DEGREES AND FIELDS OF VALUES
OF TRREDUCIBLE CHARACTERS

NGUYEN NGOC HUNG AND PHAM HUU TIEP

ABSTRACT. We completely describe all the possible fields of values of irreducible charac-
ters of degree up to 3 of finite groups. The obtained result points toward a rather surprising
connection between the field of values and the degree of an arbitrary irreducible character.

To the memory of Irina Suprunenko

1. INTRODUCTION

Let x be an irreducible (complex) character of a finite group G. It is clear that each
value of x is a sum of |G|-th roots of unity, and thus the field of values of y, denoted by
Q(x), is an abelian extension of the field Q of rational numbers. It is even true that, by
Brauer’s theorem, x can always be afforded by a representation with entries in the |G|-th
cyclotomic field. If x is linear, i.e., x is a homomorphism from G to the multiplicative
group of nonzero complex numbers C*, all the values {x(g) : ¢ € G} of x are roots of
unity, and therefore Q(x) is a full cyclotomic field. A naive question emerges: what abelian
extension of Q could be the field of values of an irreducible character of degree 27 While
we see several examples of degree-2 irreducible characters with fields of values Q(+/5) (in
SLy(5) for instance) and Q(vk) with |k| <3 (in C3 x S3,C3 x Qg, D1, . . .), it seems that
other quadratic fields only show up as fields of values of characters of degree at least 3.

In this paper we resolve the above question for characters of degree 2 and 3, see Section 2.
In what follows, the conductor ¢(F) of an abelian extension F of Q is the smallest n € Z*
such that F < Q, := Q(e*™/").

Theorem 1.1. Let F' be an abelian extension of the rational numbers.

(i) F is the field of values of an irreducible character of degree 2 of some finite group if
and only if [Qur) : F] < 2.

(ii) F' s the field of values of an irreducible character of degree 3 of some finite group if
and only if [Qur) : F] € {1,3} or F = Q(\/5) for some k € Z* not divisible by 5.
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More than thirty years ago, Cram | | already proved, using Gajendragadkar-Isaacs’s
theory of p-special characters of p-solvable groups, that if x € Irr(G) where G is solvable,
then [Qc(,) : Q(x)] divides x(1). This, unfortunately, no longer holds in arbitrary non-
solvable groups, as shown in the case x(1) = 3 and Q(x) = Qi(v/5) of Theorem 1.1.
Theorem 1.1, however, seems to suggest the following. Here, the conductor of a character
X is defined as ¢(x) := ¢(Q(x)).

Conjecture 1.2. Let G be a finite group and x an irreducible character of G. Then

It is pointed out to us by the referee that the extension-field degree [Q..) : Q(x)] has
been called the cyclotomic deficiency of y, a term coined by I. M. Isaacs.

Two remarks are in order. First, Conjecture 1.2 explains our initial observation on
quadratic fields of values. Assume that x € Irr(G) with Q(x) = Q(vk), where k is a
square-free integer. Then it is expected that x(1) > ¢(|k|)/2, where ¢ is Euler’s phi
function. (In fact, if £ % 1 (mod 4), then x(1) = p(4|k|)/2.) Secondly, by | , Theorem
8] (see also | , Theorem 2.2]), given any abelian extension F, there exists a (solvable)
group G of order ¢(F)[Qqp) : F] and x € Irr(G) of degree x(1) = [Qcpy : F] such that
Q(x) = F. Therefore, the inequality is as tight as possible.

Some evidence in support of Conjecture 1.2 is provided in Sections 3 and 4, where we
verify it for the alternating groups and, respectively, the general linear and unitary groups.

When x has odd degree, Conjecture 1.2 follows from a strengthened version of the cele-
brated McKay conjecture that includes the degree of the field extension Q.(,)/Q(x). This
and some other related problems will be discussed in the final Section 5.

2. CHARACTERS OF SMALL DEGREE

Given an abelian extension F' of Q and a positive integer d, we are interested in finding
a solution y (and the corresponding group) to the following system:

Qx) = F,
x(1) = d.

Our notation is fairly standard and follows [ ) ]. Recall that, for a character
X, the field of values Q(x) of x is the extension of Q generated by the set {x(g) : g € G}.
The conductor ¢(x) of x is the smallest positive integer such that Q(x) S Qc(y) - that is,
Qc(y) is the cyclotomic closure of Q(x). For notational simplicity, sometimes we write

£(x) 1= [Qery) * QX)]
to be the degree of the field extension Q.(,)/Q(x). Therefore, f(x) measures how far the
field of values of y is from its cyclotomic closure. When F' is an abelian extension of QQ, we
also use

£(F) == [Qep) : F,
where ¢(F) is the conductor of F.

