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Abstract
In this paper, we study the robustness property of policy optimization (particularly Gauss–Newton gradient descent algorithm
which is equivalent to the policy iteration in reinforcement learning) subject to noise at each iteration. By invoking the concept
of input-to-state stability and utilizing Lyapunov’s direct method, it is shown that, if the noise is sufficiently small, the policy
iteration algorithm converges to a small neighborhood of the optimal solution even in the presence of noise at each iteration.
Explicit expressions of the upperbound on the noise and the size of the neighborhood to which the policies ultimately converge
are provided. Based on Willems’ fundamental lemma, a learning-based policy iteration algorithm is proposed. The persistent
excitation condition can be readily guaranteed by checking the rank of the Hankel matrix related to an exploration signal.
The robustness of the learning-based policy iteration to measurement noise and unknown system disturbances is theoretically
demonstrated by the input-to-state stability of the policy iteration. Several numerical simulations are conducted to demonstrate
the efficacy of the proposed method.

Keywords Policy optimization · Policy iteration (PI) · Input-to-state stability (ISS) · Lyapunov’s direct method

1 Introduction

Through reinforcement learning (RL) techniques, agents can
iteratively minimize the specific cost function by interacting
continuously with unknown environment. Policy optimiza-
tion is fundamental for the development of RL algorithms
as introduced in [1]. Policy optimization first parameterizes
the control policy, and then, the performance of the control
policy is iteratively improved by updating the parameters
along the gradient descent direction of the given cost func-
tion. Since the linear quadratic regulator (LQR) problem is
tractable and widely applied in many engineering fields, it
provides an ideal benchmark example for the theoretical
analysis of policy optimization. For the LQR problem, the
control policy is parameterized by a control gain matrix, and
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the gradient of the quadratic cost with respect to the con-
trol gain is associated with a Lyapunov matrix equation.
Based on these results, various policy optimization algo-
rithms, including vanilla gradient descent, natural gradient
descent andGauss–Newtonmethods, are developed in [2–5].
Compared with other policy optimization algorithms with a
linear convergence rate, the control policies generated by the
Gauss–Newtonmethod converge quadratically to the optimal
solution.

It is noticed that the Gauss–Newton method with the step
size of 1/2 coincides with the policy iteration (PI) algorithm
[6, 7], which is an important iterative algorithm in RL and
adaptive/approximate dynamic programming (ADP) [1, 8,
9]. From the perspective of the PI, the Lyapunov matrix
equation for computing the gradient can be considered as
policy evaluation. The update of the policy along the gradi-
ent direction can be interpreted as policy improvement. The
steps of policy evaluation and policy improvement are iter-
ated in turn to find the optimal solution of LQR. Various
PI algorithms have been proposed for important classes of
linear/nonlinear/time-delay/time-varying systems for opti-
mal stabilization and output tracking [10–14]. In addition,
PI has been successfully applied to sensory motor control
[15], and autonomous driving [16, 17].
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The convergence of the PI algorithm is ensured under the
assumption that the accurate knowledge of system model is
accessible. However, in reality, the system model obtained
by system identification [18] is used for the PI algorithm
or the PI algorithm is directly implemented through a
data-driven approach using input-state data [10, 19–22].
Consequently,the PI algorithm is hardly implemented accu-
rately due to modeling errors, inaccurate state estimation,
measurement noise, and unknown system disturbances. The
robustness of the PI algorithm to unavoidable noise is an
important property to be investigated, which lays a foun-
dation for better understanding RL algorithms. There are
several challenges for studying the robustness of the PI algo-
rithm. Firstly, the nonlinearity of the PI algorithm makes
it hard to analyze the convergence property. Secondly, it is
difficult to quantify the influence of noise, since noise may
destroy the monotonic property of the PI algorithm or even
result in a destabilizing controller.

In this paper, we study the robustness of the PI algorithm
in the presence of noise. The contributions are summarized
as follows. Firstly, by viewing the PI algorithm as a nonlin-
ear system and invoking the concept of input-to-state stability
(ISS) [23], particularly the small-disturbance ISS [24, 25],we
investigate the robustness of the PI algorithm under the influ-
ence of noise. It is demonstrated that when subject to noise,
the control policies generated by thePI algorithmwill eventu-
ally converge to a small neighborhood of the optimal solution
of LQR as long as noise is sufficiently small. Different from
[24, 25], where the analysis is trajectory-based, we directly
utilize Lypuanov’s direct method to analyze the convergence
of the PI algorithmunder disturbances.As a result, an explicit
expression of the upperbound on the noise is provided. The
size of the neighborhood in which the control policies will
ultimately stay is demonstrated as a quadratic function of the
noise. Secondly, by utilizing Willems’ fundamental lemma,
a learning-based PI algorithm is proposed. Compared with
the conventional learning-based control approach where the
exploratory control input is hard to design such that the per-
sistent excitation condition is satisfied [24], the persistently
exciting exploratory signal of the proposed method can be
easily designed by checking the rank condition of a Hankel
matrix related to the exploration signal. Finally, based on
the small-disturbance ISS property of the PI algorithm, we
demonstrated that the proposed learning-based PI algorithm
is robust to the statemeasurement noise and unknown system
disturbances.

The remaining contents of the paper are organized as fol-
lows. Section 2 reviews the LQR problem and the celebrated
PI algorithm. In Sect. 3, the small-disturbance ISS property
of the PI algorithm is studied. Section 4 proposes a learning-
based PI algorithm and the robustness of the algorithm is
analyzed. Several numerical examples are given in Sect. 5,
followed by some concluding remarks in Sect. 6.

Notations In this paper, R (R+) denotes the set of (non-
negative) real numbers, Z+ denotes the set of nonnegative
integers, and S

n denotes the set of n-dimensional real sym-
metric matrices. | · | denotes the Euclidean norm for a vector.
∥
∥ · ∥∥ denotes the spectral norm and

∥
∥ · ∥∥F denotes the Frobe-

nius norm of a matrix.
∥
∥ · ∥

∥∞ denotes the �∞-norm, that
is

∥
∥A

∥
∥∞ = supi∈Z+

∥
∥Ai

∥
∥ for A = {Ai }∞i=0. λ̄(·) and λ(·)

denote the maximum and minimum eigenvalues of a real
symmetric matrix, respectively. Tr (·) denotes the trace of a
matrix. A continuous function γ : R+ → R+ is aK-function
if it is strictly increasing and vanishes at zero. A function
β(r , t) : R+ ×R+ → R+ is a KL-function if for each fixed
t , β(·, t) is a K-function and for each fixed r , β(r , t) tends
to zero as t → ∞. For Z ∈ R

m×n and U ∈ S
m+n , define

H(U , Z) as

H(U , Z) = [

In −ZT
]

U

[

In
−Z

]

.

2 Preliminaries and problem formulation

2.1 Policy iteration for discrete-time LQR

The discrete-time linear time-invariant (LTI) system is rep-
resented as

xk+1 = Axk + Buk . (1)

where xk ∈ R
n and uk ∈ R

m are the state and control input,
respectively; A and B are system matrices with compatible
dimensions.

Assumption 1 The pair (A, B) is controllable.

