
NONSOLVABLE GROUPS HAVE A LARGE PROPORTION OF
VANISHING ELEMENTS

ALEXANDER MORETÓ AND PHAM HUU TIEP

Abstract. We prove that if G is a nonsolvable group, then the proportion of
vanishing elements of G is at least 1067/1260 (and this lower bound is optimal).
This confirms a conjecture of Dolfi, Pacifici, and Sanus [7].

1. Introduction

Zeros of characters of finite groups have been a subject of considerable interest in
the last couple of decades. We refer the reader to [7] for an exposition of the research
in this area. Following [12], we say that if G if a finite group an element g ∈ G is
nonvanishing if χ(g) 6= 0 for every irreducible character χ ∈ Irr(G). Otherwise, we
say that g is vanishing. Recently, it has been observed that nonsolvable groups tend
to have many zeros in the character table. For instance, M. Larsen and A. Miller
proved in [14] that the probability that a random entry in the character table of a
simple group of Lie type is 0 goes to 1 when the rank of the group goes to infinity.

On the other hand, it was conjectured by S. Dolfi, E. Pacifici and L. Sanus in [7]
that the proportion of vanishing elements in a nonsolvable group is at least 1067/1260
(note that this is the proportion of vanishing elements in A7). Given a finite group,
we write Pv(G) to denote the proportion of vanishing elements of G. In other words,

Pv(G) =
|{g ∈ G | χ(g) = 0 for some g ∈ G}|

|G|
.

It has been proven in [18] that if Pv(G) ≤ 2/3 then G is solvable. Our goal in this
note is to settle the conjecture of Dolfi, Pacifici and Sanus.

Theorem A. Let G be a finite group. If Pv(G) < Pv(A7) = 1067/1260, then G is
solvable.
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In the proof of Theorem A we use the following result, that is perhaps worth
pointing out.

Theorem B. Let G be an almost simple group with socle S. Then all the elements
in Gr S are vanishing.

Our proof of Theorem B relies on the Deligne-Lusztig theory of characters of groups
of Lie type by means of Theorem 2.1 below (and Theorem 2.3 of [5]). In Section 2,
we prove Theorem B assuming Theorem 2.1. Next, we prove Theorem A in Section
3 and we present the proof of Theorem 2.1 in Section 4.

2. Proof of Theorem B

In this section, we will prove Theorem B assuming the following result, which is a
version for 2-elements of Theorem 2.3 of [5] and which will be proved in §4. Recall
that given a group G, F(G) is the Fitting subgroup of G, i.e., the largest normal
nilpotent subgroup of G.

Theorem 2.1. Let S be a nonabelian simple group. Suppose that S ≤ G ≤ Aut(S).
Let xS ∈ F(G/S) be an element of order 2. Then there exists ψ ∈ Irr(S) such that x
does not fix any G-conjugate of ψ.

The following is an immediate consequence of Theorem 2.1. As usual, if G is a
finite group, N E G and ψ ∈ Irr(N) we write Irr(G|ψ) to denote the set of irreducible
characters of G that lie over ψ.

Corollary 2.2. Let S be a nonabelian simple group. Suppose that S ≤ G ≤ Aut(S).
Let xS ∈ F(G/S) be a nontrivial 2-element. Then there exists ψ ∈ Irr(S) such that
x does not fix any G-conjugate of ψ. In particular, if χ ∈ Irr(G|ψ) then χ(x) = 0.

Proof. Apply Theorem 2.1 to (xS)o(xS)/2. The claim that χ(x) = 0 follows from
Clifford’s theory and the formula for the induced character. �

We will use several times the following elementary fact.

Lemma 2.3. Let G be a finite group and let L ≤ K be two normal subgroups of G.
If ϕ ∈ Irr(K) vanishes on K r L and χ ∈ Irr(G|ϕ), then χ vanishes on K r L.

Proof. If suffices to note that by Clifford’s theorem (Theorem 6.2 of [11]) χK is a sum
of conjugates of ϕ and use the fact that K r L is a normal subset. �

The following is a consequence of the well-known structure of the outer automor-
phism group of simple groups.

