autocorrelation in ∆p. The 222 
subscript 𝑙 refers to the climate learning scenario, which can be high (𝑙 = 𝐻) or low (𝑙 = 𝐿).  𝑐𝑙 223 
is greater in the high-learning scenario than the low-learning scenario, representing the 224 
correlation between near-term observations and long-term change. 𝛼𝑙 is the variance of the 225 
likelihood, where higher values are analogous to greater error between climate models and 226 
observations, leading to lower learning by observation. 𝑐𝑙 and 𝛼𝑙 are parameters we manipulate 227 
directly for exploratory analysis. Together, they control the amount of learning, with 𝑐𝑙 228 
determining how correlated near-term precipitation is with long-term precipitation, and 𝛼𝑙 229 
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determining how much the new observation affects the prior estimate. Finally, 𝜇𝑡 and 𝜈𝑡 are 230 
derived using the normal-normal conjugate (Marin & Robert, 2007).   231 

The numerical values of these parameters are given in Table 1. 𝜎0
2 was chosen to be 232 

comparable to the variance of one-period changes in precipitation in the ensemble of GCM 233 
projections in Mombasa. 𝑐𝑙 and 𝛼𝑙 were chosen with two goals. First, we choose higher 𝑐𝑙 and 234 
lower 𝛼𝑙 in the high-learning scenario compared to the low-learning scenario, reflecting greater 235 
autocorrelation and greater updating based on new information, both of which lead to more 236 
learning. Second, we want the end-of-century prior precipitation distributions to be the same and 237 
comparable to the mean and variance across GCM projections. This ensures that the difference in 238 
the scenarios reflect differences in learning rather than differences in precipitation trends or 239 
initial uncertainty. The method used is discussed in SI Section S3. 240 

Table 1. High- and Low-Learning Climate Scenario Parameters 241 
Learning scenario 𝜎0 𝑐𝑙 𝛼𝑙  

High 5.0 1.15 2 
Low 5.0 -0.58 50 

 242 

2.4 Quantifying Learning 243 

The previous section described our approach to designing scenarios that reflect high and 244 
low rates of learning by observation about climate uncertainty. Here, we quantify the amount of 245 
learning in each model simulation. This serves two purposes. First, it allows us to validate that 246 
the approach to design high- and low-learning climate scenarios does indeed lead to differences 247 
in learning. Second, it allows us to quantify the amount of learning across different model 248 
simulations, which we use to assess the impact of different amounts of learning on flexibility. 249 
We quantify the change in predicted precipitation distributions using KL divergence, an 250 
information theory metric that measures the amount of information gain through comparing two 251 
distributions (Kullback & Leibler, 1951). The KL divergence between the posterior and prior in a 252 
Bayesian model is commonly used to measure the amount of learning from new observations 253 
(Gelman et al., 2021). Previous climate science and water resources work uses KL divergence to 254 
compare synthetic climate projections, such as precipitation or streamflow, with observed data 255 
(e.g., Leung and North 1990; Nearing and Gupta 2015; Weijs, Schoups, and van de Giesen 256 
2010).  257 

Here we use KL divergence to quantify the amount of learning by observation in 258 
probabilistic precipitation change projections. We apply Monte Carlo simulation to our Bayesian 259 
model for single period transitions (Equations 1 and 2) to develop probabilistic precipitation 260 
change projections starting in our initial time period (1990; t=0) through the end of our modeled 261 
planning period (2090; t=5) with a time step of 20 years. We vary the number of recursive 262 
Bayesian updates corresponding to how many years of new precipitation observations are used 263 
for learning. We define our prior as the information available in 1990 (t=0). Then we can 264 
develop a posterior for any future time period t based on new observations between time 0 and t-265 
1. For example, we can simulate precipitation distributions for the year 2090, using observations 266 
through the year 2070; this requires simulation through four Bayesian updates, each 267 
corresponding to a new 20-year average observation. In this example, we define 1990 as the 268 
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prior year, 2070 as the information year, and 2090 as the projection year. Further, we propagate 269 
uncertainty through our simulation model using Monte Carlo simulation to develop analogous 270 
projections and updates for water shortages in addition to precipitation. We apply KL divergence 271 
to calculate learning between prior and posterior projections using a distribution of precipitation 272 
or water shortage predictions. For discrete distributions, this is calculated as shown in Equation 273 
3: 274 

