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Abstract. We completely describe all the possible fields of values of irreducible charac-
ters of degree up to 3 of finite groups. The obtained result points toward a rather surprising
connection between the field of values and the degree of an arbitrary irreducible character.

To the memory of Irina Suprunenko

1. Introduction

Let χ be an irreducible (complex) character of a finite group G. It is clear that each
value of χ is a sum of |G|-th roots of unity, and thus the field of values of χ, denoted by
Qpχq, is an abelian extension of the field Q of rational numbers. It is even true that, by
Brauer’s theorem, χ can always be afforded by a representation with entries in the |G|-th
cyclotomic field. If χ is linear, i.e., χ is a homomorphism from G to the multiplicative
group of nonzero complex numbers Cˆ, all the values tχpgq : g P Gu of χ are roots of
unity, and therefore Qpχq is a full cyclotomic field. A naive question emerges: what abelian
extension of Q could be the field of values of an irreducible character of degree 2 ? While
we see several examples of degree-2 irreducible characters with fields of values Qp

?
5q (in

SL2p5q for instance) and Qp
?
kq with |k| ď 3 (in C3 ˆ S3, C3 ¸Q8, D16, . . .), it seems that

other quadratic fields only show up as fields of values of characters of degree at least 3.
In this paper we resolve the above question for characters of degree 2 and 3, see Section 2.

In what follows, the conductor cpF q of an abelian extension F of Q is the smallest n P Z`
such that F Ď Qn :“ Qpe2iπ{nq.

Theorem 1.1. Let F be an abelian extension of the rational numbers.

(i) F is the field of values of an irreducible character of degree 2 of some finite group if
and only if rQcpF q : F s ď 2.

(ii) F is the field of values of an irreducible character of degree 3 of some finite group if
and only if rQcpF q : F s P t1, 3u or F “ Qkp

?
5q for some k P Z` not divisible by 5.
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More than thirty years ago, Cram [Cra88] already proved, using Gajendragadkar-Isaacs’s
theory of p-special characters of p-solvable groups, that if χ P IrrpGq where G is solvable,
then rQcpχq : Qpχqs divides χp1q. This, unfortunately, no longer holds in arbitrary non-

solvable groups, as shown in the case χp1q “ 3 and Qpχq “ Qkp
?

5q of Theorem 1.1.
Theorem 1.1, however, seems to suggest the following. Here, the conductor of a character
χ is defined as cpχq :“ cpQpχqq.

Conjecture 1.2. Let G be a finite group and χ an irreducible character of G. Then

rQcpχq : Qpχqs ď χp1q.

It is pointed out to us by the referee that the extension-field degree rQcpχq : Qpχqs has
been called the cyclotomic deficiency of χ, a term coined by I. M. Isaacs.

Two remarks are in order. First, Conjecture 1.2 explains our initial observation on
quadratic fields of values. Assume that χ P IrrpGq with Qpχq “ Qp

?
kq, where k is a

square-free integer. Then it is expected that χp1q ě ϕp|k|q{2, where ϕ is Euler’s phi
function. (In fact, if k ı 1 pmod 4q, then χp1q ě ϕp4|k|q{2.) Secondly, by [FG72, Theorem
8] (see also [NT21, Theorem 2.2]), given any abelian extension F , there exists a (solvable)
group G of order cpF qrQcpF q : F s and χ P IrrpGq of degree χp1q “ rQcpF q : F s such that
Qpχq “ F . Therefore, the inequality is as tight as possible.

Some evidence in support of Conjecture 1.2 is provided in Sections 3 and 4, where we
verify it for the alternating groups and, respectively, the general linear and unitary groups.

When χ has odd degree, Conjecture 1.2 follows from a strengthened version of the cele-
brated McKay conjecture that includes the degree of the field extension Qcpχq{Qpχq. This
and some other related problems will be discussed in the final Section 5.

2. Characters of small degree

Given an abelian extension F of Q and a positive integer d, we are interested in finding
a solution χ (and the corresponding group) to the following system:

#

Qpχq “ F,

χp1q “ d.

Our notation is fairly standard and follows [Isa76, Nav18]. Recall that, for a character
χ, the field of values Qpχq of χ is the extension of Q generated by the set tχpgq : g P Gu.
The conductor cpχq of χ is the smallest positive integer such that Qpχq Ď Qcpχq - that is,
Qcpχq is the cyclotomic closure of Qpχq. For notational simplicity, sometimes we write

fpχq :“ rQcpχq : Qpχqs
to be the degree of the field extension Qcpχq{Qpχq. Therefore, fpχq measures how far the
field of values of χ is from its cyclotomic closure. When F is an abelian extension of Q, we
also use

fpF q :“ rQcpF q : F s,

where cpF q is the conductor of F .