Under Assumption 1, the discrete-time LQR is to minimize
the following accumulative quadratic cost

Jd(x0, u) =
∞∑
k=0

xTk Qxk + uTk Ruk, (2)

where Q = QT � 0 and R = RT � 0. The optimal con-
troller of the discrete-time LQR is

u∗(xk) = −L∗xk = −(R + BTV ∗B)−1BTV ∗Axk, (3)

where V ∗ = (V ∗)T � 0 is the unique solution to the follow-
ing discrete-time algebratic Riccati equation (ARE)

ATV ∗A − V ∗ − ATV ∗B(R + BTV ∗B)−1BTV ∗B
+ Q = 0. (4)

For a stabilizing control gain L ∈ R
m×n , the corre-

sponding cost in (2) is Jd(x0,−Lx) = xT0 VLx0, where
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VL = (VL)T � 0 is the unique solution of the following
Lyapunov equation

H(G(VL), L) = 0, (5)

and the function G(·) : Sn → S
n+m is defined as

G(VL) :=
[

Q + ATVL A ATVL B
BTVL A R + BTVL B

]

=
[

Gxx (VL) GT
ux (VL)

Gux (VL) Guu(VL)

]

. (6)

The discrete-time PI algorithm was developed by [7] to
iteratively solve the discrete-time LQR problem. Given an
initial stabilizing control gain L0, the discrete-time PI algo-
rithm is represented as:

Procedure 1 (Exact PI for discrete-time LQR)

1. Policy evaluation: get G(Vi ) by solving

H(G(Vi ), Li ) = 0. (7)

2. Policy improvement: get the improved policy by

Li+1 = G−1
uu (Vi )Gux (Vi ). (8)

The monotonic convergence property of the discrete-time
PI is shown in the following lemma.

Lemma 1 [7] Given an initial stabilizing control gain L0 ∈
R
m×n, the sequences {Vi }∞i=0 and {Li }∞i=0 generated by iter-

atively solving (7) and (8) satisfy:

1. A − BLi is Schur for any i ∈ Z+;
2. V ∗ � Vi+1 � Vi ;
3. limi→∞

∥
∥Li −L∗∥∥

F = 0 and limi→∞
∥
∥Vi −V ∗∥∥

F = 0.

2.2 Policy iteration for continuous-time LQR

Consider the continuous-time LTI system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (9)

where x(t) ∈ R
n is the state; u(t) ∈ R

m is the control input;
x0 is the initial state; A and B are constant matrices with
compatible dimensions. The cost of system (9) is

Jc(x0, u) =
∫ ∞

0
xT(t)Qx(t) + uT(t)Ru(t)dt . (10)

Under Assumption 1, the classical continuous-time LQR
aims at computing the optimal control policy as a function

of the current state such that Jc(x0, u) is minimized. The
optimal control policy is

u∗(x(t)) = −K ∗x(t) = −R−1BTP∗x(t), (11)

where P∗ = (P∗)T � 0 is the unique solution of the
continuous-time ARE [26]:

ATP∗ + P∗A − P∗BR−1BTP∗ + Q = 0. (12)

For a stabilizing control gain K ∈ R
m×n , the corre-

sponding cost in (10) is Jc(x0,−Kx) = xT0 PK x0, where
PK = (PK )T � 0 is the unique solution of the following
Lyapunov equation

H(M(PK ), K ) = 0, (13)

and the function M(·) : Sn → S
n+m is defined as

M(PK ) :=
[

Q + ATPK + PK A PK B
BTPK R

]

=
[

Mxx (PK ) MT
ux (PK )

Mux (PK ) Muu(PK )

]

. (14)

Given an initial stabilizing control gain K0, the cele-
brated continuous-time PI developed in [6] iteratively solves
the continuous-time LQR problem. The continuous-time PI
algorithm is represented as:

Procedure 2 (Exact PI for continuous-time LQR)

1. Policy evaluation: get M(Pi ) by solving

H(M(Pi ), Ki ) = 0. (15)

2. Policy improvement: get the improved policy by

Ki+1 = M−1
uu (Pi )M

−1
ux (Pi ). (16)

Given an initial stabilizing control gain K0, by iteratively
solving (15) and (16), Pi monotonically converges to P∗ and
(A − BKi ) is Hurwitz, which is formally presented in the
following lemma.

Lemma 2 [6] Given an initial stabilizing control gain K0 ∈
R
m×n, the sequences {Ki }∞i=0 and {Pi }∞i=0 generated by iter-

atively solving (15) and (16) satisfy:

1. A − BKi is Hurwitz for any i ∈ Z+;
2. P∗ � Pi+1 � Pi ;
3. limi→∞

∥
∥Ki −K ∗∥∥

F = 0 and limi→∞
∥
∥Pi −P∗∥∥

F = 0.
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2.3 Problem formulation

For the discrete-time and continuous-time PI algorithms, the
accurate model knowledge (A, B) is required for the algo-
rithm implementation. The convergence of the PI algorithms
in Lemmas 1 and 2 are based on the assumption that the accu-
rate system model is attainable. However, in reality, system
uncertainties are unavoidable, and the PI algorithms cannot
be implemented exactly. Therefore, in this paper, we inves-
tigate the following problem.

Problem 1 When the policy evaluation and improvement
steps of the PI algorithms are subject to noise, will the con-
vergence properties in Lemmas 1 and 2 still hold?

3 Robustness analysis of policy iteration

In this section, we will formally introduce the inexact PI
algorithms for the discrete-time and continuous-time LQR in
the presence of noise. By invoking the concept of input-to-
state stability [23], it is rigorously shown that the optimized
control policies converge to a neighborhood of the optimal
control policy, and the size of the neighborhood depends on
the magnitude of the noise.

3.1 Robustness analysis of discrete-time policy
iteration

According to the exact discrete-time PI algorithm in (7) and
(8), in the presence of noise, the steps of policy evaluation
and policy improvement cannot be implemented accurately,
and the inexact PI algorithm is as follows.

Procedure 3 (Inexact PI for discrete-time LQR)

1. Inexact policy evaluation: get Ĝi ∈ S
m+n as an approx-

imation of G(V̂i ), where V̂i is the solution of

H(G(V̂i ), L̂i ) = 0. (17)

2. Inexact policy improvement: get the improved policy by

L̂i+1 = Ĝ−1
uu,i Ĝux,i . (18)

In Procedure 3, �Gi = Ĝi − G(V̂i ) denotes the noise
causing the inexact implementation of the PI algorithm. The
“hat” is used to distinguish the cost matrices and control
gains of the inexact PI from the exact PI. If �Gi = 0, the
control gain will be updated to the desired value L̄i+1 =
G−1

uu,i (V̂i )Gux,i (V̂i ). The noise �Gi causes the deviation

between the updated control gain L̂i+1 and the desired con-
trol gain L̄i+1, i.e.

�Li+1 = L̂i+1 − L̄i+1

= (Guu(V̂i ) + �Guu,i )
−1(Gux (V̂i )

+ �Gux,i ) − G−1
uu (V̂i )Gux (V̂i ).

(19)

Remark 1 The noise �Gi can be caused by various factors.
For example, in data-driven control [24], the matrix G(V̂i )
is identified by the collected input-state data. Since noise
possibly pollutes the collected data, Ĝi , instead of G(V̂i ),
is obtained. Other factors that may cause �Gi include the
inaccurate system identification, the residual error of numer-
ically solving the Lyapunov equation, and the approximate
values of Q and R in inverse optimal control in the absence
of the exact knowledge of the cost function.