𝐷𝐾𝐿(𝑃𝑡,𝑖‖𝑃𝑡,𝑝) = ∑ 𝑃𝑡(𝑥) ∗ log
𝑃𝑡,𝑖(𝑥)

𝑃𝑡,𝑝(𝑥)
,

𝑥∈𝑋

 275 

Equation 3 276 

where 𝑃𝑡,𝑖(𝑥) is the probability distribution for precipitation (or water shortages) in projection 277 
year t based on observations between t=0 and information year i, and 𝑃𝑡,𝑝(𝑥) is the probability 278 
distribution at projection year t, based only on information from prior year p. x is a discrete 279 
random variable representing possible values of future precipitation (or water shortages). A 280 
discrete formulation was chosen to align with the infrastructure planning SDP, which constrains 281 
precipitation (and water shortage) values to discretized increments; see below. We follow 282 
recommendations from Gong et al. (2014) for applying KL divergence to precipitation and water 283 
availability data. See SI Section S4 for details.  284 

2.5 Infrastructure Planning Model using Stochastic Dynamic Programming 285 

After developing the climate learning scenarios and an approach to quantify the learning 286 
in each, we now develop an infrastructure planning model that uses SDP to optimize and 287 
compare the performance of static and flexible infrastructure alternatives under the contrasting 288 
climate learning scenarios. The infrastructure planning SDP identifies the least-cost 289 
infrastructure planning policy under climate uncertainty over a 100-year time horizon with 20-290 
year time steps. Climate uncertainty is incorporated into the infrastructure planning SDP by 291 
defining a state variable that represents average precipitation in each 20-year period. We use the 292 
Bayesian model from Equations 1 and 2 to characterize the transition probabilities for the 293 
precipitation state variable. The current precipitation state in the SDP is used as the synthetic 294 
data ∆pt in the Bayesian model. The transition probabilities that lead to future precipitation states 295 
therefore reflect what is learned from the current state as an observation. This approach 296 
integrates learning by observation into optimal infrastructure planning policies. This approach 297 
was developed and applied in Fletcher, Lickley, and Strzepek (2019) and Fletcher et al. (2019). 298 
We formulate and solve the infrastructure SDP using the Bellman equation (Bellman, 1954) as 299 
follows: 300 

𝑉𝑡(𝑠𝑡) = argmin
𝑎∈𝐴

 𝐶(𝑠𝑡 , 𝑎𝑡 , 𝑡) + 𝛾 ∗ ∑ 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎) ∗ 𝑉𝑡+1(𝑠𝑡+1)
𝑠∈𝑆

 301 

Equation 4 302 

where 𝑡 ∈ {1, … ,5}  for 20-year planning periods from t=1 representing 2001-2020 to t=5 303 
representing 2081-2100. 𝑆 is the state space, comprising state variables 𝑆𝑃 for the precipitation 304 
state, which ranges from 49 to 119 millimeters per month in discretized one-millimeter bins, and 305 
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𝑆𝑍 for the infrastructure state, which comprises the static dam, flexible dam unexpanded, or 306 
flexible dam expanded to multiple candidate sizes. 𝐴 is the set of actions: what dam to construct 307 
in the first time period, and if and how much to expand the flexible dam in later time periods. 𝐶 308 
is the cost function comprising capital costs and water shortage costs, and 𝑉 is the value 309 
function, the lowest cost in each state and time. 𝛾 is the discount rate; we include scenarios for 310 
0% and 3%. A 3% discount rate is commonly used in climate change analysis work on 311 
infrastructure development in Africa (Cervigni et al., 2015). Zero discounting was chosen as a 312 
contrasting example where there is no preference for the present over the future. This allows us 313 
to isolate the value of flexibility in addressing uncertainty from the value of flexibility driven by 314 
discounting, which incentivizes the delay of capital costs. 𝑃 is the transition probability of 315 
transitioning to a given future state 𝑠𝑡+1 in the next time period based on the current state 𝑠𝑡 and 316 
our action 𝑎. The transition probabilities for state vectors 𝑆𝑃and 𝑆𝑍 are independent, where the 317 
precipitation transition probabilities are defined by the Bayesian model as described above and 318 
the infrastructure state transitions are deterministic and defined by the actions. We solve for the 319 
optimal polices and value function using backwards recursion. 320 

