

NONSOLVABLE GROUPS HAVE A LARGE PROPORTION OF VANISHING ELEMENTS

ALEXANDER MORETÓ AND PHAM HUU TIEP

ABSTRACT. We prove that if G is a nonsolvable group, then the proportion of vanishing elements of G is at least $1067/1260$ (and this lower bound is optimal). This confirms a conjecture of Dolfi, Pacifici, and Sanus [7].

1. INTRODUCTION

Zeros of characters of finite groups have been a subject of considerable interest in the last couple of decades. We refer the reader to [7] for an exposition of the research in this area. Following [12], we say that if G is a finite group an element $g \in G$ is **nonvanishing** if $\chi(g) \neq 0$ for every irreducible character $\chi \in \text{Irr}(G)$. Otherwise, we say that g is **vanishing**. Recently, it has been observed that nonsolvable groups tend to have many zeros in the character table. For instance, M. Larsen and A. Miller proved in [14] that the probability that a random entry in the character table of a simple group of Lie type is 0 goes to 1 when the rank of the group goes to infinity.

On the other hand, it was conjectured by S. Dolfi, E. Pacifici and L. Sanus in [7] that the proportion of vanishing elements in a nonsolvable group is at least $1067/1260$ (note that this is the proportion of vanishing elements in A_7). Given a finite group, we write $\mathcal{P}_v(G)$ to denote the proportion of vanishing elements of G . In other words,

$$\mathcal{P}_v(G) = \frac{|\{g \in G \mid \chi(g) = 0 \text{ for some } \chi \in \text{Irr}(G)\}|}{|G|}.$$

It has been proven in [18] that if $\mathcal{P}_v(G) \leq 2/3$ then G is solvable. Our goal in this note is to settle the conjecture of Dolfi, Pacifici and Sanus.

Theorem A. *Let G be a finite group. If $\mathcal{P}_v(G) < \mathcal{P}_v(A_7) = 1067/1260$, then G is solvable.*

Date: April 18, 2024.

2010 Mathematics Subject Classification. Primary 20C15.

Key words and phrases. irreducible character, almost simple group, zero of a character.

Research of the first author is supported by Ministerio de Ciencia e Innovación PID-2019-103854GB-100, FEDER funds and Generalitat Valenciana AICO/2020/298. The second author gratefully acknowledges the support of the NSF (grants DMS-1840702 and DMS-2200850), the Joshua Barlaz Chair in Mathematics, and the Charles Simonyi Endowment at the Institute for Advanced Study (Princeton).

In the proof of Theorem A we use the following result, that is perhaps worth pointing out.

Theorem B. *Let G be an almost simple group with socle S . Then all the elements in $G \setminus S$ are vanishing.*

Our proof of Theorem B relies on the Deligne-Lusztig theory of characters of groups of Lie type by means of Theorem 2.1 below (and Theorem 2.3 of [5]). In Section 2, we prove Theorem B assuming Theorem 2.1. Next, we prove Theorem A in Section 3 and we present the proof of Theorem 2.1 in Section 4.

2. PROOF OF THEOREM B

In this section, we will prove Theorem B assuming the following result, which is a version for 2-elements of Theorem 2.3 of [5] and which will be proved in §4. Recall that given a group G , $\mathbf{F}(G)$ is the Fitting subgroup of G , i.e., the largest normal nilpotent subgroup of G .

Theorem 2.1. *Let S be a nonabelian simple group. Suppose that $S \leq G \leq \text{Aut}(S)$. Let $xS \in \mathbf{F}(G/S)$ be an element of order 2. Then there exists $\psi \in \text{Irr}(S)$ such that x does not fix any G -conjugate of ψ .*

The following is an immediate consequence of Theorem 2.1. As usual, if G is a finite group, $N \trianglelefteq G$ and $\psi \in \text{Irr}(N)$ we write $\text{Irr}(G|\psi)$ to denote the set of irreducible characters of G that lie over ψ .

Corollary 2.2. *Let S be a nonabelian simple group. Suppose that $S \leq G \leq \text{Aut}(S)$. Let $xS \in \mathbf{F}(G/S)$ be a nontrivial 2-element. Then there exists $\psi \in \text{Irr}(S)$ such that x does not fix any G -conjugate of ψ . In particular, if $\chi \in \text{Irr}(G|\psi)$ then $\chi(x) = 0$.*

Proof. Apply Theorem 2.1 to $(xS)^{o(xS)/2}$. The claim that $\chi(x) = 0$ follows from Clifford's theory and the formula for the induced character. \square

We will use several times the following elementary fact.

Lemma 2.3. *Let G be a finite group and let $L \leq K$ be two normal subgroups of G . If $\varphi \in \text{Irr}(K)$ vanishes on $K \setminus L$ and $\chi \in \text{Irr}(G|\varphi)$, then χ vanishes on $K \setminus L$.*

Proof. It suffices to note that by Clifford's theorem (Theorem 6.2 of [11]) χ_K is a sum of conjugates of φ and use the fact that $K \setminus L$ is a normal subset. \square

The following is a consequence of the well-known structure of the outer automorphism group of simple groups.