Next, by considering the inexact PI as a nonlinear dynam-
ical system with the state V̂i , we analyze its robustness to
noise �Gi by Lyapunov’s direct method and in the sense
of small-disturbance ISS. For any stabilizing control gain L ,
define the candidate Lyapunov function as

Vd(VL) = Tr (VL) − Tr
(

V ∗) , (20)

where VL = V T
L � 0 is the solution of (5). Since VL � V ∗

(obtained by Lemma 1), we have

∥
∥VL − V ∗∥∥

F ≤ Vd(VL) ≤ √
n
∥
∥VL − V ∗∥∥

F . (21)

Remark 2 Since Jd(x0,−Lx) = xT0 VLx0, when x0 ∼
N (0, In), Ex0 Jd(x0,−Lx) = Tr (VL). Hence, the candidate
Lyapunov function in (20) can be considered as the differ-
ence between the value function of the controller u(x(t)) =
−Lx(t) and the optimal value function.

For any h > 0, define a sublevel set Lh = {L ∈
R
m×n|(A − BL) is Schur, Vd(VL) ≤ h}. Since VL is con-

tinuous with respect to the stabilizing control gain L , it
readily follows that Lh is compact. Before the main theorem
about the robustness of Procedure 3, we introduce the fol-
lowing instrumental lemma, which provides an upperbound
on Vd(VL).

Lemma 3 For any stabilizing control gain L, let L ′ = (R +
BTVL B)−1BTVL A and EL = (L ′−L)T(R+BTVL B)(L ′−
L). Then,

Vd(VL) ≤ a
∥
∥EL

∥
∥, (22)

where

a = Tr

( ∞∑
k=0

(A − BL∗)k,T(A − BL∗)k
)

. (23)
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Proof We can rewrite (4) as

(A − BL∗)TV ∗(A − BL∗) − V ∗ + Q + L∗T RL∗ = 0.
(24)

In addition, it follows from (5) that

(A − BL∗)TVL(A − BL∗) − VL + Q + EL + L∗T RL∗

− (L ′ − L∗)T(R + BTVL B)(L ′ − L∗) = 0.
(25)

Subtracting (24) from (25) yields

(A − BL∗)T(VL − V ∗)(A − BL∗) − (VL − V ∗)
+ EL − (L ′ − L∗)T(R + BTVL B)(L ′ − L∗) = 0.

(26)

Since (A − BL∗) is Schur, it follows from [27, Theorem
5.D6] that

VL − V ∗ �
∞∑
k=0

(A − BL∗)k,TEL(A − BL∗)k . (27)

Taking the trace of (27) and using the main result of [28], we
have

Vd(VL) ≤ ∥
∥EL

∥
∥Tr

( ∞∑
k=0

(A − BL∗)k,T(A − BL∗)k
)

. (28)

Hence, the proof is completed. 
�
Lemma 4 For any L ∈ Lh,

Tr

( ∞∑
k=0

(A − BL)k,T(A − BL)k
)

≤ h + Tr (V ∗)
λ(Q)

. (29)

Proof Since (A − BL) is Schur, it follows from (5) and [27,
Theorem 5.D6] that

VL =
∞∑
k=0

(A − BL)k,T(Q + LTRL)(A − BL)k . (30)

Taking the trace of (30), and using the result of [28], we have

h + Tr
(

V ∗) ≥ λ(Q)Tr

( ∞∑
k=0

(A − BL)k,T(A − BL)k
)

.

(31)

Hence, (29) readily follows from (31). 
�
The following lemma shows that the sublevel set Lh is

invariant as long as the noise �Li is sufficiently small.

Lemma 5 For any h > 0 and given an initial control gain
L̂0 ∈ Lh, if

∥
∥�L

∥
∥∞ < b(h), where b(h) is defined in (44),

then, L̂i ∈ Lh for any i ∈ Z+.

Proof Induction is applied to prove the statement. When i =
0, L̂0 ∈ Lh . Suppose L̂i ∈ Lh , then, by [27, Theorem 5.D6],
we have V̂i � 0. We can rewrite (17) as

(A − BL̂i+1)
TV̂i (A − BL̂i+1) − V̂i + Q + L̂T

i R L̂i

+ (L̂i+1 − L̂i )
TBTV̂i (A − BL̂i+1)

+ (A − BL̂i+1)
TV̂i B(L̂i+1 − L̂i )

+ (L̂i+1 − L̂i )
TBTV̂i B(L̂i+1 − L̂i ) = 0.

(32)

Considering (19), we have

(L̂i+1 − L̂i )
TBTV̂i (A − BL̂i+1)

= (L̄i+1 − L̂i )
TRL̄i+1 + �LT

i+1RL̄i+1

−�LT
i+1B

TV̂i B�Li+1−(L̄i+1− L̂i )
TBTV̂i B�Li+1.

(33)

In addition, it follows from (19) that

(L̂i+1 − L̂i )
TBTV̂i B(L̂i+1 − L̂i )

= (L̄i+1 − L̂i )
TBTV̂i B(L̄i+1 − L̂i )

+ �LT
i+1B

TV̂i B�Li+1 + �LT
i+1B

TV̂i B(L̄i+1− L̂i )

+ (L̄i+1 − L̂i )
TBTV̂i B�Li+1.

(34)

Plugging (33) and (34) into (32), and completing the squares,
we have

(A − BL̂i+1)
TV̂i (A − BL̂i+1) − V̂i + Q + L̂T

i+1RL̂i+1

+ Êi − �LT
i+1(R + BTV̂i B)�Li+1 = 0,

(35)

where

Êi = (L̄i+1 − L̂i )
T(R + BTV̂i B)(L̄i+1 − L̂i ). (36)

If

∥
∥�Li+1

∥
∥ <

√

λ(Q)
∥
∥R

∥
∥ + ∥

∥B
∥
∥2(h + Tr (V ∗))

=: b1(h), (37)

it is guaranteed that

Q − �LT
i+1(R + BTV̂i B)�Li+1 � 0. (38)

Hence, if
∥
∥�Li+1

∥
∥ < b1(h), it follows from (35) and [29,

Theorem 8.4] that A − BL̂i+1 is Schur.
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Writing down (17) at the (i+1)th iteration, and subtracting
it from (35), we have

(A − BL̂i+1)
T(V̂i − V̂i+1)(A − BL̂i+1) − (V̂i − V̂i+1)

+ Êi − �LT
i+1(R + BTV̂i B)�Li+1 = 0.

(39)

Following [27, Theorem 5.D6], we have

V̂i+1 − V ∗

= V̂i − V ∗ −
∞∑
k=0

(A − BL̂i+1)
k,T Êi (A − BL̂i+1)

k

+
∞∑
k=0

(A − BL̂i+1)
k,T�LT

i+1(R

+ BTV̂i B)�Li+1(A − BL̂i+1)
k . (40)

Taking the trace of (40), and using Lemma 3 and the result
in [28] yield

Vd(V̂i+1)

≤ (1 − 1

a
)Vd(V̂i ) + Tr

( ∞∑
k=0

(A − BL̂i+1)
k,T(R

+ BTV̂i B)(A − BL̂i+1)
k
)∥
∥�Li+1

∥
∥2. (41)

It follows from (41), Lemma 4 and [28] that

Vd(V̂i+1) ≤ (1 − 1

a
)Vd(V̂i ) + b2(h)

∥
∥�Li+1

∥
∥2, (42)

where b2 is defined as

b2(h) = (h + Tr (V ∗))
∥
∥R

∥
∥ + ∥

∥B
∥
∥2(h + Tr (V ∗))2

λ(Q)
. (43)

Hence, if

∥
∥�Li+1

∥
∥ <

√

h

ab2(h)
=: b(h), (44)

it is guaranteed that

Vd(V̂i+1) ≤ h. (45)

In addition, it is observed that b(h) =
√

h
h+Tr(V ∗)

√

1
a

×b1(h) ≤ b1(h).
In summary, if

∥
∥�Li+1

∥
∥ < b(h), it follows from (37) and

(44) that L̂i+1 ∈ Lh . The lemma is consequently proved by
induction. 
�

Now, by Lypaunov’s direct method and by viewing Pro-
cedure 3 as a discrete-time nonlinear system with the state

V̂i , it is shown that V̂i converges to a small neighbourhood
of the optimal solution as long as noise is sufficiently small.