The shortage cost component of the cost function is developed using a water resource 321 
system model that applies stochastic weather generation to the current precipitation state, 322 
generating monthly precipitation time series that force a rainfall-runoff model, which in turn 323 
forces a reservoir operations model and estimates shortages relative to demand. Shortage costs 324 
are assumed proportionate to the square deficit of water shortages. The approach follows 325 
Fletcher, Lickley, and Strzepek (2019) with minor improvements. Notably, operating policies are 326 
updated over time as the climate changes instead of using a fixed rule curve approach. Details on 327 
each model component are available in SI Sections S5-S8. 328 

The infrastructure component of the cost function and the actions models two 329 
infrastructure alternatives: a static and flexible dam. Both dams are built at the start of the 330 
planning period and use an existing cost model based on reservoir volume. The static dam uses 331 
economies of scale through building a larger dam upfront that cannot be changed later in the 332 
planning period. In contrast, the flexible dam is built small initially, but has multiple expansion 333 
options that can be used once in the planning period, albeit for additional costs. Hence, 334 
expanding the flexible dam to an equivalent size of the static dam is more expensive, and so 335 
flexibility is traded off with economies of scale. Detailed cost model information is in SI Section 336 
S9. 337 

We combine the high- and low-learning transition probabilities with the static and 338 
flexible infrastructure alternatives in our infrastructure planning SDP to obtain the optimal, i.e., 339 
lowest expected total cost, static and flexible infrastructure designs under our two climate 340 
learning scenarios. Then, we re-run our infrastructure planning SDP using the previously 341 
determined infrastructure designs to obtain the optimal dam policies, which includes whether to 342 
choose the static or flexible dam initially, and if we choose the flexible dam, if, when, and by 343 
how much to expand the dam’s capacity under our discretized state space.  344 

Lastly, we use Monte Carlo simulation to test how the optimal dam designs and policies 345 
perform on cost and reliability metrics under our two climate learning scenarios. Through 346 
simulating 10,000 instances of possible time series of precipitation from the climate learning 347 
scenarios, and applying the optimal policies from the SDP, we develop distributions of the costs, 348 
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reliability, and infrastructure planning decisions. To explore how the dynamics of learning and 349 
flexibility change under different climate simulations, we categorize the simulations into dry, 350 
moderate, or wet based on their end of century precipitation values. Details available in SI Figure 351 
S2. 352 

2.6 Quantifying the Value of Learning for Flexibility 353 

We quantify the value of learning for flexibility to understand how differences in learning 354 
about climate uncertainty affect the value of flexible water infrastructure. A high-learning 355 
climate may increase the value of flexibility because dry or wet climate simulations are more 356 
likely to continue in that direction, so optimal dam expansion decisions can be made earlier. 357 
Since the planning cost of a particular climate learning scenario is influenced by natural climate 358 
variability, e.g., how wet or dry the climate is, as well as how much it is possible to learn about 359 
the climate, we isolate the value of learning from climate variability. To understand the 360 
differences between high- and low-learning climate scenarios, we compare the costs of the 361 
flexible and static dams under the two climate learning scenarios, as shown in Figure 2b.  362 

We quantify the value of learning for flexibility as the difference between the expected 363 
costs of the static and flexible dams under high- and low-learning scenarios, as shown in 364 
Equation 5: 365 

𝐴 =   𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 ℎ𝑖𝑔ℎ − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝑠 = 𝐶𝑜𝑠𝑡𝑠𝑡𝑎𝑡,ℎ𝑖 − 𝐶𝑜𝑠𝑡𝑓𝑙𝑒𝑥,ℎ𝑖 366 

𝐵 =   𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑙𝑜𝑤 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝑠 =  𝐶𝑜𝑠𝑡𝑠𝑡𝑎𝑡,𝑙𝑜𝑤 − 𝐶𝑜𝑠𝑡𝑓𝑙𝑒𝑥,𝑙𝑜𝑤 367 

Equation 5 368 

This value is positive when static dam costs exceed flexible dam costs, as shown in 369 
Figure 2b.  370 

 371 

3 Results 372 

First, we present results from the exploratory Bayesian model for the high- and low-373 
learning climate scenarios. Then, we present the results on the dam infrastructure decisions and 374 
costs using the infrastructure planning SDP for each climate learning scenario.  375 

