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Abstract—Quantum computing is an emerging technology that
has the potential to achieve exponential speedups over their
classical counterparts. To achieve quantum advantage, quantum
principles are being applied to fields such as communications,
information processing, and artificial intelligence. However, quan-
tum computers face a fundamental issue since quantum bits are
extremely noisy and prone to decoherence. Keeping qubits error
free is one of the most important steps towards reliable quantum
computing. Different stabilizer codes for quantum error correc-
tion have been proposed in past decades and several methods
have been proposed to import classical error correcting codes to
the quantum domain. Design of encoding and decoding circuits
for the stabilizer codes have also been proposed. Optimization
of these circuits in terms of the number of gates is critical for
reliability of these circuits. In this paper, we propose a procedure
for optimization of encoder circuits for stabilizer codes. Using
the proposed method, we optimize the encoder circuit in terms
of the number of 2-qubit gates used. The proposed optimized
eight-qubit encoder uses 18 CNOT gates and 4 Hadamard gates,
as compared to 14 single qubit gates, 33 2-qubit gates, and 6
CCNOT gates in a prior work. The encoder and decoder circuits
are verified using IBM Qiskit. We also present encoder circuits
for the Steane code and a 13-qubit code that are optimized in
terms of the number of gates used, leading to a reduction in
number of CNOT gates by 1 and 8, respectively.

Index Terms—Quantum ECCs, Quantum computation, Stabi-
lizer codes, Eight-qubit code, 13-qubit code, Quantum encoders
and decoders, Syndrome detection.

I. INTRODUCTION

Quantum computing is a rapidly-evolving technology which
exploits the fundamentals of quantum mechanics towards
solving tasks which are too complex for current classical
computers. In 1994, a quantum algorithm to find the prime
factors of an integer in polynomial time was proposed by
Shor [1] . In 1996, a quantum algorithm to search a particular
element in an unsorted database with a high probability and
significantly higher efficiency than any known classical algo-
rithm was presented by Grover [2]. The realization of these
powerful algorithms requires massive quantum computers with
the capability of processing a large number of qubits.

The phenomenon through which quantum mechanical sys-
tems attain interference among each other is known as quan-
tum coherence. Quantum coherence is essential to perform
quantum computations on quantum information. However,
quantum systems are inherently susceptible to noise and deco-
herence. Maintaining coherence and mitigating noise becomes
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increasingly challenging with the increase in the number of
qubits in a quantum computer. Thus, quantum error correcting
codes (ECCs) become essential for reliable quantum comput-
ing systems. There were various challenges in the process of
designing a quantum ECC framework. It is well known that
measurement destroys superposition in any quantum system.
Also, since the quantum errors are continuous in nature,
the design of an ECC for quantum systems was difficult.
Furthermore, the no-go theorems in the quantum domain make
it difficult to design an ECC system analogous to classical
domain [3], [4], [5], [6], [7].

Quantum ECCs were believed to be impossible till 1995,
when Shor demonstrated a 9-qubit ECC which was capable
of correcting a single qubit error for the first time [8]. In
1996, Gottesman proposed a stabilizer framework which was
widely used for construction of quantum ECCs from classical
ECCs [9], [10]. Calderbank-Shor-Steane (CSS) codes were
proposed independently by Calderbank-Shor [11] and Steane
[12]. These codes were used to derive quantum codes from
binary classical linear codes. Pre-shared entangled qubits were
used to construct stabilizer codes over non-Abelian groups
in [13]. These entanglement-assisted (EA) stabilizer codes
contain qubits over the extended operators which are assumed
to be at the receiver end throughout, and entangled with the
transmitted set of qubits. It was later shown that EA stabilizer
codes increase the error correcting capability of quantum
ECCs [14].

An encoding procedure for EA stabilizer codes were pro-
posed in [15]. Quantum low-density parity-check (LDPC)
codes were constructed from classical quasi-cyclic binary
LDPC codes by the authors in [16], [17], [18], [19]. Quantum
analogs of Reed Solomon (RS) codes were constructed from
self-orthogonal classical RS codes in [20], [21], [22]. Recent
advances in this field include: hypergraph-product codes and
homological product codes [23], [24], and tensor product of
qunatum and classical codes [25], [26]. Purely quantum polar
codes based on recursive channel combining and splitting
construction were studied in [27]. EA stabilizer codes were
extended to qudit systems in [28]. Recently, a universal
decoding scheme was conceived for quantum stabilizer codes
(QSCs) by adapting ‘guessing random additive noise decod-
ing’ (GRAND) philosophy from classical domain codes [29].
However, it becomes necessary to design and simulate actual
encoder and decoder circuits for these quantum ECCs, so that
reliable quantum computing systems can be built. The CSS
framework is of particular interest due to its simplicity as it
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is useful for importing classical codes to quantum domain if
they satisfy certain properties [11], [12].

A systematic method for the construction of an encoder
for stabilizer codes was demonstrated for a five qubit code in
[10], which uses five physical qubits to encode a logical qubit.
The authors in [30] reviewed this construction and presented
it in the form of an algorithm for the construction of encoder
circuits for stabilizer codes. We apply the algorithm to the
eight-qubit code [[8, 3, 3]] which encodes three logical qubits
using eight physical qubits and is more efficient in terms of
code rate than the 5-qubit code. CNOT gates play a vital role
as building blocks for quantum circuits. It can be shown that
any arbitrary unitary transformation on an n-qubit system can
be performed as a combination of CNOT gates and other single
qubit unitary gates [3], thus forming an universal set of gates
for quantum circuits. The circuits designed in [10] contain
3 types of 2-qubit gates, the CNOT, CZ, and the CY gates.
However, for practical quantum circuits, it is more convenient
to have a single type of 2-qubit gates between any arbitrary
pair of qubits. Similar to equivalence rules in classical digital
circuits, several equivalencies also exist for quantum circuits.
These were used to study quantum circuits in [31], [32],
[33], [34]. The authors in [35] derived additional rules and
compiled those into a set of equivalence rules. In the current
experimental quantum circuits, the error rates of the CNOT
gates are one of the major causes of circuit reliability [36],
[37], [38]. Thus, it becomes extremely important to optimize
the quantum circuits in terms of the number of CNOT gates.
There exists a one-to-one correspondence between n-qubit
systems consisting of CNOT gates and n × n non-singular
matrices with coefficients in F2 as proved in [39], [40]. The
authors in [38] described this correspondence in a formal way
in terms of group isomorphism and group representation. They
used this approach to propose an optimization algorithm for a
system consisting of a few qubits, with CNOT gates interacting
between them.

The contributions of this paper are two-fold. First, we
propose a procedure for optimization of encoder circuits for
stabilizer codes in terms of the number of gates used. Using
the procedure, we design an optimized encoder circuit for an
eight-qubit code. Compared to a prior construction in [41],
our circuit requires half the number of gates. We use only
CNOT and H gates for the circuit design. To the best of
our knowledge, such an optimized circuit for stabilizer codes
has not been explored before. Second, we design optimized
encoder circuits for Steane code [42] and a 13-qubit code. For
the Steane code, the number of CNOT gates was reduced by 1.
However, for the 13-qubit code, 16% reduction in the number
of gates was achieved. The method could potentially be useful
for large quantum codes, leading to significant reductions in
number of gates. Finally, we verify all the circuits we designed
using IBM Qiskit [43].

The rest of the paper is organized as follows. In Section
II, we present a brief review of the theory of the stabilizer
framework which is essential for the design of the quantum
ECCs. We also provide the theoretical background of the
CSS framework. Subsequently, we derive the encoding and
syndrome measurement circuits using the systematic method

presented in [10]. In Section III, we propose a procedure
for optimization of encoder circuits for stabilizer codes. The
procedure is applied to the 8-qubit code designed in Section
III. In Section IV, we present optimized encoder circuits for
the Steane code and a 13-qubit code. We discuss the results
and comparisons in Section V. Section VI concludes the paper.