Corollary 2.4. *Let S be a nonabelian simple group. Let $O = \text{Out}(S)$. Then the elements in $O \setminus \mathbf{F}(O)$ are vanishing*

Proof. By [9, Theorem 2.5.12], we know that $O/\mathbf{F}(G)$ is abelian. Now the result follows from the proof of Lemma 18.1 of [16], for instance. \square

Next, we prove a slightly strengthened form of Theorem B.

Theorem 2.5. *Let S be a nonabelian simple group. Suppose that $S \leq G \leq \text{Aut}(S)$. Let $x \in G \setminus S$. Then there exists $\chi \in \text{Irr}(G)$ such that $\chi(x) = 0$. Furthermore, if $xS \in \mathbf{F}(G/S)$ then there exists $\psi \in \text{Irr}(S)$ such that xS does not fix any G -conjugate of ψ .*

Proof. Write $O = G/S$. By Corollary 2.4, we may assume that $xS \in \mathbf{F}(O)$. By Corollary 2.2, we may assume that $o(xS)$ is not a 2-power. Let p be an odd prime divisor of $o(xS)$ and let yS be the p -part of xS . By Theorem 2.3 of [5], there exists $\psi \in \text{Irr}(S)$ such that yS does not fix any G -conjugate of ψ . Since yS is a power of xS , we conclude that xS does not fix any G -conjugate of ψ . Hence, if $\chi \in \text{Irr}(G|\psi)$ then $\chi(x) = 0$, as wanted. \square

3. PROOF OF THEOREM A

Following [4], if Ω is a set and n is a positive integer, we write $\mathbf{P}_n(\Omega)$ to denote the set of $(n+1)$ -tuples of subsets of Ω that form a partition of Ω .

Lemma 3.1. *Let G be a solvable permutation group on a set Ω . Then G has a regular orbit on $\mathbf{P}_4(\Omega)$.*

Proof. This follows from Corollary 6 of [4]. \square

Suppose that H is a subgroup of a finite group G and let $x \in H$. In the next results, we will need to distinguish between being vanishing as an element of H or as an element of G . We will say that x is vanishing in G or x is vanishing as an element of G if there exists $\chi \in \text{Irr}(G)$ such that $\chi(x) = 0$.

We write

$$\begin{aligned} \mathcal{L}_2 = & \{M_{12}, M_{22}, M_{24}, J_2, HS, Suz, Ru, Co_1, Co_3, B\} \\ & \cup \{\mathbf{A}_n \mid n \neq 2m^2 + m \text{ and } n \neq 2m^2 + m + 2 \text{ for any integer } m\} \end{aligned}$$

and

$$\mathcal{L}_3 = \{Suz, Co_3\} \cup \left\{ \mathbf{A}_n \mid \begin{array}{l} 3n+1 = m^2r \text{ for some } r \text{ square-free and divisible} \\ \text{by some prime } q \equiv 2 \pmod{3} \end{array} \right\}.$$

By Corollary 1 of [10], \mathcal{L}_p is the list of non-abelian simple groups that do not possess an irreducible character of p -defect zero for $p \in \{2, 3\}$ and every non-abelian simple group has some irreducible character of p -defect zero for every prime $p \geq 5$.

Lemma 3.2. *Let $N = S_1 \times \cdots \times S_n$ be a minimal normal subgroup of a finite group G , with $S_i \cong S$ non-abelian simple for every i , and let $1 \neq x \in N$. Then*

- (i) *If $o(x)$ is divisible by some prime $p \geq 5$, then x is a vanishing element of G .*
- (ii) *If $S \notin \mathcal{L}_2 \cup \mathcal{L}_3$, then x is a vanishing element of G .*
- (iii) *If $S \neq \mathbf{A}_6$ is an alternating group, then the proportion of elements in N that are vanishing elements of G is at least $1067/1260$.*

- (iv) If $S \neq M_{24}$ is one of the sporadic groups in $\mathcal{L}_2 \cup \mathcal{L}_3$ or $S = \mathsf{A}_6$, then all the nontrivial elements in N are vanishing in G .
- (v) If $S = M_{24}$ then the proportion of elements in N that are vanishing elements of G is at least $1067/1260$.

Proof. By Corollary 1 of [10], we know that S has some irreducible character φ of p -defect zero. Take $\psi = \varphi \times \cdots \times \varphi \in \text{Irr}(N)$. If $\chi \in \text{Irr}(G)$ lies over ψ , then it follows from Clifford's theorem that χ_N is a sum of G -conjugates of ψ . Since ψ^g has p -defect zero for every $g \in G$, we deduce from Theorem 8.17 of [11] that $\chi(x) = 0$. This proves (i). The second part can be proved analogously.