Corollary 2.4. Let S be a nonabelian simple group. Let O = Out(S). Then the
elements in O r F(O) are vanishing

Proof. By [9, Theorem 2.5.12], we know that O/F(G) is abelian. Now the result
follows from the proof of Lemma 18.1 of [16], for instance. �
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Next, we prove a slightly strengthened form of Theorem B.

Theorem 2.5. Let S be a nonabelian simple group. Suppose that S ≤ G ≤ Aut(S).
Let x ∈ G r S. Then there exists χ ∈ Irr(G) such that χ(x) = 0. Furthermore, if
xS ∈ F(G/S) then there exists ψ ∈ Irr(S) such that xS does not fix any G-conjugate
of ψ.

Proof. Write O = G/S. By Corollary 2.4, we may assume that xS ∈ F(O). By
Corollary 2.2, we may assume that o(xS) is not a 2-power. Let p be an odd prime
divisor of o(xS) and let yS be the p-part of xS. By Theorem 2.3 of [5], there exists
ψ ∈ Irr(S) such that yS does not fix any G-conjugate of ψ. Since yS is a power of
xS, we conclude that xS does not fix any G-conjugate of ψ. Hence, if χ ∈ Irr(G|ψ)
then χ(x) = 0, as wanted. �

3. Proof of Theorem A

Following [4], if Ω is a set and n is a positive integer, we write Pn(Ω) to denote the
set of (n+ 1)-tuples of subsets of Ω that form a partition of Ω.

Lemma 3.1. Let G be a solvable permutation group on a set Ω. Then G has a regular
orbit on P4(Ω).

Proof. This follows from Corollary 6 of [4]. �

Suppose that H is a subgroup of a finite group G and let x ∈ H. In the next
results, we will need to distinguish between being vanishing as an element of H or as
an element of G. We will say that x is vanishing in G or x is vanishing as an element
of G if there exists χ ∈ Irr(G) such that χ(x) = 0.

We write
L2 ={M12,M22,M24, J2, HS, Suz,Ru,Co1, Co3, B}

∪ {An | n 6= 2m2 +m and n 6= 2m2 +m+ 2 for any integer m}
and

L3 = {Suz, Co3} ∪
{
An

∣∣∣∣ 3n+ 1 = m2r for some r square-free and divisible
by some prime q ≡ 2(mod 3)

}
.

By Corollary 1 of [10], Lp is the list of non-abelian simple groups that do not possess
an irreducible character of p-defect zero for p ∈ {2, 3} and every non-abelian simple
group has some irreducible character of p-defect zero for every prime p ≥ 5.

Lemma 3.2. Let N = S1 × · · · × Sn be a minimal normal subgroup of a finite group
G, with Si ∼= S non-abelian simple for every i, and let 1 6= x ∈ N . Then

(i) If o(x) is divisible by some prime p ≥ 5, then x is a vanishing element of G.
(ii) If S 6∈ L2 ∪ L3, then x is a vanishing element of G.

(iii) If S 6= A6 is an alternating group, then the proportion of elements in N that
are vanishing elements of G is at least 1067/1260.
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(iv) If S 6= M24 is one of the sporadic groups in L2 ∪ L3 or S = A6, then all the
nontrivial elements in N are vanishing in G.

(v) If S = M24 then the proportion of elements in N that are vanishing elements
of G is at least 1067/1260.

Proof. By Corollary 1 of [10], we know that S has some irreducible character ϕ of
p-defect zero. Take ψ = ϕ × · · · × ϕ ∈ Irr(N). If χ ∈ Irr(G) lies over ψ, then it
follows from Clifford’s theorem that χN is a sum of G-conjugates of ψ. Since ψg has
p-defect zero for every g ∈ G, we deduce from Theorem 8.17 of [11] that χ(x) = 0.
This proves (i). The second part can be proved analogously.

