NONSOLVABLE GROUPS HAVE A LARGE PROPORTION OF
VANISHING ELEMENTS

ALEXANDER MORETO AND PHAM HUU TIEP

ABSTRACT. We prove that if G is a nonsolvable group, then the proportion of
vanishing elements of G is at least 1067/1260 (and this lower bound is optimal).
This confirms a conjecture of Dolfi, Pacifici, and Sanus [7].

1. INTRODUCTION

Zeros of characters of finite groups have been a subject of considerable interest in
the last couple of decades. We refer the reader to [7] for an exposition of the research
in this area. Following [12], we say that if G if a finite group an element g € G is
nonvanishing if y(g) # 0 for every irreducible character x € Irr(G). Otherwise, we
say that ¢ is vanishing. Recently, it has been observed that nonsolvable groups tend
to have many zeros in the character table. For instance, M. Larsen and A. Miller
proved in [14] that the probability that a random entry in the character table of a
simple group of Lie type is 0 goes to 1 when the rank of the group goes to infinity.

On the other hand, it was conjectured by S. Dolfi, E. Pacifici and L. Sanus in [7]
that the proportion of vanishing elements in a nonsolvable group is at least 1067 /1260
(note that this is the proportion of vanishing elements in A;). Given a finite group,
we write P,(G) to denote the proportion of vanishing elements of G. In other words,

~ Hg € G| x(g) =0 for some g € G}|

|G| '
It has been proven in [18] that if P,(G) < 2/3 then G is solvable. Our goal in this
note is to settle the conjecture of Dolfi, Pacifici and Sanus.

Theorem A. Let G be a finite group. If P,(G) < P,(A7) = 1067/1260, then G is
solvable.
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In the proof of Theorem A we use the following result, that is perhaps worth
pointing out.

Theorem B. Let G be an almost simple group with socle S. Then all the elements
in G~ S are vanishing.

Our proof of Theorem B relies on the Deligne-Lusztig theory of characters of groups
of Lie type by means of Theorem 2.1 below (and Theorem 2.3 of [5]). In Section 2,
we prove Theorem B assuming Theorem 2.1. Next, we prove Theorem A in Section
3 and we present the proof of Theorem 2.1 in Section 4.

2. ProOF OF THEOREM B

In this section, we will prove Theorem B assuming the following result, which is a
version for 2-elements of Theorem 2.3 of [5] and which will be proved in §4. Recall
that given a group G, F(G) is the Fitting subgroup of G, i.e., the largest normal
nilpotent subgroup of G.

Theorem 2.1. Let S be a nonabelian simple group. Suppose that S < G < Aut(S5).
Let xS € F(G/S) be an element of order 2. Then there exists ¢ € Trr(S) such that x
does not fir any G-conjugate of ).

The following is an immediate consequence of Theorem 2.1. As usual, if G is a
finite group, N < G and ¢ € Irr(N) we write Irr(G|v) to denote the set of irreducible
characters of G that lie over 1.

Corollary 2.2. Let S be a nonabelian simple group. Suppose that S < G < Aut(95).
Let S € F(G/S) be a nontrivial 2-element. Then there exists 1 € Irr(S) such that
x does not fix any G-conjugate of 1. In particular, if x € Irr(G|y) then x(x) = 0.

Proof. Apply Theorem 2.1 to (£5)°@%/2. The claim that y(z) = 0 follows from
Clifford’s theory and the formula for the induced character. O

We will use several times the following elementary fact.

Lemma 2.3. Let G be a finite group and let L < K be two normal subgroups of G.
If p € Irr(K) vanishes on K\ L and x € Irr(G|y), then x vanishes on K ~\ L.

Proof. 1f suffices to note that by Clifford’s theorem (Theorem 6.2 of [11]) xk is a sum
of conjugates of ¢ and use the fact that K ~ L is a normal subset. U

The following is a consequence of the well-known structure of the outer automor-
phism group of simple groups.
Corollary 2.4. Let S be a nonabelian simple group. Let O = Out(S). Then the
elements in O\ F(O) are vanishing

Proof. By [9, Theorem 2.5.12], we know that O/F(G) is abelian. Now the result
follows from the proof of Lemma 18.1 of [16], for instance. O
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Next, we prove a slightly strengthened form of Theorem B.