Now, we want to prove (iii). Let $x = (x_1, \dots, x_n) \in N$. Note that x is a vanishing element of N if and only if x_i is a vanishing element of S_i for some i . Since the proportion of elements in S_1 that are vanishing is at least $1067/1260$ (by Theorem 1.5 of [18]), it suffices to see that if $y \in S_1$ is vanishing in S_1 , then y is a vanishing element of G . Let $\theta \in \text{Irr}(S_1)$ such that $\theta(y) = 0$. Since S_1 is subnormal in G , it follows from Clifford's theorem that if $\chi \in \text{Irr}(G)$ lies over $\theta \times \cdots \times \theta \in \text{Irr}(N)$ then χ_{S_1} is a sum of $\text{Aut}(S_1)$ -conjugates of θ . By the proof of Lemma 3.1 of [18], all the $\text{Aut}(S_1)$ -conjugates of θ vanish at y . We deduce that $\chi(y) = 0$. Therefore, y is a vanishing element of G , as desired.

Now, assume that S is one of the sporadic groups in $\mathcal{L}_2 \cup \mathcal{L}_3$ or A_6 . If $S = M_{24}$, it can be checked in the Atlas [2] that all the elements except for those in classes 1A and 2A are vanishing elements. If $S \neq M_{24}$ then we can see in [2] that any nontrivial element in S is vanishing in H for any almost simple group H with socle S . Parts (iv) and (v) follow the same reasoning as in (iii). (Note that in part (v) we have a proportion of vanishing elements that is much larger than stated.) \square

Now, we can complete the proof of Theorem A.

Proof of Theorem A. Let G be a minimal counterexample. Let N be a minimal normal subgroup of G . By Lemma 2.3 of [18], $\mathcal{P}_v(G/N) \leq \mathcal{P}_v(G) < \mathcal{P}_v(\mathsf{A}_7)$. By the minimality of G , G/N is solvable. We deduce that $N = S_1 \times \cdots \times S_n$, where $S_i \cong S$ for some non-abelian simple group S and every i . Furthermore, G/N is solvable. We also have that N is the unique minimal normal subgroup of G . Hence, G is isomorphic to a subgroup of $\text{Aut}(N) = \text{Aut}(S) \wr S_n$. Write $K = G \cap \text{Aut}(S)^n$, so that $N \leq K \leq \text{Aut}(S)^n$ and G/K is isomorphic to a solvable permutation group on $\Omega = \{S_1, \dots, S_n\}$.

By Lemma 3.1, G/K has a regular orbit on $\mathsf{P}_4(\Omega)$. Hence, there exists a partition $\Gamma_0, \dots, \Gamma_4$ of Ω such that $\bigcap_{i=0}^4 \text{stab}_{G/K}(\Gamma_1) = K/K$. Since S is simple nonabelian, S has at least 5 different irreducible characters $\gamma_0, \dots, \gamma_4$. Let $\gamma \in \text{Irr}(N)$ be the character whose factor corresponding to the direct factors in Γ_i is γ_i for every i . By the choice of γ , $I_G(\gamma) \leq K$. Hence, if $\chi \in \text{Irr}(G|\gamma)$ then χ vanishes on $G \setminus K$.

Put $F/N = \mathbf{F}(K/N)$. By Corollary 2.4 and Lemma 2.3, the elements in $K \setminus F$ are also vanishing.

Next, using arguments from [5], we will see that the elements in $F \setminus N$ are vanishing. Let $x \in F \setminus N$. Since $x \in K$, x normalizes S_i for every $i = 1, \dots, n$. In fact, K normalizes S_i for every i . By way of contradiction, suppose that x is nonvanishing. We will show first that $x \in S_i \mathbf{C}_G(S_i)$ for all $i = 1, \dots, n$. Without loss of generality, we will show this for $i = 1$. Let $\theta \in \text{Irr}(S)$, and let $\psi = \theta_1 \times \dots \times \theta_n$, where θ_i is identified with θ for every i . By Lemma 2.3 of [12], x fixes ψ^g for some $g \in G$. Write

$$S_i^{g^{-1}} = S_{\sigma(i)} = S_1^{g_{\sigma(i)}}.$$

Hence,

$$S_1^{g_{\sigma(i)}g} = S_i.$$

Then

$$\psi^g = \theta_1^{g_{\sigma(1)}g} \times \dots \times \theta_1^{g_{\sigma(n)}g}.$$

Since x fixes ψ^g , we have that it fixes each of the factors of ψ^g . Hence,

$$\theta_1^{g_{\sigma(1)}g} = \theta_1^{g_{\sigma(1)}g}$$

and therefore $\theta_1^{uxu^{-1}} = \theta_1$, where $u = g_{\sigma(1)}g \in \mathbf{N}_G(S_1)$. In other words, x fixes some $\mathbf{N}_G(S_1)/\mathbf{C}_G(S_1)$ -conjugate of θ_1 for every $\theta_1 \in \text{Irr}(S_1 \mathbf{C}_G(S_1)/\mathbf{C}_G(S_1))$. Recall that xN lies in a nilpotent normal subgroup of $K/N \leq \mathbf{N}_G(S_1)/N$. Hence, $xS_1 \mathbf{C}_G(S_1)$ lies in a nilpotent normal subgroup of $\mathbf{N}_G(S_1)/S_1 \mathbf{C}_G(S_1)$. Applying Theorem 2.5 with $\mathbf{N}_G(S_1)/\mathbf{C}_G(S_1)$ in the place of G and $S_1 \mathbf{C}_G(S_1)/\mathbf{C}_G(S_1)$ in the place of S , we deduce that $x \in S_1 \mathbf{C}_G(S_1)$, as wanted.