II. THEORETICAL BACKGROUND

Shor’s 9-qubit code [8] was the first ever quantum ECC
capable of correcting a single qubit error. Gottesman [10]
proposed a general methodology to construct quantum ECCs.
This method is known as the stabilizer construction and the
codes thus generated are known as stabilizer codes. Before
going into the details of stabilizer codes, we briefly describe a
quantum state and explain how the states evolve in a quantum
circuit.

In two-level quantum systems, the two-dimensional unit of
quantum information is called a quantum bit (qubit). The state
of a qubit is represented by |ψ⟩ = a|0⟩+ b|1⟩, where a, b ∈ C
and |a|2 + |b|2 = 1. |0⟩ and |1⟩ are basis states of the state
space. The evolution of a quantum mechanical system is fully
described by a unitary transformation. State |ψ1⟩ of a quantum
system at time t1 is related to state |ψ2⟩ at time t2 by a unitary
operator U that depends only on the time instances t1 and t2,
i.e., |ψ2⟩ = U |ψ1⟩. The unitary operators or matrices which act
on the qubit belong to C2×2. The Pauli group which represents
the unitary matrices is given by

Π = {±I2,±iI2,±X,±iX,±Y,±iY,±Z,±iZ} (1)

where I2 =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =[

0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

A quantum circuit consists of an initial set of qubits as
inputs which evolve through time to a final state, comprising
of the outputs of the quantum circuit. Quantum states evolve
through unitary operations which are represented by quantum
gates. Quantum gates can be single qubit gates which act on
a single qubit, or they can be multiple qubit gates which act
on multi-qubit states to produce a new multi-qubit state. The
single qubit gates include the bit flip gate X , phase flip gate Z,
Hadamard gate H , Y gate, and the phase gate S. The unitary
operations related to the single qubit gates are described as
follows:

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, H =

1√
2

[
1 1
1 −1

]
,

(2)

Y =

[
0 −i
i 0

]
, S =

[
1 0
0 i

]
The multi-qubit gates include a controlled-X (CX, also

referred as CNOT), controlled-Z (CZ), and controlled-Y (CY)
gates. They act on 2-qubit states and are given by the following
unitary transformations:
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Fig. 1. Symbolic representations of various 1-qubit and 2-qubit gates.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ,
(3)

CY =


1 0 0 0
0 1 0 0
0 0 0 −i
0 0 i 0

 (4)

Symbolic representations of various 1-qubit and 2-qubit
gates are shown in Fig. 1. For further understanding on
quantum circuits and introduction to quantum ECCs, interested
readers are referred to [44], [45]. With the above background,
we are ready to describe the stabilizer formalism for quantum
ECCs.

A. Quantum code and Stabilizer formalism

An [[n, k, d]] quantum code can be used for quantum error
correction, where k logical qubits are encoded using n physical
qubits, leading to a code rate of k/n analogous to classical
error correction. The code has a minimum distance of d. It has
2k basis codewords, and any linear combination of the basis
codewords are also valid codewords. Let the space of valid
codewords be denoted by T . If we consider the tensor product
of Pauli operators (with possible overall factors of ±1 or ±i)
in Equation 1, it forms a group G under multiplication. The
stabilizer S (not to be confused with gate S) is an Abelian
subgroup of G, such that the code space T is the space of
vectors fixed by S [9], [10]. Stabilizer generators are a set of
independent set of n − k elements from the stabilizer group,
in the sense that none of them is a product of any two other
generators.

We know that the operators in the Pauli group act on single
qubit states which are represented by 2-element vectors. The
operators in Π have eigenvalues ±1, and either commute or
anti-commute with other elements in the group. The set Πn

is given by the n-fold tensor products of elements from the
Pauli group Π as shown below,

Πn ={eiϕA1 ⊗A2 ⊗ · · · ⊗ An

: ∀j ∈ {1, 2, · · · , n}Aj ∈ Π, ϕ ∈ {0, π/2, π, 3π/2}}
(5)

The stabilizer is a group with elements M such that M |ψ⟩ =
|ψ⟩. The stabilizer is Abelian, i.e., every pair of elements in
the stabilizer group commute. This can be verified from the
following observation. If M |ψ⟩ = |ψ⟩ and N |ψ⟩ = |ψ⟩, then
MN |ψ⟩ − NM |ψ⟩ = (MN − NM)|ψ⟩ = 0. Thus, MN −
NM = 0 or MN = NM , showing that every pair of elements
in the stabilizer group commute.

Given an Abelian subgroup S of n-fold Pauli operators,
code space is defined as

T (S) = {|ψ⟩, s.t.M |ψ⟩ = |ψ⟩, ∀M ∈ S} (6)

Suppose M ∈ S and Pauli operator E anti-commutes with
M . Then, M(E|ψ⟩) = −EM |ψ⟩ = −E|ψ⟩. Thus, E|ψ⟩
has eigenvalue −1 for M . Conversely, if Pauli operator E
commutes with M , M(E|ψ⟩) = EM |ψ⟩ = E|ψ⟩; thus E|ψ⟩
has eigenvalue +1 for M . Therefore, eigenvalue of an operator
M from a stabilizer group detects errors which anti-commute
with M .

B. Binary vector space representation for stabilizers

The stabilizers can be written as binary vector spaces,
which can be useful to bring connections with classical error
correction theory [10]. For this, the stabilizers are written
as a pair of (n − k) × n matrices. The rows correspond
to the stabilizers and the columns correspond to the qubits.
The first matrix has a 1 wherever there is a X or Y in the
corresponding stabilizer, and 0 everywhere else. We will refer
to this as the X-portion of the matrix. The second matrix has
a 1 wherever there is a Z or Y in the corresponding stabilizer
and 0 everywhere else. We will refer to this as the Z-portion
of the matrix. It is often more convenient to write the two
matrices as a single (n − k) × 2n matrix with a vertical line
separating the two.

C. CSS framework

The CSS framework [11], [12] is a method to construct
quantum ECCs from their classical counterparts. We can
combine classical codes with parity check matrices P1 and P2

into a quantum code if the rows of P1 and P2 are orthogonal
using the binary dot product. This implies that dual-containing
codes can be imported to the quantum domain. Given two
classical codes C1[n, k1, d1] and C2[n, k2, d2] which satisfy
the dual containing criterion C⊥

1 ⊂ C2, CSS framework can
be used to construct quantum codes from such codes.

The CSS codes form a class of stabilizer codes. From the
classical theory of error correction, let H1 and H2 be the
check matrices of the codes C1 and C2. Since C⊥

1 ⊂ C2,
codewords of C2 are basically the elements of C⊥

1 . Hence,
we have, H2H

T
1 = 0. The check matrix of a CSS code is

given by:
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Fig. 2. Encoder for the eight-qubit code.
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Fig. 3. Modified encoder for the eight-qubit code after removing redundant
controlled-Z gates.

HC1C2
=

[
H1

0

∣∣∣∣∣ 0
H2

]
(7)

D. Encoder and decoder circuit design for eight-qubit code
[[8,3,3]]

A systematic method for the design of an encoder for a
stabilizer code was presented in [10]. The authors in [30] used
the key concepts in [10] to formulate an algorithm for the
construction of encoder circuit for stabilizer codes. Details of
the procedure are described in Section I of the Supplementary
Information.

An eight-qubit code encodes k = 3 logical qubits using
n = 8 physical qubits and can correct a single qubit error.
Since n− k = 8− 3 = 5, a total of 5 stabilizer generators are
required as shown below [10]:

M1 X X X X X X X X
M2 Z Z Z Z Z Z Z Z
M3 I X I X Y Z Y Z
M4 I X Z Y I X Z Y
M5 I Y X Z X Z I Y

.

The encoder circuit can be designed using Algorithm 1 in
[30], as shown in Fig. 2.

Observing the three CZ gates in Fig. 2 have one of their
input qubits set at |0⟩, we can remove those CZ gates to obtain
the modified encoder circuit in Fig. 3.

The syndrome measurement circuit for an eight qubit code
can also be designed as discussed in [30], as shown in Fig. 4.
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Fig. 4. Syndrome measurement circuit for the eight-qubit code.

The derivation of the encoder and syndrome measurement
circuits for the eight qubit code is described in Section II of
the Supplementary Information.