3.1 High- and Low-Learning Climate Scenarios 376 

Figure 3 presents results from the exploratory Bayesian model, illustrating differences in 377 
simulated precipitation time series and learning rates between the high- and low-learning climate 378 
scenarios. This illustrates how new synthetic observations reduce uncertainty in long-term 379 
precipitation projections more with high-learning climates than low-learning climates. In panel a, 380 
under high learning, a drying or wetting trend in simulated precipitation near the beginning of the 381 
time series is likely to continue to end of century. In contrast, in panel b we see that under low 382 
learning, early trends do not always continue. We measure this using average one-lag 383 
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autocorrelation values, which are 0.43 and 0.19 for high- and low-learning climate scenarios, 384 
respectively. 385 

 386 
Figure 3. High- and low-learning climate sample precipitation and water shortage simulations. Sample simulations 387 
are shown for wet and dry realizations, defined by their end-of-century precipitation change. a-b) Sample 388 
precipitation simulations under high- and low-learning climate scenarios are shown in gray. Red and blue lines 389 
indicate samples shown in c-j. c-f) Sample precipitation instances with uncertainty bounds under high- and low-390 
learning, dry and wet climate simulations. g-j) Sample water shortage instances with uncertainty bounds under 391 
high- and low-learning, dry and wet climate conditions. The specific simulation values are shown by the black 392 
points. As the shading gets darker, the observation time period progresses through the 21st century. 393 

In panels c-f, we illustrate learning by observing precipitation uncertainty over time. In 394 
each panel, we simulate one precipitation time series, use it in the Bayesian model to update later 395 
projections, and show the resulting posterior distributions. In panels g-j, we show how this 396 
process propagates through the infrastructure model and leads to learning about shortage 397 
uncertainty, which is the metric we ultimately care about to meet water demands. High learning 398 
leads to large reductions in uncertainty in both precipitation and water shortages (panels c-d, g-399 
h). In contrast, low learning leads to smaller reductions in precipitation uncertainty (panels e,f), 400 
but the impact on water shortage uncertainty varies across dry and wet simulations. Uncertainty 401 
in water shortages is reduced modestly in dry simulations (panel f) and greatly in wet simulations 402 
(panel j). This demonstrates a non-linear relationship between precipitation and water 403 
availability: above a certain precipitation threshold, enough water is available, and no water 404 
shortages incur. Since Figure 3 illustrates the dynamics of updating uncertainty using one 405 
realization of a time series, the optimization and simulation results, which use many realizations, 406 
are unchanged by the choice of time series here. SI Figure S3 highlights contrasting low-learning 407 
dry and wet realizations for reference. 408 

Next, we use KL divergence to quantify the learning from additional precipitation 409 
observations, shown in Figure 4. The results confirm that the high-learning climate scenario 410 
leads to greater KL divergence values in simulated precipitation compared to low learning. The 411 
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boxplots in panel a show the range of KL divergence values for simulated precipitation under 412 
high- and low-learning climate scenarios for different information years, using 1990 as the prior 413 
year and 2090 as the projection year. The distribution of KL divergence values is higher in the 414 
high-learning climate scenarios across all information years compared to the low-learning 415 
climate scenarios.  416 

 417 
Figure 4. KL divergence results for high- and low-learning, wet and dry climate scenarios. A) Distributions of KL 418 
divergence values for precipitation across different information years for a prior information year of 1990 and a 419 
projection year of 2090. b-e) Correlations between KL divergence for precipitation and water shortages. The black 420 
lines show a 1:1 line for reference, and the points are colored by the 2070 precipitation state, which is the 421 
information year used here. 422 

Panels b-e show the relationship between KL divergence values for precipitation and 423 
water shortages, and see how this relationship changes in high- vs. low-learning climates and wet 424 
vs. dry simulations. In wet simulations (panels c, e) KL divergence is sometimes lower for water 425 
shortages than for precipitation. Since water shortages do not occur in many wet simulations, the 426 
distributions of water shortage uncertainty have a low expected value, exhibit a small amount of 427 
uncertainty, and do not change much with additional observations. New information about 428 
precipitation and water availability is not valuable in this situation. In comparison, under a dry 429 
climate, the KL divergence values for water shortage have a linear correlation with the KL 430 
divergence values for precipitation, as seen by comparing the scatter plots to the black line with a 431 
slope of one. Therefore, under a dry climate we learn similar amounts about precipitation and 432 
water shortages. 433 