Lemma 2.1. Let d € Z*. Then there exists a solvable group G and a rational-valued
character x € Irr(G) such that x(1) = d.
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Proof. The lemma is trivial if d = 1. Using direct products of groups and (outer) tensor
products of characters if necessary, we may assume that d is a prime. As the symmetric
group S3 has a desired character of degree 2, we further assume that d is an odd prime. Then
the cyclic group A := Cy of order d, viewed as a subgroup of the linear group GLg4_1(2),
naturally acts on the (d — 1)-dimensional vector space V' over Fy. The resulting semidirect
product V' x A then has a rational-valued irreducible character of degree d, namely any
character induced from a (linear) character of V' that is not fixed by A. (Note that if G
is not required to be solvable, one can consider the Steinberg character of the linear group
PSLa(d), which has degree d and is rational-valued for every prime d = 5.) O

Theorem 2.2. Let F be an abelian extension of Q and d € Z. Then there ewists a solvable
group G and x € Irr(G) such that x(1) = d and Q(x) = F if and only if [Qcpy : F] divides
d.

Proof. The only if implication is Cram’s theorem | |. For the reverse implication, write
e := [Qp) : F], and assume that e divides d. By Fein-Gordon’s result [ |, there exists
a solvable group H of order e-c(F) and ¢ € Irr(H) of degree ¥(1) = e such that Q(¢)) = F.
By Lemma 2.1, there is another solvable group K and ¢ € Irr(K) such that ¢(1) = d/e
and Q(¢) = Q. Now the direct product G := H x K and x := ¢ x ¢ € Irr(G) fulfill the
requirement. ]

Given two positive integers e and d such that e < d, it is an interesting problem to
determine whether there is an irreducible character x (of a certain group) such that x(1) = d
and f(x) = e. When e is not a divisor of d, the relevant groups must be non-solvable, and
it is hard to find a canonical construction. The answer is probably not ‘yes’ all the time.
For instance, we do not have an example of an irreducible character x with x(1) = 5 and

Another problem we find interesting is to determine the distribution of the values of the

function

on all the irreducible characters of finite groups. Note that the linear group PSLa(p) with
p = 1 mod 4 has an irreducible character x of degree (p + 1)/2 and fields of values Q(,/p),
and so f(x) = (p —1)/(p+ 1). Since there are infinitely many primes of the form 4k + 1,
the values of f are dense on the interval (0,1]. Again, we do not know if 4/5 is a value of
f

The following consequence of Theorem 2.2 generalizes | , Theorem 2.8] from odd-
degree characters to p’-degree characters.

Corollary 2.3. Let F' be an abelian extension of Q. Then there exists a solvable group G
and x € Irry (G) such that Q(x) = F if and only if [Qcpy : F] is not divisible by p.
Theorem 2.4. Let F' be an abelian extension of the rational numbers.
(1) If [Qcr) : F] < 2 then there exists a finite group G and x € Irr(G) such that Q(x) = F
and x(1) = 2.
(i) If [Qur) : F]1€{1,3} or F = Qi(V/5) for some k € Z* not divisible by 5, then there
exists a finite group G and x € Irt(G) such that Q(x) = F and x(1) = 3.
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Proof. Let £(F) := [Qg) : F']. We already mentioned a result of Fein and Gordon that,
given any abelian extension F', there exists a (solvable) group G of order ¢(F)f(F) and
X € Irr(G) of degree x(1) = f(F) such that Q(x) = F. This and Lemma 2.1 prove assertion
(i) and the part f(F') € {1,3} of (ii).

So we suppose that F' = Q(+/5) for some k € Z* not divisible by 5, in which case
f(F) = 2. Note then that, by Cram’s result, there is no solvable group G having an
irreducible character x such that Q(x) = F' and x(1) = 3, and therefore we have to search
among non-solvable groups.

In fact, the alternating group As has an irreducible character, say «, such that a(1) =3
and Q(a) = Q(+/5). Now let G := A5 x C}, — the direct product of A5 and the cyclic group of
order k. Let 8 € Irr(Cy) of order k and consider x := a x 8 € Irt(G). Then x(1) = (1) =3

and Q(x) = Q(«, B) = Qr(v/5) = F, as desired. O
Lemma 2.5. Let H < G, x € Irr(G) and ¢ € Irr(H) such that x = Y. Then Q(p) < Q(x)
and [Q(¥) : Q(x)] < |G : HI.