Theorem 2.5. Let S be a nonabelian simple group. Suppose that S < G < Aut(S).
Let v € G~ S. Then there exists x € Irr(G) such that x(xz) = 0. Furthermore, if
xS € F(G/S) then there exists 1 € Irr(S) such that xS does not fix any G-conjugate

of .

Proof. Write O = G/S. By Corollary 2.4, we may assume that 5 € F(O). By
Corollary 2.2, we may assume that o(xS) is not a 2-power. Let p be an odd prime
divisor of o(xS) and let yS be the p-part of #S. By Theorem 2.3 of [5], there exists
Y € Trr(S) such that yS does not fix any G-conjugate of ¢. Since yS is a power of
xS, we conclude that =S does not fix any G-conjugate of ¢. Hence, if y € Irr(G|v))
then x(x) = 0, as wanted. O

3. PrROOF oF THEOREM A

Following [4], if  is a set and n is a positive integer, we write P, (2) to denote the
set of (n 4 1)-tuples of subsets of 2 that form a partition of €.

Lemma 3.1. Let G be a solvable permutation group on a set ). Then G has a reqular
orbit on P4(Q).

Proof. This follows from Corollary 6 of [4]. O

Suppose that H is a subgroup of a finite group G and let x € H. In the next
results, we will need to distinguish between being vanishing as an element of H or as
an element of G. We will say that z is vanishing in G or x is vanishing as an element
of G if there exists x € Irr(G) such that x(z) = 0.

We write

£2 :{M12, M22, M24, JQ, HS, SUZ, RU, 001, 003, B}

U{A, | n # 2m* +m and n # 2m? +m + 2 for any integer m}

and

L3 ={Suz,Cos} U {An

3n +1=m?r for some r square-free and divisible
by some prime ¢ = 2(mod 3)

By Corollary 1 of [10], £, is the list of non-abelian simple groups that do not possess
an irreducible character of p-defect zero for p € {2,3} and every non-abelian simple
group has some irreducible character of p-defect zero for every prime p > 5.

Lemma 3.2. Let N = 57 x --- x S, be a minimal normal subgroup of a finite group
G, with S; = S non-abelian simple for every i, and let 1 # x € N. Then
(1) If o(zx) is divisible by some prime p > 5, then x is a vanishing element of G.
(i) If S & Lo U L3, then x is a vanishing element of G.
(iii) If S # Ag is an alternating group, then the proportion of elements in N that
are vanishing elements of G is at least 1067/1260.
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(iv) If S # My is one of the sporadic groups in Lo U L3 or S = Ag, then all the
nontrivial elements in N are vanishing in G.

(v) If S = Moy, then the proportion of elements in N that are vanishing elements
of G is at least 1067/1260.

Proof. By Corollary 1 of [10], we know that S has some irreducible character ¢ of
p-defect zero. Take 1 = ¢ x -+ x ¢ € Irr(N). If x € Irr(G) lies over v, then it
follows from Clifford’s theorem that y is a sum of G-conjugates of ¥. Since 9 has
p-defect zero for every g € G, we deduce from Theorem 8.17 of [11] that x(z) = 0.
This proves (i). The second part can be proved analogously.

Now, we want to prove (iii). Let # = (z1,...,2,) € N. Note that  is a vanishing
element of N if and only if z; is a vanishing element of S; for some 7. Since the
proportion of elements in S; that are vanishing is at least 1067/1260 (by Theorem
1.5 of [18]), it suffices to see that if y € S is vanishing in Sj, then y is a vanishing
element of G. Let 6 € Irr(S;) such that 6(y) = 0. Since S; is subnormal in G, it
follows from Clifford’s theorem that if x € Irr(G) lies over § x --- x 6 € Irr(N) then
Xs, is a sum of Aut(Sy)-conjugates of 6. By the proof of Lemma 3.1 of [18], all the
Aut(Sy)-conjugates of 0 vanish at y. We deduce that x(y) = 0. Therefore, y is a
vanishing element of GG, as desired.

Now, assume that S is one of the sporadic groups in Lo U L3 or Ag. If S = Moy,
it can be checked in the Atlas [2] that all the elements except for those in classes 1A
and 2A are vanishing elements. If S # My, then we can see in [2] that any nontrivial
element in S is vanishing in H for any almost simple group H with socle S. Parts
(iv) and (v) follow the same reasoning as in (iii). (Note that in part (v) we have a
proportion of vanishing elements that is much larger than stated.) 0

Now, we can complete the proof of Theorem A.