III. OPTIMIZATION OF EIGHT-QUBIT ENCODER CIRCUIT

The encoder circuit designed in Fig. 3 uses 20 2-qubit gates
and 5 single qubit gates. It requires 3 different types of 2-
qubit gates, the CNOT, CY, and CZ gates. However, for most
practical purposes, only a single type of 2-qubit gate may
be available. Our goal is to optimize the circuit, such that
it uses CNOT gates and H gates only. Since multiple qubit
operations are a source of noise and decoherence, we also
intend to minimize the number of CNOT gates. Our approach
to optimizing the circuit consists of two steps. First, we use
equivalence rules related to quantum gates for conversion
between gates, and for moving the gates around in the circuit.
We next use matrix equivalence to optimize a set of CNOT
gates acting sequentially on a number of qubits. These two
optimization strategies are described in more detail in the
following sections.

A. Optimization using equivalence rules

Various equivalence rules related to quantum circuits have
been presented and proven in [35]. These rules are illustrated
in Fig. 5. Rules 1-3 relate to conversions between X and Z
gates (or CNOT and CZ gates for 2-qubit gates). These rules
also help a designer to switch control and target. Rules 4-5 are
useful for circuits having multiple ancilla qubits at state |0⟩,
or state |+⟩ in the Hadamard basis. Rules 6-10 are useful for
manipulation of quantum circuits, enabling gates to move past
each other. Additionally, we propose two new rules, referred
as Rule 11 and Rule 12 in Fig. 5.

Rule 11 is useful for commutations between CNOT and CZ
gates. We prove Rule 11 as follows. Let’s consider the first
pair of circuits. An arbitrary two-qubit initial state is given by:
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ψ1 = (α1|0⟩+ α2|1⟩)(β1|0⟩+ β2|1⟩) (8)
= α1β1|00⟩+ α1β2|01⟩+ α2β1|10⟩+ α2β2|11⟩ (9)

We analyze the circuit on the left first. After application of
CNOT(1,2), we have

ψl1 = α1β1|00⟩+ α1β2|01⟩+ α2β1|11⟩+ α2β2|10⟩ (10)

Next, CZ(1,2) is applied to get

ψl2 = α1β1|00⟩+ α1β2|01⟩ − α2β1|11⟩+ α2β2|10⟩ (11)

Now, we analyze the circuit on the right. The Z gate acting
on the first qubit results in the following two-qubit state:

ψr1 = α1β1|00⟩+ α1β2|01⟩ − α2β1|10⟩ − α2β2|11⟩ (12)

Next, after application of CZ(1,2), we have

ψr2 = α1β1|00⟩+ α1β2|01⟩ − α2β1|10⟩+ α2β2|11⟩ (13)

Finally, after CNOT(1,2), we have

ψr3 = α1β1|00⟩+ α1β2|01⟩ − α2β1|11⟩+ α2β2|10⟩ (14)

We observe that the right hand side of equations 11 and 14
are the same. Thus output state of both the circuits are the
same, thus proving the equivalency on the first pair. Similarly,
it can also be proved that the circuits in the second pair are
equivalent.

Rule 12 facilitates conversion between CY gates and a
combination of CZ and CNOT gates. Additional single qubit
S gate is required in the process. Rule 12 can be proved as
follows.

An arbitrary two-qubit initial state is given by:

ψ1 = (α1|0⟩+ α2|1⟩)(β1|0⟩+ β2|1⟩) (15)
= α1β1|00⟩+ α1β2|01⟩+ α2β1|10⟩+ α2β2|11⟩ (16)

For the circuit on the left, the output after CY gate is

ψs1 = α1β1|00⟩+ α1β2|01⟩+ iα2β1|11⟩ − iα2β2|10⟩ (17)

For the circuit on the right, after S gate we have,

ψp1 = α1β1|00⟩+ α1β2|01⟩+ iα2β1|10⟩+ iα2β2|11⟩ (18)

After CZ gate we have,

ψp2 = α1β1|00⟩+ α1β2|01⟩+ iα2β1|10⟩ − iα2β2|11⟩ (19)

After CX gate we have,

ψp3 = α1β1|00⟩+ α1β2|01⟩+ iα2β1|11⟩ − iα2β2|10⟩ (20)

We observe that the right hand side of equations 17 and 20
are the same. Thus, the output state of both circuits are the
same, proving the equivalency.

B. Optimization using group-theoretic matrix equivalence

Consider an n-qubit quantum circuit consisting of only
CNOT gates. Let the initial state of the circuit be represented
by an n × n identity matrix. A CNOT gate acting between
qubits k1 and k2 with control on k1 and target on k2 can be
represented by the row transformation Rk2 → Rk1 + Rk2 .
Thus, the entire circuit can be represented by a series of
elementary row transformations. Two n-qubit quantum circuits
are equivalent if they result in the same matrix after their
respective elementary row transformations. For example, let
us consider Rule 8 (CNOT distribution) in Fig. 5.

The leftmost circuit consists of a single elementary row
transformation R3 → R1 +R3, which results in 1 0 0

0 1 0
1 0 1


The middle circuit consists of four row transformations

R2 → R1 + R2, R3 → R2 + R3, R2 → R1 + R2, and
R3 → R2 +R3. This results in 1 0 0

0 1 0
1 0 1


The rightmost circuit consists of four row transformations

R3 → R2 + R3, R2 → R1 + R2, R3 → R2 + R3, and
R2 → R1 +R2. This results in 1 0 0

0 1 0
1 0 1


We observe that all the three circuits result in the same final

matrix, and are thus equivalent. The authors in [38] note that
for a n-qubit quantum circuit consisting of only CNOT gates,
the input-output transformation of states can be represented
by a series of elementary row transformations. Taking the
final matrix after the transformations, and applying a Gaussian
elimination method to that leads to a set of steps resulting in
the identity matrix. These sets of steps applied in reverse to
obtain an identity matrix leads to an equivalent circuit for the
initial circuit. However, this circuit may not be optimal.

C. Barriers towards optimization

Optimization of quantum circuits is a challenging problem.
Global optimization of arbitrary quantum circuits is QMA-
hard as noted in [46]. Considering the complexity of the
problem, our goal is to reduce the number of gates in the
stabilizer encoder circuits in less time. The results may be
sub-optimal; however, the procedure follows a specific route
that will work for large encoder circuits with a low time
complexity. To ensure that only one type of 2-qubit gates is
used in the circuit, all the CZ gates need to be converted to
CNOT gates. However, doing this increases the number of H
gates significantly. To solve this, we flip control and target for
all the CZ gates before converting those to CNOT gates. As
we will see later, this keeps the number of H gates constant.
Also, it gives the circuit a definite structure, dividing it into
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Fig. 6. Encoder for the eight-qubit code using controlled-ZX gates instead
of controlled-Y gates.

sub-circuits containing H gates and CNOT gates. Using divide
and conquer strategy, we can then try to optimize each of
the sub-circuit separately. Later, we can rearrange the CNOT
gates to create bigger sub-circuits of CNOT gates on which
the matrix equivalence strategy may be applied.

D. Optimization procedure for stabilizer encoder circuits

We now illustrate how the above rules can be used to find
an equivalent circuit for the 8-qubit encoder shown in Fig. 3.
First, we replace all the CY gates with CZ and CNOT gates
by using Rule 12 in 5, as shown in Fig. 6 (a). Since S2 = Z,
the circuit gets reduced to Fig. 6 (b).

Since most practical quantum computing systems use one
type of 2-qubit gates, we will convert all CZ gates to CNOT
gates using Rule 3 in Fig. 5. However, this step will result
in the increase of H gates significantly. Thus, we propose a
systematic way where each stabilizer is considered separately
in a sequential fashion to achieve this goal. The steps for the

Z
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Fig. 7. Conversion of CZ gates to CNOT gates for the first stabilizer, keeping
the number of H gates constant.

first stabilizer are illustrated in Fig. 7. First, control and target
qubits of the CZ gates are reversed using Rule 2. Subsequently,
the CZ gates are converted to CNOT gates using Rule 3. This
leads to an introduction of X gate at the left of the H gate.
This X gate can be removed by initializing the ancilla qubit
to |1⟩ instead of |0⟩. Similar steps can be applied to all the
stabilizers to obtain the circuit shown in Fig. 8.