Lemma 2.1. Let d P Z`. Then there exists a solvable group G and a rational-valued
character χ P IrrpGq such that χp1q “ d.
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Proof. The lemma is trivial if d “ 1. Using direct products of groups and (outer) tensor
products of characters if necessary, we may assume that d is a prime. As the symmetric
group S3 has a desired character of degree 2, we further assume that d is an odd prime. Then
the cyclic group A :“ Cd of order d, viewed as a subgroup of the linear group GLd´1p2q,
naturally acts on the pd´ 1q-dimensional vector space V over F2. The resulting semidirect
product V ¸ A then has a rational-valued irreducible character of degree d, namely any
character induced from a (linear) character of V that is not fixed by A. (Note that if G
is not required to be solvable, one can consider the Steinberg character of the linear group
PSL2pdq, which has degree d and is rational-valued for every prime d ě 5.) �

Theorem 2.2. Let F be an abelian extension of Q and d P Z`. Then there exists a solvable
group G and χ P IrrpGq such that χp1q “ d and Qpχq “ F if and only if rQcpF q : F s divides
d.

Proof. The only if implication is Cram’s theorem [Cra88]. For the reverse implication, write
e :“ rQcpF q : F s, and assume that e divides d. By Fein-Gordon’s result [FG72], there exists
a solvable group H of order e ¨ cpF q and ψ P IrrpHq of degree ψp1q “ e such that Qpψq “ F .
By Lemma 2.1, there is another solvable group K and ϕ P IrrpKq such that ϕp1q “ d{e
and Qpϕq “ Q. Now the direct product G :“ H ˆK and χ :“ ψ ˆ ϕ P IrrpGq fulfill the
requirement. �

Given two positive integers e and d such that e ď d, it is an interesting problem to
determine whether there is an irreducible character χ (of a certain group) such that χp1q “ d
and fpχq “ e. When e is not a divisor of d, the relevant groups must be non-solvable, and
it is hard to find a canonical construction. The answer is probably not ‘yes’ all the time.
For instance, we do not have an example of an irreducible character χ with χp1q “ 5 and
rQcpχq : Qpχqs “ 4.

Another problem we find interesting is to determine the distribution of the values of the
function

fpχq :“
rQcpχq : Qpχqs

χp1q

on all the irreducible characters of finite groups. Note that the linear group PSL2ppq with
p ” 1 mod 4 has an irreducible character χ of degree pp` 1q{2 and fields of values Qp?pq,
and so fpχq “ pp ´ 1q{pp ` 1q. Since there are infinitely many primes of the form 4k ` 1,
the values of f are dense on the interval p0, 1s. Again, we do not know if 4{5 is a value of
f .

The following consequence of Theorem 2.2 generalizes [NT21, Theorem 2.8] from odd-
degree characters to p1-degree characters.

Corollary 2.3. Let F be an abelian extension of Q. Then there exists a solvable group G
and χ P Irrp1pGq such that Qpχq “ F if and only if rQcpF q : F s is not divisible by p.

Theorem 2.4. Let F be an abelian extension of the rational numbers.

(i) If rQcpF q : F s ď 2 then there exists a finite group G and χ P IrrpGq such that Qpχq “ F
and χp1q “ 2.

(ii) If rQcpF q : F s P t1, 3u or F “ Qkp
?

5q for some k P Z` not divisible by 5, then there
exists a finite group G and χ P IrrpGq such that Qpχq “ F and χp1q “ 3.
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Proof. Let fpF q :“ rQcpF q : F s. We already mentioned a result of Fein and Gordon that,
given any abelian extension F , there exists a (solvable) group G of order cpF qfpF q and
χ P IrrpGq of degree χp1q “ fpF q such that Qpχq “ F . This and Lemma 2.1 prove assertion
(i) and the part fpF q P t1, 3u of (ii).

So we suppose that F “ Qkp
?

5q for some k P Z` not divisible by 5, in which case
fpF q “ 2. Note then that, by Cram’s result, there is no solvable group G having an
irreducible character χ such that Qpχq “ F and χp1q “ 3, and therefore we have to search
among non-solvable groups.

In fact, the alternating group A5 has an irreducible character, say α, such that αp1q “ 3
and Qpαq “ Qp

?
5q. Now let G :“ A5ˆCk – the direct product of A5 and the cyclic group of

order k. Let β P IrrpCkq of order k and consider χ :“ αˆβ P IrrpGq. Then χp1q “ αp1q “ 3
and Qpχq “ Qpα, βq “ Qkp

?
5q “ F , as desired. �

Lemma 2.5. Let H ă G, χ P IrrpGq and ψ P IrrpHq such that χ “ ψG. Then Qpψq Ď Qpχq
and rQpψq : Qpχqs ď |G : H|.