Now, for all $i = 1, \dots, n$, write $x = s_i c_i$ with $s_i \in S_i$ and $c_i \in \mathbf{C}_G(S_i)$. On the other hand, we can certainly write $x = s_1 s_2 \dots s_n y$ for some $y \in G$, and we work to show that $y = 1$. We get $s_1 c_1 = s_1 (s_2 \dots s_n) y$, whence $y = (s_2 \dots s_n)^{-1} c_1 \in \mathbf{C}_G(S_1)$. Analogously, we see that $y \in \mathbf{C}_G(S_i)$ for every i and therefore $y \in \mathbf{C}_G(N) = 1$. We conclude that $x = s_1 \dots s_n \in N$, as desired.

We have thus seen that all the elements in $G \setminus N$ are vanishing. By Lemma 3.2, the proportion of elements of N that are vanishing in G is at least $1067/1260$. It follows that $\mathcal{P}_v(G) \geq 1067/1260$, which is a contradiction. This completes the proof. \square

In [12], M. Isaacs, G. Navarro and T. Wolf conjectured that in a solvable group G every element in $G \setminus \mathbf{F}(G)$ is vanishing. This conjecture remains open. In [5] it was proved that for any finite group G all elements of order coprime to 6 in $G \setminus \mathbf{F}(G)$ are vanishing, and the coprimeness hypothesis is necessary. As mentioned in [5], it is tempting to conjecture that all the elements in $G \setminus \mathbf{F}^*(G)$ are vanishing but $2^{11} \rtimes M_{24}$ is a counterexample. Our proof of Theorem A suggests that, perhaps, all the elements outside the generalized Fitting subgroup are vanishing for groups with trivial Fitting subgroup. Note that Theorem B is a particular case of this conjecture.

4. ALMOST SIMPLE GROUPS

In this section we prove Theorem 2.1, which we restate.

Theorem 4.1. *Let S be a nonabelian simple group. Suppose that $S \leq G \leq \text{Aut}(S)$. Let $xS \in \mathbf{F}(G/S)$ be an element of order 2. Then there exists $\psi \in \text{Irr}(S)$ such that x does not fix any G -conjugate of ψ . In particular, if $\chi \in \text{Irr}(G|\psi)$ then $\chi(x) = 0$.*

Note that the assumption $xS \in \mathbf{F}(G/S)$ is essential; otherwise $G = \text{Aut}(\Omega_8^+(2))$ would be a counterexample.

Proof. We will assume that $x \notin S$ and aim to produce a G -orbit \mathcal{O} on $\text{Irr}(S)$ such that x moves every character in \mathcal{O} . Consider the subgroup $J := \langle xS \rangle$ in $G/S \leq \text{Out}(S)$.

(i) First we show that the theorem holds in the case $J \triangleleft G/S$. Indeed, [8, Theorem C] shows that, in the action of J on the conjugacy classes of S , there is some orbit of length > 1 . Since J is cyclic, this action of J is permutationally isomorphic to its action on $\text{Irr}(S)$. In particular, J has an orbit \mathcal{O}_1 of length > 1 on $\text{Irr}(S)$. Now let \mathcal{O} be the G -orbit on $\text{Irr}(S)$ that contains \mathcal{O}_1 . Since $J \triangleleft A$, J acts semi-transitively on \mathcal{O} , i.e. all J -orbits on \mathcal{O} have the same length. Hence we are done as $|\mathcal{O}_1| > 1$.

(ii) By the result of (i), we are done if G/S or $\text{Out}(S)$ is abelian; in particular, if S is an alternating group or a sporadic simple group. The rest of the proof is to deal with simple groups of Lie type, for which the structure of $\text{Out}(S)$ is described for instance in [9, Theorem 2.5.12]. Since $xS \in \mathbf{F}(G/S)$ has order 2, $\mathbf{O}_2(G/S) \neq 1$. From now on we may assume that G/S is non-abelian and that $\mathbf{O}_2(G/S)$ is non-cyclic (because otherwise $J \text{ char } \mathbf{O}_2(G/S) \triangleleft G/S$, and we are done again); in particular, the Sylow 2-subgroups of $\text{Out}(S)$ are non-cyclic.

Thus we are left with the cases, where $S = \text{PSL}_n^\epsilon(q)$ with $n \geq 3$ (and $2|n$ if $\epsilon = -$, since $\text{Out}(\text{PSU}_n(q))$ have cyclic Sylow 2-subgroups when $2 \nmid n$), $P\Omega_{2n}^\epsilon(q)$ with odd q and $n \geq 4$, or $E_6(q)$, or $P\Omega_8^+(q)$ and $2|q$. Here, $q = p^f$, and $\epsilon = +$ in the untwisted case and $\epsilon = -$ in the twisted case.