3.2 Dam Infrastructure Decisions and Costs under High- and Low-Learning Climate 434 
Scenarios 435 

After presenting our climate learning scenario results, we now explore the performance 436 
of the dam infrastructure alternatives for each climate learning scenario. We first quantify how 437 
high- and low-learning climates influence infrastructure decisions and costs across dry, 438 
moderate, and wet climate simulations and discount rates (Figure 5). The flexible dam is most 439 
valuable under wet climate simulations, where flexibility prevents overbuilding. Additionally, 440 
high-learning climate scenarios lead to decreased water shortages and costs in wet and moderate 441 
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climate simulations because precipitation trends earlier in the planning period are more 442 
consistent and predictable throughout. However, under dry climate simulations, both high- and 443 
low-learning climate scenarios have similar water shortage penalty costs. This is because under 444 
dry climates, learning is not particularly valuable as natural water availability simply does not 445 
meet demand regardless of the infrastructure decision.  446 

 447 
Figure 5. Expected costs across 10,000 simulations of optimal planning policies for flexible vs. static dams and 448 
high- vs. low- learning climate scenarios. Bars show the portion of the costs associated with dam infrastructure 449 
(orange), dam expansion (gray), and water shortage penalty costs (blue). Costs are compared under 0% (a-c) and 450 
3% (d-f) discount rates; and dry (a, d), moderate (b, e), and wet (c, f) precipitation simulations. The vertical axis 451 
scale varies across panels to facilitate readability of results. 452 

With zero discounting in panels a-c, the expected cost of the flexible dam is less than the 453 
expected cost of the static dam only for wet climate simulations, where the costs are driven by 454 
infrastructure costs as water shortage penalty costs are low. The static dam slightly outperforms 455 
the flexible dam for dry and moderate climate simulations. This is because the additional costs to 456 
expand the flexible dam are not fully mitigated through decreased water shortage penalty costs. 457 
There are two main reasons for this. First, since the flexible dam is initially smaller than the 458 
static dam, drier climate simulations near the beginning of the planning period may lead to larger 459 
water shortage penalty costs initially. Second, even once the flexible dam expands, lack of water 460 
availability in drier simulations diminishes the value of increasing the amount of dam storage. SI 461 
Figure S4 illustrates this result by presenting shortage costs of different dam sizes for different 462 
precipitation conditions. With a discount rate, investments later in the simulation horizon are 463 
cheaper. Flexible dams both delay infrastructure design decisions to learn about uncertainty and 464 
delay investments, which decreases their net present cost. For a 3% discount rate (panels d-f), the 465 
expected cost of the flexible dam is always less than that of the static dam, though still similar in 466 
magnitude. 467 

Next, we quantify the value of flexibility under high- and low-learning climate scenarios 468 
and contrasting precipitation simulations. This is seen in Figure 6, which illustrates distributions 469 
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of the cost difference between flexible and static alternatives under a range of simulations. 470 
Flexibility is most valuable for wet simulations when water shortage penalty costs are low, and 471 
we do not need to expand the flexible dam. But many negative outliers occur, especially with a 472 
low learning climate, where overbuilding is more likely, which occurs when the flexible dam 473 
expands even though a larger dam is not ultimately needed. Higher discount rates increase the 474 
value of flexibility. With no discounting in panel a, the value of flexibility is often negative 475 
under moderate and dry scenarios, although it is less negative under high-learning compared to 476 
low-learning climate scenarios. With the 3% discount rate in panel b and all climate simulations, 477 
the distributions for the value of flexibility are mainly positive. 478 

 479 

 480 
Figure 6. Distributions of the value of flexibility across 10,000 precipitation simulations under a) 0% and b) 3% 481 
discount rates. Both panels show the distributions of cost differences between the static and flexible dams under 482 
high- and low-learning climate scenarios; and dry, moderate, and wet simulations. The black points show the mean 483 
of the distributions. 484 

Another interesting result in Figure 6 is that there are different trends in the distributions 485 
with the 0% and 3% discount rates. With the 3% discount rate in panel b, cost differences 486 
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between the static and flexible dams are, on average, greater under dry conditions than moderate 487 
conditions; this is reversed for the 0% discount rate in panel a. An explanation for this is that 488 
with the 3% discount rate for both high and low learning, a larger fraction of simulations where 489 
the flexible dam is chosen expand to the 140 or 150 MCM dam, which exceeds the static dam of 490 
130 MCM, compared to the 0% discount rate.  491 