Now, we want to prove (iii). Let x = (x1, . . . , xn) ∈ N . Note that x is a vanishing
element of N if and only if xi is a vanishing element of Si for some i. Since the
proportion of elements in S1 that are vanishing is at least 1067/1260 (by Theorem
1.5 of [18]), it suffices to see that if y ∈ S1 is vanishing in S1, then y is a vanishing
element of G. Let θ ∈ Irr(S1) such that θ(y) = 0. Since S1 is subnormal in G, it
follows from Clifford’s theorem that if χ ∈ Irr(G) lies over θ × · · · × θ ∈ Irr(N) then
χS1 is a sum of Aut(S1)-conjugates of θ. By the proof of Lemma 3.1 of [18], all the
Aut(S1)-conjugates of θ vanish at y. We deduce that χ(y) = 0. Therefore, y is a
vanishing element of G, as desired.

Now, assume that S is one of the sporadic groups in L2 ∪ L3 or A6. If S = M24,
it can be checked in the Atlas [2] that all the elements except for those in classes 1A
and 2A are vanishing elements. If S 6= M24 then we can see in [2] that any nontrivial
element in S is vanishing in H for any almost simple group H with socle S. Parts
(iv) and (v) follow the same reasoning as in (iii). (Note that in part (v) we have a
proportion of vanishing elements that is much larger than stated.) �

Now, we can complete the proof of Theorem A.

Proof of Theorem A. Let G be a minimal counterexample. Let N be a minimal
normal subgroup of G. By Lemma 2.3 of [18], Pv(G/N) ≤ Pv(G) < Pv(A7). By the
minimality of G, G/N is solvable. We deduce that N = S1 × · · · × Sn, where Si ∼= S
for some non-abelian simple group S and every i. Furthermore, G/N is solvable.
We also have that N is the unique minimal normal subgroup of G. Hence, G is
isomorphic to a subgroup of Aut(N) = Aut(S) o Sn. Write K = G ∩ Aut(S)n, so
that N ≤ K ≤ Aut(S)n and G/K is isomorphic to a solvable permutation group on
Ω = {S1, . . . , Sn}.

By Lemma 3.1, G/K has a regular orbit on P4(Ω). Hence, there exists a partition
Γ0, . . . ,Γ4 of Ω such that

⋂4
i=0 stabG/K(Γ1) = K/K. Since S is simple nonabelian,

S has at least 5 different irreducible characters γ0, . . . , γ4. Let γ ∈ Irr(N) be the
character whose factor corresponding to the direct factors in Γi is γi for every i. By
the choice of γ, IG(γ) ≤ K. Hence, if χ ∈ Irr(G|γ) then χ vanishes on GrK.

Put F/N = F(K/N). By Corollary 2.4 and Lemma 2.3, the elements in K r F
are also vanishing.
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Next, using arguments from [5], we will see that the elements in FrN are vanishing.
Let x ∈ F r N . Since x ∈ K, x normalizes Si for every i = 1, . . . , n. In fact, K
normalizes Si for every i. By way of contradiction, suppose that x is nonvanishing.
We will show first that x ∈ SiCG(Si) for all i = 1, . . . , n. Without loss of generality,
we will show this for i = 1. Let θ ∈ Irr(S), and let ψ = θ1 × · · · × θn, where θi is
identified with θ for every i. By Lemma 2.3 of [12], x fixes ψg for some g ∈ G. Write

Sg
−1

i = Sσ(i) = S
gσ(i)
1 .

Hence,

S
gσ(i)g
1 = Si.

Then

ψg = θ
gσ(1)g
1 × · · · × θgσ(n)g1 .

Since x fixes ψg, we have that it fixes each of the factors of ψg. Hence,

θ
gσ(1)gx

1 = θ
gσ(1)g
1

and therefore θuxu
−1

1 = θ1, where u = gσ(1)g ∈ NG(S1). In other words, x fixes some
NG(S1)/CG(S1)-conjugate of θ1 for every θ1 ∈ Irr(S1CG(S1)/CG(S1)). Recall that
xN lies in a nilpotent normal subgroup of K/N ≤ NG(S1)/N . Hence, xS1CG(S1)
lies in a nilpotent normal subgroup of NG(S1)/S1CG(S1). Applying Theorem 2.5
with NG(S1)/CG(S1) in the place of G and S1CG(S1)/CG(S1) in the place of S, we
deduce that x ∈ S1CG(S1), as wanted.