Proof. The fact that Q(¢)) < Q(x) follows from the induction character formula. Let

o € Gal(Q(1)/Q(x)). Then o fixes x and [x,v7] = [(x#)”,¥7] = [xu,¥]” = [xu,¥].
Thus the Galois Gal(Q(¢)/Q(x))-conjugates of 1 are irreducible constituents of x . Note

that no nontrivial automorphisms in Gal(Q(¢))/Q(x)) fix ¥. Hence there are precisely
1Gal(Q(¥)/Q())| = [Q() : Q(x)] different Gal(Q(1)/Q(x))-conjugates of  among those

constituents. These conjugates all have the same degree as ¢¥. We deduce that

x(1) = [Q(¥) : QM)]¥ (1)
Since x(1) = |G : H|9(1), the lemma follows. O

Lemma 2.6. Let G be a finite group and x an irreducible monomial character of G. Then
[Qcr) : Q)] < x(1). In particular, Conjecture 1.2 holds for non-primitive characters of
prime degree.

Proof. We have x = A%, where \ is a linear character of some (not necessarily proper)
subgroup H of G. Since Q(x) < Q()) and Q(A) is a full cyclotomic field, we have Qq(,) S
Q(A). It follows that [Qc(y) : Q(x)] divides [Q(A) : Q(x)], and thus [Qc(y) : Q(x)] < |G : H|
by Lemma 2.5. The first statement of the lemma follows immediately.

For the second part, note that a non-primitive character of G of prime degree must
be induced from a linear character of some subgroup of GG, and therefore is automatically
monomial. g

The following easy observation might be useful in the future.
Theorem 2.7. Conjecture 1.2 is true if it holds whenever the character x is primitive.

Proof. Assume that x is a non-primitive irreducible character of a finite group G. Then
x = ¥ for some primitive character ¢y € Irr(H), where H is a proper subgroup of G
(see [ , Theorem 5.8]). Clearly c(x) < ¢(). Since the conjecture holds for primitive
characters, we have [Qcy) : Q(¢0)] < ¥(1). By Lemma 2.5, [Q(¢)) : Q(x)] < |G : H|. Tt
then follows that

[Qe() : QU] < [Qeyy - QUNIIQ(Y) : Q)] < »(D)|G = H| = x(1),
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as desired. OJ

Theorem 2.8. Let G be a finite group and let x € Irr(G) with x(1) < 3. Then we
have [Qcyy + Q)] < x(1). Furthermore, if x(1) = 3 and [Qcy : Q(x)] = 2, then
Q(x) = Qr(v/5) for some k € Z* not divisible by 5.

Proof. As before, we write f(x) := [Q(y) : Q(x)]. First we observe that the degree, the
field of values, and the conductor of x are all unchanged if y is viewed as a character
G/Ker(x). Therefore without loss we may assume that x is faithful. We also may assume
that x(1) € {2,3}. In particular, x has prime degree and the first part of the theorem is
done if y is non-primitive, by Lemma 2.6.

We will prove that the hypothesis of the second part does not occur in the case x being
non-primitive. Assume so. Then y = A%, where \ is a nontrivial linear character of a
subgroup H < G of index 3. Also, Q(x) < Q(A), Q()) is a full cyclotomic field, and
[Q(N\) : Q(x)] < |G : H| = 3 by Lemma 2.5. On the other hand, f(x) = [Q.¢) : Q(x)] = 2
by the hypothesis, and so we must have Q( ) = Qc(y)- Therefore,

X =X+ +p,

where o is the nontrivial automorphism of Gal(Q(\)/Q(x)) and p € Irr(H ) is of necessarily
degree 1. Moreover, u ¢ {\, A7} because otherwise x(1) > 4 (note that A and A appears in
Xz with the same multiplicity). But then y = &, and by the same reasoning, we would
have Q(u) = Qc(y) = Q()), and thus the order-2 group Gal(Q(A)/Q(x)) permutes the three
constituents of xz with no fixed points. This is a contradiction.