 492 
Figure 7. Static and flexible dam infrastructure and expansion decisions under a) 0% and b) 3% discount rates. The 493 
shaded colors show the frequency that the static dam is chosen (gray) compared to the flexible dam (colors). As the 494 
shading gets darker, the flexible dam expands to a larger volume. 495 

In Figure 7, we illustrate the frequency with which the flexible or static dam is selected, 496 
and the flexible dam is expanded. In the high-learning climate scenario, the flexible dam is 497 
selected more frequently, and the least-regret expansion decision is selected more frequently 498 
compared to the low-learning climate scenario. In panel a under the 0% discount rate, the 499 
flexible dam is selected 17% and 40% more frequently with high learning than low learning, for 500 
dry and wet climate simulations, respectively. As conditions progress from dry to wet, the 501 
flexible dam is chosen more frequently for both high- and low-learning climate scenarios. For 502 
both discount rates, more overbuilding (dam expansions under wet conditions) and underbuilding 503 
(less and smaller dam expansions under dry conditions) occurs with low learning, illustrating the 504 
ability of the optimal policy to choose low-regret actions more effectively in the high-learning 505 
climate scenario. 506 

Finally, we compare KL divergence with dam infrastructure decisions in Figure 8 to 507 
assess the relationship between the amount of learning about climate uncertainty and flexible 508 
planning. More learning leads to less over- or underbuilding, and hence, better flexible dam 509 
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expansion decisions. First, panels a and c show that the relationship between KL divergence for 510 
precipitation and the 2090 precipitation state has a “U” shape, with more extreme value 511 
precipitation simulations having higher KL divergence values. Panels b and d show a similar 512 
relationship between KL divergence for water shortages under dry 2090 precipitation states. 513 
However, higher KL divergence values for water shortages do not occur in more extreme wet 514 
precipitation states. As discussed in Figures 3 and 4, above a certain amount of precipitation, 515 
water shortages do not occur anyway. 516 

 517 

 518 
Figure 8. KL divergence scatter plot for simulations with and without dam expansion under a-b) 0% and c-d) 3% 519 
discount rates. The four scatterplots show the correlation between KL divergence for a) and c) precipitation and b) 520 
and d) water shortages, compared to the 2090 precipitation state. The different colors and shapes show high and 521 
low learning with and without dam expansions from the simulation model. 522 

In intermediate precipitation ranges, which we call “transition zones,” samples occur with 523 
and without dam expansion. We call policies with unexpanded dams in the left portion of the 524 
transition zone “underbuilding,” highlighted with the gray arrows when we have dry 2090 525 
precipitation states, but no dam expansion. We call policies with expanded dams in the right 526 
portion of the transition zone “overbuilding,” highlighted with the black arrows when we have 527 
wet 2090 precipitation states, but dam expansion. The black vertical lines highlight the initial 528 
precipitation state in 1990. With low-learning climate scenarios, transition zones are much larger 529 
than with high-learning scenarios. This highlights how more uncertainty in future climate and 530 
water availability may lead to less optimal dam infrastructure decisions. The transition zones 531 
under low learning are larger on both sides—we have both drier states where the flexible dam 532 
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does not expand (underbuilding) and wetter states where the flexible dam does expand 533 
(overbuilding). 534 

Additionally, larger transition zones occur with a zero discount rate in panels a and b, 535 
compared to a 3% discount rate in panels c and d. This is mainly driven by a larger range of 536 
precipitation states with overbuilding. One hypothesis as to why more overbuilding, but not more 537 
underbuilding, occurs with zero discounting is because discounting incentivizes delayed 538 
investment. Therefore, with discounting, the flexible dam is more likely to expand later in the 539 
planning period because delayed investment is less costly. Without discounting, the flexible dam 540 
is more likely to be expanded early in the planning period, which could lead to overbuilding. 541 

4 Discussion and Conclusions 542 

In this work, we develop a framework to assess the value of learning in flexible water 543 
supply infrastructure planning. An exploratory Bayesian modeling approach is used in which we 544 
adjust the variance of the likelihood function to develop contrasting scenarios where we can 545 
learn a high or low amount about future climate uncertainty through observation. We assess the 546 
value of a flexible water supply infrastructure development approach in different climate 547 
learning scenarios across a range of precipitation conditions. We quantify the value of learning 548 
for flexibility by first comparing the differences in costs between the static and flexible dams, 549 
and then comparing those differences across high- and low-learning climates. 550 