Next, we will use the equivalence rules in Fig. 5 to reduce
the number of CNOT gates in the encoder circuit as follows:

• The CNOT gates are rearranged to obtain the circuit in
Fig. 9(a).

• Observe the green shaded regions in Fig. 9(a). Using
CNOT mirroring (Rule 6), we can reduce the CNOT gates
in each shaded region by 1. After slight rearrangement,
we obtain the circuit as shown in Fig. 9(b).

• Using CNOT mirroring on the shaded region in Fig. 9(b),
we obtain the circuit in Fig. 9(c).

• Next, we apply CNOT mirroring to the shaded region in
Fig. 9(c). After slight rearrangement, we obtain the circuit
in Fig. 9(d).

• We observe that the CNOT gate in the shaded region in
Fig. 9(d) has the control qubit set as |0⟩. Using Rule 4,
we can remove the CNOT gate to obatin the circuit in
Fig. 9(e).
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Fig. 8. Encoder for the eight-qubit code after converting CZ to CNOT gates.

• Applying Rule 6 to the CNOT mirror in Fig. 9(e), we
reduce the number of CNOT gates by 1 as shown in Fig.
9(f).

• In Fig. 9(f), we apply the CNOT mirror to the shaded
region. Subsequently, the CNOT gates are rearranged to
transform it to Fig. 9(g).

• In Fig. 9(g), we observe three CNOT mirrors. Applying
Rule 6 to the three shaded regions, we can reduce the
total number of CNOT gates by 3 as shown in Fig. 9(h).

• We apply CNOT mirror to the green region in Fig. 9(h)
to transform it to Fig. 9(i). This increases the number
of CNOT gates by 1. However it leads us to the next
reduction step.

• In Fig. 9(i), the control qubit on the CNOT gate in shaded
region is |0⟩. Applying Rule 4, we can remove that CNOT
gate to produce the circuit in Fig. 9(j).

As discussed above, we could optimize the circuit to 19
CNOT and 4 Hadamard gates as shown in Fig. 9 (j). After we
have optimized the circuit using the equivalence rules, it may
still be possible to optimize the circuit further. However, it may
be difficult to do so using visual inspection. To accomplish this
goal, we use some approaches described in [38]. We use matrix
equivalence for quantum circuits containing CNOT gates to
optimise the circuit further, as we described next.

We apply this procedure to the shaded region in Fig. 9
(j), which consists of 11 CNOT gates. We start with an
8 × 8 identity matrix I , and apply the 11 sequential row
transformations as follows:

R5 → R5 +R6

R7 → R7 +R1

R6 → R6 +R1

R5 → R5 +R8

R3 → R3 +R5

R5 → R5 +R7

R5 → R5 +R2

R8 → R8 +R2

R6 → R6 +R2

R4 → R4 +R6

R4 → R4 +R5 (21)

At the end of the row transformations, we obtain the matrix

T =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1
1 1 0 0 1 1 1 1
1 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1


(22)

Gaussian elimination on T requires 15 steps (equivalent to
15 CNOT gates), which is less optimal than the original circuit.
However, applying the following steps sequentially to T yields
the 8× 8 identity matrix.

R5 → R5 +R6

R4 → R4 +R5

R7 → R7 +R1

R8 → R8 +R2

R5 → R5 +R7

R3 → R3 +R5

R6 → R6 +R1

R6 → R6 +R2

R5 → R5 +R8

R3 → R3 +R6 (23)

Thus, the operations in Equation (23) applied in reverse
order is equivalent to the operations in Equation (21). This
is more optimal since it requires 10 transformations, and thus
corresponds to 10 CNOT gates. The resulting encoder circuit
consisting of 18 CNOT and 4 H gates is shown in Fig. 10.

E. Generalized optimization procedure for stabilizer encoder
circuits

In the last section, we discussed the optimization procedure
for the eight-qubit encoder circuit. If one observes carefully,
the procedure is not specific to any particular encoder circuit.
Any encoder circuit generated through Algorithm 1 in [30]
has a similar structure to the eight-qubit encoder. It contains
a certain number of H gates on the ancilla qubits (initialized
to |0⟩). After each of the H gates there is a combination of
CNOT and CZ gates. We consider each of the H gates along
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Fig. 9. Stepwise optimization of encoder circuit using equivalence rules in Fig. 5.
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with the sequence of CNOT and CZ gates appearing after it
separately. Before the optimization process starts, we need to
convert it to sub-circuits consisting of only CNOT gates. Each
of the sub-circuits is separated by H gates. Next, the two
strategies of optimization, i.e., equivalence rules and matrix
equivalence can be applied sequentially to optimize the circuit.
The complete optimization procedure for a stabilizer encoder
circuit can be represented as follows:

• Step 1: First, we divide the circuit into a number of
sub-circuits, each containing a H gate and a sequence
of CNOT and CZ gates, corresponding to the stabilizer
it encodes. We ensure that the CZ gates are to the left,
mindful of introducing a Z gate after H if the number
of CNOT-CZ commutations required is odd.

• Step 2: Next, we flip control and targets of each of the
CZ gates. This will ensure that when the CZ gates are
converted to CNOT gates, the number of H gates remains
constant.

• Step 3: Subsequently, each of the CZ gates are converted
to CNOT gates using Rule 3 in Fig. 5. Each of the new H
gate introduced in the process is annihilated by an already
existing H gate, keeping the count of CNOT gates same.

• Step 4: Now, our encoder contains CNOT gates as the
only multi-qubit gates. Each of the sub-circuits of CNOT
gates is inspected separately and equivalence rules are
applied wherever possible.

• Step 5: Next, each of the sub-circuit is optimized using
matrix equivalence by following a greedy algorithm,
where the row transformations leading to reduction in
number of 1’s in the matrix by at least two are favoured.

IV. OPTIMIZED ENCODER CIRCUIT DESIGN FOR STEANE
CODE AND A 13-QUBIT CODE

Steane code [42] is a CSS code which uses the Hamming
[7, 4, 3] code and the dual of the Hamming code, i.e., the
[7, 3, 4] code to correct bit flip and phase flip errors respec-
tively. The [7, 4, 3] Hamming code contains its dual, and thus
can be used in the CSS framework to obtain a quantum ECC.
One logical qubit is encoded into seven physical qubits, thus
enabling the Steane code to detect and correct a single qubit
error. In stabilizer framework, the Steane code is represented
by six generators as shown below:

M1 X X X X I I I
M2 X X I I X X I
M3 X I X I X I X
M4 Z Z Z Z I I I
M5 Z Z I I Z Z I
M6 Z I Z I Z I Z

.

We designed a Steane code encoder using Algorithm 1 in
[30] as shown in Fig. 11 (a). Using the equivalence rules the
total number of CNOT gates was reduced by 1 as shown in
Fig. 11 (b).

New stabilizer codes can be generated by merging available
stabilizer codes. Such a code can be created by pasting a
five-qubit code [[5,1,3]] and an eight-qubit code [[8,3,3]] as
described in [10]. The new 13-qubit code [[13,7,3]] has a rate
of 7/13. It can be represented by the following stabilizers:

M1 X X X X X X X X I I I I I
M2 Z Z Z Z Z Z Z Z I I I I I
M3 I I I I I I I I X Z Z X I
M4 I X I X Y Z Y Z I X Z Z X
M5 I X Z Y I X Z Y X I X Z Z
M6 I Y X Z X Z I Y Z X I X Z

.

Using Algorithm 1 in [30], the encoder circuit for the 13-
qubit code was designed using CNOT, CZ, and CY gates
as shown in Fig. 12. Details of the construction of the
encoder circuit is given in Section IV of the Supplementary
Information.

Converting the CY gates to CNOT and CZ gates according
to Rule 12, we get the circuits in Fig. 13. It uses 50 2-qubit
gates and 5 single qubit gates.