We may now assume that y is primitive. Note that we are also done if G is solvable
by Theorem 2.2. In summary, it is sufficient to assume that G is a non-solvable primitive
linear group of degree 2 or 3. By the classification of the primitive linear groups of these
degrees (see | , Chapter V, Section 81]), we have

S = G/Z(G) = A5,A6, or PSL2(7).

Let M be a minimal member (in terms of inclusion) among all the non-solvable normal
subgroups of G. We note that M is perfect and is contained in the last term of the derived
series of G. Write Z := Z(G). We claim that G = MZ is a central product with a
central amalgamated subgroup Z(M) = M n Z. First, as G/Z is simple, M is non-solvable,
and Z is central in G, it is clear that G = MZ is a central product. We then have
M/MnZ)=~MZ/Z = G/Z is simple. It follows that M n Z = Z(M) and indeed M is a
perfect central cover of S.

Write A :=Z(M) = M n Z. For each A € Irr(A), there exists a bijective correspondence

Ir(M | A) x Irr(Z | A) = Irr(G | A)
such that if («, ) corresponds to y, then x(1) = a(1)8(1) = a(l) (see, for instance,

[ , Theorem 10.7]). Furthermore, x(zz) = a(x)B(z) for every z € M and z € Z, so
that Q(x) = Q(«, 8). In particular, ¢(x) = lem(c(a), ¢(B)). Note that € Irr(Z) is linear
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and Q(8) = Q). All together, we have

[Qe(r) : Q)] = [Qe(y) : Qlev, B)]
= [Qc(a)Q(e, B) : Q(a, B)]
= [Qea) * (Qc(a) N Qev, )]
< [Qca) 1 Q)]

where the third equality is due to the natural irrationality. (The last inequality is indeed a
divisibility.) For the first statement of the theorem, we in fact have reduced from x € Irr(G)
to o € Irr(M), where M is a perfect central cover of Az, Ag or PSLa(7). The required
inequality for « then can be verified by direct inspection of the character tables of the
relevant groups available in [Atl]. In fact, if « is a non-rational character in consideration,
then either Q(a) = Q(+/5) or Q(a) = Q(/7), where the latter case occurs only when « is
one of the two irreducible characters of degree 3 of PSLa(7).

Now assume that x(1) = 3 and f(x) = 2 (and yx is still primitive as in the preceding
paragraph). Then a(1) = 3 and f(«) is divisible by 2. This happens only when M is a
cover of As, so that M € {As,SLa(5)}, or M is the triple cover of Ag. In both instances,
we have Q(a) = Q(+v/5) and so c¢(a) = 5. If ¢(f) is divisible by 5 then Q() would be the
full cyclotomic field Q(/3), which is not the case. Hence k := ¢(3) is coprime to 5, and so

Q(x) = Q(a,B) = Qk(\/g). The proof is complete. 0

Theorem 1.1 readily follows from Theorems 2.4 and 2.8.

3. ALTERNATING GROUPS

In this section we establish Conjecture 1.2 for alternating groups A,, see Theorem 3.2.
Note that, since characters of symmetric groups S, are all rational-valued, the conjecture
for S, is a triviality.

We recall some needed background of the representation theory of S,,, as well as A,,
and we refer the reader to | | for further details. There is a one-to-one correspondence
between the irreducible characters of S,, and the partitions of n. Let X\ be a partition of n.
The Young diagram corresponding to A, denoted by Y}, is the finite subset of N x N such
that

(1,7) € Yy if and only if i < A;.

The conjugate partition of A, denoted by ), is the partition whose associated Young diagram
is obtained from Yy by reflecting it about the line y = x. So A = X if and only if Y} is
symmetric and in that case we say that A is self-conjugate.

For each node (i, j) € Yy, the hook length hy (i, j) is the number of nodes that are directly
above it, directly to the right of it, or equal to it:

ha(i,3) i= 1+ Xj + X\ —i — J.

Let x denote the irreducible character of S,, corresponding to A. The irreducible charac-
ters of A, can be obtained by restricting those of S,, to A,,. More specifically, the restrictions
of both x) and x5 are irreducible if A is not self-conjugate, and such restriction yx splits
into two different irreducible characters of A, say X;\” and x,, of the same degree if A
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is self-conjugate. Recall that irreducible characters of S,, are rational-valued. Therefore
members of Irr(A,,) that are restrictions of those in Irr(S,,) trivially satisfy Conjecture 1.2.
We therefore assume that A is a self-conjugate partition of n and focus on characters of
the form Xf
Write hy (i) := hy(7,7) - the hook length at the position (¢,) in the main diagonal of Y},
and consider the partition

h(A) := (hx(1), ha(2), ..., ha(k)),

of n, where k is the length of the main diagonal of the Young diagram Y). Let Cjy) denotes
the conjugacy class of S,, whose cycle partition is exactly h(A). Note that all the parts of
h(\) are pairwise different and odd, and thus Cj,(y) splits into two Aj-classes of equal size,

say C’,J[(A) and Ch()\).