Our results demonstrate that learning about uncertainty can improve the effectiveness of 551 
flexible planning in providing low-cost, reliable supply in some but not all conditions. Our 552 
Bayesian modeling results demonstrate that near-term precipitation observations provide more 553 
information about long-term precipitation, leading to updated precipitation projections 554 
substantially narrower than prior estimates. However, these reductions in uncertainty propagate 555 
non-linearly to water shortage uncertainty, driven by thresholding behavior. Uncertainty in water 556 
shortage projections is reduced faster than precipitation projections in wetter conditions and 557 
slower in drier conditions.  558 

Similarly, the value of flexibility – and the value of learning for flexibility – is only 559 
consistently positive in wet precipitation simulations. In these cases, flexibility allows the 560 
planner to build a smaller dam at the outset of the planning period compared to the static 561 
development approach and prevents overbuilding of unnecessary new infrastructure. This effect 562 
is larger in the high-learning climate scenario, where the optimal policy is more consistently able 563 
to identify the least-regret option. In contrast, with dry climate conditions, flexibility has limited 564 
value because water reliability is constrained by limited water available to refill the reservoir, not 565 
limited reservoir storage size. Therefore, regardless of how much learning about future climate 566 
uncertainty is feasible, there is limited benefit to flexibly expanding dam storage as the climate 567 
dries because the reservoir is unlikely to refill and utilize additional storage capacity.  568 

Since the specific results we highlight depend on the assumptions and context of our case 569 
study, further sensitivity and uncertainty analysis would help further build theory on the 570 
conditions under which flexibility is most valuable. Applying this approach to regions with 571 
different hydroclimate conditions may lead to greater value of learning and flexibility in drying 572 
conditions. While we focus on long-term precipitation trends, more work can be done assessing 573 
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impacts of shorter-term uncertainty in precipitation variability, water demands, and dam costs on 574 
total system costs and the value of flexibility. For example, we hypothesize that larger monthly 575 
variability in precipitation or changes in seasonality could increase the value of learning and 576 
flexibility. This is because greater variability would require more storage capacity to maintain 577 
reliable water supply. Therefore, large increases in dam storage would more effectively reduce 578 
shortages compared to our current study. Counterintuitively, it may be that a case study with less 579 
uncertainty in precipitation would see greater value from learning because a single flexible 580 
infrastructure design would be able to adapt more effectively to the full range of possible 581 
outcomes. Additionally, while we focus on uncertainty in long-term precipitation trends, demand 582 
uncertainty due to population growth and economic conditions is likely similarly influential. 583 
Future work could expand the SDP framework to add additional system states for different water 584 
demand conditions and incorporate learning about demand trends.  585 

Further work also could assess other forms of both learning and flexibility. This study 586 
focuses on learning by observation. We could also explore learning by model improvement by 587 
comparing precipitation projections from different climate model generations (e.g. CMIP3 vs 588 
CMIP5 vs CMIP6). Similarly, we could explore learning by information collection in a region 589 
with multiple streamflow gauges by holding out then adding additional gauge data. These 590 
approaches may show sharper changes in uncertainty over time rather than the slow gradual 591 
changes here by observation. This could potentially increase the value of learning for flexibility. 592 
Similarly, this study focuses on flexibility in infrastructure design through capacity expansion. 593 
Future work could compare flexibility in planning processes and in operations to compare how 594 
different forms of flexibility interact with different learning scenarios.  595 

Our methodological framework to quantify climate learning scenarios and to connect 596 
learning with the value of flexibility can be extended to other infrastructure planning domains. 597 
Climate change uncertainty impacts many planning fields, such as energy (Cohen et al., 2022; 598 
Schaeffer et al., 2012), transportation (Dewar et al., 2008), and natural resources management 599 
(West et al., 2009). Each of these sectors necessitates expensive infrastructure and planning 600 
investments based on uncertain future conditions. Indeed, annual climate change adaptation costs 601 
in lower-income countries are expected to increase from approximately 70 billion USD today to 602 
between 280 and 500 billion USD in 2050 (United Nations Environment Programme, 2021). 603 
Through our methodology to quantify learning about future uncertainty and improve the 604 
usefulness of flexible infrastructure, we improve the theory and approaches that can be used for 605 
adaptive planning. This can support cost-effective climate adaptation, helping target scarce 606 
resources where they are needed most.  607 
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