In the fourth case, $\text{Out}(S) = \Phi \times \Gamma$ with $\Phi \cong \mathbf{C}_f$ and $\Gamma \cong \mathbf{S}_3$. Then $J \not\leq \Phi$ as otherwise it is central in G/S . Hence we can write $xS = ab$ with $a \in \Phi$ and $b \in \Gamma$ with $o(b) = 2$, and $\mathbf{O}_2(((G/S)\Phi)/\Phi) \neq 1$. As $\mathbf{O}_2(\mathbf{S}_3) = 1$, we have $(G/S)\Phi \neq \Gamma$, whence $G/S \leq \Phi\langle b \rangle$ and J is again central in G/S . We will now deal with the first three cases.

(iii) We can find a simple, simply connected, algebraic group \mathcal{G} in characteristic p and a Frobenius endomorphism F on \mathcal{G} such that $S = L/\mathbf{Z}(L)$ for $L := \mathcal{G}^F$. We will also consider the pair (\mathcal{G}^*, F^*) dual to (\mathcal{G}, F) and the dual group $H := (\mathcal{G}^*)^{F^*}$, cf. [1]. We will use the Deligne-Lusztig theory (cf. [13], [1], [3]).

Here we consider the case where x induces an inner-diagonal automorphism of S , i.e. $xS \in I := \text{Outdiag}(S)$ in the notation of [9]. If in addition I is cyclic, then $J \text{ char } I \triangleleft \text{Out}(S)$, and so we are done again. We may therefore assume that I is elementary abelian of order 4, and so $S \cong P\Omega_{2n}^+(q)$ with $2|n \geq 4$ and $2 \nmid q$. Suppose

$n = 4$. Then, as shown in the proof of [19, Proposition 5.11], $\text{Aut}(S)$ has an orbit \mathcal{O} of length 4 on $\text{Irr}(S)$, on which I acts regularly, and hence we are done. Next assume that $n \geq 6$, and choose $\epsilon = \pm 1$ such that $q^{n/2} \equiv \epsilon \pmod{4}$. According to [9, Table 4.5.1], $H = (\text{PCO}^\circ)_{2n}^+(q)$ has a unique conjugacy class that contains an involution t (denoted by $t_{n/2}$ or $t'_{n/2}$ therein) with the properties that $t \in [H, H]$ and $|\mathbf{C}_H(t)| = 4|\text{SO}_n^\epsilon(q) \times \text{SO}_n^\epsilon(q)|$. Since $|\mathbf{Z}(L)| = 4 = |H/[H, H]|$, [20, Lemma 4.4] shows that the rational series corresponding to t contains four irreducible characters of L of degree

$$D := [\text{SO}_{2n}^+(q) : \text{SO}_n^\epsilon(q) \times \text{SO}_n^\epsilon(q)]_{p'}/4.$$

If ψ denotes any of them, then ψ is trivial on $\mathbf{Z}(L)$, so can be viewed as a character of S . Moreover, this set \mathcal{O} of four characters is $\text{Aut}(S)$ -invariant, by the uniqueness of the conjugacy class t^H . Note that $S = [H, H]$. Let $\chi \in \text{Irr}(H)$ lie above ψ . It suffices to show that $\chi(1) = 4D$. (Indeed, since $|H/S| = 4$ and $x \in H$, in this case $H/S \cong \mathbf{C}_2^2$ acts regularly on the four irreducible constituents $\psi_1 = \psi, \psi_2, \psi_3, \psi_4$ of χ_S . It follows that $\{\psi_1, \dots, \psi_4\}$ is precisely \mathcal{O} , the set \mathcal{O} is a single $\text{Aut}(S)$ -orbit, and x does not fix any ψ_i .) Since $|H/S| = 4$, we have $\chi(1) = \kappa D$ with $\kappa \in \{1, 2, 4\}$; furthermore, as $H = \mathcal{G}^{*F^*}$ and \mathcal{G}^* has trivial center, $\chi = \chi_s$ for some semisimple element $s \in L \cong H^*$ with $|\mathbf{C}_L(s)| = (4/\kappa)|\text{SO}_n^\epsilon(q)|^2$. Furthermore, $\mathbf{C}_L(s) = \mathbf{C}_{\mathcal{G}}(s)^F$, where $\mathbf{C}_{\mathcal{G}}(s)$ is a connected reductive algebraic group (see e.g. Theorems 3.5.4 and 3.5.6 of [1]), whose simple factors are of type A or D , and in fact $|\mathbf{C}_L(s)|$ is a product of factors of the form $|\text{SL}_a^\pm(q^b)|$ or $|\text{SO}_{2c}^\pm(q)|$. The number e of these factors is at most the number e' of irreducible summands of the image of $\mathbf{C}_L(s)$ in $\Omega_{2n}^+(q)$, in its action on the natural module \mathbb{F}_q^{2n} for $\text{SO}_{2n}^+(q)$. When $\epsilon = -$, using the divisibility of $|\mathbf{C}_L(s)|$ by $(q^{n/2} + 1)^2$, one sees that $e \leq e' \leq 2$. When $\epsilon = +$, using the divisibility of $|\mathbf{C}_L(s)|$ by $(q^{n-2} - 1)^2(q^{n/2} - 1)^2$, one can also check that $e \leq 2$. Now one readily checks that $\kappa \neq 2, 4$, and thus $\chi(1) = 4D$ as desired.