Lemma 3.1. Let A be a self-conjugate partition of n € Z=% and k the length of the main
diagonal of the Young diagram Y. Then

Qxy) =Q H ny(i)Pa(@) |,

1<i<k;3<hy (4)

where, for an odd integer a > 1, ¢, = (—1)(“_1)/2. In particular, if x 1= X;\—r then

1
Qe : QT < 5 (i) ~ 1)
1<i<k;3<hy (1)
Proof. The values of Xf are well-known, see | , Lemmas 2.5.12 and 2.5.13] for instance,
as follows.
(i) XA(Chny) = (=1)=R2,
() 6 (Cf) =  (10(Caow) %y G T @) ) e
x;\—r(C];(/\)) (XA Chon) F \/XA (Chov 1 ha(i )> for a suitable labeling of x
and x,,
(ili) x3(C) = xA(C)/2 for any class C different from C’fm.

(Here, we write x(C') for the value of y at any element in the conjugacy class C.) Note
that n — k = Zf;l(hA(z’) — 1), and hence xx(Ch(y)) = (=1)(n=k)/2 = ]_[le €hy(i)- Lhe first
statement of the lemma immediately follows.

To prove the second part, let pi,po, ..., p; be the primes that occur with odd exponent in
the prime factorization of [];;<p.3<p, (1) €ns(i)ha(é). Recall that all of hy(i)s are odd, and
so are the p;s. Now

Q [T enom@®]|=Qf /] wr
1<i<k;3<hy (4) 1<i<t
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It is well-known from the quadratic Gauss sum that c(,/€p,pi) = pi. We therefore deduce

that
C(X) = H Di,

1<i<t
which yields
1<i<t

It is clear that [ [, o;<,(pi — 1) < [ li<ichz<n, (i) (ha(é) — 1), and the proof is complete. [

7

Theorem 3.2. For every irreducible character x € Irr(A,) with n € 77, we have [Qg)

Q)] < x(1).

Proof. As already mentioned, it suffices to prove the statement for those characters of the
form Xj\—r, where A is a self-conjugate partition of n. In view of Lemma 3.1, we wish to show
that

(1) = [T  (m@-1),

1<i<k;3<hy (4)

where ) is the character of S,, corresponding to the partition A, of degree x) = 2xj\£(1).
For notational convenience, we write h; := h)(i) from now on.
First consider the case that & = 1 (which implies that n must be odd), i.e., A =
()\1, ]_, 1, ) Then
n! n—=1)---((n+1)/2)
X)\(l) = 5 = )
n-(((n—1)/2)!) (n—1)/2)!
which can be easily shown to be at least n — 1 = h; — 1, as desired.
So suppose that £ > 1. Consider

o= ()\2 - 1,)\3 - 1, ),

so that p is still self-conjugate and the Young diagram Y, corresponding to p can be
obtained from that of A by removing the entire (largest) hook at the position (1,1). By the
hook length formula [ I,

nn—1)---(n—hy +1)

(1) = L ),

hy - H2<i<>\1 (ha(i,1))? g
where x,, € Irr(S;,—p, ). (Here, we note that hy = 2A\1 — 1 and [ [o;<y, ha(4, 1) is simply the
product of all the hook lengths of A on the horizontal arm of the largest hook, not counting
the position (1,1). Note also that the hook lengths on the vertical arm are exactly the
same as those on the horizontal arm, due to the symmetrical feature of the Young diagram
Y).) By induction on n, we just need to prove that

nn—1)---(n—hy +1)
. = h; — 1.
hy - H2<i<>\1 (hk(za 1))2

If Ay < A\ then hy(A1,1) = 1, and one easily sees that the left side is at least n, and the
inequality follows. Thus we may assume that Ao = A\;. Then n > hq + ho = 2h1 — 2, and
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son —h; + 1= hy — 1. The desired inequality is now reduced to

nn=1)-(n—h+2)=h- [[ (a(i.1)%
2<i<\
Observe that the Young diagram Y) contains all the nodes (i,7) with 1 < i,7 < hy(A1,1),
we have

n = (ha(A, 1))

(with equality when Y) is a square). Therefore, we wish to establish

(n—1)(n—h+2)=h- [] (h(,1)?