Proof. The fact that Qpψq Ď Qpχq follows from the induction character formula. Let
σ P GalpQpψq{Qpχqq. Then σ fixes χH and rχH , ψ

σs “ rpχHq
σ, ψσs “ rχH , ψs

σ “ rχH , ψs.
Thus the Galois GalpQpψq{Qpχqq-conjugates of ψ are irreducible constituents of χH . Note
that no nontrivial automorphisms in GalpQpψq{Qpχqq fix ψ. Hence there are precisely
|GalpQpψq{Qpχqq| “ rQpψq : Qpχqs different GalpQpψq{Qpχqq-conjugates of ψ among those
constituents. These conjugates all have the same degree as ψ. We deduce that

χp1q ě rQpψq : Qpχqsψp1q.
Since χp1q “ |G : H|ψp1q, the lemma follows. �

Lemma 2.6. Let G be a finite group and χ an irreducible monomial character of G. Then
rQcpχq : Qpχqs ď χp1q. In particular, Conjecture 1.2 holds for non-primitive characters of
prime degree.

Proof. We have χ “ λG, where λ is a linear character of some (not necessarily proper)
subgroup H of G. Since Qpχq Ď Qpλq and Qpλq is a full cyclotomic field, we have Qcpχq Ď

Qpλq. It follows that rQcpχq : Qpχqs divides rQpλq : Qpχqs, and thus rQcpχq : Qpχqs ď |G : H|
by Lemma 2.5. The first statement of the lemma follows immediately.

For the second part, note that a non-primitive character of G of prime degree must
be induced from a linear character of some subgroup of G, and therefore is automatically
monomial. �

The following easy observation might be useful in the future.

Theorem 2.7. Conjecture 1.2 is true if it holds whenever the character χ is primitive.

Proof. Assume that χ is a non-primitive irreducible character of a finite group G. Then
χ “ ψG for some primitive character ψ P IrrpHq, where H is a proper subgroup of G
(see [Isa76, Theorem 5.8]). Clearly cpχq ď cpψq. Since the conjecture holds for primitive
characters, we have rQcpψq : Qpψqs ď ψp1q. By Lemma 2.5, rQpψq : Qpχqs ď |G : H|. It
then follows that

rQcpχq : Qpχqs ď rQcpψq : QpψqsrQpψq : Qpχqs ď ψp1q|G : H| “ χp1q,
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as desired. �

Theorem 2.8. Let G be a finite group and let χ P IrrpGq with χp1q ď 3. Then we
have rQcpχq : Qpχqs ď χp1q. Furthermore, if χp1q “ 3 and rQcpχq : Qpχqs “ 2, then

Qpχq “ Qkp
?

5q for some k P Z` not divisible by 5.

Proof. As before, we write fpχq :“ rQcpχq : Qpχqs. First we observe that the degree, the
field of values, and the conductor of χ are all unchanged if χ is viewed as a character
G{Kerpχq. Therefore without loss we may assume that χ is faithful. We also may assume
that χp1q P t2, 3u. In particular, χ has prime degree and the first part of the theorem is
done if χ is non-primitive, by Lemma 2.6.

We will prove that the hypothesis of the second part does not occur in the case χ being
non-primitive. Assume so. Then χ “ λG, where λ is a nontrivial linear character of a
subgroup H ď G of index 3. Also, Qpχq Ď Qpλq, Qpλq is a full cyclotomic field, and
rQpλq : Qpχqs ď |G : H| “ 3 by Lemma 2.5. On the other hand, fpχq “ rQcpχq : Qpχqs “ 2
by the hypothesis, and so we must have Qpλq “ Qcpχq. Therefore,

χH “ λ` λσ ` µ,

where σ is the nontrivial automorphism of GalpQpλq{Qpχqq and µ P IrrpHq is of necessarily
degree 1. Moreover, µ R tλ, λσu because otherwise χp1q ě 4 (note that λ and λσ appears in
χH with the same multiplicity). But then χ “ µG, and by the same reasoning, we would
have Qpµq “ Qcpχq “ Qpλq, and thus the order-2 group GalpQpλq{Qpχqq permutes the three
constituents of χH with no fixed points. This is a contradiction.

We may now assume that χ is primitive. Note that we are also done if G is solvable
by Theorem 2.2. In summary, it is sufficient to assume that G is a non-solvable primitive
linear group of degree 2 or 3. By the classification of the primitive linear groups of these
degrees (see [Bli17, Chapter V, Section 81]), we have

S :“ G{ZpGq – A5,A6, or PSL2p7q.

Let M be a minimal member (in terms of inclusion) among all the non-solvable normal
subgroups of G. We note that M is perfect and is contained in the last term of the derived
series of G. Write Z :“ ZpGq. We claim that G “ MZ is a central product with a
central amalgamated subgroup ZpMq “MXZ. First, as G{Z is simple, M is non-solvable,
and Z is central in G, it is clear that G “ MZ is a central product. We then have
M{pM XZq –MZ{Z “ G{Z is simple. It follows that M XZ “ ZpMq and indeed M is a
perfect central cover of S.