Lemma 6 For any h > 0 and L̂0 ∈ Lh, if
∥
∥�L

∥
∥∞ < b(h),

there exist aK-function ρ(·) and aKL-function κ(·, ·), such
that

∥
∥V̂i −V ∗∥∥

F ≤ κ(
∥
∥V̂0−V ∗∥∥

F , i) + ρ(
∥
∥�L

∥
∥∞). (46)

Proof Repeating (42) for i, i − 1, . . . , 0, we have

Vd(V̂i ) ≤
(

1 − 1

a

)i

Vd(V̂0) + ab2(h)
∥
∥�L

∥
∥2∞. (47)

Considering (21), it follows that

∥
∥V̂i −V ∗∥∥

F ≤ √
n

(

1− 1

a

)i ∥
∥V̂0−V ∗∥∥

F + ab2(h)
∥
∥�L

∥
∥2∞.

(48)

The proof is thus completed. 
�

The small-disturbance ISS property of the Procedure 3 is
shown in the following theorem.

Theorem 1 The inexactPI inProcedure3 is small-disturbance
ISS. That is, for any h > 0 and L̂0 ∈ Lh, if

∥
∥�G

∥
∥∞ <

min{ b32 ,
b(h)
b5

}, where b3 and b5(h) are defined in (50) and
(53) respectively, then,

∥
∥V̂i −V ∗∥∥

F ≤ κ(
∥
∥V̂0−V ∗∥∥

F , i) + ρ(b5(h)
∥
∥�G

∥
∥∞).

(49)

Proof Suppose L̂i ∈ Lh . Since V̂i � V ∗, we have Guu(V̂i )
� R + BTV ∗B. Therefore, if

∥
∥�Guu,i

∥
∥ < λ(R + BTV ∗B) =: b3, (50)

(�Guu,i + Guu(V̂i )) is invertible. It follows from (19) and

(Guu(V̂i ) + �Guu,i )
−1

= G−1
uu (V̂i ) − G−1

uu (V̂i )�Guu,i (Guu(V̂i ) + �Guu,i )
−1

that

∥
∥�Li+1

∥
∥

≤ ∥
∥G−1

uu (V̂i )
∥
∥

(∥
∥�Gux,i

∥
∥ + ∥

∥(Guu(V̂i ) + �Guu,i )
−1

∥
∥

× ∥
∥Gux (V̂i ) + �Gux,i

∥
∥
∥
∥�Guu,i

∥
∥

)

.

(51)
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If
∥
∥�Gi

∥
∥ < b3/2, we have

∥
∥G−1

uu (V̂i )
∥
∥ <

1

b3
,

∥
∥(Guu(V̂i ) + �Guu,i )

−1
∥
∥ <

2

b3
,

∥
∥Gux (V̂i ) + �Gux,i

∥
∥ <

∥
∥A

∥
∥

∥
∥B

∥
∥(h + Tr (V ∗)) + b3/2

=: b4(h).

(52)

Consequently,

∥
∥�Li+1

∥
∥ <

b3 + 2b4(h)

b23

∥
∥�Gi

∥
∥ =: b5(h)

∥
∥�Gi

∥
∥. (53)

Therefore, if
∥
∥�Gi

∥
∥ <

b(h)
b5(h)

, it is guaranteed that
∥
∥�Li+1

∥
∥

< b(h). Following (44) and (45), we have L̂i+1 ∈ Lh . Since
L̂0 ∈ Lh , we have L̂i ∈ Lh for any i ∈ Z+, which implies
that

∥
∥�L

∥
∥∞ < b(h) given that

∥
∥�G

∥
∥∞ <

b(h)
b5(h)

.

It follows from (53) that
∥
∥�L

∥
∥∞ < b5(h)

∥
∥�G

∥
∥∞. By

Lemma 6, the proof is thus completed. 
�

3.2 Robustness analysis of continuous-time policy
iteration

According to the exact PI for continuous-time LQR in
(15) and (16), in the presence of noise, the steps of policy
evaluation and policy improvement cannot be implemented
accurately, and the inexact PI is as follows.

Procedure 4 (Inexact PI for continuous-time LQR)

1. Inexact policy evaluation: get M̂i ∈ S
m+n as an approx-

imation of M(P̂i ), where P̂i is the solution of

H(M(P̂i ), K̂i ) = 0. (54)

2. Inexact policy improvement: get the updated control gain
by

K̂i+1 = M̂−1
uu,i M̂ux,i . (55)

In Procedure 4, �Mi = M̂i − M(Vi ) denotes the noise
causing the inexact implementation of the PI algorithm. The
“hat” is used to distinguish the cost matrices and control
gains of the inexact PI from the exact PI. If �Mi = 0, the
control gain will be updated to the desired value K̄i+1 =
M−1

uu,i (P̂i )Mux,i (P̂i ). The noise �Mi causes the deviation

between the updated control gain K̂i+1 and the desired con-

trol gain K̄i+1, i.e.

�Ki+1

= K̂i+1 − K̄i+1

= (Muu(P̂i ) + �Muu,i )
−1(Mux (P̂i ) + �Mux,i )

− M−1
uu (P̂i )Mux (P̂i ).

(56)

For any stabilizing control gain K , define the candidate
Lyapunov function as

Vc(PK ) = Tr (PK ) − Tr
(

P∗) , (57)

where PK = PT
K � 0 is the solution of (13), i.e.

(A − BK )TPK + PK (A − BK ) + Q + KTRK

= 0. (58)

Since PK � P∗, we have

∥
∥PK − P∗∥∥

F ≤ Vc(PK ) ≤ √
n
∥
∥PK − P∗∥∥

F . (59)

For anyh > 0, define the sublevel setKh = {K ∈R
m×n|(A−

BK ) is Hurwitz, Vc(PK ) ≤ h}. Since PK is continuous with
respect to the stabilizing control gain K , the sublevel set Kh

is compact.
The following lemmas are instrumental for the proof of

the main theorem.

Lemma 7 Consider a Hurwitz matrix D ∈ R
n×n and a

positive semi-definite matrix E ∈ S
n. Define H(D, E) =

∫ ∞
0 eD

Tt EeDtdt , and c(D) = log(5/4)/
∥
∥D

∥
∥. Then,

∥
∥H(D, E)

∥
∥ ≥ 1

2
c(D)

∥
∥E

∥
∥. (60)

Proof The Taylor expansion of eDt is

eDt = In +
∞∑
k=1

(Dt)k/k! = In + F(t). (61)

Hence,

∥
∥F(t)

∥
∥ ≤

∞∑
k=1

(
∥
∥D

∥
∥t)k/k! = e

∥
∥D

∥
∥t − 1. (62)
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Pick a v ∈ R
n which satisfies vTEv = ∥

∥E
∥
∥|v|2. Then,

vTHv ≥
∫ c(D)

0
vTeD

Tt EeDtvdt

=
∫ c(D)

0
vT(In + F(t))TE(In + F(t))vdt

≥
∫ c(D)

0

∥
∥E

∥
∥|v|2 − 2

∥
∥F(t)

∥
∥
∥
∥E

∥
∥|v|2dt

≥
∫ c(D)

0

∥
∥E

∥
∥|v|2 − 2(e

∥
∥D

∥
∥t − 1)

∥
∥E

∥
∥|v|2dt

≥
∫ c(D)

0
(3 − 2e

∥
∥D

∥
∥c(D)

)
∥
∥E

∥
∥|v|2dt

= 1

2
c(D)

∥
∥E

∥
∥|v|2.

