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Abstract. The deep theory of approximate subgroups establishes 3-step product growth
for subsets of finite simple groups G of Lie type of bounded rank. In this paper we obtain
2-step growth results for representations of such groups G (including those of unbounded
rank), where products of subsets are replaced by tensor products of representations.

Let G be a finite simple group of Lie type and χ a character of G. Let |χ| denote the sum of
the squares of the degrees of all (distinct) irreducible characters of G which are constituents
of χ. We show that for all δ > 0 there exists ε > 0, independent of G, such that if χ is an
irreducible character of G satisfying |χ| ≤ |G|1−δ, then |χ2| ≥ |χ|1+ε. We also obtain results
for reducible characters, and establish faster growth in the case where |χ| ≤ |G|δ.

In another direction, we explore covering phenomena, namely situations where every irre-
ducible character of G occurs as a constituent of certain products of characters. For example,
we prove that if |χ1| · · · |χm| is a high enough power of |G|, then every irreducible character of
G appears in χ1 · · ·χm. Finally, we obtain growth results for compact semisimple Lie groups.

1. Introduction

In the past two decades there has been intense interest in growth phenomena in groups
and in finite simple groups in particular; see [He1, Hr, BGT, He2, PS, Bre]. The celebrated
Product Theorem, proved independently in [BGT] and in [PS], shows that, if G is a finite
simple group of Lie type of rank r, and A ⊂ G is a generating set, then either A3 = G
or |A3| ≥ |A|1+ε where ε > 0 depends only on r. Here Ak denotes the set of all products
a1a2 · · · ak where a1, . . . , ak ∈ A.

The main goal of this paper is to study analogous power growth phenomena in representa-
tion theory, with emphasis on (complex) representations of finite simple groups G of Lie type.
Here products of subsets of G are replaced by tensor products of representations. Our results
on tensor product growth give character-theoretic analogues of the Product Theorem which
are strong in two respects: we establish 2-step (instead of 3-step) growth, as well as uniform
growth when the rank of G tends to infinity.

Let G be any finite group. If X = {χ1, . . . , χk} is a set of (pairwise distinct) irreducible
characters of G, we define

|X| =
k∑
i=1

χi(1)2.
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This is the Plancherel measure, normalized so that |Irr(G)| = |G|. If χ is any character of G,
we define |χ| = |supp(χ)|, where supp(χ) denotes the set of distinct irreducible constituents
of χ. Recall that G is quasisimple if G = [G,G] and G/Z(G) is simple.

Our first growth results are as follows:

Theorem 1. For all δ > 0, there exists ε > 0 such that if G is a finite quasisimple group
of Lie type and χ is an irreducible character of G with |χ| ≤ |G|1−δ, then |χ2| ≥ |χ|1+ε and
|χχ| ≥ |χ|1+ε.

By a classical result of Burnside and Brauer [Br], if χ is any faithful character of a finite
group G taking exactly m distinct values on the elements G, then any irreducible character
of G appears as an irreducible constituent of some χi with 0 ≤ i < m − 1. Thus one should
expect tensor growth for arbitrary characters of finite groups, and this is studied in Theorem
2.6 (below). We also give a version of Theorem 1 for general characters in groups of high
rank:

Theorem 2. For all δ > 0, there exist ε > 0 and R > 0 such that if G is a finite quasisimple
group of Lie type and rank ≥ R, and χ is any (not necessarily irreducible) character of G with
|χ| ≤ |G|1−δ, then |χ2| ≥ |χ|1+ε and |χχ| ≥ |χ|1+ε.

The proofs of these results present ε as an explicit function of δ, e.g. ε = cδ
4+2c(1−δ) in

Theorem 1, where c > 0 is the absolute constant in [LaT, Theorem A]. Moreover, if G is
sufficiently large but of bounded rank r, and χ is irreducible, then ε = δ

2−2δ will do; for

example, any irreducible character χ of G with |χ| ≤ |G|1/2 satisfies |χ2| ≥ |χ|3/2.
As shown in Example 2.5(iv), Theorem 2 does not hold for non-simple quasisimple groups

of bounded order. On the other hand, Theorem 2.6(iii) shows that it holds true for (non-
abelian) simple groups of bounded order. The question whether Theorem 2 can hold for (large
enough) quasisimple groups of Lie type of bounded rank will be studied elsewhere.

Power growth of conjugacy classes A of arbitrary finite simple groups G was studied before
the Product Theorem was proved. It is shown in [Sh, 2.7] there that for any δ > 0 there exists
ε > 0, depending only on δ, such that |A| ≤ |G|1−δ implies |A3| ≥ |A|1+ε. Furthermore, if G
is of Lie type then |A2| ≥ |A|1+ε where ε > 0 depends only on the rank of G [Sh, 10.4].

Subsequently, growth of general normal subsets (namely, unions of conjugacy classes) was
also studied. It is shown in [GPSS, 1.5] that there are absolute constants N ∈ N and ε > 0
such that for any normal subset A of a finite simple group G, either AN = G or |A2| ≥ |A|1+ε.

In [LSS] faster growth of the form |A2| ≥ |A|2−ε for small normal subsets A of arbitrary
finite simple groups is established. Our next result gives a character-theoretic analogue of
[LSS, Theorem 1.3]:

Theorem 3. For any ε > 0, there exists an explicit δ = δ(ε) > 0 such that the following state-
ment holds. If G is a finite quasisimple group of Lie type and χ1, χ2 are any (not necessarily
irreducible) characters of G with |χ1|, |χ2| ≤ |G|δ, then

|χ1χ2| ≥
(
|χ1| · |χ2|

)1−ε
.

In particular, if χ is a character of G satisfying |χ| ≤ |G|δ then |χ2| ≥ |χ|2−2ε.

We note that |χ1χ2| ≤ |χ1| · |χ2| (see Lemma 2.1 below), hence the growth established in
Theorem 3 is almost best possible. As a consequence of Theorem 3, we obtain:

Corollary 4. For any ε > 0 and any integer k ≥ 2, there exists an explicit γ = γ(ε, k) > 0
such that the following statement holds. If G is a finite quasisimple group of Lie type and
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χ1, χ2, . . . , χk are any (not necessarily irreducible) characters of G with

|χ1|, |χ2|, . . . , |χk| ≤ |G|γ ,
then

|χ1χ2 · · ·χk| ≥
(
|χ1| · |χ2| · · · |χk|

)1−ε
.

In particular, if χ is a character of G satisfying |χ| ≤ |G|γ then |χk| ≥ |χ|k−kε.

The above result shows that, for any ε > 0 and any integer k ≥ 2 there exists an explicit
δ = δ(ε, k) > 0 such that, for G as above and any (not necessarily irreducible) character χ of
G satisfying |χ| ≤ |G|δ we have |χk| ≥ |χ|k−ε; indeed, define δ(ε, k) = γ(ε/k, k).

Applying Theorem 3 we deduce the following result, which is a character-theoretic analogue
of [LSS, Theorem 1.1]:

Theorem 5. For all ε > 0, there exists an explicit positive integer N such that if G is a finite
simple group of Lie type and χ is any (not necessarily irreducible) character of G, then either
χN contains every irreducible character of G, or |χ2| ≥ |χ|2−ε.

The analogy with Gowers’ theorem [Go, Theorem 3.3] raises the question of whether N = 3
suffices in Theorem 5 when |χ| is sufficiently large. A recent theorem of Sellke [Se2, Theorem

1.2] shows that the answer to this question is affirmative for large G if χ is so large that |χ||G|
is bounded away from 0. We therefore ask the following:

Question. Does there exist an absolute constant ε > 0 such that (i), respectively (ii), holds
for any finite simple group G of Lie type and an arbitrary character χ of G?

(i) If |χ| ≥ |G|1−ε then |χ3| = |G|.
(ii) More generally, |χ3| ≥ min(|G|, |χ|1+ε).

Question (ii) was suggested by one of the referees. Note that both (i) and (ii) are false for
non-simple quasisimple groups, see Example 2.5(iv).

We remark that the example of PSU2n+1(q) [HSTZ, Theorem 1.2] shows that, in general,
it would be too much to ask for |χ2| = |G|. On the other hand, for certain simple groups of
Lie type, we can bring N down to 6 or 7.

Theorem 6. If G = PSLn(q) and q is sufficiently large in terms of n, then for any, not

necessarily irreducible, character χ of G, |χ| ≥ |G|11/12 implies |χ6| = |G|. If G = PSUn(q)
and q is sufficiently large in terms of n, then for any, not necessarily irreducible, character χ
of G, |χ| ≥ |G|11/12 implies |χ7| = |G|.

Because our proof makes essential use of [TT], we are limited to groups of type PSL and
PSU and to q sufficiently large. However, we can offer the following weaker version of Theorem
6, which works for all finite non-abelian simple groups, if one is willing to take N sufficiently
large.

Theorem 7. There exists a universal constant C > 0 such that the following statement holds
for any finite non-abelian simple group G and any 0 < δ ≤ 1. If χ is any, not necessarily
irreducible, character of G such that |χ| ≥ |G|δ, then |χN | = |G| for all N ≥ C/δ.

By Lemma 2.1(ii), |χN | ≤ |χ|N , hence Theorem 7 is optimal up to a constant. Furthermore,
Theorem 7 cannot hold for non-simple quasisimple groups, as shown in Example 2.5(iv).