Write A :“ ZpMq “M XZ. For each λ P IrrpAq, there exists a bijective correspondence

IrrpM | λq ˆ IrrpZ | λq Ñ IrrpG | λq

such that if pα, βq corresponds to χ, then χp1q “ αp1qβp1q “ αp1q (see, for instance,
[Nav18, Theorem 10.7]). Furthermore, χpxzq “ αpxqβpzq for every x P M and z P Z, so
that Qpχq “ Qpα, βq. In particular, cpχq “ lcmpcpαq, cpβqq. Note that β P IrrpZq is linear



6 N.N. HUNG AND P. H. TIEP

and Qpβq “ Qcpβq. All together, we have

rQcpχq : Qpχqs “ rQcpχq : Qpα, βqs
“ rQcpαqQpα, βq : Qpα, βqs
“ rQcpαq : pQcpαq XQpα, βqqs
ď rQcpαq : Qpαqs,

where the third equality is due to the natural irrationality. (The last inequality is indeed a
divisibility.) For the first statement of the theorem, we in fact have reduced from χ P IrrpGq
to α P IrrpMq, where M is a perfect central cover of A5,A6 or PSL2p7q. The required
inequality for α then can be verified by direct inspection of the character tables of the
relevant groups available in [Atl]. In fact, if α is a non-rational character in consideration,
then either Qpαq “ Qp

?
5q or Qpαq “ Qp

?
7q, where the latter case occurs only when α is

one of the two irreducible characters of degree 3 of PSL2p7q.
Now assume that χp1q “ 3 and fpχq “ 2 (and χ is still primitive as in the preceding

paragraph). Then αp1q “ 3 and fpαq is divisible by 2. This happens only when M is a
cover of A5, so that M P tA5, SL2p5qu, or M is the triple cover of A6. In both instances,
we have Qpαq “ Qp

?
5q and so cpαq “ 5. If cpβq is divisible by 5 then Qpχq would be the

full cyclotomic field Qpβq, which is not the case. Hence k :“ cpβq is coprime to 5, and so
Qpχq “ Qpα, βq “ Qkp

?
5q. The proof is complete. �

Theorem 1.1 readily follows from Theorems 2.4 and 2.8.

3. Alternating groups

In this section we establish Conjecture 1.2 for alternating groups An, see Theorem 3.2.
Note that, since characters of symmetric groups Sn are all rational-valued, the conjecture
for Sn is a triviality.

We recall some needed background of the representation theory of Sn, as well as An,
and we refer the reader to [JK81] for further details. There is a one-to-one correspondence
between the irreducible characters of Sn and the partitions of n. Let λ be a partition of n.
The Young diagram corresponding to λ, denoted by Yλ, is the finite subset of N ˆ N such
that

pi, jq P Yλ if and only if i ď λj .

The conjugate partition of λ, denoted by λ, is the partition whose associated Young diagram
is obtained from Yλ by reflecting it about the line y “ x. So λ “ λ if and only if Yλ is
symmetric and in that case we say that λ is self-conjugate.

For each node pi, jq P Yλ, the hook length hλpi, jq is the number of nodes that are directly
above it, directly to the right of it, or equal to it:

hλpi, jq :“ 1` λj ` λi ´ i´ j.

Let χλ denote the irreducible character of Sn corresponding to λ. The irreducible charac-
ters of An can be obtained by restricting those of Sn to An. More specifically, the restrictions
of both χλ and χλ are irreducible if λ is not self-conjugate, and such restriction χλ splits

into two different irreducible characters of An, say χ`λ and χ´λ , of the same degree if λ
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is self-conjugate. Recall that irreducible characters of Sn are rational-valued. Therefore
members of IrrpAnq that are restrictions of those in IrrpSnq trivially satisfy Conjecture 1.2.

We therefore assume that λ is a self-conjugate partition of n and focus on characters of
the form χ˘λ .

Write hλpiq :“ hλpi, iq - the hook length at the position pi, iq in the main diagonal of Yλ,
and consider the partition

hpλq :“ phλp1q, hλp2q, ..., hλpkqq,

of n, where k is the length of the main diagonal of the Young diagram Yλ. Let Chpλq denotes
the conjugacy class of Sn whose cycle partition is exactly hpλq. Note that all the parts of
hpλq are pairwise different and odd, and thus Chpλq splits into two An-classes of equal size,

say C`hpλq and C´hpλq.

Lemma 3.1. Let λ be a self-conjugate partition of n P Zě3 and k the length of the main
diagonal of the Young diagram Yλ. Then

Qpχ˘λ q “ Q

¨

˝

d

ź

1ďiďk;3ďhλpiq

εhλpiqhλpiq

˛

‚,

where, for an odd integer a ą 1, εa “ p´1qpa´1q{2. In particular, if χ :“ χ˘λ then

rQcpχq : Qpχqs ď
1

2

ź

1ďiďk;3ďhλpiq

phλpiq ´ 1q.