Now, for all i = 1, . . . , n, write x = sici with si ∈ Si and ci ∈ CG(Si). On the
other hand, we can certainly write x = s1s2 · · · sny for some y ∈ G, and we work to
show that y = 1. We get s1c1 = s1(s2 · · · sn)y, whence y = (s2 · · · sn)−1c1 ∈ CG(S1).
Analogously, we see that y ∈ CG(Si) for every i and therefore y ∈ CG(N) = 1. We
conclude that x = s1 · · · sn ∈ N , as desired.

We have thus seen that all the elements in GrN are vanishing. By Lemma 3.2, the
proportion of elements of N that are vanishing in G is at least 1067/1260. If follows
that Pv(G) ≥ 1067/1260, which is a contradiction. This completes the proof. �

In [12], M. Isaacs, G. Navarro and T. Wolf conjectured that in a solvable group G
every element in Gr F(G) is vanishing. This conjecture remains open. In [5] it was
proved that for any finite group G all elements of order coprime to 6 in G r F(G)
are vanishing, and the coprimeness hypothesis is necessary. As mentioned in [5],
it is tempting to conjecture that all the elements in G r F∗(G) are vanishing but
211 oM24 is a counterexample. Our proof of Theorem A suggests that, perhaps, all
the elements outside the generalized Fitting subgroup are vanishing for groups with
trivial Fitting subgroup. Note that Theorem B is a particular case of this conjecture.
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4. Almost simple groups

In this section we prove Theorem 2.1, which we restate.

Theorem 4.1. Let S be a nonabelian simple group. Suppose that S ≤ G ≤ Aut(S).
Let xS ∈ F(G/S) be an element of order 2. Then there exists ψ ∈ Irr(S) such that x
does not fix any G-conjugate of ψ. In particular, if χ ∈ Irr(G|ψ) then χ(x) = 0.

Note that the assumption xS ∈ F(G/S) is essential; otherwise G = Aut(Ω+
8 (2))

would be a counterexample.

Proof. We will assume that x /∈ S and aim to produce a G-orbit O on Irr(S) such that
x moves every character in O. Consider the subgroup J := 〈xS〉 in G/S ≤ Out(S).

(i) First we show that the theorem holds in the case J�G/S. Indeed, [8, Theorem
C] shows that, in the action of J on the conjugacy classes of S, there is some orbit
of length > 1. Since J is cyclic, this action of J is permutationally isomorphic to its
action on Irr(S). In particular, J has an orbit O1 of length > 1 on Irr(S). Now let
O be the G-orbit on Irr(S) that contains O1. Since J � A, J acts semi-transitively
on O, i.e. all J-orbits on O have the same length. Hence we are done as |O1| > 1.

(ii) By the result of (i), we are done if G/S or Out(S) is abelian; in particular,
if S is an alternating group or a sporadic simple group. The rest of the proof is to
deal with simple groups of Lie type, for which the structure of Out(S) is described
for instance in [9, Theorem 2.5.12]. Since xS ∈ F(G/S) has order 2, O2(G/S) 6= 1.
From now on we may assume that G/S is non-abelian and that O2(G/S) is non-cyclic
(because otherwise J char O2(G/S) � G/S, and we are done again); in particular,
the Sylow 2-subgroups of Out(S) are non-cyclic.

Thus we are left with the cases, where S = PSLεn(q) with n ≥ 3 (and 2|n if ε = −,
since Out(PSUn(q)) have cyclic Sylow 2-subgroups when 2 - n), PΩε

2n(q) with odd q
and n ≥ 4, or E6(q), or PΩ+

8 (q) and 2|q. Here, q = pf , and ε = + in the untwisted
case and ε = − in the twisted case.