Proof of Theorem A. Let GG be a minimal counterexample. Let N be a minimal
normal subgroup of G. By Lemma 2.3 of [18], P,(G/N) < P,(G) < P,(A;). By the
minimality of G, G/N is solvable. We deduce that N = S} x - -+ x S,,, where S; = §
for some non-abelian simple group S and every i. Furthermore, G/N is solvable.
We also have that N is the unique minimal normal subgroup of G. Hence, G is
isomorphic to a subgroup of Aut(/N) = Aut(S)1S,. Write K = G N Aut(5)", so
that N < K < Aut(S)" and G/K is isomorphic to a solvable permutation group on
Q={5,...,5.}

By Lemma 3.1, G/K has a regular orbit on P4(£2). Hence, there exists a partition
Ty, ..., Ty of Q such that ()_,stabg/x(I'1) = K/K. Since S is simple nonabelian,
S has at least 5 different irreducible characters vy,...,7v4. Let v € Irr(N) be the
character whose factor corresponding to the direct factors in I'; is 7; for every i. By
the choice of 7, I¢(y) < K. Hence, if x € Irr(G|y) then y vanishes on G \ K.

Put FF//N = F(K/N). By Corollary 2.4 and Lemma 2.3, the elements in K \ F
are also vanishing.
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Next, using arguments from [5], we will see that the elements in F'\\ N are vanishing.
Let x € F~. N. Since x € K, x normalizes S; for every i = 1,...,n. In fact, K
normalizes S; for every i. By way of contradiction, suppose that z is nonvanishing.
We will show first that x € S;Cg(5;) for all ¢ = 1,...,n. Without loss of generality,
we will show this for i = 1. Let 6 € Irr(S), and let ¢» = 6; X - -+ X 6, where 6; is
identified with € for every i. By Lemma 2.3 of [12], z fixes ¥9 for some g € G. Write
S9 = S, = 5070,

7
Hence,
Sy = 8,
Then

W9 = 9709 5 L gl
Since x fixes 19, we have that it fixes each of the factors of ¥9. Hence,

Jo(1)g¥ __ pnYo(l)g
glms” — g

and therefore H%x“_l = 0y, where u = g,(1)g € N¢(S1). In other words, x fixes some
N¢(51)/Cq(S1)-conjugate of 6y for every 6 € Irr(S;Cq(S1)/Cqs(S1)). Recall that
N lies in a nilpotent normal subgroup of K/N < N¢g(S7)/N. Hence, £51Cq(S1)
lies in a nilpotent normal subgroup of N¢(S1)/51C¢(S1). Applying Theorem 2.5
with N¢(S1)/Ce(S1) in the place of G and S1C¢(S1)/Ce(S1) in the place of S, we
deduce that z € 51C¢(51), as wanted.

Now, for all i = 1,...,n, write x = s;¢; with s; € S; and ¢; € Cg(S;). On the
other hand, we can certainly write z = s185 - - - s,y for some y € G, and we work to
show that y = 1. We get sjc; = s1(s2- -+ 8,)y, whence y = (s -+ 8,) tc; € Ca(Sh).
Analogously, we see that y € Cg(S;) for every i and therefore y € Co(N) = 1. We
conclude that x = s;---s, € N, as desired.

We have thus seen that all the elements in G~ N are vanishing. By Lemma 3.2, the
proportion of elements of N that are vanishing in G is at least 1067/1260. If follows
that P,(G) > 1067/1260, which is a contradiction. This completes the proof. O

In [12], M. Isaacs, G. Navarro and T. Wolf conjectured that in a solvable group G
every element in G\ F(G) is vanishing. This conjecture remains open. In [5] it was
proved that for any finite group G all elements of order coprime to 6 in G \ F(G)
are vanishing, and the coprimeness hypothesis is necessary. As mentioned in [5],
it is tempting to conjecture that all the elements in G \ F*(G) are vanishing but
21 5 My, is a counterexample. Our proof of Theorem A suggests that, perhaps, all
the elements outside the generalized Fitting subgroup are vanishing for groups with
trivial Fitting subgroup. Note that Theorem B is a particular case of this conjecture.
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4. ALMOST SIMPLE GROUPS

In this section we prove Theorem 2.1, which we restate.