Suppose now that, modulo the inner-diagonal and field automorphisms of S , x induces a graph automorphism of order 2, and moreover $S = P\Omega_{2n}^+(q)$. Then [15, Theorem 2.5] explicitly describes two unipotent characters of S such that they are permuted by a graph automorphisms of order 2 of S , but each of them is fixed by every diagonal or field automorphism of S . Now we can just choose \mathcal{O} to be any such pair.

(iv) In the remaining cases, x induces an automorphism σ of order 2 which is outside of $\text{Inndiag}(S)$. We aim to find a semisimple element $s \in H$ such that $\mathbf{C}_{\mathcal{G}^*}(s)$ is connected, $s \in [H, H]$, but the conjugacy class s^H of s in H is not σ -invariant. The first two conditions imply that the semisimple character $\chi = \chi_s$ of L is irreducible and trivial at $\mathbf{Z}(L)$, hence can be viewed as an irreducible character $\chi \in \text{Irr}(S)$, see e.g. [20, Lemma 4.4]. Notice that, in the cases under consideration, the inner-diagonal automorphisms of S are induced by conjugation using elements in H (when we embed S in H), and so they preserve s^H ; also, we may write $H = \text{Inndiag}(S)$. As a result,

H fixes χ , cf. [21, §2]. Since σ moves s^H , [21, Corollary 2.4] and the disjointness of Lusztig series imply that $\chi^\sigma \neq \chi$ and so $\chi^x \neq \chi$. As shown in the proof of [6, Lemma 2.5], in the case σ is induced by a Frobenius endomorphism σ^* of \mathcal{G}^* , then

$$(4.1) \quad |s| \text{ does not divide } |(\mathcal{G}^*)^{\sigma^*}|$$

implies that s^H is not σ -invariant.

Now let \mathcal{O} be the G -orbit of χ . Observe that, in our cases, $\text{Out}(S)/H$ is either abelian, or $\mathbf{C}_f \times \mathbf{S}_3$, where the latter case occurs only when $S = P\Omega_8^+(q)$ (and $q = p^f$). Unless we are in the latter case, $\langle xH \rangle$ is a normal subgroup of $\text{Out}(S)/H$, and so $\langle x(G \cap H) \rangle \triangleleft G/(G \cap H)$. Recall that $G \cap H$ fixes χ . Now arguing as in (i), we see that x moves every character in \mathcal{O} , and so we are done. Suppose we are in the latter case. Then H still fixes every member of the G -orbit \mathcal{O} of χ , and $\text{Out}(S)/H = \Phi \times \Gamma \cong \mathbf{C}_f \times \mathbf{S}_3$. Now, the arguments in the last paragraph of (ii), but applied to the image of GH/H in $\text{Out}(S)/H$, acting on \mathcal{O} , and using the assumption that JH/H moves χ , yield the result.

The rest of the proof is to construct the desired element s . This construction will follow some arguments given in [17]. In what follows, once the prime ℓ is chosen, we will fix $\alpha \in \overline{\mathbb{F}_q}^\times$ of order ℓ .

(v) Let $S = \text{PSL}_n(q)$ with $n \geq 3$. Then $H = \text{PGL}_n(q)$. Modulo H , we may assume that σ is induced by one of the following three maps on $GL_n(q)$:

$$(4.2) \quad X := (a_{ij}) \mapsto X^{(r)} := (a_{ij}^r), \text{ or } X \mapsto {}^t X^{-1}, \text{ or } X \mapsto {}^t (X^{(r)})^{-1},$$

where $r := p^{f/2}$, and $2|f$ whenever r is in discussion. We may assume $q > 2$ as otherwise $\text{Out}(S)$ is abelian and we are done. Hence, by [22] there is a **primitive prime divisor** (ppd for short) ℓ of $p^{nf} - 1$, that is, a prime divisor of $p^{nf} - 1$ which does not divide $\prod_{j=1}^{nf-1} (p^j - 1)$.