(63)

Hence, the lemma follows readily from (63). 
�

The following lemma presents an upperbound of the Lya-
punov function Vc(PK ).

Lemma 8 For any stabilizing control gain K , let K ′ =
R−1BTPK , where PK = PT

K � 0 is the solution of (58),
and EK = (K ′ − K )TR(K ′ − K ). Then,

Vc(PK ) ≤ d
∥
∥EK

∥
∥,

d = Tr

(∫ ∞

0
e(A−BK ∗)Tt e(A−BK ∗)tdt

)

.
(64)

Proof Rewrite ARE (12) as

(A − BK ∗)TP∗ + P∗(A − BK ∗) + Q + (K ∗)TRK ∗

= 0. (65)

Furthermore, (58) is rewritten as

(A − BK ∗)TPK + PK (A − BK ∗) + Q + KTRK

+ (K ∗ − K )TBTPK + PK B(K ∗ − K ) = 0.
(66)

Subtracting (65) from (66) yields

(A − BK ∗)T(PK − P∗) + (PK − P∗)(A − BK ∗)
+ KTRK − (K ∗)TRK ∗ + (K ∗ − K )TBTPK

+ PK B(K ∗ − K ) = 0. (67)

Considering K ′ = R−1BTPK and completing the squares in
(67), we have

(A−BK ∗)T(PK −P∗) + (PK −P∗)(A−BK ∗)+EK

− (K ′ − K ∗)TR(K ′ − K ∗) = 0.
(68)

Since (A − BK ∗) is Hurwitz, by (68) and [27, equation
(5.18)], we have

PK − P∗ �
∫ ∞

0
e(A−BK ∗)Tt EK e

(A−BK ∗)tdt . (69)

Taking the trace of (69), considering the cyclic property of
trace and [28], we have (64). 
�
Lemma 9 For any K ∈ Kh,

Tr

(∫ ∞

0
e(A−BK )Tt e(A−BK )tdt

)

≤ h + Tr (P∗)
λ(Q)

. (70)

Proof Since A − BK is Hurwitz, it follows from (58) that

PK =
∫ ∞

0
e(A−BK )Tt (Q + KTRK )e(A−BK )tdt . (71)

Taking the trace of (71), and considering [28], we have

h+Tr
(

P∗)≥Tr

(∫ ∞

0
e(A−BK )Tt e(A−BK )tdt

)

λ(Q). (72)

The proof is hence completed. 
�
The following lemma implies that the sublevel set Kh

is invariant under the inexact PI in Procedure 4 as long as
∥
∥�K

∥
∥∞ is sufficiently small.

Lemma 10 For any h > 0 and given an initial control gain
K̂0 ∈ Kh, if

∥
∥�K

∥
∥∞ < e(h), where e(h) is defined in (83),

then, K̂i ∈ Kh for any i ∈ Z+.

Proof Induction is used to prove the statement. When i = 0,
K̂0 ∈ Kh . Suppose that K̂i ∈ Kh , then, by [30, Lemma 3.18],
P̂i � 0. We can rewrite (54) as

(A − BK̂i+1)
T P̂i + P̂i (A − BK̂i+1) + Q + K̂T

i RK̂i

(K̂i+1 − K̂i )
TBT P̂i + P̂i B(K̂i+1 − K̂i ) = 0.

(73)

Considering (56), we have

(A − BK̂i+1)
T P̂i + P̂i (A − BK̂i+1) + Q + K̂T

i RK̂i

+ (K̄i+1 − K̂i )
TRK̄i+1 + K̄T

i+1R(K̄i+1 − K̂i )

+ �KT
i+1RK̄i+1 + K̄T

i+1R�Ki+1 = 0.

(74)

Completing the squares in (74) yields

(A − BK̂i+1)
T P̂i + P̂i (A − BK̂i+1) + Q

+ K̂T
i+1RK̂i+1 + Êi − �KT

i+1R�Ki+1 = 0,
(75)

where

Êi = (K̄i+1 − K̂i )
TR(K̄i+1 − K̂i ). (76)
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Hence, by [30, Lemma 3.19], A− BK̂i+1 is Hurwitz as long
as

∥
∥�Ki

∥
∥ ≤ e1, where e1 is defined as

e1 =
√

λ(Q)/
∥
∥R

∥
∥. (77)

Writing down (54) for the (i+1)th iteration, and subtract-
ing it from (75), we have

(A − BK̂i+1)
T(P̂i − P̂i+1) + (P̂i − P̂i+1)(A − BK̂i+1)

+ Êi − �KT
i+1R�Ki+1 = 0.

(78)

Since (A − BK̂i+1) is Hurwitz (e(h) ≤ e1(h)), it follows
from [27, equation (5.18)] and (78) that

P̂i − P̂i+1

=
∫ ∞

0
e(A−BK̂i+1)

T ,t
(Êi −�KT

i+1R�Ki+1)e
(A−BK̂i+1)dt .

(79)

Taking the trace of (79), and considering [28] and Lemma 9,
we have

Vc(P̂i+1) ≤ Vc(P̂i ) − ∥
∥H(A − BK̂i+1, Êi )

∥
∥

+ h + Tr (P∗)
λ(Q)

∥
∥R

∥
∥
∥
∥�Ki+1

∥
∥
2
.

(80)

It follows from (80) and Lemmas 7 and 8 that

Vc(P̂i+1) ≤
(

1 − log (5/4)

2d
∥
∥A − BK̂i+1

∥
∥

)

Vc(P̂i )

+ h + Tr (P∗)
λ(Q)

∥
∥R

∥
∥
∥
∥�Ki+1

∥
∥
2
.

(81)

Taking the expression of K̂i+1 into consideration, we have

∥
∥A − BK̂i+1

∥
∥

≤ ∥
∥A

∥
∥ + ∥

∥BR−1BT
∥
∥(Tr

(

P∗) + h) + ∥
∥B

∥
∥e1

=: e2(h).

(82)

Plugging (82) into (81), it follows that if

∥
∥�Ki+1

∥
∥ <

(

log (5/4)hλ(Q)

2d
∥
∥R

∥
∥(h + Tr (P∗))e2(h)

)1/2

=: e(h),

(83)

we have

Vc(P̂i+1) ≤ h. (84)

It is observed that e(h) ≤ e1(h). Hence, Given
∥
∥�K

∥
∥∞ <

e(h), K̂i+1 ∈ Kh and the proof is completed by induction. 
�
Lemma 11 For any h > 0 and K̂0 ∈ Kh, if

∥
∥�K

∥
∥∞ < e(h),

then, there exist aKL-function α(·, ·) and aK-function β(·),
such that

∥
∥P̂i − P∗∥∥

F ≤ α(
∥
∥P̂0 − P∗∥∥

F , i) + β(
∥
∥�K

∥
∥∞). (85)

Proof It follows from Lemma 10, (81) and (82) that for any
i ∈ Z+,

Vc(P̂i ) ≤
(

1 − log (5/4)

2de2(h)

)

Vc(P̂i−1)

+ h + Tr (P∗)
λ(Q)

∥
∥R

∥
∥
∥
∥�Ki

∥
∥2.