We also offer a character-theoretic analogue of the Rodgers-Saxl theorem on products of
conjugacy classes in [RS]. In the case that the characters are irreducible, this analogue was
conjectured by Gill in [Gi] and proved in [LaT, Theorem 8.5].
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Theorem 8. There exists an explicit constant c > 0 such that the following statement holds.
If G is a finite simple group of Lie type, m ≥ 1 any integer, and χ1, χ2, . . . , χm are any (not
necessarily irreducible) characters of G with

∏m
i=1 |χi| ≥ |G|c, then |χ1χ2 . . . χm| = |G| and

thus χ1χ2 . . . χm contains every irreducible character of G.

Finally, we prove an analogue of Theorem 1 for compact semisimple Lie groups.

Theorem 9. Let G be a compact semisimple Lie group. Then there exists ε = ε(G) > 0 such
that for each irreducible character χ of G, we have |χ2| ≥ |χ|1+ε.

It is possible that some of the presented results also hold for alternating groups (and
likewise, Theorem 2 may hold for Lie-type groups of bounded rank as well). However, the
techniques developed in the paper do not seem to apply to these open cases.

Some words on the structure of this paper. In Section 2 we prove some preliminary results
for finite groups. Section 3 is devoted to the proofs of Theorem 1 and Theorem 2. In Section
4 we prove Theorems 3, 5, 8, and Corollary 4, while the proofs of Theorems 6 and 7 are
carried out in Section 5. In Section 6 we study tensor product growth of representations of
semisimple compact Lie groups and prove Theorem 9.

2. Preliminaries

We begin with general inequalities for finite groups G.

Lemma 2.1. Let α, β be any (not necessarily irreducible) characters of G. Then

(a) |α+ β| ≤ |α|+ |β|.
(b) |αβ| ≤ |α| · |β|.

Proof. Without any loss of generality we may assume that α =
∑

i αi and β =
∑

j βj are

mutliplicity-free, with αi, βj ∈ Irr(G). Then

|α+ β| = |
∑
i

αi +
∑
j

βj | ≤
∑
i

αi(1)2 +
∑
j

βj(1)2 = |α|+ |β|,

proving (a). Next, |αiβj | ≤
(
αiβj(1)

)2
= αi(1)2βj(1)2. It follows from (a) that

|αβ| = |
∑
i,j

αiβj | ≤
∑
i,j

|αiβj | ≤
∑
i,j

αi(1)2βj(1)2 =
(∑

i

αi(1)2
)
·
(∑
j

βj(1)2
)

= |α| · |β|,

proving (b). �

Proposition 2.2. Let χ1, . . . , χn be irreducible characters of G, n ≥ 2.

(i) In general, we have

|χ1 . . . χn| ≥ max
1≤i≤n

|χi|.

(ii) If G is quasisimple and χi 6= 1G for 1 ≤ i ≤ n, then

|χ1 . . . χn| > max
1≤i≤n

|χi|.

(iii) If G is perfect, χ1 6= 1G, and χi ∈ {χ1, χ1} for all i, then |χ1 · · ·χn| > |χ1| = · · · = |χn|.
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Proof. (i) Without any loss of generality, assume χ1(1) = maxi χi(1). Note that

〈χ1 . . . χn, χ1 . . . χn〉 =
1

|G|
∑
g∈G
|χ1(g) . . . χn(g)|2

≤ 1

|G|
max
h∈G
|χ2(h) . . . χn(h)|2

∑
g∈G
|χ1(g)|2

= max
h∈G
|χ2(h) . . . χn(h)|2〈χ1, χ1〉

= χ2(1)2 . . . χn(1)2,

with equality only if, for every g ∈ G,

(2.1) either χ1(g) = 0 or |χ2(g) . . . χn(g)| = χ2(1) . . . χn(1).

If d1, d2, . . . , dk are the degrees of the distinct irreducible constituents of χ1 . . . χn and
m1, . . . ,mk their multiplicities in χ1 . . . χn, then∑

i

m2
i = 〈χ1 . . . χn, χ1 . . . χn〉 ≤ χ2(1)2 . . . χn(1)2

and ∑
i

dimi = χ1(1) . . . χn(1).

So by the Cauchy-Schwarz inequality,

(2.2) |χ1 . . . χn| =
k∑
i=1

d2
i ≥

χ1(1)2 . . . χn(1)2∑k
i=1m

2
i

=
χ1(1)2 . . . χn(1)2

〈χ1 . . . χn, χ1 . . . χn〉
≥ χ1(1)2 = |χ1|,

as stated.

(ii) Suppose G is quasisimple, χi 6= 1G for all i, but |χ1 . . . χn| = |χ1| = maxi |χi|. Since
χi(1) > 1, we see that Ki := {g ∈ G | |χi(g)| = χi(1)} is equal to Z(G). Hence ∩ni=2Ki =
Z(G), and using (2.1), we see that χ1(g) = 0 for all g /∈ Z(G). It follows that

|G| =
∑
g∈G
|χ1(g)|2 = |Z(G)|χ1(1)2,

and thus χ1(1) = |G/Z(G)|1/2, i.e. χ1 is of central type character for G/Ker(χ). By the
Howlett-Isaacs theorem [HI], G/Ker(χ1) is solvable, which is impossible, since it maps onto
the simple group G/Z(G).

(iii) Suppose G is perfect and χ1 6= 1, but |χn−j1 χj1| = |χ1| for some 0 ≤ j ≤ n. We again
have that K := {g ∈ G | |χ1(g)| = χ1(1)} is a normal subgroup of G, and χ1(g) = 0 for all
g /∈ K by (2.1). It follows that

|G| =
∑
g∈G
|χ1(g)|2 = |K|χ1(1)2,

and thus χ1(1) = |G/K|1/2, i.e. χ1 is a character of central type for G/Ker(χ1). By the
Howlett-Isaacs theorem, G/Ker(χ1) is solvable, so Ker(χ1) ≥ [G,G] = G and thus χ1 = 1G,
a contradiction. �

The following example shows the absence of growth in G, even for irreducible characters,
in a class of groups G which are far from being simple. See also Example 2.5(iii) for examples
of absence of growth for arbitrary characters (α with |α| < |G|) in general.
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Example 2.3. Let p be any prime, n ≥ 1 any integer, and G be an extraspecial p-group of
order p1+2n. Then G has p2n linear characters and p− 1 irreducible characters of degree pn;
let χ be one of the latter (note that χ(1) = |G/Z(G)|1/2). Now, if k ≥ 1 is any integer, then
χk is a multiple of the sum of p2n linear characters if p|k, and a multiple of a single irreducible

character of degree pn if p - k. Thus we always have |χk| = p2n = |χ| = |G|1−1/(2n+1).

To study tensor product growth of arbitrary, not necessarily irreducible, characters of finite
groups G, it is convenient to denote

α ≡ β
for characters α, β of a finite group G whenever supp(α) = supp(β), i.e. α and β share the
same irreducible constituents. Clearly, if α ≡ β and γ ≡ δ, then

|α| = |β|, (α+ γ) ≡ (β + δ), αγ ≡ βδ.
Moreover, if G is a subgroup of H, then α ≡ β implies that IndHG (α) ≡ IndHG (β) as H-
characters.

Example 2.4. Let A be a finite abelian group, and α, β be any two characters of A, say with
|α| ≥ |β|. View Irr(G) as an abelian group under character product. Then

|αβ| ≥ max(α, β),

with equality attained precisely when there is a subgroup J of Irr(A) such that supp(α) is a
union of J-cosets and supp(β) is contained in a J-coset.

Indeed, since A is abelian, |α| = m if supp(α) = {α1, . . . , αm}. Let supp(β) = {β1, . . . , βn}.
Then αβ contains the m pairwise distinct irreducible characters αiβ1, so |αβ| ≥ m = |α|.
Similarly, |αβ| ≥ n = |β|.

Assume now that |αβ| = m ≥ n. Note that J := {λ ∈ Irr(A) | λsupp(α) = supp(α)} is
a subgroup of Irr(A), and supp(A) is then a union of J-cosets. Next, the equality |αβ| = m
implies that the n sets {αiβj | 1 ≤ i ≤ m} for 1 ≤ j ≤ n are all equal. It follows that the

multiplication by each βjβ
−1
1 stabilizes the set supp(α), i.e. βj ∈ Jβ1, and thus supp(β) is

contained in the J-coset Jβ1.
Conversely, suppose there is a subgroup J of Irr(A) such that supp(α) = {α1, . . . , αm} is a

union of J-cosets and supp(β) = {β1, . . . , βn} is contained in a J-coset. Then m ≥ |J | ≥ n,
λsupp(α) = supp(α) for any λ ∈ J , and βj ∈ Jβ1 for any 1 ≤ j ≤ n. It follows that the n sets
{αiβj | 1 ≤ i ≤ m} for 1 ≤ j ≤ n are all equal, and hence |αβ| = |supp(αβ)| = m = |α|.
Example 2.5. Let G be any finite group.

(i) If α is a character of G and λ a linear character (i.e. of degree 1) of G, then clearly
|αλ| = |α|.