We optimized the encoder circuit according to the procedure
described in Section IV to reduce the number of gates to 42
CNOT gates and 5 H gates. The resulting circuit is presented
in Fig. 14.

V. RESULTS

The combined encoder and decoder circuits for the 8-qubit
code, Steane code, and the 13-qubit code were simulated
using IBM Qiskit. Circuits designed from Algorithm 1 in
[30] as well as the optmized circuits derived from those
were simulated using IBM Qiskit. Errors were introduced at
different positions to test for correctability. The syndrome table
was constructed in a similar way as in [30]. The syndromes
were found to be an exact match depending on the type and
location of error introduced. The syndrome tables for 13-qubit
code and Steane code can also be derived using the same
procedure as in [30].

Another important parameter to measure the efficiency of
the quantum circuits is the number of single and multiple
qubit gates used by the quantum circuits. We list the number
of gates used in the quantum circuits presented in this paper
in Table I. In the second column, we observe that the eight-
qubit encoder designed using Algorithm 1 in [30] requires 8
CNOT gates, 7 CY gates, and 5 CZ gates, thus using a total
of 20 2-qubit gates. In practical applications, one may need
to use a combination of CZ and CNOT gates to obtain CY
gates. The third column shows the number of gates used in a
circuit using CZ and CNOT gates. We observe that it requires
a total of 27 2-qubit gates (15 CNOT and 12 CZ). For practical
considerations, only one type of 2-qubit gate may be available.
To achieve this, the circuit was further optimized using the
equivalence rules to reduce the number of gates to 18 CNOT
gates and 4 H gates, as reported in column 6 of Table I. The
reduction in 2-qubit gates from 27 gates to 18 gates is quite
significant1. Columns 5 and 6 show the number of gates used
in Steane code [42] encoder and its optimized version. The
number of CNOT gates is reduced from 11 to 10. We also
report the number of gates used in the 13-qubit encoder and
its optimized version. The proposed approach achieves a 16

1It should be noted that CY gates are usually designed as a combination
of CNOT and CZ gates. Thus, a single CY gate is equivalent to two 2-qubit
gates.



10

H

X

X

X

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|ψ〉

H

H

X X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

H

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|ψ〉

H

H

(a) (b)

Fig. 11. (a) Encoder for Steane code using Algorithm 1 in [30]. (b) Optimized encoder for the Steane code using equivalence rules.
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Fig. 13. 13-qubit encoder designed using Algorithm 1 in [30]. CNOT and
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% reduction in the number of 2-qubit gates, from 26 CNOT
and 24 CZ gates to 42 CNOT gates.

In [41], an encoding rule was formulated by observing
all the 2k different codewords for the eight-qubit code. For
quantum codes where k is significantly larger, the method in
[41] would be very complex because one has to figure out
an encoding rule by observing 2k codewords. Additionally,
the method in [41] requires more than twice the number of
gates than the eight-qubit code encoder circuit proposed in
this paper. Furthermore, the circuit in [41] uses an array of

different types of multi-qubit gates which may not be desirable
for practical considerations. Compared to [41] which requires
14 single qubit gates, 33 2-qubit gates, and 6 3-qubit gates,
the proposed eight-qubit encoder requires only 18 CNOT gates
and 4 H gates. The syndrome measurement circuit in this
paper requires slightly less number of gates than [41].

VI. CONCLUSIONS

This paper has presented a procedure for optimization of
encoder circuits for stabilizer codes in terms of the number
of gates used. The procedure was used to design optimized
encoder and decoder circuits for an eight-qubit code. The
circuits were verified using IBM Qiskit. The encoder circuits
designed using the proposed procedure result in a reduction in
the number of gates by a factor of 2 for the eight-qubit code,
compared to prior designs. We also present optimized encoder
circuits for the Steane code and a 13-qubit code.

In this paper, we optimized the encoder circuits such that
they contain CNOT gates as the only 2-qubit gates. However,
some practical quantum computers may have CZ gates as the
native 2-qubit gates. For translating the encoder circuits to
such computers, the optimization procedure would be more
challenging. Since CNOT gates are not symmetric, new H
gates would be required at the target, and thus the number of
H gates may increase significantly. This problem does not arise
for CZ to CNOT conversion, since CZ gates are symmetric.
Investigation into optimization approaches to design quantum
circuits that contain only CZ gates is a topic of further
research.

Another important research area is the investigation into
fault-tolerant circuits. For example, in [47], the authors in-
vestigate design of fault-tolerant circuits for the Steane code.
Design of optimized circuits that are fault-tolerant is a topic
that requires further research. Design of near-optimal quan-
tum circuits that satisfy physical constraints of the quantum
computer, such as nearest neighbor compliance or geometry
of the placement of the qubits, is also a topic that needs to be
explored further.

For larger code lengths involving significantly higher num-
ber of qubits, it is difficult to optimize the circuits manually.
Therefore, future efforts will be directed towards developing
an automated tool to optimize the quantum circuits. Designing
encoder-decoder circuits for EA stabilizer codes is also a topic
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TABLE I
RESOURCE UTILIZATION SUMMARY FOR THE VARIOUS DESIGNED QUANTUM CIRCUITS IN TERMS OF NUMBER OF GATES USED.

Parameters H gates X gates S gates Z gates CNOT
gates

CY
gates

CZ
gates

CCNOT
gates

Eight qubit encoder [41] 4 10 0 0 24 0 9 6

Eight qubit encoder using [10] (using
CNOT and CZ gates)

4 0 0 4 15 0 12 0

Proposed eight qubit encoder (optimized
using equivalence rules and matrix

equivalence)

4 0 0 0 18 0 0 0

Steane code encoder 3 0 0 0 11 0 0 0

Optimized Steane code encoder 3 0 0 0 10 0 0 0

13-qubit code encoder 5 0 0 1 26 0 24 0

Optimized 13-qubit code encoder 5 0 0 0 42 0 0 0

of further research. Additionally, future efforts need to be
directed towards design of quantum circuits for more complex
quantum ECCs such as BCH, LDPC, and polar codes.
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I. SYSTEMATIC PROCEDURE FOR ENCODER DESIGN FOR A
STABILIZER CODE

The procedure to design encoding circuits for stabilizer
codes is as follows [1]:

Step 1: The stabilizers are written in a matrix form using
binary vector space formalism. Let the parity chek matrix thus
obtained be Hq .

Step 2: Our aim is to bring Hq to the standard form Hs

below:

Hs =

[
I1 A1 A2

0 0 0

∣∣∣∣∣ B C1 C2

D I2 E

]
(1)

where, I1 and B are r × r matrices. ‘r’ is the rank of the X
portion of Hs. A1 and C1 are r × (n − k − r) matrices. A2

and C2 are r× k matrices. D is a (n− k− r)× r matrix. I2
is a (n− k− r)× (n− k− r) matrix. E is a (n− k− r)× k
matrix. I1 and I2 are identity matrices.
Hq is converted to standard form Hs using Gaussian elim-

ination [1]. The logical operators X and Z can be written
as

X =
[

0 U2 U3 | V1 0 0
]

(2)

Z =
[

0 0 0 | V ′
1 0 V ′

3

]
(3)

where U2 = ET , U3 = Ik×k, V1 = ETCT
1 + CT

2 , V ′
1 = AT

2 ,
and V ′

3 = Ik×k.
Given the parity check matrix in standard form Hs and X ,

the encoding operation for a stabilizer code can be written as,

|c1c2 · · · ck⟩ =X
c1
1 X

c2
2 · · ·Xck

k

(∑
M∈S

M

)
|00 · · · 0⟩ (4)

=X
c1
1 X

c2
2 · · ·Xck

k (I +M1)(I +M2) · · ·
(I +Mn−k)|00 · · · 0⟩. (5)

There are a total of n qubits. Place qubits initialized to |0⟩
at qubit positions i = 1 to i = n − k. Place the qubits to be
encoded at positions i = n− k + 1 to i = n.

We observe the following from Hs and X:
• We know that a particular logical operator Xi is applied

only if the qubit at ith position is |1⟩. Thus, applying Xi

controlled at ith qubit encodes Xi.
• The X operators consist of products of only Zs for the

first r qubits. For the rest of the qubits, X consists of
products of Xs only. We know that Z acts trivially on

|0⟩. Since the first r qubits are initialized to |0⟩, we can
ignore all the Zs in X .