In the fourth case, Out(S) = Φ × Γ with Φ ∼= Cf and Γ ∼= S3. Then J 6≤ Φ as
otherwise it is central in G/S. Hence we can write xS = ab with a ∈ Φ and b ∈ Γ
with o(b) = 2, and O2

(
((G/S)Φ)/Φ

)
6= 1. As O2(S3) = 1, we have (G/S)Φ 6= Γ,

whence G/S ≤ Φ〈b〉 and J is again central in G/S. We will now deal with the first
three cases.

(iii) We can find a simple, simply connected, algebraic group G in characteristic p
and a Frobenius endomorphism F on G such that S = L/Z(L) for L := GF . We will
also consider the pair (G∗, F ∗) dual to (G, F ) and the dual group H := (G∗)F ∗ , cf.
[1]. We will use the Deligne-Lusztig theory (cf. [13], [1], [3]).

Here we consider the case where x induces an inner-diagonal automorphism of S,
i.e. xS ∈ I := Outdiag(S) in the notation of [9]. If in addition I is cyclic, then
J char I � Out(S), and so we are done again. We may therefore assume that I is
elementary abelian of order 4, and so S ∼= PΩ+

2n(q) with 2|n ≥ 4 and 2 - q. Suppose
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n = 4. Then, as shown in the proof of [19, Proposition 5.11], Aut(S) has an orbit
O of length 4 on Irr(S), on which I acts regularly, and hence we are done. Next
assume that n ≥ 6, and choose ε = ±1 such that qn/2 ≡ ε( mod 4 ). According to
[9, Table 4.5.1], H = (PCO◦)+2n(q) has a unique conjugacy class that contains an
involution t (denoted by tn/2 or t′n/2 therein) with the properties that t ∈ [H,H] and

|CH(t)| = 4| SOε
n(q) × SOε

n(q)|. Since |Z(L)| = 4 = |H/[H,H]|, [20, Lemma 4.4]
shows that the rational series corresponding to t contains four irreducible characters
of L of degree

D := [SO+
2n(q) : SOε

n(q)× SOε
n(q)]p′/4.

If ψ denotes any of them, then ψ is trivial on Z(L), so can be viewed as a character
of S. Moreover, this set O of four characters is Aut(S)-invariant, by the uniqueness
of the conjugacy class tH . Note that S = [H,H]. Let χ ∈ Irr(H) lie above ψ. It
suffices to show that χ(1) = 4D. (Indeed, since |H/S| = 4 and x ∈ H, in this case
H/S ∼= C2

2 acts regularly on the four irreducible constituents ψ1 = ψ, ψ2, ψ3, ψ4 of
χS. It follows that {ψ1, . . . , ψ4} is precisely O, the set O is a single Aut(S)-orbit,
and x does not fix any ψi.) Since |H/S| = 4, we have χ(1) = κD with κ ∈ {1, 2, 4};
furthermore, as H = G∗F ∗ and G∗ has trivial center, χ = χs for some semisimple
element s ∈ L ∼= H∗ with |CL(s)| = (4/κ)| SOε

n(q)|2. Furthermore, CL(s) = CG(s)
F ,

where CG(s) is a connected reductive algebraic group (see e.g. Theorems 3.5.4 and
3.5.6 of [1]), whose simple factors are of type A or D, and in fact |CL(s)| is a product
of factors of the form | SL±a (qb)| or | SO±2c(q)|. The number e of these factors is at
most the number e′ of irreducible summands of the image of CL(s) in Ω+

2n(q), in its
action on the natural module F2n

q for SO+
2n(q). When ε = −, using the divisibility of

|CL(s)| by (qn/2 + 1)2, one sees that e ≤ e′ ≤ 2. When ε = +, using the divisibility
of |CL(s)| by (qn−2 − 1)2(qn/2 − 1)2, one can also check that e ≤ 2. Now one readily
checks that κ 6= 2, 4, and thus χ(1) = 4D as desired.