Theorem 4.1. Let S be a nonabelian simple group. Suppose that S < G < Aut(S5).
Let xS € F(G/S) be an element of order 2. Then there exists ¢ € Trr(S) such that x
does not fix any G-conjugate of . In particular, if x € Irr(G|yY) then x(x) = 0.

Note that the assumption zS € F(G/S) is essential; otherwise G = Aut(Qg (2))
would be a counterexample.

Proof. We will assume that x ¢ S and aim to produce a G-orbit O on Irr(.S) such that
x moves every character in O. Consider the subgroup J := (z5) in G/S < Out(S).

(i) First we show that the theorem holds in the case J<1G/S. Indeed, [8, Theorem
C] shows that, in the action of J on the conjugacy classes of S, there is some orbit
of length > 1. Since J is cyclic, this action of J is permutationally isomorphic to its
action on Irr(S). In particular, J has an orbit O; of length > 1 on Irr(S). Now let
O be the G-orbit on Irr(S) that contains O;. Since J <1 A, J acts semi-transitively
on O, i.e. all J-orbits on O have the same length. Hence we are done as |O] > 1.

(ii) By the result of (i), we are done if G/S or Out(S) is abelian; in particular,
if S is an alternating group or a sporadic simple group. The rest of the proof is to
deal with simple groups of Lie type, for which the structure of Out(S) is described
for instance in [9, Theorem 2.5.12]. Since xS € F(G/S) has order 2, O5(G/S) # 1.
From now on we may assume that G/S is non-abelian and that Oy (G/S) is non-cyclic
(because otherwise J char Oy(G/S) < G/S, and we are done again); in particular,
the Sylow 2-subgroups of Out(S) are non-cyclic.

Thus we are left with the cases, where S = PSL{ (¢) with n > 3 (and 2|n if e = —,
since Out(PSU,(¢)) have cyclic Sylow 2-subgroups when 2 1 n), PQS, (q) with odd ¢
and n > 4, or Eg(q), or PQZ(q) and 2|q. Here, ¢ = p/, and € = + in the untwisted
case and € = — in the twisted case.

In the fourth case, Out(S) = ® x I' with ® = C; and I' = S3. Then J £ @ as
otherwise it is central in G/S. Hence we can write 25 = ab with a € ® and b € T’
with o(b) = 2, and O, (((G/S)®)/®) # 1. As O5(S3) = 1, we have (G/S)® # T,
whence G/S < ®(b) and J is again central in G/S. We will now deal with the first
three cases.

(iii) We can find a simple, simply connected, algebraic group G in characteristic p
and a Frobenius endomorphism F on G such that S = L/Z(L) for L := G¥. We will
also consider the pair (G*, F*) dual to (G, F) and the dual group H := (G*)f", cf.
[1]. We will use the Deligne-Lusztig theory (cf. [13], [1], [3]).

Here we consider the case where z induces an inner-diagonal automorphism of S,
ie. ©S € I := Outdiag(S) in the notation of [9]. If in addition I is cyclic, then
J char I < Out(S), and so we are done again. We may therefore assume that [ is
elementary abelian of order 4, and so S = PQJ, (q) with 2|n > 4 and 2t ¢. Suppose
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n = 4. Then, as shown in the proof of [19, Proposition 5.11], Aut(S) has an orbit
O of length 4 on Irr(S), on which I acts regularly, and hence we are done. Next
assume that n > 6, and choose ¢ = +1 such that ¢"/? = ¢(mod4). According to
[9, Table 4.5.1], H = (PCO°)3,(¢) has a unique conjugacy class that contains an
involution ¢ (denoted by ,» or t , therein) with the properties that ¢ € [H, H] and
|ICu(t)] = 4]SO;(¢q) x SO:(¢)|. Since |Z(L)| = 4 = |H/[H, H]|, [20, Lemma 4.4]
shows that the rational series corresponding to ¢ contains four irreducible characters
of L of degree

D := [SO3,(q) : SO4(q) x SO (q)], /4.