• The first r generators in Hs apply only a single bit flip
to the first r qubits. This implies that when I +Mi is
applied, the resulting state would be a sum of |0⟩ and |1⟩
for the ith qubit. This corresponds to applying H gates
to the first r qubits, which puts each of the r qubits in
the state 1√

2
(|0⟩+ |1⟩).

• If we apply Mi conditioned on qubit i, it implies the
application of I +Mi. The reason is as follows. When
the control qubit i is |1⟩, Mi needs to be applied to the
combined qubit state. Since the qubit i suffers a bit flip
X only by the stabilizer Mi, it is already in flipped state
when it is |1⟩. Thus, only the rest of the operators in Mi

need to be applied. However, there would be an issue if
Hs(i,i+n)

is not 0, i.e., there is a Y instead of X . In that
case, adding an S gate after the H gate resolves the issue.

Step 3: The observations in Step 2 were used by authors in
[2] to devise an algorithm as shown in Algorithm 1 to design
the encoding circuit.

To design an encoder circuit that uses CNOT and CZ gates
only as multiple qubit gates, we can use rule 12 (Fig. 5, main
paper) to convert the CY gates to CNOT and CZ gates. This
would lead to introduction of single qubit S gates.

II. ENCODER AND SYNDROME MEASUREMENT CIRCUIT
DESIGN FOR EIGHT-QUBIT CODE

A. Encoder design for the eight-qubit code

The stabilizers for the eight-qubit code can be written in
binary vector space formalism. This corresponds to Step 1 in
Section I.

Hq =


11111111
00000000
01011010
01010101
01101001

∣∣∣∣∣
00000000
11111111
00001111
00110011
01010101

 (6)

Step 2 involves converting Hq into standard form Hs as in
Equation 1. First, we push the 2nd row to the 5th position and
push the rows below up by one step. We also swap the 4th

column with the 5th column (equivalent to swapping fourth
and fifth qubit position), which would require the operation of
swapping 12th column with 13th column as well. Performing
the above operations, we get
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Algorithm 1: Algorithm to generate encoding circuit
from Hs and X (n = number of physical qubits, k
= number of logical qubits, r = rank of X-portion of
Hs).

Data: Hs, X
Result: Encoding circuit
for i = 1 to k do

if Xi,i+n−k == 1 then
Place controlled dot at qubit i+ n− k

end
for j = 1 to n do

if i+ n− k ̸= j then
if Xi,j == 1 then

Place X gate at qubit j controlled at
qubit i+ n− k

end
end

end
end
for i = 1 to r do

if Hs(i,i+n)
== 0 then

Place H gate followed by controlled dot at
qubit i

else
Place H gate followed by S gate followed by

controlled dot at qubit i
end
for j = 1 to n do

if i ̸= j then
if Hs(i,j) == 1 && Hsi,j+n

== 0 then
Place X gate on qubit j with control at
qubit i

end
if Hs(i,j) == 0 && Hsi,j+n == 1 then

Place Z gate on qubit j with control at
qubit i

end
if Hs(i,j) == 1 && Hsi,j+n == 1 then

Place Y gate on qubit j with control at
qubit i

end
end

end
end

Hq =


11111111
01011010
01001101
01110001
00000000

∣∣∣∣∣
00000000
00010111
00101011
01001101
11111111

 (7)

We perform the operation R4 → R4 + R2, followed by
R2 → R2+R3. Next, we swap R2 with R3, and R3 with R4.
Finally, performing the operation R1 → R1 +R2 +R3 +R4,
we get the standard form as

Hs =


10001110
01001101
00101011
00010111
00000000

∣∣∣∣∣
01001101
00101011
01011010
00111100
11111111

 (8)

From the standard form Hs, the stabilizers which will be
used for syndrome measurement are as follows.

M1 X Z I I Y Y X Z
M2 I X Z I Y X Z Y
M3 I Z X Z Y I Y X
M4 I I Z Y Z Y X X
M5 Z Z Z Z Z Z Z Z

.

From Hs, we can evaluate the following:

I1 =


1000
0100
0010
0001

 , A1 =


1
1
1
0

 , A2 =


110
101
011
111

 ,

B =


0100
0010
0101
0011

 , C1 =


1
1
1
1

 , C2 =


101
011
010
100

 ,
D = [1111] , I2 = 1, E = [111] (9)

From the above,

X =

 00001100
00001010
00001001

∣∣∣∣∣ 01100000
10010000
00110000

 (10)

Z =

 00000000
00000000
00000000

∣∣∣∣∣ 11010100
10110010
01110001

 (11)

Thus, the logical X and Z operators are

X1 I Z Z I X X I I
X2 Z I I Z X I X I
X3 I I Z Z X I I X
Z1 Z Z I Z I Z I I
Z2 Z I Z Z I I Z I
Z3 I Z Z Z I I I Z

.

Using Hs and the X operators, the various encoded states
can be evaluated using the following equation

|c1c2c3⟩ =X
c1
1 X

c2
2 X

c3
3

(∑
M∈S

M

)
|00000000⟩ (12)

=X
c1
1 X

c2
2 X

c3
3 (I +M1)(I +M2)

(I +M3)(I +M4)|00000000⟩ (13)

Since M5 consists of tensor products of Z Pauli operators,
and since Z acts trivially on |0⟩, I +M5 does not change the
state |00000000⟩. Thus, we can ignore M5.

Following the procedure in Section I, the 3 qubits to be
encoded are placed at positions n− 2, n− 1, and n, followed
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|0〉
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Fig. S1. Encoder for the eight-qubit code.

by the rest of the qubits initialized to the state |0⟩. Next,
the logical operators are encoded according the Algorithm
1. Thereafter, the stabilizers corresponding to the rows of
standard form of the parity check matrix Hs are applied
according the Algorithm 1. The encoder circuit thus designed
is shown in Fig. S1.

B. Syndrome measurement circuit and error corrector

The syndromes are unique as shown in Table S1. Each
qubit in the eight-qubit code can be affected by three kind
of errors, namely X , Y , and Z errors. The qubit indices have
been represented as Q1 −Q8. So, there are 24 different types
of single qubit errors possible, each of which gives a different
syndrome as shown in Table S1. Each bit in the 5-bit syndrome
represents whether the corresponding stabilizer commutes with
the error. If it commutes, the bit is 0, else it is 1. It should
also be observed that each syndrome is unique as shown in
Table S1.

The syndrome measurement circuit is shown in Fig. S2.
Five ancilla qubits are used to measure each of the six stabi-
lizers. Measurement of the ancilla qubits gives the syndrome.
Depending on the syndrome, appropriate error correction can
be performed by using suitable X , Z, or Y gate on the
appropriate qubit. A syndrome measurement of 00000 implies
that no error has occurred. It should also be noted that any
5 bit syndrome other than the syndromes mentioned in Table
S1 signifies more than a single qubit error which cannot be
corrected.