(86)

Repeating (86) for i, i − 1, . . . , 1, 0, we have

Vc(P̂i ) ≤
(

1 − log (5/4)

2de2(h)

)i

Vc(P̂0)

+ h + Tr (P∗)
λ(Q)

∥
∥R

∥
∥2de2(h)

log (5/4)

∥
∥�K

∥
∥2∞.

(87)

By (59), we have

∥
∥P̂i − P∗∥∥

F ≤
(

1 − log (5/4)

2de2(h)

)i √
n
∥
∥P̂0 − P∗∥∥

F

+ h + Tr (P∗)
λ(Q)

∥
∥R

∥
∥2de2(h)

log (5/4)

∥
∥�K

∥
∥2∞.

(88)

Hence, (85) follows readily. 
�
With the aforementioned lemmas, we are ready to pro-

pose the main result on the robustness of the inexact PI for
continuous-time LQR.

Theorem 2 The inexactPI inProcedure4 is small-disturbance
ISS. That is, for any h > 0 and K̂0 ∈ Kh, if

∥
∥�M

∥
∥∞ <

min{ e32 ,
e(h)
e5(h)

}, where e3 and e5(h) are defined in (90) and
(93) respectively, then,

∥
∥P̂i − P∗∥∥

F

≤ α(
∥
∥P̂0 − P∗∥∥

F , i) + β(e5(h)
∥
∥�M

∥
∥∞). (89)

Proof Suppose K̂i ∈ Lh . If

∥
∥�Muu,i

∥
∥ < λ(R) =: e3, (90)

(�Muu,i + Muu(P̂i )) is invertible. It follows from (56) and

(Muu(P̂i ) + �Muu,i )
−1

1 3



A Lyapunov characterization of robust policy optimization 383

= M−1
uu (P̂i ) − M−1

uu (P̂i )�Muu,i (Muu(P̂i ) + �Muu,i )
−1

that

∥
∥�Ki+1

∥
∥ ≤∥

∥M−1
uu (P̂i )

∥
∥

(∥
∥�Mux,i

∥
∥ + ∥

∥(Muu(P̂i )

+ �Muu,i )
−1

∥
∥
∥
∥Mux (P̂i )

+ �Mux,i
∥
∥
∥
∥�Muu,i

∥
∥

)

.

(91)

If
∥
∥�Mi

∥
∥ < e3/2, we have

∥
∥M−1

uu (P̂i )
∥
∥ <

1

e3
,

∥
∥(Muu(P̂i ) + �Muu,i )

−1
∥
∥ <

2

e3
,

∥
∥Mux (P̂i ) + �Mux,i

∥
∥ <

∥
∥B

∥
∥(h + Tr (P∗)) + e3/2

=: e4(h).

(92)

Consequently,

∥
∥�Ki+1

∥
∥ <

e3 + 2e4(h)

e23

∥
∥�Mi

∥
∥ =: e5(h)

∥
∥�Mi

∥
∥. (93)

Therefore, if
∥
∥�Mi

∥
∥ <

e(h)
e5(h)

, it is guaranteed that
∥
∥�Ki+1

∥
∥

< e(h). Following (83) and (84), we have K̂i+1 ∈ Kh . Since
K̂0 ∈ Kh , we have K̂i ∈ Kh for any i ∈ Z+, which implies
that

∥
∥�K

∥
∥∞ < e(h) given that

∥
∥�M

∥
∥∞ <

e(h)
e5(h)

.

It follows from (93) that
∥
∥�K

∥
∥∞ < e5(h)

∥
∥�M

∥
∥∞. By

Lemma 11, the proof is thus completed. 
�

Remark 3 Compared with [24, 25], in Theorems 1 and 2, the
explicit expressions of the upperbounds on the small distur-
bance are given, such that at each iteration, the generated
control gain is stabilizing and contained in the sublevel sets
Lh and Kh . In addition, it is observed from (48) and (88)
that the control gains generated by the inexact PI algorithms
ultimately converge to a neighborhood of the optimal solu-
tion, and the size of the neighborhood is proportional to the
quadratic form of the noise.

4 Learning-based policy iteration

In this section, based on the robustness property of the inexact
PI in Procedure 3, we will develop a learning-based PI algo-
rithm. Only the input-state trajectory data measured from the
system is required for the algorithm.

4.1 Algorithm development

For a signal u[0,N−1] = [u0, u1, . . . , uN−1], its Hankel
matrix of depth l is represented as

Hl(u[0,N−1]) =

⎡

⎢
⎢
⎢
⎣

u0 u1 . . . uN−l

u1 u2 . . . uN−l+1
...

...
...

ul−1 ul . . . uN−1

⎤

⎥
⎥
⎥
⎦

. (94)

Definition 1 An input signal u[0,N−1] is persistent exciting
(PE) of order l if the Hankel matrix Hl(u[0,N−1]) is full row
rank.

Lemma 12 [31] Let an input signal u[0,N−1] be PE of order
l+n. Then, the state trajectory x[0,N−1] sampled from system
(1) driven by the input u[0,N−1] satisfies

rank

([

H1(x[0,N−1])
Hl(u[0,N−1])

])

= lm + n. (95)

Given the input-state data u[0,N−1] and x[0,N ] sampled
from (1), we will design a learning-based PI algorithm
such that the accurate knowledge of system matrices is not
required. For any time indices 0 ≤ k1, k2 ≤ N − 1 and
V ∈ S

n , along the state trajectory of (1), we have

xTk1+1V xk2+1 = zTk1Θ(V )zk2 , (96)

where zk = [xTk , uTk ]T and

Θ(V ) =
[

AT

BT

]

V
[

A B
] =

[

Θxx (V ) ΘT
ux (V )

Θux (V ) Θuu(V )

]

. (97)

It follows from (96) that

xT[1,N ]V x[1,N ] = zT[0,N−1]Θ(V )z[0,N−1]. (98)

Assumption 2 The exploration signal u[0,N−1] is PE of order
n + 1.

Under Assumption 2 and according to Lemma 12, z[0,N−1] is
full row rank. As a result, for any fixed V ∈ S

n , (98) admits
a unique solution

Θ(V ) = ΛVΛT, (99)

where Λ is a data-dependent matrix defined as

(zT[0,N−1])† = (z[0,N−1]zT[0,N−1])−1z[0,N−1], (100a)

Λ = (zT[0,N−1])†xT[1,N ]. (100b)
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Therefore, given any V ∈ S
n , Θ(V ) can be directly com-

puted from (99) without knowing the system matrices A and
B.

By (97), we can rewrite (7) as

[

In −LT
i

]

Θ(Vi )
[

In −LT
i

]T − Vi + Q + LT
i RLi = 0.

(101)

Plugging (99) into (101) yields (102). The learning-based PI
is represented in the following procedure.

Procedure 5 (Learning-based PI for discrete-time LQR)

1. Learning-based policy evaluation

[

In −LT
i

]

ΛViΛ
T [

In −LT
i

]T − Vi + Q

+ LT
i RLi = 0. (102)

2. Learning-based policy improvement

Li+1 = (R + Θuu(Vi ))
−1Θux (Vi ). (103)

It should be noticed that due to (99), Procedure 5 is equivalent
to Procedure 1.