Assume in addition that $2 \nmid n$ if $\sigma(X) = {}^t X^{-1}$. Then choose $s \in GL_n(q)$ represented by the diagonal matrix $\text{diag}(\alpha, \alpha^q, \dots, \alpha^{q^{n-1}})$ over $\overline{\mathbb{F}_q}$. Abusing the notation, we will denote the image of s in H also by s (and we will do the same in subsequent parts of the proof). Notice that $\ell \geq nf + 1$, and so $\mathbf{C}_{\mathcal{G}^*}(s)$ is connected and $s \in [H, H]$ (as $o(s)$ is coprime to $|\mathbf{Z}(\mathcal{G})|$ and $|H/[H, H]|$). It remains to show that s and s^σ are not conjugate in H . According as σ is one of the three maps described in (4.2), at least one of the eigenvalues of s^σ over $\overline{\mathbb{F}_q}$ is α^r , α^{-1} , or α^{-r} . Hence it suffices to show that there is no $\lambda \in \mathbb{F}_q^\times$ and $0 \leq j \leq n-1$ such that

$$\lambda \alpha^{q^j} = \alpha^r, \text{ or } \alpha^{-1}, \text{ or } \alpha^{-r},$$

according as σ is one of the three maps described in (4.2). Assume the contrary. Since $o(\alpha) = \ell$ is coprime to $q-1$, we must have $\lambda = 1$. Now, if $j = 0$, then ℓ divides $p^{f/2} \mp 1$ or 2 , which is a contradiction, as ℓ is a ppd of $p^{nf} - 1$. If $j > 0$, then ℓ divides $p^{jf \mp f/2} - 1$ or $p^{jf} + 1$. In the former case, the primitivity of ℓ implies that nf divides

$(j \mp 1/2)f$, i.e. $2n$ divides $2j \mp 1$, again a contradiction. In the latter case, we have $2 \nmid n$ and $nf|2jf$, whence $n|j$, which is impossible as $0 < j < n$.

Now assume that $n \geq 4$ is even and $\sigma(X) = {}^tX^{-1}$. Since $\text{Out}(\text{SL}_4(2))$ is abelian, we may assume that $(n, q) \neq (4, 2)$, whence there exists a **ppd** ℓ of $p^{(n-1)f} - 1$. Next, choose $s \in \text{GL}_n(q)$ represented by the matrix $\text{diag}(1, \alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{n-2}})$ over $\bar{\mathbb{F}}_q$. Then $\ell \geq (n-1)f + 1$, and so $\mathbf{C}_{\mathcal{G}^*}(s)$ is connected and $s \in [H, H]$. Arguing as above, we see that the eigenvalue α^{-1} of s^σ is not among the eigenvalues of s , whence s and s^σ are not conjugate in H .

(vi) Consider the case $S = \text{PSU}_n(q)$ and $n \geq 3$, whence $H = \text{PGU}_n(q)$. As mentioned in (ii), we may assume $n \geq 4$ is even. Since $\text{Out}(\text{SU}_4(2))$ is abelian, we may assume that $(n, q) \neq (4, 2)$, whence there exists a **ppd** ℓ of $p^{2(n-1)f} - 1$. Next, choose $s \in \text{GU}_n(q)$ represented by the matrix $\text{diag}(1, \alpha, \alpha^{-q}, \alpha^{q^2}, \dots, \alpha^{q^{n-2}})$ over $\bar{\mathbb{F}}_q$. Then $\ell \geq (n+3)f + 1$, and so $\mathbf{C}_{\mathcal{G}^*}(s)$ is connected and $s \in [H, H]$. Arguing as above, we see that s and s^σ are not conjugate in H .

(vii) Next assume that $S = P\Omega_{2n}^+(q)$ with $n \geq 4$ and $2 \nmid q$; in particular, there exists a **ppd** ℓ of $p^{2(n-1)f} - 1$. By the considerations in (iii), we may assume that $\sigma(X) = X^{(r)}$ with $r := p^{f/2}$ as in (4.2). Next, choose $s \in \text{GO}_{2n}^+(q)$ represented by the matrix $\text{diag}(1, 1, \alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{2n-3}})$ over $\bar{\mathbb{F}}_q$. Again, $\mathbf{C}_{\mathcal{G}^*}(s)$ is connected and $s \in [H, H]$. Arguing as above, we see that the eigenvalue α^r of s^σ is not among the eigenvalues of λs for any $\lambda \in \mathbb{F}_q^\times$, whence s and s^σ are not conjugate in H .

Assume $S = P\Omega_{2n}^-(q)$ and $n \geq 4$. Since $\text{Out}(S)$ is non-abelian, we must have that $2 \nmid n$ and $4|(q+1)$. Here we choose ℓ to be a **ppd** of $p^{2nf} - 1$. Next, choose $s \in \text{GO}_{2n}^-(q)$ of order ℓ . Since ℓ is odd, $\mathbf{C}_{\mathcal{G}^*}(s)$ is connected and $s \in [H, H]$. Note that, by choosing a suitable matrix realization of $\text{GO}_{2n}^-(q)$ over \mathbb{F}_{q^2} , we may assume that $\sigma(X) = X^{(r)}$ with $r := q$, and thus σ is induced by the q^{th} Frobenius endomorphism σ^* . Now, if s^H is σ -invariant, then ℓ divides $|(\mathcal{G}^*)^{\sigma^*}| = (\text{PCO}^\circ)_{2n}^+(q)$ by (4.1), contrary to the choice of ℓ .