Proof. The values of χ˘λ are well-known, see [JK81, Lemmas 2.5.12 and 2.5.13] for instance,
as follows.

(i) χλpChpλqq “ p´1qpn´kq{2,

(ii) χ˘λ pC
`

hpλqq “
1
2

ˆ

χλpChpλqq ˘
b

χλpChpλqq
śk
i“1 hλpiq

˙

and

χ˘λ pC
´

hpλqq “
1
2

ˆ

χλpChpλqq ¯
b

χλpChpλqq
śk
i“1 hλpiq

˙

for a suitable labeling of χ`λ

and χ´λ ,

(iii) χ˘λ pCq “ χλpCq{2 for any class C different from C˘hpλq.

(Here, we write χpCq for the value of χ at any element in the conjugacy class C.) Note

that n ´ k “
řk
i“1phλpiq ´ 1q, and hence χλpChpλqq “ p´1qpn´kq{2 “

śk
i“1 εhλpiq. The first

statement of the lemma immediately follows.
To prove the second part, let p1, p2, ..., pt be the primes that occur with odd exponent in

the prime factorization of
ś

1ďiďk;3ďhλpiq
εhλpiqhλpiq. Recall that all of hλpiqs are odd, and

so are the pis. Now

Q

¨

˝

d

ź

1ďiďk;3ďhλpiq

εhλpiqhλpiq

˛

‚“ Q

¨

˝

d

ź

1ďiďt

εpipi

˛

‚.
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It is well-known from the quadratic Gauss sum that cp
?
εpipiq “ pi. We therefore deduce

that

cpχq “
ź

1ďiďt

pi,

which yields

rQcpχq : Qs ď
ź

1ďiďt

ppi ´ 1q.

It is clear that
ś

1ďiďtppi ´ 1q ď
ś

1ďiďk;3ďhλpiq
phλpiq ´ 1q, and the proof is complete. �

Theorem 3.2. For every irreducible character χ P IrrpAnq with n P Z`, we have rQcpχq :
Qpχqs ď χp1q.

Proof. As already mentioned, it suffices to prove the statement for those characters of the
form χ˘λ , where λ is a self-conjugate partition of n. In view of Lemma 3.1, we wish to show
that

χλp1q ě
ź

1ďiďk;3ďhλpiq

phλpiq ´ 1q,

where χλ is the character of Sn corresponding to the partition λ, of degree χλ “ 2χ˘λ p1q.
For notational convenience, we write hi :“ hλpiq from now on.

First consider the case that k “ 1 (which implies that n must be odd), i.e., λ “

pλ1, 1, 1, ...q. Then

χλp1q “
n!

n ¨ pppn´ 1q{2q!q2
“
pn´ 1q ¨ ¨ ¨ ppn` 1q{2q

pn´ 1q{2q!
,

which can be easily shown to be at least n´ 1 “ h1 ´ 1, as desired.
So suppose that k ą 1. Consider

µ :“ pλ2 ´ 1, λ3 ´ 1, ...q,

so that µ is still self-conjugate and the Young diagram Yµ corresponding to µ can be
obtained from that of λ by removing the entire (largest) hook at the position p1, 1q. By the
hook length formula [FRT54],

χλp1q “
npn´ 1q ¨ ¨ ¨ pn´ h1 ` 1q

h1 ¨
ś

2ďiďλ1
phλpi, 1qq2

¨ χµp1q,

where χµ P IrrpSn´h1q. (Here, we note that h1 “ 2λ1´1 and
ś

2ďiďλ1
hλpi, 1q is simply the

product of all the hook lengths of λ on the horizontal arm of the largest hook, not counting
the position p1, 1q. Note also that the hook lengths on the vertical arm are exactly the
same as those on the horizontal arm, due to the symmetrical feature of the Young diagram
Yλ.) By induction on n, we just need to prove that

npn´ 1q ¨ ¨ ¨ pn´ h1 ` 1q

h1 ¨
ś

2ďiďλ1
phλpi, 1qq2

ě h1 ´ 1.

If λ2 ă λ1 then hλpλ1, 1q “ 1, and one easily sees that the left side is at least n, and the
inequality follows. Thus we may assume that λ2 “ λ1. Then n ě h1 ` h2 “ 2h1 ´ 2, and
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so n´ h1 ` 1 ě h1 ´ 1. The desired inequality is now reduced to

npn´ 1q ¨ ¨ ¨ pn´ h1 ` 2q ě h1 ¨
ź

2ďiďλ1

phλpi, 1qq
2.