4.2 Robustness analysis

In the previous subsection, we assume that the accurate data
from system can be obtained. In reality, measurement noise
and unknown system disturbance are inevitable. Therefore,
the input-state data is sampled from the following linear
system with unknown system disturbance and measurement
noise

{

x̌k+1 = Ax̌k + Buk + wk,

yk = x̌k + vk,
(104)

wherewk ∼ N (0,Σw) and vk ∼ N (0,Σv) are independent
and identically distributed random noises. Let žk = [yTk , uTk ]
and suppose there are in total S trajectories of system (104)
which start from the same initial state and are driven by the
sameexploration inputu[0,N−1].Averaging the collected data
over S trajectories, we have

z̄ S[0,N−1] = 1

S

S∑

s=1
žs[0,N−1], ȳS[1,N ] = 1

S

S∑

s=1
ys[1,N ]. (105)

Then, the data-dependent matrix is constructed as

Λ̌S = [(z̄ S[0,N−1])
T]† ȳS[1,N ]. (106)

By the strong law of large numbers, the following limitations
hold almost surely

lim
S→∞ z̄ S[0,N−1] = z[0,N−1], lim

S→∞ ȳS[1,N ] = x[1,N ],

lim
S→∞ Λ̌S = Λ. (107)

Recall that z[0,N−1], x[1,N−1], and Λ are the data collected
from system (1) with the same initial state and exploration
input as (104). Since S is finite, the difference between Λ

and Λ̌S is unavoidable, and hence,

Λ̌S = Λ + �ΛS . (108)

Consequently, Θ̌(V ) = Λ̌SV (Λ̌S)T is the estimation of
Θ(V ). Using the noisy data-dependent matrix Λ̌S , the
learning-based PI is presented as:

Procedure 6 (Learning-based PI using noisy data)

1. Learning-based policy evaluation using noisy data

[

In −ĽT
i

]

Θ̌(V̌i )
[

In −ĽT
i

]T − V̌i + Q + ĽT
i R Ľi = 0.

(109)

2. Learning-based policy improvement using noisy data

Ľi+1 = (R + Θ̌uu(V̌i ))
−1Θ̌T

xu(V̌i ). (110)

In Procedure 6, the symbol “check” is used to denote the
variables for the learning-based PI using noisy data. In addi-
tion, let Ṽi denote the result of the accurate evaluation of Ľi ,
i.e. Ṽi is the solution of (109) with Θ̌(V̌i ) replaced byΘ(Ṽi ).
V̌i = Ṽi +�Vi is the solution of (109) and �Vi is the policy
evaluation error induced by the noise �Λ. In the following
contents, the superscript S is omitted to simplify the notation.
Based on the robustness analysis in the previous section, we
will analyze the robustness of the learning-based PI to the
noise �Λ.

For any stabilizing control gain L , let V̌L = VL+ �V be
the solution of the learning-based policy evaluation with the
noisy data-dependent matrix Λ̌, i.e.

[

In −LT
]

(Λ+�Λ)(VL+�V )(Λ+�Λ)T
[

In −LT
]T

− (VL + �V ) + Q + LTRL = 0. (111)

The following lemma guarantees that (111) has a unique
solution (VL + �V ) = (VL + �V )T � 0.

Lemma 13 If

∥
∥�Λ

∥
∥ < −∥

∥Λ
∥
∥ +

√

∥
∥Λ

∥
∥2 + λ(Q)

(1 + ∥
∥L

∥
∥)2

∥
∥VL

∥
∥
, (112)
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then (Λ + �Λ)T
[

In −LT
]T

is a Schur matrix.

Proof Recall that VL = V T
L � 0 is the solution of (5) asso-

ciated with the stabilizing control gain L . By (99), (5) is
equivalent to the following equation

[

In −LT
]

ΛVLΛT [

In −LT
]T − VL + Q + LTRL = 0.

(113)

Since Q � 0, by [30, Lemma 3.9], ΛT
[

In −LT
]T

is Schur.
When Λ is disturbed by �Λ, we can rewrite (113) as

[

In −LT
]

(Λ + �Λ)VL(Λ + �Λ)T
[

In −LT
]T

− VL − [

In −LT
]

(ΛVL�ΛT + �ΛVLΛT

+ �ΛVL�ΛT)
[

In −LT
]T + Q + LTRL = 0. (114)

When (112) holds, we have

[

In −LT
]

(ΛVL�ΛT + �ΛVLΛT

+ �ΛVL�ΛT)
[

In −LT
]T − Q ≺ 0. (115)

By [30, Lemma 3.9], (114) and (115), (Λ + �Λ)T×
[

In −LT
]T

is Schur. 
�
The following lemma implies that the policy evaluation

error �V is small as long as �Λ is sufficiently small.

Lemma 14 For any h > 0, L ∈ Lh, and�Λ satisfying (112),
we have

∥
∥�V

∥
∥

∥
∥VL + �V

∥
∥

≤ h + Tr (V ∗)
λ(Q)

(2
∥
∥Λ

∥
∥ + ∥

∥�Λ
∥
∥)(1 + ∥

∥L
∥
∥)2

∥
∥�Λ

∥
∥.

(116)

Proof According to [32, Theorems 2.6 and 4.1], we have

∥
∥�V

∥
∥

∥
∥VL + �V

∥
∥

≤ ∥
∥

∞∑
k=0

(
[

In −LT
]

Λ)k(ΛT
[

In −LT
]T

)k
∥
∥

× (2
∥
∥Λ

∥
∥ + ∥

∥�Λ
∥
∥)(1 + ∥

∥L
∥
∥)2

∥
∥�Λ

∥
∥. (117)

Since Tr (VL) ≤ h + Tr (V ∗), it follows from (102) and
[27, Theorem 5.D6] that

VL =
∞∑
k=0

(
[

In −LT
]

Λ)k(Q+LTRL)(ΛT
[

In −LT
]T

)k .

(118)

Taking the trace of both sides of (118) and utilizing [28], we
have

h + Tr
(

V ∗)

≥ λ(Q)
∥
∥

∞∑
k=0

(
[

In −LT
]

Λ)k(ΛT
[

In −LT
]T

)k
∥
∥. (119)

Plugging (119) into (117) yields (116). 
�
The following lemma tells us that �Θ is small if �V and

�Λ are small enough.

Lemma 15 Let Θ̌(V̌L) = Λ̌V̌LΛ̌T and�Θ(VL) = Θ̌(V̌L)−
Θ(VL), then,

∥
∥�Θ(VL)

∥
∥ ≤ 2

∥
∥Λ

∥
∥
∥
∥VL

∥
∥
∥
∥�Λ

∥
∥ + ∥

∥Λ
∥
∥2

∥
∥�V

∥
∥

+ 2
∥
∥Λ

∥
∥
∥
∥�V

∥
∥
∥
∥�Λ

∥
∥ + ∥

∥VL
∥
∥
∥
∥�Λ

∥
∥2

+ ∥
∥�Λ

∥
∥2

∥
∥�V

∥
∥.

(120)

Proof By the expressions of Θ̌(V̌L) and Θ(VL), we have

�Θ(VL) = ΛVL�ΛT + Λ�VLΛT + Λ�VL�ΛT

+ �ΛVLΛT + �ΛVL�ΛT + �Λ�VLΛT

+ �Λ�VL�ΛT. (121)

Hence, (120) is obtained by (121) and the triangle inequality.

�

By the follow lemma, it is ensured that �L converges to
zero as �Θ tends to zero.

Lemma 16 Let �L = (R + Θ̌uu(V̌L))−1Θ̌ux (V̌L) − (R +
Θuu(VL))−1Θux (VL). Then,

∥
∥�L

∥
∥ ≤

(

λ(R)−1 + λ(R)−2
∥
∥Θ(VL)

∥
∥

) ∥
∥�Θ(VL)

∥
∥.