2<i<A1 —1

where the product [[yc;cy,1(Aa(3, 1))? is assumes to be 1 if A\; < 2. This turns out to
be clear since the number of terms on both sides are the same (h; — 2 = 2A\; — 3) and the
smallest term, namely n — h; + 2, on the left-hand side is at least the largest term, namely
h1, on the right-hand side. ([l

4. LINEAR AND UNITARY GROUPS

In this section we verify Conjecture 1.2 for general linear and unitary groups.

We will use the notation G = G, = GL{(q), with ¢ = + and ¢ any prime power,
where GL* stands for GL and GL~ stands for GU. We can identify the dual group G*
with G = GL{,(¢) and use Lusztig’s classification of complex characters of G, see [ ],
[ |. If s € G is a semisimple element, then £(G, (s)) denotes the rational series of
irreducible characters of G labeled by the G-conjugacy class of s. For any semisimple
s € G, we can decompose V = VO @ V! as direct (orthogonal if € = —) sum of s-invariant
subspaces, where V9 = ®sepy_1 Vs, s acts on Vs as - 1y, and no eigenvalue of st = sl
belongs to

Hg—e1 :={z € IF; | 297 = 1}.

Then
Cal(s) = H GL(V5) x Cgreyny(s').

66#«1—51

Correspondingly, any unipotent character 1) of Cg(s) can be written in the form
(4.1) Y = Ksep,_ ¥ X,

where 75 is the unipotent character of GL¢(Vy) labeled by a partition -~ of dimp,, V5, and
11 is a unipotent character of CGLe(Vl)(sl). If V5 = 0, then we view -, as the partition (0)
of 0.
Fix an embedding of F* into C*. Then one can identify Z(Cg(s)) with
Hom(Cg(s)/[Ca(s), Cals)], C*)

as in [ , (1.16)], and the linear character of Cg(s) corresponding to s will be denoted
by §. In particular, the element s and the linear character § have the same order, and hence

(4.2) Q(5) = Q-
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Now, the irreducible character y of G labeled by s and the unipotent character 1 is
(4.3) X = £RG o) (39),
see | , p. 116

].

Let G = GL,(F,) and let F' denote the Frobenius endomorphism
X = (i) = X @ = ()
or F': X — (tX(q))_l, so that G =~ GL,(q), respectively GU,(q). Following | )
§1], we will always fix an F-stable maximal torus 77 consisting of diagonal matrices, so
that |T,f'| = (¢ — 1), respectively (¢ + 1)". Then the GF-conjugacy classes of maximal
tori in G are parametrized by conjugacy classes in the Weyl group W = Ng(71)/T1 = S,
Furthermore, the unipotent characters of G are parametrized by the irreducible characters
A of W, which in turn are parametrized by partitions A — n. For w € W, let T, denote
an F-stable maximal torus of G corresponding to the W-conjugacy class of w. Then, for
any A € Irr(W) labeled by X - n, the corresponding unipotent character ¢* = ¢ of G is

given by

ax
(4.4) P = W Z )\(w)ngrw(le)
weW
for some ay = +1, see | , (1.13)]. The same construction extends to direct products

of groups of type GL, equipped with Frobenius endomorphisms stabilizing each factor, in
particular to F-stable Levi subgroups of GL,,.

As before, we can identity the dual group G* of G = G¥ with G. For any semisimple
element s € G,

L:=Cg(s) =G xGa X ...X G,
and likewise the Weyl group
We =Sp, X Spy X ..o X Sy,

of £ is a direct product of symmetric groups. Hence, any unipotent character ¢* of Cg(s) is
labeled by an irreducible character u € Irr(W;), as described in (4.4). Recall that any such
u is rational-valued. For w € Wp, let T, denote an F-stable maximal torus of £ = Cg(s)

corresponding to the W,-conjugacy class of w. Then, according to | , (1.18)] we have
that
(4.5) = T S () R, (3ly)
|WE| weW, " b
L

for some a, = +1, where the linear character s of Cg(s) is introduced before (4.3). Now,
(4.2), (4.5), and the formula for Lusztig induction [ , Proposition 12.2] shows that