(ii) More generally, let Z ≤ Z(G) be any central subgroup of G, γ any character of Z,
and let α be any character of G such that α ≡ IndGZ (γ) (i.e. χ ∈ Irr(G) is an irreducible
constituent of α if and only if 〈χ|Z , γ〉Z > 0). Let δ be any linear character of Z and let β be
any character of G such that β|Z = β(1)δ. Then

(2.3) |αβ| = |α| = |G/Z| · |γ|.
Indeed, without any loss we may assume γ =

∑m
i=1 γi is a sum of m distinct linear characters,

and α = IndGZ (γ). For any χ ∈ Irr(G), since Z ≤ Z(G) we have χ|Z = χ(1)λ for some
λ ∈ Irr(Z), and

〈α, χ〉 = 〈γ, χ|Z〉 = χ(1)〈γ, λ〉Z .
It follows that χ is a constituent of α if and only if λ = γi for some i, in which case the
multiplicity of χ in α is χ(1). For each γi, let Irr(G|γi) denote the set of irreducible characters
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of G that lie above γi; note that these sets are disjoint when i 6= j. We have therefore shown
that

α =

m∑
i=1

∑
χ∈Irr(G|γi)

χ(1)χ.

Taking the degree we obtain

|G/Z| · |γ| = |G/Z|γ(1) = α(1) =

m∑
i=1

∑
χ∈Irr(G|γi)

χ(1)2 = |α|,

establishing the second equality in (2.3).
Next, we have

αβ = IndGZ (γ)β = IndGZ (γβ|Z) ≡ IndGZ (γδ).

Applying the second equality in (2.3) to αβ, we obtain

|αβ| = |IndGZ (γδ)| = |G/Z| · |γδ| = |G/Z| · |γ| = |α|,
completing the proof of (2.3).

(iii) Consider any finite group G with a nontrivial central subgroup Z. Let λ and µ be any
two linear characters of Z and take α := IndGZ (λ). Let β be any sum of irreducible characters in
Irr(G|µ) (with arbitrary multiplicities), so that β|Z ≡ δ := β(1)µ. Then |αβ| = |α| = |G/Z|
by (2.3). In particular, |αk| = |α| = |G|/|Z| for any k ∈ Z≥1 (since when k ≥ 2 we have

αk−1 ≡ IndGZ (λk−1) and so the equality follows by induction on k using β := αk−1).

(iv) Suppose G is a finite non-simple quasisimple group, so that |Z(G)| > 1. First, we can
find δ > 0 such that |G|δ ≤ |Z(G)|. In this case, the character α constructed in (iii) has
|α| = |G|/|Z(G)| ≤ |G|1−δ, but yet |α2| = |αα| = |α|.

Secondly, given any δ′ > 0, we can find a finite quasisimple group G with Z(G) ∼= C2 and

|G|δ′ ≥ 2. In this case, the character α constructed in (iii) has |α| = |G|/2 ≥ |G|1−δ′ , but yet
|αk| = |α| < |G| for all k ∈ Z≥1.

Now we can prove the next result concerning tensor product growth of arbitrary characters:

Theorem 2.6. Let α, β be any two, not necessarily irreducible, characters of a finite group
G. Then the following statements hold.

(i) |αβ| ≥ max(|α|, |β|).
(ii) Suppose that |αβ| = max(|α|, |β|) = |α|. Then there exist a normal subgroup M of

G containing Ker(β), a character γ of M , and a linear character δ of M , such that
α ≡ IndGM (γ) and β|M = β(1)δ.

(iii) Suppose that G is quasisimple and that Ker(α) 6= G, Ker(β) 6= G. Then

|αβ| = max(|α|, |β|) = |α|
if and only if the pair (α, β) is as constructed in Example 2.5(ii). In particular, if in
addition G is simple, then |αβ| > max(|α|, |β|) unless |α| = |G| or |β| = G.

Proof. (i) Consider the space C of class functions on G, with the usual Hermitian product

〈λ, µ〉 = (1/|G|)
∑

x∈G λ(x)µ(x), and write ||λ||2 := 〈λ, λ〉. Also let supp(α) = {α1, . . . , αm},
C1 := 〈α1, . . . , αm〉C, and consider the regular character ρ of G. Then ρ1 :=

∑m
i=1 αi(1)αi is

the orthogonal projection of ρ onto C1, and moreover

(2.4) |G| − |α| =
∑

χ∈Irr(G), χ 6=α1,...,αm

χ(1)2 = ||ρ1 − ρ||2.



8 MICHAEL LARSEN, ANER SHALEV, AND PHAM HUU TIEP

Observe that θ := ρ1β/β(1) is a linear combination of the irreducible constituents γ1, . . . , γn
of αβ, and hence belongs to C2 := 〈γ1, . . . , γn〉C. Letting ρ2 denote the orthogonal projection
of ρ onto C2 and applying (2.4) to αβ, we obtain

(2.5) |G| − |αβ| = ||ρ2 − ρ||2 ≤ ||θ − ρ||2.
Note that

(2.6) |θ(g)| = |ρ1(g)| · |β(g)|/β(1) ≤ |ρ1(g)|
for all g ∈ G. It follows that

||θ(g)||2 = (1/|G|)
∑
g∈G
|θ(g)|2 ≤ (1/|G|)

∑
g∈G
|ρ1(g)|2 = ||ρ1||2.

Since ρ is the regular character, we also have

〈θ, ρ〉 = θ(1) = ρ1(1) = 〈ρ1, ρ〉.
Hence,

||θ − ρ||2 = ||θ||2 − 2〈θ, ρ〉+ ||ρ||2 ≤ ||ρ1||2 − 2〈ρ1, ρ〉+ ||ρ||2 = ||ρ1 − ρ||2.
Putting it together with (2.4) and (2.5), we obtain

|G| − |αβ| ≤ ||θ − ρ||2 ≤ ||ρ1 − ρ||2 = |G| − |α|,
and thus |α| ≤ |αβ|. Similarly, |β| ≤ |αβ|, and the statement follows.

(ii) The arguments in (i) show that |αβ| = |α| implies that we must have equality in (2.6)
for all g ∈ G, that is, either ρ1(g) = 0 or |β(g)| = β(1). If supp(β) = {β1, . . . , βl}, then
|β(g)| = β(1) if and only if

β1(g)/β1(1) = β2(g)/β2(1) = . . . = βl(g)/βl(1) =: δ(g)

is a root of unity. For each i, the generalized kernel Ki := {g ∈ G | |βi(g)| = βi(1)} is a
normal subgroup of G containing Ker(β), hence M := ∩mi=1Ki is a normal subgroup of G, and
the above δ yields a linear character on M , and β|M = β(1)δ.

We have shown that ρ1(g) = 0 for all g ∈ GrM . Setting γ := ρ1|M , we then have

|G| · 〈ρ1, χ〉 =
∑
x∈M

ρ1(x)χ(x) = |M |〈γ, χ|M 〉M = |M |〈IndGM (γ), χ〉

for any χ ∈ Irr(G). Thus χ ∈ Irr(G) belongs to supp(ρ1) = supp(α) if and only if χ is an
irreducible constituent of IndGM (γ). In other words, α ≡ IndGM (γ).

(iii) Suppose |αβ| = |α|, and consider the triple (M,γ, δ) as constructed in (ii). If M = G,
then since G is perfect, δ = 1G, whence Ker(β) = G, contrary to the assumption. So M < G,
which implies that M ≤ Z(G) since G is quasisimple. Again without any loss of generality
we may assume α = IndGZ (γ), and observe that αβ = IndGM (γβ|Z). Now (2.3) shows that
|γβ|Z | = |γ|, so the pair (α, β) is as constructed in Example 2.5(ii). Conversely, any pair in
Example 2.5(ii) certainly gives rise to an example with |αβ| = |α|. �

Remark 2.7. Let G be a finite simple group, and let α be any nontrivial, possibly reducible,
character of G. Theorem 2.6(iii) shows that the sequence |αn|, n = 1, 2, . . ., is strictly increas-
ing until it reaches |G|. Hence there is an integer n = n(α) such that any irreducible character

of G occurs as an irreducible constituent of the single power αn; equivalently, |αn(α)| = |G|.
This remark, as well as the ideas of the proofs of Theorem 2.6(i) and of Theorem 2.6(iii)

in the case of simple G, was kindly pointed out to us by one of the referees. See also [LiSh1],
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[LiST1], [LiST2], [LaT] for related results on the diameter of Cayley graphs for finite simple
groups.

We conclude this section with an effective version of Remark 2.7. For any finite group G,
let k(G) := |Irr(G)| denote its class number.

Lemma 2.8. Let G be a finite simple group and let χ be a faithful character of G.

(i) Suppose χ takes exactly m distinct values on G. Then there is some integer 2 ≤ j ≤ m

such that |χj(m−1)| = |G|.
(ii) There is some integer 1 ≤ N1 ≤ k(G)(k(G)− 1) such that |χN | = |G| for all N ≥ N1.

Proof. (i) As χ is faithful, χ admits a nontrivial irreducible constituent α ∈ Irr(G). By the

Burnside-Brauer theorem [Br], supp(
∑m−1

i=0 χi) = Irr(G). Hence α is a constituent of χj−1

for some 2 ≤ j ≤ m. As 1G is a constituent of αα and α is a constituent of χ, it follows
that 1G is a constituent of χj . Now, χj also takes at most m distinct values on G, so again
by the Burnside-Brauer theorem, supp(

∑m−1
i=0 χij) = Irr(G). But note that since 1G is a

constituent of χj , every irreducible constituent of χij also occurs in χijχj = χ(i+1)j . Hence
supp(

∑m−1
i=0 χij) = supp(χj(m−1)), and the statement follows.

(ii) Certainly, the number m of distinct values of χ on G does not exceed the class number
k(G) of G. Hence, (i) implies that |χN1 | = |G| for some 1 ≤ N1 ≤ k(G)(k(G) − 1). Now if
N ≥ N1, then |G| ≥ |χN | ≥ |χN1 | by Theorem 2.6(i), whence |χN | = |G|. �

3. Proofs of Theorems 1 and 2

We begin this section by proving Theorem 2 in the case that χ is irreducible, which is also
the high rank case of Theorem 1.