(122)

Proof From the expression of �L , we have

�L = (R + Θ̌uu(V̌L))−1�Θux (VL) + [(R + Θ̌uu(V̌L))−1

− (R + Θuu(VL))−1]Θux (VL)

= (R + Θ̌uu(V̌L))−1�Θux (VL)

− (R + Θ̌uu(V̌L))−1�Θuu(VL)(R

+ Θuu(VL))−1Θux (VL).

(123)

Therefore, (122) readily follows from (123). 
�
Given the aforementioned lemmas, we are ready to show

the main result on the robustness of the learning-based PI
algorithm in Procedure 6.
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Theorem 3 For any ε > 0, h > 0, and L̂0 ∈ Lh, there exist
i∗ ∈ Z+ and f ∗ > 0, such that if

∥
∥�Λ

∥
∥ < f ∗,

∥
∥V̌i −V ∗∥∥ <

ε ∀i ≥ i∗.
Proof At each iteration of Procedure 6, if Λ is not disturbed
by noise, i.e.�Λ = 0, the policy improvement is (103). Due
to the influence of �Λ, the control gain is updated by (110),
which can be rewritten as

Ľi+1 = (R + Θuu(Ṽi ))
−1ΘT

xu(Ṽi ) + �Li+1, (124)

where �Li+1 is

�Li+1 =(R + Θ̌uu(V̌i ))
−1Θ̌T

xu(V̌i )

− (R + Θuu(Ṽi ))
−1ΘT

xu(Ṽi ).
(125)

By Lemmas 13, 14, 15, and 16,
∥
∥�Li+1

∥
∥ tends to zero as

∥
∥�Λ

∥
∥ tends to zero. Therefore, there exists f1, such that if

∥
∥�Λ

∥
∥ < f1,

∥
∥�Li+1

∥
∥ < b(h), where b(h) is defined in

Lemma 5. Hence, Ľi ∈ Lh for any i ∈ Z+. By Lemma 6, we
have

∥
∥Ṽi − V ∗∥∥

F ≤ κ(
∥
∥Ṽ0 − V ∗∥∥

F , i) + ρ(
∥
∥�L

∥
∥∞). (126)

As a result, there exist i∗ ∈ Z+ and f2 > 0, such that if
∥
∥�Λ

∥
∥ < f2,

∥
∥Ṽi − V ∗∥∥

F < ε/2 ∀i ≥ i∗. Furthermore, by

Lemma 14, there exists f3 > 0 such that
∥
∥V̌i − Ṽi

∥
∥
F < ε/2

∀i ≥ i∗ as long as
∥
∥�Λ

∥
∥ < f3. In summary, by triangle

inequality, if
∥
∥�Λ

∥
∥ < f ∗ = min{ f1, f2, f3}, we have

∥
∥V̌i−

V ∗∥∥
F < ε ∀i ≥ i∗. 
�

Corollary 1 For any ε > 0, h > 0, and L̂0 ∈ Lh, there exist
i∗ ∈ Z+ and S∗ ∈ Z+, such that if S > S∗,

∥
∥V̌i − V ∗∥∥ < ε

∀i ≥ i∗.
Proof For the given f ∗ > 0 in Theorem 3, by (107), there
exists S∗ ∈ Z+, such that if S > S∗, it is ensured that
∥
∥�Λ

∥
∥ < f ∗. Then, the proof is completed by Theorem

3. 
�

5 Numerical simulation

In this section, we illustrate the proposed theoretical results
by a benchmark example known as cart-pole system [33].
The parameters of the cart-pole system are:mc = 1kg (mass
of the cart), mp = 0.1kg (mass of the pendulum), l p =
0.5m (distance from the center of mass of the pendulum
to the pivot), gc = 9.8m/s2 (gravitational acceleration). By
linearizing the system around the equilibrium, the system is

ẋ =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 −0.717 0
0 0 0 1
0 0 15.77 0

⎤

⎥
⎥
⎦
x +

⎡

⎢
⎢
⎣

0
0.98
0

−1.46

⎤

⎥
⎥
⎦
u. (127)

By discretizing it through Euler method with a step size
of 0.01sec, we have

xk+1 =

⎡

⎢
⎢
⎣

1 0.01 0 0
0 1 −0.007 0
0 0 1 0.01
0 0 0.158 1

⎤

⎥
⎥
⎦
xk +

⎡

⎢
⎢
⎣

0
0.0098

0
−0.0146

⎤

⎥
⎥
⎦
uk .

(128)

The weighting matrices of the cost (1) are Q = 10I4 and
R = 1. The initial stabilizing gain to start the policy iteration
algorithm is

K̂0 = L̂0 = [−58.6 −43.6 −167.8 −43.5
]

. (129)

5.1 Robustness test of the inexact policy iteration

We test the robustness of the inexact PI for discrete-time
systems in Procedure 3. At each iteration, each element of
�Gi is sampled from a standard Gaussian distribution, and
then its spectral norm is scaled to 0.2. During the iteration,
the relative errors of the control gain L̂i and cost matrix V̂i
are shown in Fig. 1. The control gain and costmatrix are close
to the optimal solution at the 5th iteration. It is observed that
even under the influence of disturbances at each iteration,
the inexact PI in Procedure 3 can still approach the optimal
solution.This is consistentwith the ISSproperty ofProcedure
3 in Theorem 1.

In addition, the robustness of Procedure 4 is tested. At
each iteration, �Mi is randomly sampled with the norm of
0.2. Under the influence of�Mi , the evolution of the control
gain K̂i and cost matrix P̂i is shown in Fig. 2. Under the noise
�Mi , the algorithm cannot converge exactly to the optimal
solution. However, with the small-disturbance ISS property,
the inexact PI can still converge to a neighborhood of the
optimal solution, which is consistent with Theorem 2.

5.2 Robustness test of the learning-based policy
iteration

The robustness of the learning-based PI in Procedure 6 is
tested for system (104) with both system disturbance and
measurement noise. The variances of the system disturbance
and measurement noise are Σw = 0.01In and Σv = 0.01In .
One trajectory is sampled from the solution of (104) and the
length of the sampled trajectory is N = 100, i.e. 100 data
collected from (104) is used to construct the data-dependent
matrix Λ̂S . Compared with the matrixΛ in (100b) where the
data is collected from the system without unknown system
disturbance and measurement noise, Λ̂S is directly con-
structed by the noisy data. Therefore, at each iteration of
the learning-based PI,�ΛS introduces the disturbances. The
evolution of the control gain and cost matrix is in Fig. 3. It
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Fig. 1 Robustness test of Procedure 3 when
∥
∥�G

∥
∥∞ = 0.2

Fig. 2 Robustness test of Procedure 4 when
∥
∥�M

∥
∥∞ = 0.2

Fig. 3 Robustness test of Procedure 6 when the noisy data is applied for the construction of Λ̂

is observed that with the noisy data, the control gain and the
cost matrix obtained by Procedure 6 converge to an approxi-
mation of the optimal solution. This coincides with the result
in Theorem 3.

6 Conclusion

In this paper, we have studied the robustness property of
policy optimization in the presence of disturbances at each
iteration. Using ISS Lyapunov techniques, it is demonstrated
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that the PI ultimately converges to a small neighborhood of
the optimal solution as long as the disturbance is sufficiently
small. In this paper, we also provided a quantifiable bound.
Based on the ISS property andWillems’ fundamental lemma,
a learning-based PI algorithm is proposed and the persist
excitation of the exploratory signal can be easily guaranteed.
A numerical simulation example is provided to illustrate the
theoretical results.

Data availability The data that support the findings of this study are
available from the corresponding author, L. Cui, upon reasonable
request.
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