Q™) = Q-

In particlular, for x = x** we have ¢() divides |s|.
Now we can prove

Theorem 4.1. Conjecture 1.2 holds for G = GL,(q) and G = GU,(q) with n = 5.
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Proof. In the notation of the above discussion, we have shown that c(x) divides [s| for
X = x** € Irr(G). Decomposing the natural module for G into a direct sum of (pairwise
orthogonal and non-degenerate, in the case G = GU,(q), g-invariant nonzero subspaces,

with as many summands as possible, one can see that there are integers ni,...,n, =1
and signs €1,...,6n, = *+1 (and ¢ = 1 for all ¢ if G = GL,(q), such that |s| divides
lemi” (¢ — ¢;). Now applying | , Lemma 2.9] when € = —, we obtain
n+1
Is| <D= a

(¢—1)ged(2,g—1)
whereas
Is|] < D:=¢" -1
when ¢ = +. Hence, to complete the verification of Conjecture 1.2 for G, it remains to
check it for y with

(4.6) x(1) < D.

As the result can be checked directly using | | for G = GUg(2), we assume in addition
that G # GUg(2). Let ¢ be an irreducible constituent of x|[g g (note that S := [G,G] =
SLf (q)). Applying Theorems 3.1 and 4.1 of | | to 6, we see that, under the assumption
n = 5, 0 is either an irreducible Weil character, or 1g. In the former case, 6 extends to
a Weil character of G. As G/S = C,_. is cyclic, x itself is also a Weil character. The

character values of Weil characters of G are well-known, see e.g. | | and | ], and
one readily checks that ¢(y) divides ¢ — ¢, implying the conjecture for y. In the latter case,
X is a linear character of G/S, s0 Q) = Q(x)- O

Theorem 4.2. Conjecture 1.2 holds for G = GL,(q) and G = GU,(q) with n < 4.

Proof. For smaller-rank groups, the rough bound for the order |s| of the semisimple element
s presented in the proof of Theorem 4.1 is not enough for our purpose. Instead, we examine
the detailed structure of the centralizer Cg(s) and directly compare |s| with the degree
X(1) of the character x = x®* defined in (4.5). Recall the degree formula in Lusztig’s
parametrization of complex irreducible characters that

(4.7) X*H(1) =G : Cals)lpyv*(1),
where, as before, ¥* is the unipotent character of Cg(s) labeled by 1 and p is the defining
characteristic of G, see | , Remark 13.24].

If s is central in G then Cg(s) = G and x** is simply the product of a unipotent character
(which is rational-valued) and a linear character of G/[G, G] (whose field of values is a full
cyclotomic field), in which case Q(x**) is cyclotomic. We therefore may assume that s is
not central, so that Cg(s) is properly contained in G.

Let G = GLy(¢). Then

Ca(s) = GLg, (¢") x GLg,(¢") x -+,

where n;, k; € Z* and n = }},n;k; (see, for instance, [ ]). Clearly s belongs to
Z(Cg(s)), which is a direct product of cyclic groups of order ¢ — 1. It follows that

|s| < lem(g™ —1,¢™ —1,...).
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Since n < 4, there are only a few possibilities for n;s and k;s, and in each case, it is
straightforward to check that

lem(¢g™ —1,¢" —1,...) < |G : Cg(s)|y.

As noted earlier, ¢(x**) divides |s|. The formula 4.7 then implies that c¢(x**) < x**(1),
and the result follows.
Now let G = GU,(g). Then

Ca(s) = [ [ GL, (¢®™) x [ [GU, (®™ 1),
i J

where n;, ki, mj, l; € Z* and n = X, 2nk; + 3 1;(2m; — 1), and thus
ls| <lem(g®™ —1,¢%" —1,...,¢*™ 1+ 1,¢*m27 1 +1,..).

Recall the assumption that s is not central in S, so (I3, m1) # (4,1). A similar case-by-case
check as in the linear-group case then shows that |s| < |G : Cg(s)|,/, and the result again
follows. O

5. ODD-DEGREE CHARACTERS AND FURTHER DISCUSSION

We have seen the relevance of the invariant f(x) := [Q.) : Q(x)] in the connection
between degrees and fields of values of characters. Let f(G,e) := |{x € Irr(G) : f(x) = e}|
and f(G) := max.{f(G,e)}. A result of Moretd | | implies that there exists a real-

valued function h such that |G| < h(f(G)). We find it interesting to study the class of finite
groups G with f(G) = |Irr(G)|[; that is, f(x) = 1 for all x € Irr(G) or, equivalently, all the
irreducible characters of G have cyclotomic fields of values.