Observe that the Young diagram Yλ contains all the nodes pi, jq with 1 ď i, j ď hλpλ1, 1q,
we have

n ě phλpλ1, 1qq
2

(with equality when Yλ is a square). Therefore, we wish to establish

pn´ 1q ¨ ¨ ¨ pn´ h1 ` 2q ě h1 ¨
ź

2ďiďλ1´1

phλpi, 1qq
2,

where the product
ś

2ďiďλ1´1
phλpi, 1qq

2 is assumes to be 1 if λ1 ď 2. This turns out to
be clear since the number of terms on both sides are the same (h1 ´ 2 “ 2λ1 ´ 3) and the
smallest term, namely n´ h1` 2, on the left-hand side is at least the largest term, namely
h1, on the right-hand side. �

4. Linear and unitary groups

In this section we verify Conjecture 1.2 for general linear and unitary groups.
We will use the notation G “ Gn “ GLεnpqq, with ε “ ˘ and q any prime power,

where GL` stands for GL and GL´ stands for GU. We can identify the dual group G˚

with G “ GLεnpqq and use Lusztig’s classification of complex characters of G, see [Car85],
[DM91]. If s P G is a semisimple element, then EpG, psqq denotes the rational series of
irreducible characters of G labeled by the G-conjugacy class of s. For any semisimple
s P G, we can decompose V “ V 0 ‘ V 1 as direct (orthogonal if ε “ ´) sum of s-invariant
subspaces, where V 0 “ ‘δPµq´ε1Vδ, s acts on Vδ as δ ¨ 1Vδ , and no eigenvalue of s1 :“ s|V 1

belongs to

µq´ε1 :“ tx P Fˆ
q2
| xq´ε1 “ 1u.

Then

CGpsq “
ź

δPµq´ε1

GLεpVδq ˆCGLεpV 1qps
1q.

Correspondingly, any unipotent character ψ of CGpsq can be written in the form

(4.1) ψ “ bδPµq´ε1ψ
γδ b ψ1,

where ψγδ is the unipotent character of GLεpVδq labeled by a partition γδ of dimFQ Vδ, and

ψ1 is a unipotent character of CGLεpV 1qps
1q. If Vδ “ 0, then we view γδ as the partition p0q

of 0.
Fix an embedding of F̄ˆ into Cˆ. Then one can identify ZpCGpsqq with

HompCGpsq{rCGpsq,CGpsqs,Cˆq

as in [FS82, (1.16)], and the linear character of CGpsq corresponding to s will be denoted
by ŝ. In particular, the element s and the linear character ŝ have the same order, and hence

(4.2) Qpŝq “ Q|s|.
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Now, the irreducible character χ of G labeled by s and the unipotent character ψ is

(4.3) χ “ ˘RGCGpsqpŝψq,

see [FS82, p. 116].
Let G “ GLnpFpq and let F denote the Frobenius endomorphism

X “ pxijq ÞÑ Xpqq :“ pxqijq

or F : X ÞÑ
`

tXpqq
˘´1

, so that GF – GLnpqq, respectively GUnpqq. Following [FS82,
§1], we will always fix an F -stable maximal torus T1 consisting of diagonal matrices, so
that |T F

1 | “ pq ´ 1qn, respectively pq ` 1qn. Then the GF -conjugacy classes of maximal
tori in G are parametrized by conjugacy classes in the Weyl group W “ NGpT1q{T1 – Sn.
Furthermore, the unipotent characters of GF are parametrized by the irreducible characters
λ of W , which in turn are parametrized by partitions λ $ n. For w P W , let Tw denote
an F -stable maximal torus of G corresponding to the W -conjugacy class of w. Then, for
any λ P IrrpW q labeled by λ $ n, the corresponding unipotent character ψλ “ ψλ of GF is
given by

(4.4) ψλ “
aλ
|W |

ÿ

wPW

λpwqRG
Twp1T Fw q

for some aλ “ ˘1, see [FS82, (1.13)]. The same construction extends to direct products
of groups of type GL, equipped with Frobenius endomorphisms stabilizing each factor, in
particular to F -stable Levi subgroups of GLn.

As before, we can identity the dual group G˚ of G “ GF with G. For any semisimple
element s P G,

L :“ CGpsq “ G1 ˆ G2 ˆ . . .ˆ Gm,
and likewise the Weyl group

WL – Sn1 ˆ Sn2 ˆ . . .ˆ Snm
of L is a direct product of symmetric groups. Hence, any unipotent character ψµ of CGpsq is
labeled by an irreducible character µ P IrrpWLq, as described in (4.4). Recall that any such
µ is rational-valued. For w P WL, let Tw denote an F -stable maximal torus of L “ CGpsq
corresponding to the WL-conjugacy class of w. Then, according to [FS82, (1.18)] we have
that

(4.5) χs,µ “
as,µ
|WL|

ÿ

wPWL

µpwqRG
Twpŝ|T Fw q

for some as,µ “ ˘1, where the linear character ŝ of CGpsq is introduced before (4.3). Now,
(4.2), (4.5), and the formula for Lusztig induction [DM91, Proposition 12.2] shows that

Qpχs,µq Ď Q|s|.