Suppose now that, modulo the inner-diagonal and field automorphisms of S, x
induces a graph automorphism of order 2, and moreover S = PΩ+

2n(q). Then [15,
Theorem 2.5] explicitly describes two unipotent characters of S such that they are
permuted by a graph automorphisms of order 2 of S, but each of them is fixed by
every diagonal or field automorphism of S. Now we can just choose O to be any such
pair.

(iv) In the remaining cases, x induces an automorphism σ of order 2 which is
outside of Inndiag(S). We aim to find a semisimple element s ∈ H such that CG∗(s)
is connected, s ∈ [H,H], but the conjugacy class sH of s in H is not σ-invariant. The
first two conditions imply that the semisimple character χ = χs of L is irreducible and
trivial at Z(L), hence can be viewed as an irreducible character χ ∈ Irr(S), see e.g.
[20, Lemma 4.4]. Notice that, in the cases under consideration, the inner-diagonal
automorphisms of S are induced by conjugation using elements in H (when we embed
S in H), and so they preserve sH ; also, we may write H = Inndiag(S). As a result,
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H fixes χ, cf. [21, §2]. Since σ moves sH , [21, Corollary 2.4] and the disjointness of
Lusztig series imply that χσ 6= χ and so χx 6= χ. As shown in the proof of [6, Lemma
2.5], in the case σ is induced by a Frobenius endomorphism σ∗ of G∗, then

(4.1){a2}{a2} |s| does not divide |(G∗)σ∗ |

implies that sH is not σ-invariant.
Now let O be the G-orbit of χ. Observe that, in our cases, Out(S)/H is either

abelian, or Cf × S3, where the latter case occurs only when S = PΩ+
8 (q) (and

q = pf ). Unless we are in the latter case, 〈xH〉 is a normal subgroup of Out(S)/H,
and so 〈x(G ∩ H)〉 � G/(G ∩ H). Recall that G ∩ H fixes χ. Now arguing as in
(i), we see that x moves every character in O, and so we are done. Suppose we
are in the latter case. Then H still fixes every member of the G-orbit O of χ, and
Out(S)/H = Φ×Γ ∼= Cf ×S3. Now, the arguments in the last paragraph of (ii), but
applied to the image of GH/H in Out(S)/H, acting on O, and using the assumption
that JH/H moves χ, yield the result.

The rest of the proof is to construct the desired element s. This construction will
follow some arguments given in [17]. In what follows, once the prime ` is chosen, we

will fix α ∈ F×q of order `.

(v) Let S = PSLn(q) with n ≥ 3. Then H = PGLn(q). Modulo H, we may assume
that σ is induced by one of the following three maps on GLn(q):

(4.2){a1}{a1} X := (aij) 7→ X(r) := (arij), or X 7→ tX−1, or X 7→ t
(
X(r)

)−1
,

where r := pf/2, and 2|f whenever r is in discussion. We may assume q > 2 as
otherwise Out(S) is abelian and we are done. Hence, by [22] there is a primitive
prime divisor (ppd for short) ` of pnf − 1, that is, a prime divisor of pnf − 1 which

does not divide
∏nf−1

j=1 (pj − 1).

Assume in addition that 2 - n if σ(X) = tX−1. Then choose s ∈ GLn(q) represented

by the diagonal matrix diag(α, αq, . . . , αq
n−1

) over Fq. Abusing the notation, we will
denote the image of s in H also by s (and we will do the same in subsequent parts
of the proof). Notice that ` ≥ nf + 1, and so CG∗(s) is connected and s ∈ [H,H] (as
o(s) is coprime to |Z(G)| and |H/[H,H]|). It remains to show that s and sσ are not
conjugate in H. According as σ is one of the three maps described in (4.2), at least
one of the eigenvalues of sσ over Fq is αr, α−1, or α−r. Hence it suffices to show that
there is no λ ∈ F×q and 0 ≤ j ≤ n− 1 such that

λαq
j

= αr, or α−1, or α−r,

according as σ is one of the three maps described in (4.2). Assume the contrary.
Since o(α) = ` is coprime to q− 1, we must have λ = 1. Now, if j = 0, then ` divides
pf/2∓1 or 2, which is a contradiction, as ` is a ppd of pnf −1. If j > 0, then ` divides
pjf∓f/2− 1 or pjf + 1. In the former case, the primitivity of ` implies that nf divides
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(j ∓ 1/2)f , i.e. 2n divides 2j ∓ 1, again a contradiction. In the latter case, we have
2 - n and nf |2jf , whence n|j, which is impossible as 0 < j < n.