Proposition 3.1. For all δ > 0, there exist ε > 0 and R > 0 such that if G is a finite
quasisimple group of Lie type and rank ≥ R, and χ ∈ Irr(G) satisfies |χ| ≤ |G|1−δ, then
|χ2| ≥ |χ|1+ε and |χχ| ≥ |χ|1+ε.

Proof. Let r ≥ R be the rank of G and q the cardinality of the field of definition (for Suzuki
and Ree groups, q is defined, as usual, so that q2 is an odd power of 2 or 3.) By the main
theorem of [LaT], there exists c > 0 such that

|χ(g)| ≤ χ(1)
1−c log |g

G|
log |G| .

Given α > 0, let S = Sα := {g ∈ G | |gG| ≤ |G|α/2}. Then, by the well-known result of
Fulman and Guralnick [FG, Theorem 1.1] on k(G) := |Irr(G)|, we have

|S| ≤ k(G)|G|α/2 ≤ 27.2qr|G|α/2 ≤ |G|α,
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if R is taken sufficiently large in terms of α. Thus,

〈χ2, χ2〉 = 〈χχ, χχ〉 =
1

|G|
∑
g∈G
|χ(g)|4

=
1

|G|
∑
g∈S
|χ(g)|4 +

1

|G|
∑
g∈G\S

|χ(g)|4

≤ |S|
|G|

χ(1)4 +
1

|G|
max
g∈G\S

|χ(g)|2
∑
g∈G\S

|χ(g)|2

≤ |G|α−1χ(1)4 +
1

|G|
χ(1)2(1−cα/2)

∑
g∈G\S

|χ(g)|2

≤ |G|α−1χ(1)4 + χ(1)2−cα.

By hypothesis, |χ| ≤ |G|1−δ, so χ(1) ≤ |G|1/2−δ/2, which implies

〈χ2, χ2〉 ≤ χ(1)4− 2−2α
1−δ + χ(1)2−cα = (χ(1)−

2δ−2α
1−δ + χ(1)−cα)χ(1)2.

The proposition is trivial for δ ≥ 1, so we assume δ < 1, so that choosing

α :=
2δ

2 + c(1− δ)
, ε :=

cα

4
,

we have α > 0. We get

〈χ2, χ2〉 ≤ 2χ(1)−cαχ(1)2 ≤ χ(1)2−2ε

if R is taken sufficiently large. Applying the Cauchy-Schwarz inequality as in (2.2), we get

|χ2| ≥ χ(1)4

〈χ2, χ2〉
≥ χ(1)2+2ε = |χ|1+ε.

Likewise,

|χχ| ≥ χ(1)4

〈χχ, χχ〉
≥ χ(1)2+2ε = |χ|1+ε.

�

To complete the proof of Theorem 1, we need only treat the bounded rank case. Using
Proposition 2.2(iii), we may take |G| to be as large as we wish.

Proposition 3.2. Let R be fixed. For all δ > 0, there exists ε > 0 such that if G is a
quasisimple group of Lie type of rank r < R and χ is an irreducible character of G with
|χ| ≤ |G|1−δ, then |χ2| and |χχ| are both at least |χ|1+ε.

Proof. We have already remarked that G can be assumed arbitrarily large. Since the rank r
is bounded, this means we may take q arbitrarily large. According to Gluck’s bound [Gl], for
g ∈ G r Z(G) we have |χ(g)/χ(1)| ≤ C/

√
q, where C is an absolute constant. On the other

hand, our upper bound on the rank gives an upper bound on |G| of the form qN for some N
depending on R. Taking q sufficiently large, we therefore obtain that

|χ(g)|
χ(1)

≤ Cq−1/2 ≤ q−1/3 ≤ |G|−
1

3N ≤ χ(1)−
1

3N

for all g ∈ Gr Z(G), and that |Z(G)| ≤ R+ 1 ≤ |G|δ/3.
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Setting S := Z(G), we proceed as in the proof of Proposition 3.1, obtaining

〈χ2, χ2〉 = 〈χχ, χχ〉 =
1

|G|
∑
g∈G
|χ(g)|4

=
χ(1)4 · |Z(G)|

|G|
+

1

|G|
∑

g/∈Z(G)

|χ(g)|4

≤ χ(1)4 · |Z(G)|
|G|

+
1

|G|
max
g/∈Z(G)

|χ(g)|2
∑

g/∈Z(G)

|χ(g)|2

≤ χ(1)4− 2(1−δ/3)
1−δ + χ(1)2(1− 1

3N
).

Assuming δ ≤ 1
3N+1 , we have 2(1− 1/3N) ≤ 2− 2δ/(1− δ), and so

〈χ2, χ2〉 < 2χ(1)2− 4δ/3
1−δ ≤ χ(1)2− δ

1−δ

if |G|, and therefore χ(1), is sufficiently large. Taking ε := δ
2−2δ and using Cauchy-Schwarz

as in (2.2), the proposition follows. �

Now we prove Theorem 2.

Proof. First we apply Proposition 3.1 to the given δ to obtain ε and R so that whenever G
has rank ≥ R and ψ ∈ Irr(G) satisfies |ψ| ≤ |G|1−δ we have |ψ2|, |ψψ| ≥ |ψ|1+ε. Now choose
N := 1/2 + 1/ε, for which

(3.1) (1 + ε)
2N

2N + 1
= 1 + ε/2.

According to [LiSh3, Theorem 1.2], by choosing R ≥ max(9, 2N) sufficiently large, whenever
G has rank r ≥ R, then

(3.2)
∑

χ∈Irr(G)

χ(1)−1/N <
3

2
.

Since G is quasisimple, it has only one irreducible character of degree 1, and by [LaSe] all

other characters have degree at least 2r/2 ≥ 2N . Now for any D ≥ 2N , we have

1 + (D1/N − 1)/D1/N = 2−D−1/N ≥ 3/2,

whence (3.2) implies that the number of irreducible characters of G of degree ≤ D is at most

D1/N .
Now consider any character χ of G with distinct irreducible constituents χ1, . . . , χk of

degrees d1 ≤ d2 ≤ · · · ≤ dk with |χ| ≤ |G|1−δ. If dk = 1, then χ = 1G and |χ2| = |χχ| = |χ|2.

Assuming dk > 1, we then have dk ≥ 2N , whence k ≤ d1/N
k by the preceding remark, and so

|χ| =
k∑
i=1

d2
i ≤ d

1/N
k d2

k.

This implies that

|χk| = d2
k ≥ |χ|

2N
2N+1 .

On the other hand, |χ2| ≥ |χ2
k| and |χχ| ≥ |χkχk|. Applying Proposition 3.1 to ψ := χk and

using (3.1), we obtain |χ2|, |χχ| ≥ |χk|1+ε ≥ |χ|1+ε/2. �
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It remains open whether Theorem 2 would hold true for simple groups of Lie type but
without the high rank assumption. Following a referee’s suggestion, we settle the PSL2 case
in the next statement.

Proposition 3.3. There exists an absolute constant C > 0 such that if G = SL2(q) and χ is
any arbitrary nontrivial character of G then |χ2| and |χχ| are both at least C|G|. In particular,
for all δ > 0, there exists ε > 0 such that if χ is an arbitrary character of S := PSL2(q) with
|χ| ≤ |S|1−δ, then |χ2| and |χχ| are both at least |χ|1+ε.

Proof. It suffices to prove the statement in the case χ =
∑s

i=1 χi is a sum of s distinct
irreducible characters χi ∈ Irr(G), and we may assume that s ≥ 2 by Proposition 3.2 and
that q ≥ 4 is as large as we wish. Now

C1sq ≥ s(q + 1) ≥ χ(1) ≥ 1 + (s− 1)(q − 1)/2 ≥ C2sq, |χ| ≤ s(q + 1)2 ≤ C3sq
2

for some absolute constants C1, C2, C3 > 0. Next, |χi(g)| ≤ q1/2 for all g ∈ G r Z(G),
|χi(g)| ≤ 2 for all non-central semisimple g ∈ G, and the total number of non-semisimple
elements of G is less than 2q2. It follows that

〈χ2, χ2〉 < 1

|G|
(
2C4

1s
4q4 + 16s4|G|+ 2q2s4q2

)
≤ C4s

4q

for some absolute constant C4 > 0. Applying the Cauchy-Schwarz inequality as in (2.2), we
get

|χ2| ≥ χ(1)4

〈χ2, χ2〉
≥ (C2/C4)q3 > C|G|

with C := C2/C4.
Next we look at S = PSL2(q), viewing it as G/Z(G) and viewing any character χ of S with

|χ| ≤ |S|1−δ as a character of G. By Theorem 2.6(iii), by choosing ε > 0 small enough, we

may assume q is as large as we wish, in particular, qδ
2 ≥ 1/C. In this case we have

|χ2| > C|G| ≥ q−δ2 |G| ≥ |G|1−δ2 ≥ |χ|1+δ.

The same argument applies to χχ. �

4. Proof of Theorems 3, 5 and 8

The notion of the level l(χ) of an irreducible character χ ∈ Irr(G) of a finite classical group
G was introduced in [GLT1] for groups of type A, and [GLT2, Definition 3.2] for other classical
types. We briefly recall this notion for type A; the definition for other types will be recalled
in the corresponding parts of the proof of Proposition 4.1.