In particlular, for χ “ χs,µ we have cpχq divides |s|.
Now we can prove

Theorem 4.1. Conjecture 1.2 holds for G “ GLnpqq and G “ GUnpqq with n ě 5.
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Proof. In the notation of the above discussion, we have shown that cpχq divides |s| for
χ “ χs,µ P IrrpGq. Decomposing the natural module for G into a direct sum of (pairwise
orthogonal and non-degenerate, in the case G “ GUnpqq, g-invariant nonzero subspaces,
with as many summands as possible, one can see that there are integers n1, . . . , nm ě 1
and signs ε1, . . . , εm “ ˘1 (and εi “ 1 for all i if G “ GLnpqq, such that |s| divides
lcmm

i“1pq
ni ´ εiq. Now applying [GMPS15, Lemma 2.9] when ε “ ´, we obtain

|s| ď D :“
qn`1

pq ´ 1q gcdp2, q ´ 1q
,

whereas

|s| ď D :“ qn ´ 1

when ε “ `. Hence, to complete the verification of Conjecture 1.2 for G, it remains to
check it for χ with

(4.6) χp1q ă D.

As the result can be checked directly using [GAP] for G “ GU6p2q, we assume in addition
that G fl GU6p2q. Let θ be an irreducible constituent of χ|rG,Gs (note that S :“ rG,Gs –
SLεnpqq). Applying Theorems 3.1 and 4.1 of [TZ96] to θ, we see that, under the assumption
n ě 5, θ is either an irreducible Weil character, or 1S . In the former case, θ extends to
a Weil character of G. As G{S – Cq´ε is cyclic, χ itself is also a Weil character. The
character values of Weil characters of G are well-known, see e.g. [Tie15] and [TZ97], and
one readily checks that cpχq divides q´ ε, implying the conjecture for χ. In the latter case,
χ is a linear character of G{S, so Qcpχq “ Qpχq. �

Theorem 4.2. Conjecture 1.2 holds for G “ GLnpqq and G “ GUnpqq with n ď 4.

Proof. For smaller-rank groups, the rough bound for the order |s| of the semisimple element
s presented in the proof of Theorem 4.1 is not enough for our purpose. Instead, we examine
the detailed structure of the centralizer CGpsq and directly compare |s| with the degree
χp1q of the character χ “ χs,µ defined in (4.5). Recall the degree formula in Lusztig’s
parametrization of complex irreducible characters that

(4.7) χs,µp1q “ |G : CGpsq|p1ψ
µp1q,

where, as before, ψµ is the unipotent character of CGpsq labeled by µ and p is the defining
characteristic of G, see [DM91, Remark 13.24].

If s is central in G then CGpsq “ G and χs,µ is simply the product of a unipotent character
(which is rational-valued) and a linear character of G{rG,Gs (whose field of values is a full
cyclotomic field), in which case Qpχs,µq is cyclotomic. We therefore may assume that s is
not central, so that CGpsq is properly contained in G.

Let G “ GLnpqq. Then

CGpsq – GLk1pq
n1q ˆGLk2pq

n2q ˆ ¨ ¨ ¨ ,

where ni, ki P Z` and n “
ř

i niki (see, for instance, [Car81]). Clearly s belongs to
ZpCGpsqq, which is a direct product of cyclic groups of order qni ´ 1. It follows that

|s| ď lcmpqn1 ´ 1, qn2 ´ 1, ...q.
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Since n ď 4, there are only a few possibilities for nis and kis, and in each case, it is
straightforward to check that

lcmpqn1 ´ 1, qn2 ´ 1, ...q ď |G : CGpsq|p1 .

As noted earlier, cpχs,µq divides |s|. The formula 4.7 then implies that cpχs,µq ď χs,µp1q,
and the result follows.

Now let G “ GUnpqq. Then

CGpsq –
ź

i

GLkipq
2niq ˆ

ź

j

GUlj pq
2mj´1q,

where ni, ki,mj , lj P Z` and n “
ř

i 2niki `
ř

j ljp2mj ´ 1q, and thus

|s| ď lcmpq2n1 ´ 1, q2n2 ´ 1, ..., q2m1´1 ` 1, q2m2´1 ` 1, ...q.

Recall the assumption that s is not central in S, so pl1,m1q ‰ p4, 1q. A similar case-by-case
check as in the linear-group case then shows that |s| ď |G : CGpsq|p1 , and the result again
follows. �

5. Odd-degree characters and further discussion

We have seen the relevance of the invariant fpχq :“ rQcpχq : Qpχqs in the connection
between degrees and fields of values of characters. Let fpG, eq :“ |tχ P IrrpGq : fpχq “ eu|
and fpGq :“ maxetfpG, equ. A result of Moretó [Mor21] implies that there exists a real-
valued function h such that |G| ď hpfpGqq. We find it interesting to study the class of finite
groups G with fpGq “ |IrrpGq|; that is, fpχq “ 1 for all χ P IrrpGq or, equivalently, all the
irreducible characters of G have cyclotomic fields of values.