Problem 5.1. Describe the groups whose irreducible complex characters are all cyclotomic.

This class includes three important subclasses. The first is the obvious abelian groups.
The second is the odd-order p-groups (see [ , Theorem 2.3]). And the third is the well-
known rational groups - those having irreducible characters that are all rational-valued.
Though rational groups have been studied extensively in the literature (see | , ,

]), a complete understanding is still far from reach.
One may wonder if there is an element-level version of Conjecture 1.2.

Question 5.2. Let G be a finite group. Is it true that

[Qc@x(g))) : Qx(9))] < x(1)
for every x € Irr(G) and every g € G.

Question 5.2 is related to a problem in algebraic number theory that, unfortunately, we
do not have an answer at this time: for z = (4 + (2 + ... + {x a sum of k (primitive) roots
of unity (of possibly different orders), is it true that [Qc;) : Q(2)] < k, where c(z) is the
smallest positive integer such that z € Q.(.).

As promised, we now offer a connection between Conjecture 1.2 and the well-known
McKay conjecture (] , Conjecture 9.1]) in the case of odd-degree characters.

As usual let Irro/(G) denote the set of all odd-degree irreducible characters of G. Let
P € Syly(G). The McKay conjecture asserts that the two sets Irroy/(G) and Irry (Ng(P))
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have the same cardinality. Recall our earlier notation f(x) := [Qc(y) : Q(x)]. We have not
found a counter example to the following;:

Question 5.3. Let G be a finite group and P € Syl,(G). Is it true that there always exists
a bijection

¥ Irrg (G) — Trro (NG (P))
such that

=

(5.1) o) 107

x(1)  x*(1)

for every x € Irry(G).

Of course one can ask the same question for primes other than 2. We focus on only p = 2
because of the following.

Theorem 5.4. An affirmative answer to Question 5.3 implies Conjecture 1.2 for odd-degree
characters.

Proof. Note that Ng(P) is solvable by Feit-Thompson’s odd-order theorem. Therefore, by
Theorem 2.2, f(x*) divides x*(1), and the result follows. O

The additional condition (5.1) to the McKay bijection turns out to be satisfied in several
cases where the bijection is known to be natural/canonical.

If G is solvable, in | , Theorem 10.9], Isaacs constructed a natural one-to-one corre-
spondence * : Irry/(G) — Irro (Ng(P)). This bijection can be shown to commute with the
the Galois automorphisms (in Gal(Q|/Q)) and hence preserve the field of values of corre-
sponding characters. Moreover, x*(1) divides x(1) (see | , | for more discussion
on the degree divisibility in character correspondence). The extra condition is therefore
satisfied.

Question 5.3 also has an affirmative answer for alternating and symmetric groups. Let
G = A, or S, with n > 5. The existence of a natural McKay bijection is also well-known
in this case (see | ). Tt is also well-known that a 2-Sylow subgroup P € Syly(G) is
self-normalizing, i.e., P = Ng(P). Thus all the members of Irro/(Ng(P)) = Irre/(P) are
linear whose fields of values are cyclotomic. (Indeed, these linear characters are rational-
values, because P/P’ is elementary abelian.) The condition f(x)/x(1) < f(x*)/x*(1) is
then reduced to f(x) < x(1), which we have already established in Section 3.

Our work in Section 4 also confirms Question 5.3 in the cases G = GL,(q) or GU,(q)
where 2 1 q. As before we write G = GL{,(q) for € = + suitably. Then a canonical McKay
correspondence was constructed in | , Theorem E]. More concretely, let

n=2" 422 4...2%
be the 2-adic expansion of n, and P; € Syly(GLS,, (q)), so that
P:=P x Py x -+ x P, € Syly(G).
As each P; is an irreducible subgroup of GLZ,, (¢), we have

NG (P) = Nare, (g(P1) x Narg, (g (P2) x -+ % Narg,, (q)(Pr)-
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It is well-known that Ngre, (¢)(F%) = O2(GLS:, (q)) x P, and therefore all the odd-degree
2%

irreducible characters of N¢(P) are linear. Inequality (5.1) is now reduced to f(x) < x(1),
which follows from Theorems 4.1 and 4.2.

Data Availability Statement: Results presented in this paper do not need any sup-
porting data.
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