If ¢ denotes any of them, then 1 is trivial on Z(L), so can be viewed as a character
of S. Moreover, this set O of four characters is Aut(S)-invariant, by the uniqueness
of the conjugacy class t. Note that S = [H, H]. Let x € Irr(H) lie above . It
suffices to show that x(1) = 4D. (Indeed, since |H/S| =4 and € H, in this case
H/S = C3 acts regularly on the four irreducible constituents ¢ = 1, s, 13,1, of
Xs- It follows that {iq,...,14} is precisely O, the set O is a single Aut(S)-orbit,
and x does not fix any ¢;.) Since |H/S| =4, we have x(1) = kD with x € {1,2,4};
furthermore, as H = G*f" and G* has trivial center, Yy = x, for some semisimple
element s € L = H* with |Cr(s)| = (4/k)| SO (¢q)|*. Furthermore, Cr(s) = Cg(s),
where Cg(s) is a connected reductive algebraic group (see e.g. Theorems 3.5.4 and
3.5.6 of [1]), whose simple factors are of type A or D, and in fact |Cp(s)| is a product
of factors of the form | SL¥(¢")| or |SO%.(¢)|. The number e of these factors is at
most the number ¢’ of irreducible summands of the image of Cr(s) in 3 (¢), in its
action on the natural module F2" for SO3, (¢). When € = —, using the divisibility of
|ICL(s)| by (¢ + 1)2, one sees that e < ¢/ < 2. When € = +, using the divisibility
of |C(s)| by (¢""2 — 1)2(¢"/? — 1)2, one can also check that e < 2. Now one readily
checks that x # 2,4, and thus x(1) = 4D as desired.

Suppose now that, modulo the inner-diagonal and field automorphisms of S, x
induces a graph automorphism of order 2, and moreover S = PQJ (q). Then [15,
Theorem 2.5] explicitly describes two unipotent characters of S such that they are
permuted by a graph automorphisms of order 2 of S, but each of them is fixed by
every diagonal or field automorphism of S. Now we can just choose O to be any such
pair.

(iv) In the remaining cases, x induces an automorphism o of order 2 which is
outside of Inndiag(S). We aim to find a semisimple element s € H such that Cg-(s)
is connected, s € [H, H], but the conjugacy class s of s in H is not o-invariant. The
first two conditions imply that the semisimple character y = y, of L is irreducible and
trivial at Z(L), hence can be viewed as an irreducible character x € Irr(S5), see e.g.
[20, Lemma 4.4]. Notice that, in the cases under consideration, the inner-diagonal
automorphisms of S are induced by conjugation using elements in H (when we embed
S in H), and so they preserve s”; also, we may write H = Inndiag(S). As a result,
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H fixes x, cf. [21, §2]. Since o moves s, [21, Corollary 2.4] and the disjointness of
Lusztig series imply that x? # x and so x* # x. As shown in the proof of [6, Lemma
2.5], in the case ¢ is induced by a Frobenius endomorphism ¢* of G*, then

(4.1) |s| does not divide [(G*)?

*

implies that s is not o-invariant.

Now let O be the G-orbit of x. Observe that, in our cases, Out(S)/H is either
abelian, or C; x Sz, where the latter case occurs only when S = PQJ(q) (and
q = p’). Unless we are in the latter case, (xH) is a normal subgroup of Out(S)/H,
and so (z(G N H)) <G/(GN H). Recall that G N H fixes y. Now arguing as in
(i), we see that x moves every character in O, and so we are done. Suppose we
are in the latter case. Then H still fixes every member of the G-orbit O of x, and
Out(S)/H = & xI' =2 C; x Ss. Now, the arguments in the last paragraph of (ii), but
applied to the image of GH/H in Out(S)/H, acting on O, and using the assumption
that JH/H moves x, yield the result.

The rest of the proof is to construct the desired element s. This construction will
follow some arguments given in [17]. In what follows, once the prime ¢ is chosen, we

will fix o € qu of order /.

(v) Let S = PSL,(q) with n > 3. Then H = PGL,(q). Modulo H, we may assume
that o is induced by one of the following three maps on GL,(q):
(4.2) X = (ay) = X = (al), or X = X7, or X = (X))
where r := p//2, and 2|f whenever r is in discussion. We may assume ¢ > 2 as
otherwise Out(S) is abelian and we are done. Hence, by [22] there is a primitive
prime divisor (ppd for short) ¢ of p®/ — 1, that is, a prime divisor of p"/ — 1 which
does not divide [T ' (" — 1).