Consider the reducible Weil character τ = τn,q of G = SLn(q), which is just the permutation
character of G acting on the point set of the natural module V := Fnq . By [GLT1, Definition
2 and Lemma 7.1], j = l(χ) is the smallest non-negative integer such that χ is a constituent
of τ j .

In the case of SUn(q), consider the reducible Weil character ζ = ζn,q of G = SUn(q):

ζ(g) = (−1)n(−q)dimF
q2

Ker(g−1V )
,

where V := Fnq2 is the natural G-module, see [GLT1, (1.1)]. By [GLT1, Definition 2 and

Lemma 7.1], j = l(χ) is the smallest non-negative integer such that χ is a constituent of ζj .
For brevity, we use the notation SLε to denote SL when ε = + and SU when ε = −. Using

the results of [GLT1, GLT2], we can prove the following bound (which is useful only when
L <

√
n).
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Proposition 4.1. Let G = SLεn(q) with n ≥ 7, or Sp2n(q), Ω2n+1(q), Ω±2n(q) with n ≥ 6, and
let L ≥ 1 be any real number.

(a) Suppose G = SLεn(q) and L ≤ n/6. Then the number N(L) of χ ∈ Irr(G) with χ(1) ≤ qnL
is at most q12L2

.
(b) Suppose G = Sp2n(q) with 2 - q. Then the number N(L) of χ ∈ Irr(G) with χ(1) ≤ qnL is

at most q18L2
.

(c) Suppose G = Sp2n(q) with 2|q, or Ω2n+1(q) with 2 - q, or Ω+
2n(q) for any q. Then the

number N(L) of χ ∈ Irr(G) with χ(1) ≤ qnL is at most q50L2
.

(d) Suppose G = Ω−2n(q). Then the number N(L) of χ ∈ Irr(G) with χ(1) ≤ q(n−1)L is at

most q41L2
.

Proof. (a) First we consider any χ ∈ Irr(G) with χ(1) ≤ qnL and bound j := l(χ) in terms of
L. If j > n/2, then by [GLT1, Theorem 1.3(ii)] we have

χ(1) ≥ (2/3)qn
2/4−3 > qn

2/6

since n ≥ 7, contradicting the condition L ≤ n/6. Hence j ≤ n/2. Now using [GLT1, Theorem
1.3(i)] we get

qnL ≥ χ(1) ≥ 1

2(q + 1)
qj(n−j) > qj(n−j)−2.6 ≥ qjn/2−2.6,

which implies

(4.1) j ≤ nL+ 2.6

n/2
= 2L+

5.2

n
<

11

4
L.

Let ε = + and consider the reducible Weil character τ = τn,q of SLn(q), see [GLT1, (1.1)].
As τ is just the permutation character of G = SLn(q) acting on the point set of V := Fnq , it

contains 1G, and so τ j contains all irreducible constituents of
∑j

i=0 τ
i. By definition, j = l(χ)

is the smallest non-negative integer such that χ is a constituent of τ j . Hence, (4.1) implies
that N(L) ≤ N∗(l) with l := b11L/4c, where N∗(l) is the number of distinct irreducible
constituents of τ l. Next,

N∗(l) ≤ 〈τ l, τ l〉 = 〈τ2l, 1G〉,
the number of G-orbits on V 2l. By [GLT1, Lemma 2.4], the number of GLn(q)-orbits on V 2l

is at most 8ql
2
. Since G has index q − 1 in GLn(q), we have

N(L) ≤ 8(q − 1)ql
2 ≤ ql2+3 ≤ q(11L/4)2+3 < q11L2

.

Now suppose ε = − and consider the reducible Weil character ζ = ζn,q of SUn(q), see
[GLT1, (1.1)]. Note that ζ2 =

(
τn,q2

)
|G is just the permutation character of G = SUn(q)

acting on the point set of U := Fnq2 ; in particular ζ2 contains 1G, and so ζj + ζj−1 contains all

irreducible constituents of
∑j

i=0 ζ
i. Hence, (4.1) implies that N(L) ≤ N∗(l) +N∗(l− 1) with

l := b11L/4c, where N∗(l) is the number of distinct irreducible constituents of ζ l. Next,

N∗(l) ≤ 〈ζ l, ζ l〉 = 〈ζ2l, 1G〉 = 〈
(
τn,q2

)
|G, 1G〉,

the number of G-orbits on U2l. By [GLT1, Lemma 2.4], the number of GUn(q)-orbits on U2l

is at most 2ql
2
. Since G has index q + 1 in GUn(q), we have

N(L) ≤ 4(q + 1)ql
2
< ql

2+4 ≤ q(11L/4)2+4 < q12L2
.

(b) In the remaining cases, we set k := b(j + 2)/3c for j := l(χ), so that

j/3 ≤ k ≤ (j + 2)/3.
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Consider the case of G = Sp2n(q) with 2 - q. By [GLT2, Lemma 3.4], j ≤ 2n+ 1, so

(k + 1)/2 ≤ (2n+ 6)/6 ≤ n/2

when n ≥ 6. Now, applying [GLT2, Theorem 1.5] we have

qnL ≥ χ(1) ≥ qk(n−(k+1)/2) ≥ qkn/2,

whence k ≤ 2L and so

(4.2) j ≤ 3k ≤ 6L.

By definition, l(χ) = j means that χ is an irreducible constituent of (ω + ω∗)j , where ω
and ω∗ are the two reducible Weil characters of Sp2n(q), see [GLT2, §3]. Next, (ω + ω∗)2

always contains
(
τ2n,q

)
|G, and hence 1G as well, by [GLT2, Proposition 3.1]. It follows that

(ω + ω∗)j + (ω + ω∗)j−1 contains all irreducible constituents of
∑j

i=0(ω + ω∗)i. Hence, (4.2)
implies that N(L) ≤ N∗(l) +N∗(l− 1) with l := b6Lc, where N∗(l) is the number of distinct
irreducible constituents of (ω + ω∗)l. By [GLT2, Proposition 3.2], ω2 = (ω∗)2, so in fact
any irreducible constituent of (ω + ω∗)l is an irreducible constituent of ωl or of ωl−1ω∗. If
q ≡ 3 (mod 4), then by [GLT2, Proposition 3.2] for 0 ≤ i ≤ l we have

〈ωl−i(ω∗)i, ωl−i(ω∗)i〉 = 〈ωl−iωi, ωl−iωi〉 = 〈(ωω)2l, 1G〉 = 〈(τ l2n,q)|G, 1G〉,

the number of G-orbits on V l with V := F2n
q , which is at most 6ql(l−1)/2 by [GLT2, Lemma

2.6]. It follows that N∗(l) ≤ 12ql(l−1)/2.
If q ≡ 1 (mod 4), then by [GLT2, Proposition 3.2] for 0 ≤ i ≤ l we have

〈ωl−i(ω∗)i, ωl−i(ω∗)i〉 = 〈(ω)2l−2i(ω∗)2i, 1G〉 = 〈(τ l2n,q)|G, 1G〉,

which is again the number of G-orbits on V l with V := F2n
q and so at most 6ql(l−1)/2 by

[GLT2, Lemma 2.6]. Thus we also have N∗(l) ≤ 12ql(l−1)/2 in this case.

Thus N(L) ≤ 12ql(l−1)/2 + 12q(l−1)(l−2)/2 < q6L(6L−1)/2+3 < q18L2
.

(c) Now consider the case of G = Sp2n(q) with 2|q, or Ω2n+1(q) with 2 - q, or Ω+
2n(q). By

[GLT2, Lemma 3.4], j ≤ n+ 1, so

k + 1 ≤ (n+ 6)/3 ≤ 2n/3

when n ≥ 6. Applying [GLT2, Theorem 1.5] we have

qnL ≥ χ(1) ≥ q2k(n−(k+1)) ≥ q2kn/3,

whence k ≤ 3L/2 and so

(4.3) j ≤ 3k ≤ 9L/2.

By definition, l(χ) = j means that χ is an irreducible constituent of
(
(τ + ζ)|G

)j
, where τ

and ζ are the reducible Weil characters of SLD(q) and SUD(q), with D = 2n or 2n + 1, the
dimension of the natural module V := FDq of G. In particular, τG contains 1G. Hence, (4.3)
implies that N(L) ≤ N∗(l) with l := b9L/2c, where N∗(l) is the number of distinct irreducible
constituents of

(
τ |G + ζ|G)l. Since (τ |G)2 = (ζ|G)2, any irreducible constituent of

(
τ |G + ζ|G)l

is an irreducible constituent of (τ |G)l or of (τ |G)l−1(ζ|G). Now, for 0 ≤ i ≤ l we have

〈(τ |G)l−i(ζ|G)i, (τ |G)l−i(ζ|G)i〉 = 〈(τ |G)2l−2i(ζ|G)2i, 1G〉 = 〈(τ2l)|G, 1G〉,
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the number of G-orbits on V 2l. By [GLT2, Lemma 2.6], the number of G̃-orbits on V 2l is at

most 6ql(2l+1), for G̃ = SpD(q) or GOD(q), respectively. Note that [G̃ : G] is 1 in the Sp-case,
2 in the Ω-case with 2 - D or with 2|q, and 4 otherwise. It follows that

N∗(l) ≤ 12ql(2l+1)/2 · [G̃ : G] < ql(2l+1)+5 < q50L2
.