Problem 5.1. Describe the groups whose irreducible complex characters are all cyclotomic.

This class includes three important subclasses. The first is the obvious abelian groups.
The second is the odd-order p-groups (see [NT21, Theorem 2.3]). And the third is the well-
known rational groups - those having irreducible characters that are all rational-valued.
Though rational groups have been studied extensively in the literature (see [Gow76, FS89,
Tho08]), a complete understanding is still far from reach.

One may wonder if there is an element-level version of Conjecture 1.2.

Question 5.2. Let G be a finite group. Is it true that

rQcpQpχpgqqq : Qpχpgqqs ď χp1q

for every χ P IrrpGq and every g P G.

Question 5.2 is related to a problem in algebraic number theory that, unfortunately, we
do not have an answer at this time: for z “ ζ1 ` ζ2 ` ... ` ζk a sum of k (primitive) roots
of unity (of possibly different orders), is it true that rQcpzq : Qpzqs ď k, where cpzq is the
smallest positive integer such that z P Qcpzq.

As promised, we now offer a connection between Conjecture 1.2 and the well-known
McKay conjecture ([Nav18, Conjecture 9.1]) in the case of odd-degree characters.

As usual let Irr21pGq denote the set of all odd-degree irreducible characters of G. Let
P P Syl2pGq. The McKay conjecture asserts that the two sets Irr21pGq and Irr21pNGpP qq
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have the same cardinality. Recall our earlier notation fpχq :“ rQcpχq : Qpχqs. We have not
found a counter example to the following:

Question 5.3. Let G be a finite group and P P Syl2pGq. Is it true that there always exists
a bijection

˚ : Irr21pGq Ñ Irr21pNGpP qq

such that

(5.1)
fpχq

χp1q
ď

fpχ˚q

χ˚p1q

for every χ P Irr21pGq.

Of course one can ask the same question for primes other than 2. We focus on only p “ 2
because of the following.

Theorem 5.4. An affirmative answer to Question 5.3 implies Conjecture 1.2 for odd-degree
characters.

Proof. Note that NGpP q is solvable by Feit-Thompson’s odd-order theorem. Therefore, by
Theorem 2.2, fpχ˚q divides χ˚p1q, and the result follows. �

The additional condition (5.1) to the McKay bijection turns out to be satisfied in several
cases where the bijection is known to be natural/canonical.

If G is solvable, in [Isa73, Theorem 10.9], Isaacs constructed a natural one-to-one corre-
spondence ˚ : Irr21pGq Ñ Irr21pNGpP qq. This bijection can be shown to commute with the
the Galois automorphisms (in GalpQ|G|{Qq) and hence preserve the field of values of corre-
sponding characters. Moreover, χ˚p1q divides χp1q (see [Tur07, Riz19] for more discussion
on the degree divisibility in character correspondence). The extra condition is therefore
satisfied.

Question 5.3 also has an affirmative answer for alternating and symmetric groups. Let
G “ An or Sn with n ě 5. The existence of a natural McKay bijection is also well-known
in this case (see [Ols76]). It is also well-known that a 2-Sylow subgroup P P Syl2pGq is
self-normalizing, i.e., P “ NGpP q. Thus all the members of Irr21pNGpP qq “ Irr21pP q are
linear whose fields of values are cyclotomic. (Indeed, these linear characters are rational-
values, because P {P 1 is elementary abelian.) The condition fpχq{χp1q ď fpχ˚q{χ˚p1q is
then reduced to fpχq ď χp1q, which we have already established in Section 3.

Our work in Section 4 also confirms Question 5.3 in the cases G “ GLnpqq or GUnpqq
where 2 - q. As before we write G “ GLεnpqq for ε “ ˘ suitably. Then a canonical McKay
correspondence was constructed in [GKNT17, Theorem E]. More concretely, let

n “ 2t1 ` 2t2 ` ¨ ¨ ¨ 2tk

be the 2-adic expansion of n, and Pi P Syl2pGLε2ti pqqq, so that

P :“ P1 ˆ P2 ˆ ¨ ¨ ¨ ˆ Pk P Syl2pGq.

As each Pi is an irreducible subgroup of GLε2ti pqq, we have

NGpP q “ NGLε
2t1
pqqpP1q ˆNGLε

2t2
pqqpP2q ˆ ¨ ¨ ¨ ˆNGLε

2tk
pqqpPkq.
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It is well-known that NGLε
2ti
pqqpPiq “ O21pGLε2ti pqqq ˆ Pi, and therefore all the odd-degree

irreducible characters of NGpP q are linear. Inequality (5.1) is now reduced to fpχq ď χp1q,
which follows from Theorems 4.1 and 4.2.

Data Availability Statement: Results presented in this paper do not need any sup-
porting data.
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