j=1
Assume in addition that 2 n if o(X) = X ~!. Then choose s € GL,(q) represented
by the diagonal matrix diag(«, a?, ... ,oﬂnfl) over F,. Abusing the notation, we will

denote the image of s in H also by s (and we will do the same in subsequent parts
of the proof). Notice that £ > nf + 1, and so Cg«(s) is connected and s € [H, H| (as
o(s) is coprime to |Z(G)| and |H/[H, H]|). It remains to show that s and s are not
conjugate in H. According as o is one of the three maps described in (4.2), at least
one of the eigenvalues of s7 over IF_q is a”, o™, or a". Hence it suffices to show that
there is no A\ € F; and 0 < 7 <n — 1 such that

A = a”, orat, ora™",
according as o is one of the three maps described in (4.2). Assume the contrary.
Since o(a) = £ is coprime to ¢ — 1, we must have A = 1. Now, if j = 0, then ¢ divides
p//27 1 or 2, which is a contradiction, as ¢ is a ppd of p™ — 1. If j > 0, then ¢ divides
p T2 — 1 or pif +1. In the former case, the primitivity of ¢ implies that nf divides
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(7 F1/2)f, i.e. 2n divides 2j F 1, again a contradiction. In the latter case, we have
2 tn and nf|2jf, whence n|j, which is impossible as 0 < j < n.

Now assume that n > 4 is even and ¢(X) = ‘X~!. Since Out(SL4(2)) is abelian,
we may assume that (n,q) # (4,2), whence there exists a ppd ¢ of p"~Vf — 1. Next,
choose s € GL,(q) represented by the matrix diag(1, o, a4, a? . .. a4 ") over F,.
Then ¢ > (n—1)f+1, and so Cg-(s) is connected and s € [H, H]. Arguing as above,
we see that the eigenvalue o' of s7 is not among the eigenvalues of s, whence s and
s are not conjugate in H.

(vi) Consider the case S = PSU,(¢) and n > 3, whence H = PGU,(q). As
mentioned in (ii), we may assume n > 4 is even. Since Out(SUy(2)) is abelian, we
may assume that (n,q) # (4,2), whence there exists a ppd £ of p?™/ — 1. Next,
choose s € GU,(q) represented by the matrix diag(1, o, a™9, al’ .. ,oﬂn*z) over F,.
Then ¢ > (n+3)f+1, and so Cg=(s) is connected and s € [H, H]. Arguing as above,
we see that s and s” are not conjugate in H.

(vii) Next assume that S = PQ3, (q) with n > 4 and 2 { ¢; in particular, there
exists a ppd ¢ of p?®™~Df — 1. By the considerations in (iii), we may assume that
o(X) = XM with » := p//? as in (4.2). Next, choose s € GOJ, (¢) represented by
the matrix diag(1,1,, a9 a?,...,a%" ") over F,. Again, Cg-(s) is connected and
s € [H, H]. Arguing as above, we see that the eigenvalue o of s7 is not among the
eigenvalues of As for any A € F/, whence s and s are not conjugate in H.

Assume S = P, (q) and n > 4. Since Out(.S) is non-abelian, we must have that
2t n and 4|(g+1). Here we choose £ to be a ppd of p>/ —1. Next, choose s € GO5,,(q)
of order £. Since / is odd, Cg-(s) is connected and s € [H, H|. Note that, by choosing
a suitable matrix realization of GOy, (g) over F 2, we may assume that o(X) = X®
with r := ¢, and thus o is induced by the ¢"* Frobenius endomorphism o*. Now,
if st is o-invariant, then ¢ divides [(G*)? | = (PCO®)5. (¢) by (4.1), contrary to the
choice of /.

(viii) Finally, we consider the case S = FEs(q). Then o is induced by 0,7, 0., or
0,7, where 7 is a graph automorphism of G, o, is the ¢"" Frobenius endomorphism
(which acts trivially on L), and, if 2|f then o, is the r*® Frobenius endomorphism,
with 7 := p//2. We choose to replace 7 by 0,7 to make sure that the corresponding
map on G is a Frobenius endomorphism. Accordingly, choose s € H to be of order /,
where £ is a ppd of p°/ — 1, p?/ — 1, or p'*/ — 1. This ensures that Cg-(s) is connected
and s € [H, H]. Now, if s is o-invariant, then ¢ divides [(G*)°" | = %E4(q)ad, Fe(T)ad,
or ?Eg(r)aq by (4.1), contrary to the choice of . O
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