(d) Finally, assume that G = Ω−2n(q). In this case, j ≤ n+ 1, so

k + 1 ≤ (n+ 3)/3 ≤ 3(n− 1)/5

when n ≥ 6. Applying [GLT2, Theorem 1.5] we have

q(n−1)L ≥ χ(1) ≥ q2k(n−1−k) ≥ q4k(n−1)/5,

whence k ≤ 5L/4 and so j ≤ 3k ≤ 15L/4. Now we can repeat the arguments in (c) to get

N(l) ≤ N∗(l) ≤ ql(2l+1)+5 < q41L2
. �

We can now prove Theorem 3 and Corollary 4.

Proof of Theorem 3. Let ε > 0 be given. We claim there exists δ > 0 such that if G is a finite
quasisimple group of Lie type, and χ1 and χ2 are (possibly reducible) characters of G with
|χ1|, |χ2| ≤ |G|δ, then

|χ1χ2| ≥
(
|χ1| · |χ2|

)1−ε
.

It suffices to prove the statement in the case |χ1|, |χ2| > 1; in particular, the χi contain
nontrivial irreducible constituents α1 and α2, respectively. We may also assume that each
χi is multiplicity-free. If G is an exceptional group of Lie type, or a finite classical group of
rank ≤ 7, then [LaSe] implies that αi(1) > |G|1/20. Taking δ ≤ 1/10, we may assume G is a
classical group of rank ≥ 8. By [GLT2, Proposition 6.3], if G is of orthogonal type, the bounds
on |χi| imply that they arise from characters of Ω+

2n+1(q), Ω+
2n(q), or Ω−2n(q) by composition

with a central quotient map.
We will view χ1, χ2 as characters of Ĝ = SL±n (q), Sp2n(q), Ω+

2n+1(q), Ω+
2n(q), or Ω−2n(q),

respectively, where n ≥ 8. In all cases, Ĝ contains a subgroup H ∼= SL±m(q) with m := n
in the first case, and H ∼= SLm(q) (inside a split Levi subgroup) with m := n, n, n, or

n− 1, respectively, in the other four cases. One checks that qm
2/2 < |G| < q4m2

in all cases;

furthermore, αi(1) > qm/2. Writing

(4.4) qmLi/2 ≤ χi(1) = qmDi ≤ qmLi

for some (real) numbers Li ≥ 1 and Li/2 ≤ Di ≤ Li, we will choose δ so that

qmLi ≤ |χi| ≤ |G|δ ≤ q4m2δ;

in particular,

(4.5) Li ≤ 4mδ.

Writing

χ1χ2 =
∑

γ∈Irr(G)

mγγ, χ
2
1 =

∑
γ∈Irr(G)

aγγ, χ
2
2 =

∑
γ∈Irr(G)

bγγ,
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we have by the Cauchy-Schwarz inequality(∑
γ

m2
γ

)2
= 〈χ1χ2, χ1χ2〉2

= 〈χ1χ1, χ2χ2〉2

≤ 〈χ1χ1, χ1χ1〉 · 〈χ2χ2, χ2χ2〉
= 〈χ2

1, χ
2
1〉 · 〈χ2

2, χ
2
2〉

=
∑
γ

a2
γ ·
∑
γ

b2γ

≤
(∑
γ

aγ
)2 · (∑

γ

bγ
)2
,

and thus

(4.6)
∑
γ

m2
γ ≤

∑
γ

aγ ·
∑
γ

bγ = σ(χ2
1, G) · σ(χ2

2, G),

where, σ(·, ·), as defined in [GLT2, (2.1)], denotes the sum of the multiplicities of all the
irreducible constituents of the first argument, regarded as a character on the group specified
in the second argument.

First we consider the case Ĝ = SL±n (q). Then each irreducible constituent θ of χi lies under

some θ̃ ∈ Irr(GL±n (q)) of degree less than (q ∓ 1)θ(1). Hence χi lies under some character

χ̃i of GL±n (q) of degree at most qmLi+2 ≤ q5mLi/4 since m ≥ 8. Applying [GLT2, Corollary
5.2(i)] to χ̃i and restricting further down to SL±n (q), we have

σ(χ2
i , G) ≤ q(125/4)L2

i+2σ(χi, G)2 < q56L2
i .

Here, we use the fact that χi is multiplicity-free, and so σ(χi, G) is at most the number of

irreducible characters of G of degree ≤ qnLi , which is at most q12L2
i by Proposition 4.1(a).

Next suppose we are in the symplectic-orthogonal case. Taking δ > 0 small enough, we
may assume that Li ≤ n/9. Applying Theorem 5.8 and Corollary 5.9 of [GLT2] to χ and
restricting further down from a normal subgroup of GLm(q) containing H = SLm(q) to H if
necessary, we have

σ(χ2
i , G) ≤ qA

√
mL3

i+60L2
iσ(χi, G)2 ≤ qA

√
mL3

i+160L2
i

for some explicit A (which can be taken to be 70). Here, we again use the fact that χi is
multiplicity-free, and so σ(χi, G) is at most the number of irreducible characters of G of

degree ≤ qmLi , which is at most q50L2
i by Proposition 4.1(b)–(d).

Using (4.6), in either case we have∑
γ

m2
γ ≤ qA

√
mL3

1+A
√
mL3

2+BL2
1+BL2

2

with B = 160. It follows that

|χ1χ2| =
∑
mγ>0

γ(1)2 ≥
(
∑

γmγγ(1))2∑
γm

2
γ

=
χ1(1)2χ2(1)2∑

γm
2
γ

≥ q2m(D1+D2)−A
√
mL3

1−A
√
mL3

2−BL2
1−BL2

2 .

Recalling (4.5), we observe√
mL3

1 +
√
mL3

2

m(D1 +D2)
≤ 2mL1

√
δ + 2mL2

√
δ

m(L1 + L2)/2
= 4
√
δ,
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and
L2

1 + L2
2

m(D1 +D2)
≤ 2mL1δ + 2mL2δ

m(L1) + L2)/2
= 4δ.

Hence

|χ1χ2| ≥ q2m(D1+D2)(1−2A
√
δ−2Bδ).

Note that |χ1| · |χ2| ≤ χ1(1)2χ2(1)2 = q2m(D1+D2). Hence, taking δ > 0 so that

2A
√
δ + 2Bδ ≤ ε,

we have |χ1χ2| ≥
(
|χ1| · |χ2|

)1−ε
, as desired. �

Proof of Corollary 4. We prove by induction on k ≥ 2 the following statement:
Fix any α > 0. For any k ≥ 2, there exists an explicit γ = γ(α, k) > 0 such that the following
statement holds. If G is a finite quasisimple group of Lie type and χ1, χ2, . . . , χk are any
characters of G with |χ1|, |χ2|, . . . , |χk| ≤ |G|γ, then

|χ1χ2 · · ·χk| ≥
(
|χ1| · |χ2| · · · |χk|

)1−kα
.

With ε, k given, applying this statement with α := ε/k we obtain Corollary 4.

We will show that the above statement holds with γ(α, k) := δ/(k − 1), where δ = δ(α) is
the constant in Theorem 3. The case k = 2 was already established in Theorem 3. For the
inductive step k ≥ 3, note by Lemma 2.1 and the induction hypothesis that

(
|χ2| · · · |χk|

)1−(k−1)α ≤ |χ2 . . . χk| ≤
k∏
i=2

|χi| ≤ |G|γ(k−1) = |G|δ,

since |χ2|, . . . , |χk| ≤ |G|δ/(k−1) < |G|γ(α,k−1). Now, since |χ1| ≤ |G|δ/(k−1) ≤ |G|δ, by Theo-
rem 3 we have

|χ1χ2 . . . χk| ≥
(
|χ1| · |χ2 . . . χk|

)1−α
≥
(
|χ1| · (|χ2| · · · |χk|)1−(k−1)α

)1−α
≥
(
|χ1| · |χ2| · · · |χk|

)1−kα
.

�

The next result is required in our proof of Theorem 5.

Theorem 4.2. For any δ > 0, there exists an explicit integer N such that the following
statement holds. If G is a finite simple group of Lie type, and χ1, . . . , χN are any (not
necessarily irreducible) characters of G with |χi| ≥ |G|δ for all i, then |χ1χ2 · · ·χN | = |G| and
thus χ1χ2 · · ·χN contains every irreducible character of G.

Proof. For any character χ of G, let χ∗ denote (some) irreducible constituent of largest degree
of χ.

First we consider the case k(G) ≥ |G|δ/3. If G is of rank r over Fq, then by [FG] we have

k(G) ≤ (27.2)qr, whereas |G| ≥ qr
2
. It follows that r ≤ r0, where r0 depends only on δ. On

the other hand, |χi| > 1 implies that χ∗i 6= 1G, and so χ∗i (1) > qr/3 by [LaSe]. As r ≤ r0,
χ∗i (1) ≥ |G|δ0 for some δ0 depending on δ. Applying [LaT, Theorem 8.5] and taking N ≥ ε/δ0

(with ε the constant in [LaT, Theorem 8.5]), we see that χ∗1 . . . χ
∗
N contains Irr(G).