III. MATHEMATICAL VERIFICATION OF ALGORITHM 1
THROUGH EIGHT-QUBIT CODE

In this Appendix, we verify that Algorithm 1 results in the
same state as given by Equation (13) for the eight-qubit code.
Out of the eight possible states, we only verify the application
of the algorithm for the state 000. The algorithm can be
verified for other states using suitable X operators. operators

From Equation (13) we have,

|000⟩ =(I +M1)(I +M2)(I +M3)(I +M4)|00000000⟩
(14)

Expanding, we get

TABLE S1
SYNDROME TABLE FOR THE EIGHT-QUBIT CODE.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 M1 M2 M3 M4 M5 Decimal
value

X I I I I I I I 0 0 0 0 1 1

Z I I I I I I I 1 0 0 0 0 16

Y I I I I I I I 1 0 0 0 1 17

I X I I I I I I 1 0 1 0 1 21

I Z I I I I I I 0 1 0 0 0 8

I Y I I I I I I 1 1 1 0 1 29

I I X I I I I I 0 1 0 1 1 11

I I Z I I I I I 0 0 1 0 0 4

I I Y I I I I I 0 1 1 1 1 15

I I I X I I I I 0 0 1 1 1 7

I I I Z I I I I 0 0 0 1 0 2

I I I Y I I I I 0 0 1 0 1 5

I I I I X I I I 1 1 1 1 1 31

I I I I Z I I I 1 1 1 0 0 28

I I I I Y I I I 0 0 0 1 1 3

I I I I I X I I 1 0 0 1 1 19

I I I I I Z I I 1 1 0 1 0 26

I I I I I Y I I 0 1 0 0 1 9

I I I I I I X I 0 1 1 0 1 13

I I I I I I Z I 1 0 1 1 0 22

I I I I I I Y I 1 1 0 1 1 27

I I I I I I I X 1 1 0 0 1 25

I I I I I I I Z 0 1 1 1 0 14

I I I I I I I Y 1 0 1 1 1 23

I I I I I I I I 0 0 0 0 0 0

Z

Y

Y

X

Z

Z

Y

X

Z

Y

Z

Z

Y

Y

X

Z

Z

Y

X

X

H

H

H

H

X

H

H

H

H

H

H

X

X

Y

Z

Z

Z

Z

Z

Z

Z

Z

|0〉

|0〉

|0〉

|0〉

|0〉

|ψ〉

Fig. S2. Syndrome measurement circuit for the eight-qubit code.
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|000⟩ =|00000000⟩+M1|00000000⟩+M2|00000000⟩
+M3|00000000⟩+M4|00000000⟩+M1M2|00000000⟩
+M1M3|00000000⟩+M1M4|00000000⟩
+M2M3|00000000⟩+M2M4|00000000⟩
+M3M4|00000000⟩+M1M2M3|00000000⟩
+M1M2M4|00000000⟩+M1M3M4|00000000⟩
+M2M3M4|00000000⟩+M1M2M3M4|00000000⟩

(15)

=
1

4
(|00000000⟩ − |00010111⟩ − |00101011⟩

+ |00111100⟩ − |01001101⟩+ |01011010⟩
+ |01100110⟩ − |01110001⟩ − |10001110⟩
+ |10011001⟩+ |10100101⟩ − |10110010⟩
+ |11000011⟩ − |11010100⟩ − |11101000⟩
+ |11111111⟩) (16)

We now verify that Algorithm 1, and the circuit in Fig. S1
result in the same state as in Equation (16). We have the initial
state ψ = |00000000⟩.

Step A: Applying H gate on qubit 1, we have

|ψ1⟩ =
1√
2
(|00000000⟩+ |10000000⟩) (17)

Step B: Applying M1 controlled at qubit 1 we have,

|ψ2⟩ =
1√
2
(|00000000⟩+ (i · i)|10001110⟩)

=
1√
2
(|00000000⟩ − |10001110⟩) (18)

Step C: Applying H gate on qubit 2, we have

|ψ3⟩ =
1

2
(|00000000⟩+ |01000000⟩ − |10001110⟩

− |11001110⟩) (19)

Step D: Applying M2 controlled at qubit 2 we have,

|ψ4⟩ =
1

2
(|00000000⟩+ (i · i)|01001101⟩ − |10001110⟩

− (−i · −1 · i)|11000011⟩)

=
1

2
(|00000000⟩ − |01001101⟩ − |10001110⟩

+ |11000011⟩) (20)

Step E: Applying H gate on qubit 3, we have

|ψ5⟩ =
1

2
√
2
(|00000000⟩+ |00100000⟩ − |01001101⟩

− |01101101⟩ − |10001110⟩ − |10101110⟩
+ |11000011⟩+ |11100011⟩) (21)

Step F: Applying M3 controlled at qubit 3 we have,

|ψ6⟩ =
1

2
√
2
(|00000000⟩+ (i · i)|00101011⟩ − |01001101⟩

− (−1 · −i · i)|01100110⟩ − |10001110⟩
− (−i · −i)|10100101⟩+ |11000011⟩
+ (−1 · i · −i)|11101000⟩)

=
1

2
√
2
(|00000000⟩ − |00101011⟩ − |01001101⟩

+ |01100110⟩ − |10001110⟩+ |10100101⟩
+ |11000011⟩ − |11101000⟩) (22)

Step G: Applying H gate followed by S gate on qubit 4,
we have

|ψ7⟩ =
1

4
(|00000000⟩+ i|00010000⟩ − |00101011⟩

− i|00111011⟩ − |01001101⟩ − i|01011101⟩
+ |01100110⟩+ i|01110110⟩ − |10001110⟩
− i|10011110⟩+ |10100101⟩+ i|10110101⟩
+ |11000011⟩+ i|11010011⟩ − |11101000⟩
− i|11111000⟩) (23)

Step H: Applying M4 controlled at qubit 4 we have,

|ψ8⟩ =
1

4
(|00000000⟩+ (i · i)|00010111⟩ − |00101011⟩

(−i · −1 · −1 · i)|00111100⟩ − |01001101⟩
− (i · −1 · −i)|01011010⟩+ |01100110⟩
+ (i · −1 · −i)|01110001⟩ − |10001110⟩
− (i · −1 · −i)|10011001⟩+ |10100101⟩
+ (i · −1 · −i)|10110010⟩+ |11000011⟩
+ (i · i)|11010100⟩ − |11101000⟩
− (i · −1 · −1 · i)|11111111⟩)

=
1

4
(|00000000⟩ − |00010111⟩ − |00101011⟩

+ |00111100⟩ − |01001101⟩+ |01011010⟩
+ |01100110⟩ − |01110001⟩ − |10001110⟩
+ |10011001⟩+ |10100101⟩ − |10110010⟩
+ |11000011⟩ − |11010100⟩ − |11101000⟩
+ |11111111⟩) (24)

We can clearly observe that the right hand side of Equation
(16) is same as the Equation (24). Thus, |ψ8⟩ = |000⟩,
implying that the final state given by Algorithm 1 or Fig. S1 is
|000⟩. The algorithm can be verified for the remaining states
by applying suitable X operators to state |000⟩.

IV. HIGHER ENCODING RATE USING 13-QUBIT CODE

New stabilizer codes can be generated by pasting together
available stabilizer codes. Such a code can be created by
pasting a five-qubit code [[5,1,3]] and a eight-qubit code
[[8,3,3]]. The new 13-qubit code [[13,7,3]] has a rate of 7/13.
It can be represented by the following stabilizers [1]:
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M1 X X X X X X X X I I I I I

M2 Z Z Z Z Z Z Z Z I I I I I

M3 I I I I I I I I X Z Z X I

M4 I X I X Y Z Y Z I X Z Z X

M5 I X Z Y I X Z Y X I X Z Z

M6 I Y X Z X Z I Y Z X I X Z

.

A. Encoder design

The stabilizers for the 13-qubit code can be written in binary
vector space formalism. This corresponds to Step 1 in Section
I.

Hq =



1111111100000

0000000000000

0000000010010

0101101001001

0101010110100

0110100101010

∣∣∣∣∣
0000000000000

1111111100000

0000000001100

0000111100110

0011001100011

0101010110001


(25)

Step 2 involves converting Hq into standard form Hs as
in Equation 1. First, we swap rows 2 and 3 with rows 6 and
5, respectively. Next, we swap columns 4 and 5 (equivalent
to swapping 4th and 5th qubits), which would also require
swapping columns 17 and 18. We then swap columns 5
and 9, which requires swapping columns 18 and 22 as well.
Performing the above operations, we get

Hq =



1111011110000

0111000101010

0100110110100

0101001011001

0000100000010

0000000000000

∣∣∣∣∣
0000000000000

0100110110001

0010001110011

0001011100110

0000000001100

1111011110000


(26)

Now Hq is ready for the Gaussian elimination process. For
this, we perform the following steps sequentially,

R3 →R3 +R2

R4 →R4 +R2 +R3

R1 →R1 +R2

R2 →R2 +R3 +R5

R3 →R3 +R4

R4 →R4 +R5

to produce the standard parity check matrix Hs given by

Hs =



1000011011010

0100010110110

0010001110011

0001011101111

0000100000010

0000000000000

∣∣∣∣∣
0100110110001

0010001111111

0101101010111

0011010011001

0000000001100

1111011110000


.