Now assume that n ≥ 4 is even and σ(X) = tX−1. Since Out(SL4(2)) is abelian,
we may assume that (n, q) 6= (4, 2), whence there exists a ppd ` of p(n−1)f − 1. Next,

choose s ∈ GLn(q) represented by the matrix diag(1, α, αq, αq
2
, . . . , αq

n−2
) over Fq.

Then ` ≥ (n−1)f +1, and so CG∗(s) is connected and s ∈ [H,H]. Arguing as above,
we see that the eigenvalue α−1 of sσ is not among the eigenvalues of s, whence s and
sσ are not conjugate in H.

(vi) Consider the case S = PSUn(q) and n ≥ 3, whence H = PGUn(q). As
mentioned in (ii), we may assume n ≥ 4 is even. Since Out(SU4(2)) is abelian, we
may assume that (n, q) 6= (4, 2), whence there exists a ppd ` of p2(n−1)f − 1. Next,

choose s ∈ GUn(q) represented by the matrix diag(1, α, α−q, αq
2
, . . . , αq

n−2
) over Fq.

Then ` ≥ (n+3)f +1, and so CG∗(s) is connected and s ∈ [H,H]. Arguing as above,
we see that s and sσ are not conjugate in H.

(vii) Next assume that S = PΩ+
2n(q) with n ≥ 4 and 2 - q; in particular, there

exists a ppd ` of p2(n−1)f − 1. By the considerations in (iii), we may assume that
σ(X) = X(r) with r := pf/2 as in (4.2). Next, choose s ∈ GO+

2n(q) represented by

the matrix diag(1, 1, α, αq, αq
2
, . . . , αq

2n−3
) over Fq. Again, CG∗(s) is connected and

s ∈ [H,H]. Arguing as above, we see that the eigenvalue αr of sσ is not among the
eigenvalues of λs for any λ ∈ F×q , whence s and sσ are not conjugate in H.

Assume S = PΩ−2n(q) and n ≥ 4. Since Out(S) is non-abelian, we must have that
2 - n and 4|(q+1). Here we choose ` to be a ppd of p2nf−1. Next, choose s ∈ GO−2n(q)
of order `. Since ` is odd, CG∗(s) is connected and s ∈ [H,H]. Note that, by choosing
a suitable matrix realization of GO−2n(q) over Fq2 , we may assume that σ(X) = X(r)

with r := q, and thus σ is induced by the qth Frobenius endomorphism σ∗. Now,
if sH is σ-invariant, then ` divides |(G∗)σ∗ | = (PCO◦)+2n(q) by (4.1), contrary to the
choice of `.

(viii) Finally, we consider the case S = E6(q). Then σ is induced by σqτ , σr, or
σrτ , where τ is a graph automorphism of G, σq is the qth Frobenius endomorphism
(which acts trivially on L), and, if 2|f then σr is the rth Frobenius endomorphism,
with r := pf/2. We choose to replace τ by σqτ to make sure that the corresponding
map on G is a Frobenius endomorphism. Accordingly, choose s ∈ H to be of order `,
where ` is a ppd of p9f −1, p9f −1, or p12f −1. This ensures that CG∗(s) is connected
and s ∈ [H,H]. Now, if sH is σ-invariant, then ` divides |(G∗)σ∗ | = 2E6(q)ad, E6(r)ad,
or 2E6(r)ad by (4.1), contrary to the choice of `. �
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Spain

Email address : alexander.moreto@uv.es

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA
Email address : tiep@math.rutgers.edu


	1. Introduction
	2. Proof of Theorem B
	3. Proof of Theorem A
	4. Almost simple groups
	References