Now suppose that k(G) ≤ |G|δ/3. Then χ∗i (1) ≥ (|χi|/k(G))1/2 ≥ |G|δ/3. Applying [LaT,
Theorem 8.5] and taking N ≥ 3ε/δ, we again see that χ∗1 . . . χ

∗
N contains Irr(G). �
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Proof of Theorem 5. Fix ε > 0. It follows from Theorem 3, applied for χ1 = χ2 = χ with ε
replaced by ε/2, that there exists some δ > 0 depending only on ε such that if |χ| ≤ |G|δ,
then |χ2| ≥ |χ|2−ε. By Theorem 4.2, there is some integer N > 0 depending only on ε, such
that if |χ| ≥ |G|δ then χN contains Irr(G). The result follows. �

Proof of Theorem 8. For any character χ of G, again let χ∗ denote (some) irreducible con-
stituent of largest degree of χ. It suffices to prove the statement in the case |χi| > 1, and thus
χ∗i 6= 1G. By the results of [FG] and [LaSe], the degree of any non-trivial irreducible character

of G is at least k(G)1/6; in particular,

χ∗i (1) ≥ k(G)1/6 ≥ m1/6
i ,

if mi denotes the number of distinct irreducible constituents of χi. It follows that

|χi| ≤ miχ
∗
i (1)2 ≤ χ∗i (1)8,

and so χ∗i (1) ≥ |χi|1/8. Now applying [LaT, Theorem 8.5] and taking c = 8δ (with δ the
constant in [LaT, Theorem 8.5]), we have that

∏m
i=1 χ

∗
i (1) ≥ |G|δ, and so χ∗1 . . . χ

∗
N contains

Irr(G). �

5. Proofs of Theorems 6 and 7

Proof of Theorem 6. First we prove the theorem when G = PSL2(q). Let χ1 and χ2 denote

any irreducible characters of G. Then |χi(g)| ≤ q1/2 for all g ∈ G, |χi(g)| ≤ 2 for all non-trivial
semisimple 1 6= g ∈ G, and the total number of non-semisimple elements of G is less than q2.
Therefore ∑

g 6=1

|χ6
1(g)χ2(g)| ≤ χ2(1)q5 + 64q3.

If χ1 is non-trivial, it has degree at least q−1
2 , so for q sufficiently large,∑

g∈G
χ6

1(g)χ2(g) 6= 0,

and applying this to any non-trivial constituent χ1 or χ2 of χ, we get the desired result.

As before, we use the notation PSLε to denote PSL when ε = + and PSU when ε = −. Next
we consider the case G = PSLε3(q). Again, the generic character table has been computed
explicitly [SF]. There are O(q) characters of degree ≤ q2 + q + 1, and all other characters
have degree at least q3/4 (when q is not too small). Therefore, the sum of the squares of the

degrees of irreducible characters of G of degree < q3/4 is smaller than |G|11/12 for large values
of q. We therefore assume χ has an irreducible constituent χ1 of degree ≥ q3/4. We have
|χi(g)| = O(q) for all irreducible characters and all non-trivial elements, so∑

g 6=1

|χ6
1(g)θ(g)| = O(q6|G|θ(1)) = O(q14θ(1)) = o(χ1(1)6θ(1)).

Therefore, if χ1(1) ≥ q3/4 and q is sufficiently large, any θ ∈ Irr(G) is a constituent of χ6
1.

We may therefore assume G = PSLεn(q) with n ≥ 4. We claim that for q sufficiently large

in terms of n, |χ| ≥ |G|11/12 implies that χ has an irreducible constituent χ1 with

(5.1) χ1(1) ≥ q
44n2

131 .
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Indeed, the number of characters of G which do not satisfy this inequality is less than

k(G) < 27.2qn−1 and |G| < qn
2−1, so it suffices to note that

88n2

131
+ (n− 1) <

11(n2 − 1)

12

for n ≥ 4.

It suffices to prove that the Steinberg character St is a constituent of χ3
1. Indeed, if ε = + or

if ε = − but 2|n, then every irreducible character of G appears in St2 [HSTZ, Theorem 1.2],
and so it follows that |χ6

1| = |G|. Consider the case ε = − and 2 - n. Then by [HSTZ,
Theorem 1.2], St2 contains all but one irreducible character α of PSUn(q), which has smallest
degree (qn − q)/(q + 1) among all nontrivial irreducible characters of G. Let θ ∈ Irr(G). By
Proposition 2.2(i) and (5.1),

|θχ1| ≥ |χ1| > |α|,
and so θχ1 6= mα for any m ∈ N by (5.1). Hence θχ1 contains some irreducible character
β 6= α, whence 〈St2, β〉 > 0 and so

〈χ7
1, θ〉 = 〈χ6

1, θχ1〉 ≥ 〈St2, β〉 > 0,

and thus χ7
1 contains Irr(G), as desired.

The rest of the proof is to show that if q is sufficiently large in terms of n, (5.1) implies
that the Steinberg character St is a constituent of χ3

1, whence we are done as explained above.
We need to show for large enough q that

(5.2)
∑
g 6=1

|St(g)χ1(g)3|
St(1)χ1(1)3

< 1.

As St vanishes at all non-semisimple elements, we need only consider semisimple elements
g in (5.2). Let Xs denote the set of conjugacy classes of semisimple elements in G of support
s, i.e., for which the largest dimension of any Fq-eigenspace is n− s. We can rewrite (5.2) as

(5.3)

n−1∑
s=1

∑
C∈Xs

|C| |St(C)|
St(1)

(
|χ1(C)|
χ1(1)

)3

< 1.

We consider the factors of the summand in the left hand side of (5.3), one by one. If C ∈ Xs

has an element g represented by a matrix M with eigenvalue multiplicities m1, . . . ,mk, then
the centralizer of M in GLεn(q) is the group of Fq points (possibly twisted) of a connected

algebraic group of dimension
∑

im
2
i , so its order is (1 + o(1))q

∑
im

2
i . Therefore, C, which is

contained in the PSLεn(q)-conjugacy class of g, has cardinality

O(gcd(n, q − ε)qn2−
∑
im

2
i ) = O(1)qn

2−
∑
im

2
i ,

where the implicit constant O(1) depends only on n.
The absolute value of St(C) = St(g) is the order of a p-Sylow subgroup of the centralizer

of M , which is q
∑
i (
mi
2 ), and St(1) = q(

n
2). Therefore,

|St(C)|
St(1)

= q−
n2−

∑
i m

2
i

2 ,

and

|C| |St(C)|
St(1)

= O(1)q
n2−

∑
i m

2
i

2 .
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As some mi equals n− s, we have∑
i

m2
i ≥ (n− s)2 + s · 12,

so

|C| |St(C)|
St(1)

= O(1)q
2sn−s2−s

2 .

By [TT, Theorem 1.13] and [LiST1, Theorem 3.1], for q large enough compared to n we have

|χ1(g)|
χ1(1)

= O(1)χ1(1)−s/n = O(1)q−
44sn
131 ,

where the implicit constant O(1) depends only on n. Thus, the summand as a whole is

O(1)q−
sn
131
− s

2+s
2 .

Finally, we claim that |Xs| = O(1)qs, where O(1) again depends only n. Since each conju-
gacy class of PGLεn(q) decomposes into at most gcd(n, q− ε) conjugacy classes of G, it suffices
to prove the same thing for PGLεn(q) conjugacy classes containing semisimple elements of
PSLεn(q) or, indeed, GLεn(Fq) conjugacy classes containing semisimple elements of SLεn(Fq).
Since any such element has connected centralizer in GLn(Fq), any such class is uniquely deter-
mined by the spectrum of its representatives or, equivalently, by their common characteristic
polynomial.

Let Ys,i denote the set of conjugacy classes in GLεn(Fq) of semisimple elements M in SLεn(Fq)
which have exactly i eigenvalues of multiplicity n − s (and all other eigenvalues of lower
multiplicity), where 1 ≤ i ≤ t := bn/(n− s)c. Let P (x) be the monic polynomial of degree i
whose roots are the i eigenvalues of M of multiplicity n−s, and Q(x) be the monic polynomial
of degree n− i(n− s), such that P (x)n−sQ(x) is the characteristic polynomial of M . Then

P (0)n−sQ(0) = (−1)n det(M) = (−1)n.

So the constant term of P (x) is determined up to at most i ≤ n possibilities by the constant
term of Q(x), and so there are at most nqi−1 possibilities for P (x) for any fixed (constant

term of) Q(x). Since there are at most qn−i(n−s) possibilities for Q(x), we see that the total
number of possibilities for P (x)n−sQ(x), which, as explained above, gives an upper bound for
|Ys,i|, is at most

nqi−1qn−i(n−s) = nqs+(1−i)(n−s−1) = O(1)qs.

Since q is large compared to n, it follows that |Xs| =
∑t

i=1 |Ys,i| = O(1)qs, as claimed.
We conclude that the contribution of each 1 ≤ s ≤ n − 1 to the left hand side of (5.3) is

O(1)q−sn/131. Hence the left hand side of (5.3) is O(1)q−n/131, where O(1) depends only n.
Taking q large enough compared to n, the statement now follows. �

Proof of Theorem 7. First let G be any of the 26 sporadic simple groups. Then k(G) ≤ 194,
whence the statement follows from Lemma 2.8(ii) by taking C ≥ 37442. (Note by Theorem
2.6(i) that if |χk| = |G| then |χl| = |G| for all l ≥ k.)