(27)

From the standard form Hs, the stabilizers in standard form
are as follows:

M1 X Z I I Z Y X Z Y X I X Z

M2 I X Z I I X Z Y Y Z Y Y Z

M3 I Z X Z Z I Y X Y I Z Y Y

M4 I I Z Y I Y X X Z Y X X Y

M5 I I I I X I I I I Z Z X I

M6 Z Z Z Z I Z Z Z Z I I I I

.

From Hs, we have

I1 =


10000

01000

00100

00010

00001

 , A1 =


1

1

0

1

0

 , A2 =


1011010

0110110

1110011

1101111

0000010

 ,

B =


01001

00100

01011

00110

00000

 , C1 =


1

0

0

1

0

 , C2 =


0110001

1111111

1010111

0011001

0001100

 ,
D = [11110] , I2 = 1, E = [1110000] (28)

From the above, we obtain the logical X and Z operators.

X =



0000011000000

0000010100000

0000010010000

0000000001000

0000000000100

0000000000010

0000000000001

∣∣∣∣∣

1111000000000

0101000000000

0110000000000

0101100000000

0110100000000

0110000000000

1111000000000


(29)

Z =



0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

0000000000000

∣∣∣∣∣

1011001000000

0111000100000

1110000010000

1001000001000

0101000000100

1111100000010

0011000000001


(30)
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Fig. S3. Encoder for the thirteen qubit code.

X1 Z Z Z Z I X X I I I I I I

X2 I Z I Z I X I X I I I I I

X3 I Z Z I I X I I X I I I I

X4 I Z I Z Z I I I I X I I I

X5 I Z Z I Z I I I I I X I I

X6 I Z Z I I I I I I I I X I

X7 Z Z Z Z I I I I I I I I X

Z1 Z I Z Z I I Z I I I I I I

Z2 I Z Z Z I I I Z I I I I I

Z3 Z Z Z I I I I I Z I I I I

Z4 Z I I Z I I I I I Z I I I

Z5 I Z I Z I I I I I I Z I I

Z6 Z Z Z Z Z I I I I I I Z I

Z7 I I Z Z I I I I I I I I Z

.

Using Hs and the X operators, the various encoded states
can be evaluated using the following equation

|c1c2c3c4c5c6c7⟩ =X
c1
1 X

c2
2 X

c3
3 X

c4
4 X

c5
5 X

c6
6 X

c7
7(∑

M∈S

M

)
|0000000000000⟩ (31)

=X
c1
1 X

c2
2 X

c3
3 X

c4
4 X

c5
5 X

c6
6 X

c7
7

(I +M1)(I +M2)(I +M3)(I +M4)

(I +M5)(I +M6)|00000000⟩ (32)

Since M6 consists of tensor products of Z Pauli operators,
and since Z acts trivially on |0⟩, I+M6 which does not change
the state |0000000000000⟩. Thus, we can ignore M6.

Following the procedure in Section I, The 7 qubits to be
encoded are placed at positions n−6, n−5, n−4, n−3, n−2,
n− 1, and n, followed by the rest of the qubits initialized to
the state |0⟩. Next, the logical operators are encoded according
the Algorithm 1. Thereafter, the stabilizers corresponding to
the rows of standard form of the parity check matrix Hs are
applied according the Algorithm 1. The encoder circuit thus
designed is shown in Fig. S3.

From Fig. S3, we observe that there are 5 controlled-Z gates
which act on |0⟩. Since Z acts trivially on |0⟩, those controlled-

H

H

H

H S

Y

H

Y

X

Z

Y

X

X

Z

X

Z

Y

Y

Z

Y

Y

Z

Z

Y

Y

X

Z

Y

Y

Z

X

X

X

X

Z

Y

Y

Z

Z

X

XXX

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|ψ〉

|ψ〉

|ψ〉

|ψ〉

|ψ〉

|ψ〉

|ψ〉

Fig. S4. Modified encoder for the thirteen qubit code after removing
redundant controlled-Z gates.

Z gates can be ignored. The modified encoding circuit after
removing the redundant controlled-Z gates is shown in Fig.
S4.

B. Syndrome measurement circuit and error corrector

The syndrome measurement circuit measures all the six
stabilizers using six ancilla qubits. The syndromes are unique
and can be calculated similar to the eight-qubit code. Each
qubit in the 13-qubit code can be affected by three kinds of
errors, namely X , Y , and Z errors. So, there are 39 different
types of single qubit errors possible, each of which gives a
different syndrome as shown in Table S2. The M1-M6 values
in the table can be derived similar to the eight qubit code.

The syndrome measurement circuit is shown in Fig. S5. Six
ancilla qubits are used to measure each of the six stabilizers.
Measurement of the ancilla qubits produces the syndrome.
Depending on the syndrome, appropriate error correction can
be performed by using suitable X , Z, or Y gate on the
appropriate qubit. A syndrome of ‘000000’ implies that no
error has occurred.
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TABLE S2
SYNDROME TABLE FOR THE 13-QUBIT CODE.

M1 M1 M1 M1 M1 M1 Decimal value

X I I I I I I I I I I I I 0 0 0 0 0 1 1

Y I I I I I I I I I I I I 1 0 0 0 0 1 33

Z I I I I I I I I I I I I 1 0 0 0 0 0 32

I X I I I I I I I I I I I 1 0 1 0 0 1 41

I Y I I I I I I I I I I I 1 1 1 0 0 1 57

I Z I I I I I I I I I I I 0 1 0 0 0 0 16

I I X I I I I I I I I I I 0 1 0 1 0 1 21

I I Y I I I I I I I I I I 0 1 1 1 0 1 29

I I Z I I I I I I I I I I 0 0 1 0 0 0 8

I I I X I I I I I I I I I 0 0 1 1 0 1 13

I I I Y I I I I I I I I I 0 0 1 0 0 1 9

I I I Z I I I I I I I I I 0 0 0 1 0 0 4

I I I I X I I I I I I I I 1 0 1 0 0 0 40

I I I I Y I I I I I I I I 1 0 1 0 1 0 42

I I I I Z I I I I I I I I 0 0 0 0 1 0 2

I I I I I X I I I I I I I 1 0 0 1 0 1 37

I I I I I Y I I I I I I I 0 1 0 0 0 1 17

I I I I I Z I I I I I I I 1 1 0 1 0 0 52

I I I I I I X I I I I I I 0 1 1 0 0 1 25

I I I I I I Y I I I I I I 1 1 0 1 0 1 53

I I I I I I Z I I I I I I 1 0 1 1 0 0 44

I I I I I I I X I I I I I 1 1 0 0 0 1 49

I I I I I I I Y I I I I I 1 0 1 1 0 1 45

I I I I I I I Z I I I I I 0 1 1 1 0 0 28

I I I I I I I I X I I I I 1 1 1 1 0 1 61

I I I I I I I I Y I I I I 0 0 0 1 0 1 5

I I I I I I I I Z I I I I 1 1 1 0 0 0 56

I I I I I I I I I X I I I 0 1 0 1 1 0 22

I I I I I I I I I Y I I I 1 1 0 0 1 0 50

I I I I I I I I I Z I I I 1 0 0 1 0 0 36

I I I I I I I I I I X I I 0 1 1 0 1 0 26

I I I I I I I I I I Y I I 0 0 1 1 1 0 14

I I I I I I I I I I Z I I 0 1 0 1 0 0 20

I I I I I I I I I I I X I 0 1 1 0 0 0 24

I I I I I I I I I I I Y I 1 0 0 1 1 0 38

I I I I I I I I I I I Z I 1 1 1 1 1 0 62

I I I I I I I I I I I I X 1 1 1 1 0 0 60

I I I I I I I I I I I I Y 1 1 0 0 0 0 48

I I I I I I I I I I I I Z 0 0 1 1 0 0 12

I I I I I I I I I I I I I 0 0 0 0 0 0 0
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