(viii) Finally, we consider the case $S = E_6(q)$. Then σ is induced by $\sigma_q\tau$, σ_r , or $\sigma_r\tau$, where τ is a graph automorphism of \mathcal{G} , σ_q is the q^{th} Frobenius endomorphism (which acts trivially on L), and, if $2|f$ then σ_r is the r^{th} Frobenius endomorphism, with $r := p^{f/2}$. We choose to replace τ by $\sigma_q\tau$ to make sure that the corresponding map on \mathcal{G} is a Frobenius endomorphism. Accordingly, choose $s \in H$ to be of order ℓ , where ℓ is a **ppd** of $p^{9f} - 1$, $p^{9f} - 1$, or $p^{12f} - 1$. This ensures that $\mathbf{C}_{\mathcal{G}^*}(s)$ is connected and $s \in [H, H]$. Now, if s^H is σ -invariant, then ℓ divides $|(\mathcal{G}^*)^{\sigma^*}| = {}^2E_6(q)_{\text{ad}}$, $E_6(r)_{\text{ad}}$, or ${}^2E_6(r)_{\text{ad}}$ by (4.1), contrary to the choice of ℓ . \square

REFERENCES

[1] R. Carter, ‘Finite Groups of Lie type: Conjugacy Classes and Complex Characters’, Wiley, Chichester, 1985. 6, 7

- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ‘*An ATLAS of Finite Groups*’, Clarendon Press, Oxford, 1985. 4
- [3] F. Digne and J. Michel, ‘*Representations of Finite Groups of Lie Type*’, London Mathematical Society Student Texts 21, Cambridge University Press, 1991. 6
- [4] S. Dolfi, Orbitas of permutation groups on the power set, *Arch. Math.* **75** (2000), 321–327. 3
- [5] S. Dolfi, G. Navarro, E. Pacifici, L. Sanus, and P. H. Tiep, Non-vanishing elements of finite groups, *J. Algebra* **323** (2010), 540–545. 2, 3, 5
- [6] S. Dolfi, G. Navarro and P.H. Tiep, Primes dividing the degrees of the real characters, *Math. Z.* **259** (2008), 755–774. 8
- [7] S. Dolfi, E. Pacifici and L. Sanus, On zeros of characters of finite groups, in *Group theory and computation* 41–58, Springer, Singapore, 2018. 1
- [8] W. Feit and G.M. Seitz, On finite rational groups and related topics, *Illinois J. Math.* **33** (1989), 103–131. 6
- [9] D. Gorenstein, R. Lyons and R. Solomon, ‘*The Classification of the Finite Simple Groups*’, Number 3, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, 1994. 2, 6, 7
- [10] A. Granville and K. Ono, Defect zero p -blocks for finite simple groups, *Trans. Amer. Math. Soc.* **348** (1996), 331–347. 3, 4
- [11] I. M. Isaacs, *Character Theory of Finite Groups*, Dover, New York, 1976. 2, 4
- [12] I. M. Isaacs, G. Navarro, and T. R. Wolf, Finite group elements where no irreducible character vanishes, *J. Algebra* **222** (1999), 413–423. 1, 5
- [13] G. Lusztig, ‘*Characters of Reductive Groups over a Finite Field*’, Annals of Math. Studies **107**, Princeton Univ. Press, Princeton, 1984. 6
- [14] M. Larsen and A. Miller, The sparsity of character tables of high rank groups of Lie type, *Representation Theory* **25** (2021), 173–192. 1
- [15] G. Malle, Extensions of unipotent characters and the inductive McKay condition, *J. Algebra* **320** (2008), 2963–2980. 7
- [16] O. Manz and T. R. Wolf, “Representations of solvable groups”, Cambridge University Press, Cambridge, 1993. 2
- [17] A. Moretó and Pham Huu Tiep, Prime divisors of character degrees, *J. Group Theory* **11** (2008), 341–356. 8
- [18] L. Morotti and H. P. Tong-Viet, Proportions of vanishing elements in finite groups, *Israel J. Math.*, to appear. arXiv:2007.16081 1, 4
- [19] G. Navarro and Pham Huu Tiep, Degrees of rational characters of finite groups, *Adv. Math.* **224** (2010), 1121–1142. 7
- [20] G. Navarro and Pham Huu Tiep, Characters of relative p' -degree over normal subgroups, *Annals of Math.* **178** (2013), 1135–1171. 7
- [21] G. Navarro, Pham Huu Tiep, and A. Turull, Brauer characters with cyclotomic field of values, *J. Pure Appl. Algebra* **212** (2008), 628–635. 8
- [22] K. Zsigmondy, Zur Theorie der Potenzreste, *Monatsh. Math. Phys.* **3** (1892), 265–284. 8

DEPARTAMENT DE MATEMÀTIQUES, UNIVERSITAT DE VALÈNCIA, 46100 BURJASSOT, VALÈNCIA,
SPAIN

Email address: alexander.moreto@uv.es

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, PISCATAWAY, NJ 08854, USA
Email address: tiep@math.rutgers.edu