In the remaining cases, let ϕ denote the irreducible constituent of χ of largest degree.
Suppose G is of Lie type. By the results of [FG] and [LaSe] we have ϕ(1) ≥ k(G)1/6. Hence

|G|δ ≤ |χ| ≤ ϕ(1)8, and so ϕ(1) ≥ |G|δ/8. If G has rank at most 8, then (the proof of) [LiST1,
Theorem 2] shows that |ϕN | = |G| whenever N ≥ 82 · 489, so we are done in this case by
taking C ≥ 31296. Assume now that G has rank at least 9. Then [LaT, Theorem 8.3] shows
that there is an absolute constant γ > 0 such that whenever N ≥ 8γ/δ we have |ϕN | = |G|.
Hence we are done in this case by taking C ≥ 8γ.
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Assume now that G = An with n ≥ 5. By [LiSh2, Corollary 2.7], there is some integer
n1 ≥ 20 such that, when n > n1 for any 1G 6= ψ ∈ Irr(G), there exists at most ψ(1)2 irreducible
characters of G of degree at most ψ(1). Taking C ≥ k(An1)2 and applying Lemma 2.8(ii),
we may therefore assume that n > n1. In this case, χ has at most ϕ(1) distinct irreducible
constituents. Also note that

log |G| > log((n/e)n/e) = n log n− (n+ 1) ≥ n log(n)/2

as n ≥ 21. It follows that
en log(n)δ/2 ≤ |G|δ ≤ |χ| ≤ ϕ(1)3,

and so log(ϕ(1)) > n log(n)δ/6. By [LiST2, Theorem 2], there exists an integer n2 ≥ 5 such
that |ϕN | = |G| whenever N ≥ 30C2

1/δ and n ≥ n2, where C1 is the constant in [LiST2, (4.2)]
(whose existence is established in [Se1, Theorem 1.4]). Taking C ≥ k(An2)2 and applying
Lemma 2.8(ii), we may assume n ≥ n2, in which case we are done by taking C ≥ 30C2

1 . �

Remark 5.1. Theorem 7 does not hold for abelian finite simple groups (even if we replace C/δ
by any C = C(δ)), because sums of subsets in Fp can have very slow growth. Indeed, given

any 0 < δ < 1 and any C > 0, we can find a prime number p such that p1−δ > 2(C+1). Since
pδ > 1, [pδ, 2pδ] contains an integer k. For such p and k, we fix a faithful linear character λ

of the cyclic group G of order p and take χ =
∑k

i=1 λ
i. Then |χ| = k ≥ |G|δ, whereas for

N = dCe we have C ≤ N < C + 1, χN ≡
∑Nk

i=1 λ
i, and so |χN | = kN < 2pδ(C + 1) < |G|.

6. Semisimple Compact Lie groups

In this section, we briefly consider the situation when G is a compact (connected) semisimple
Lie group instead of a finite simple group of Lie type. For χ a character of G, the definition
of |χ| works as before. We have the following analogue of Theorem 2.6.

Proposition 6.1. Let G be a semisimple compact Lie group, n ≥ 2, and χ1, χ2, . . . , χn non-
trivial characters. Then |χ1χ2 · · ·χn| > max(|χ1|, |χ2|, . . . , |χn|).

Proof. It suffices to treat the case n = 2 and to prove in this case that if χ1 is non-trivial,
then |χ1χ2| > |χ2|. It is enough to treat the case that χ1 is irreducible. Let λ1 denote the
highest weight of χ1. Let {ϕ1, . . . , ϕk} denote the irreducible constituents of χ2, and let µi
denote the highest weight of ϕi.

Then λ1 +µi is the highest weight in χ1ϕi, so there is an irreducible constituent ψi of χ1χ2

with highest weight λ1 + µi. By the Weyl dimension formula,

(6.1) |χ1χ2| ≥
k∑
i=1

|ψi|2 =

k∑
i=1

∏
α�0

(δ + λ1 + µi, α)2

(δ, α)2
=

k∑
i=1

∏
α�0

((δ + µi, α) + (λ1, α))2

(δ, α)2
,

where δ denotes half the sum of the positive roots. As λ1 is a non-zero dominant weight, we
have (λ1, α) non-negative for all positive roots α and strictly positive for at least one of them.
Therefore, the right hand side of (6.1) is strictly greater than

k∑
i=1

∏
α�0

(δ + µi, α)2

(δ, α)2
=

k∑
i=1

|ϕi|2 = |χ2|.

�

When G is of positive dimension, it no longer makes sense to compare |χ| to |G|, so we do
not have an analogue of Theorem 3 or any of the subsequent results proved above for groups
of Lie type. We can still ask about the power growth of |χ|. The case of SU(2) illustrates the
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situation: we get uniform power growth when χ is irreducible, but there is no such growth
for general characters.

Proposition 6.2. Let G = SU(2).

(i) If χ ranges over the irreducible characters of G, then

lim
χ

log |χ2|
log |χ|

=
3

2
.

(ii) If χ ranges over all characters of G, then

lim inf
χ

log |χ2|
log |χ|

= 1.

Proof. If χn denotes the unique irreducible character of G of degree n+1, then by the Clebsch-
Gordan formula ([Hu, §22, Ex. 7]),

χ2
n =

n∑
i=0

χ2i.

Thus,

|χ2
n| =

n∑
i=0

(2i+ 1)2 =

(
2n+ 3

3

)
,

while |χn| = (n+ 1)2. This gives (i).
Again by Clebsch-Gordan, χ4

n is a linear combination of χ0, χ2, χ4, . . . , χ4n with all coeffi-
cients positive, so

|χ4
n| =

(
4n+ 3

3

)
.

Therefore, as χ ranges over {χ2
n, | n ∈ N}, the limit of |χ

2|
|χ| is 8, and the limit of log |χ2|

log |χ| is 1. �

Next, we prove Theorem 9 establishing uniform power growth for irreducible characters of
any fixed compact semisimple Lie group.

Proof of Theorem 9. Let $1, . . . , $r denote the fundamental weights of G. Let χλ be the
irreducible character with highest weight λ = a1$1 + · · ·+ ar$r. We define

〈λ, α〉 :=
2(λ, α)

(α, α)
.

By [Hu, §22, Ex. 1], λ− kαi is a weight of χλ for 0 ≤ k ≤ 〈λ, αi〉 = ai.
We claim that δ+2λ−kαi is dominant for 0 ≤ k ≤ ai. It suffices to check the non-negativity

of 〈δ + 2λ− kαi, αj〉 for 1 ≤ j ≤ r. For j 6= i, we have

〈δ + 2λ− kαi, αj〉 = 1 + 2aj − 〈αi, αj〉 ≥ 1,

and for j = i, we have

〈δ + 2λ− kαi, αi〉 = 1 + 2ai − 2k ≥ 1.

Therefore, by a theorem of Brauer [Hu, §24, Ex. 9], for each k in this range, χ2
λ contains the

irreducible character with highest weight 2λ− kαi.
By the Weyl dimension formula [Hu, §24.3],

χλ(1) =
∏
α�0

(λ+ δ, α)

(δ, α)
,
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where the product is taken over the set Φ+ of positive roots α. Now, for 1 ≤ i ≤ r, ($i, α) ≥ 0,
so regarded as a function in λ, χλ(1) is a product of affine linear functions in λ which take
positive values in the cone of dominant weights. Thus, if ai ≥ 1 and 0 ≤ k ≤ ai, then

(6.2) χ2λ−kαi(1) ≥ (1− k/ai)|Φ
+|χ2λ(1) ≥ (1− k/ai)|Φ

+|χλ(1).

We fix i such that ai = max(a1, . . . , ar). Thus,

|χλ| = χλ(1)2 = O(a
2|Φ+|
i ) = O(a

|Φ|
i ).

On the other hand, by (6.2),

|χ2
λ| ≥

ai∑
k=0

|χ2λ−kαi | ≥ |χλ|
ai∑
k=0

(1− k/ai)|Φ|.

As ai → ∞, the sum
∑

k(1− k/ai)|Φ| can be bounded below by a positive constant multiple

of ai and therefore by a positive constant multiple of |χλ|1/|Φ|. If ε < 1/|Φ|, therefore,
|χ2
λ| ≥ |χλ|1+ε with finitely many exceptions λ. The theorem is trivial for λ = 0, and for each

λ 6= 0, it holds when ε > 0 is small enough by Proposition 6.1.
�

Note that, unlike Theorem 1, Theorem 9 does not guarantee that the power growth is
uniform in G: the constant ε = ε(G) depends on G. This is unavoidable, as the following
proposition shows.

Proposition 6.3. There exists a sequence χ2, χ3, . . . of non-trivial irreducible characters of
the Lie groups SU(2), SU(3), . . . respectively, such that

lim inf
n

log |χ2
n|

log |χn|
= 1.

Proof. We choose for each n ≥ 2 a positive integer kn and define χn to be the character of
the irreducible representation of SU(n) with highest weight λn := knδn, where δn is half the
sum of the set Φ+

n of positive roots of SU(n). By the Weyl dimension formula,

χn(1) =
∏
α∈Φ+

n

(λn + δn, α)

(δn, α)
= (kn + 1)|Φ

+
n | = (kn + 1)n(n−1)/2.

On the other hand, for each fixed n, the weights of χn are contained in the convex hull of
{w(λn) | w ∈ Sn}. This can be expressed as knXn, where Xn denotes the convex hull of
{w(δn) | w ∈ Sn}. Thus, the weights of χ2

n are contained in 2knXn. Since the highest weight
of every irreducible constituent of χ2

n is a lattice point in the fixed polytope 2Xn ⊂ Rn−1,
scaled by kn, the number of such highest weights is O(kn−1

n ), where the implicit constant
depends only on n.

On the other hand, by the Weyl dimension formula, the degree of each irreducible factor of

χ2
n is O(k

n(n−1)/2
n ). Therefore, assuming that each kn is sufficiently large, we can guarantee

log |χ2
n|

log |χn|
<
n+ 1

n
,

which implies the proposition. �
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