Abstract

Excessive warming is the source of many environmental challenges in urban areas. Finding
causal interactions between urban ambient temperature and other meteorological variables will
greatly facilitate our understanding of the underlying mechanisms of urban heat. In this study, we
use the data of 2-meter air temperature and 500 hPa geopotential height (GPH) in 520 cities in
the contiguous United States (CONUS), from 2016 to 2022, to detect their local and nonlocal
causal interactions based on the convergent cross-mapping method. For local (within the same
city) interactions between temperature and GPH, there are hubs of strong causal interactions in
the northern Appalachian Mountain and inland southwestern CONUS, whereas the leeward side
of the southern Rocky Mountains exhibit low causation due to the baroclinic in this area. The
nonlocal causal networks exhibit potential long-range connections (teleconnections), largely
attributable to the influence of the upstream and downstream westerly circulations on local
atmospheric variables. This study can be informative to stakeholders in design sustainable

countermeasures to mitigate excessive heat in urban areas.
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1. Introduction

Urbanization has induced various challenges with complex human-environment
interactions over built terrains. Examples include excessive heat, air pollution, and degradation
of ecosystem services, to name a few, of which the phenomenon of urban heat island (UHI) is a
prominent example (Oke, 1967, 1982). In addition, most cities in U.S. are experiencing a rising
trend of heat extremes (often known as heatwaves or HWs) (Habeeb et al., 2015) as a
consequence of global climate changes (IPCC, 2021), and the urban thermal environment is
further exacerbated due to the synergistic interplay of UHI and HWs (Jiang et al., 2019). The
efficacy of urban heat mitigation strategies therefore relies on our fundamental understanding of
the intricate interactions of various meteorological and environmental variables underneath the
phenomenon of elevated temperature, and their compound impact on urban environment (Wang,
2021). Up to date, tremendous research effort has been devoted to study the attribution of
excessive urban heat to landscape characteristics, e.g., the coverage and distribution of urban
vegetation, thermal properties of pavement materials (especially albedo), urban morphology, etc.
that are manageable from the perspective of urban planners, practitioners, and policymakers
(Hou et al., 2023a,b). In contrast, the contribution and attribution of background
meteorological/climatic conditions to regulating the ambient temperature in cities remains
relatively underexplored.

Among many meteorological conditions that affect urban thermal environment,
atmospheric pressure systems play a critical role in regulating the thermal environment. In
particular, “blocking” pressure systems strongly regulate the formation of heat and cold
anomalies (HWs or cold spells) via their dynamic synchronization (Charney & Devore, 1979;

Perkins, 2015; Chen & Luo, 2017; Wang et al., 2021). Meteorologically, the presence of



different pressure surfaces above mean sea-level is usually represented using the geopotential
height (GPH). For example, GPH plays important roles in regulating the atmospheric circulation,
including the distributions and movement of subtropical high, polar vortexes, ridges and troughs
in the westerlies, etc. (Lu et al., 2008; Cao et al., 2020; Savelieva, 2020; Alizadeh & Lin, 2021;
Tong et al., 2021), which, at the 500 hPa level, could influence the near-surface temperature
dramatically (Yang et al., 2020).

Some research has been carried out to study the interactions between the near-surface
temperature and GPH. It was found that GPH is regulated by surface temperature via the vertical
profiles of air temperature and humidity (Wallace & Hobbs, 2006; Qin, 2009). On the other
hand, the distribution of GPH is informative to the presence of ascending motions or descending
motions and the directions of the air flow that in turn causes temperature anomalies (Rashid et
al., 2020). The positive anomalies of GPH generally indicate the existence of high-pressure
systems that lead to the sinking motions of the air parcel and thus increase the temperature of the
middle and upper troposphere by adiabatic heating (Broccoli, 2012; Nath, 2012; El Kenawy et
al., 2013; Olmo et al., 2020; Rashid et al., 2020). For example, the North Pacific Ocean
subtropical high has been identified as a main cause of HWs in subtropical zones like south
China, and the blocking high in the westerlies could trigger heatwave episodes in north China
(Luo et al., 2020, 2022). On the contrary, the negative anomalies of GPH are often linked to
abnormally low temperatures (El Kenawy et al., 2013).

To quantify the interactions between GPH and ambient temperatures, linear statistical
correlation has been a prevailing technique adopted in the literature (Klein & Kline, 1984, 1986;
Knapp & Yin, 1996). However, linear correlation analysis is prone to spurious couplings which

are common in nonlinear systems, especially when two or more variables are driven by common



forcings (Pearl & Mackenzie, 2018). In contrast, causal inference methods, more sophisticated
than statistical correlations, have been developed for nonlinear dynamic systems with coupled
and interacting variables (e.g., the Earth’s climate system), such as the Granger causality (GC)
(Granger, 1969), convergent cross-mapping (CCM) (Sugihara et al., 2012), and partial cross
mapping (Runge et al., 2015, 2019) methods. The GC method, however, often suffers from its
applicability to purely stochastic and nonseparable systems as well as its stringent requirement of
length of time series (Ancona, 2004; Sugihara et al., 2012).

The convergent and partial cross mapping methods, on the other hand, are particularly
suitable for Earth systems (Sugihara et al., 2012; Runge, 2019). In particular, the CCM method
has been lately applied to earth system sciences for detecting drivers and interactions among
various variables of complex hydroclimate systems (Yang et al., 2022b, 2023a, b; Yu et al.,
2022). Furthermore, the causal relationship among various environmental and meteorological
variables in the built environment will facilitate the shift of paradigm from process-based to
system-based urban environmental studies (Wang, 2022), which entails the use of rich set of
advanced toolkits of data sciences and complex dynamic systems including, e.g. network
analysis (Wang & Wang, 2020; Wang et al., 2020a), critical system transitions (Wang et al.,
2020b; Yang et al., 2022a), and machine learning (Li et al., 2022, 2023; Hou et al., 2023b).

In this study, we adopt the CCM method (Sugihara et al., 2012), based on Taken’s theory
of delay-coordinate embedding (Takens, 1981), to quantify the interactions among urban
temperature and other variables. Our study areas consist of a total number of 520 cities in the
contiguous United States (CONUS), with long-term urban environmental monitoring from 2016
to 2022. In particular, we quantify both the local (intra-city) and nonlocal (inter-city) causal

interactions of near-surface urban temperature and GPH. The findings of this study help to shed



new lights on the governing mechanisms underneath the excessive heat in urban areas, and will

be informative to sustainable urban development in the long run.

2. Methods

2.1. Study areas and data processing

The research areas of this study consist of 520 urban areas with more than 50,000
population, retrieved from the Topologically Integrated Geographic Encoding and Referencing
(TIGER) database, developed by U.S. Census Bureau

(https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html).

Each selected urban area contains a weather station located within (390) or adjacent to (130) the
study areas, from the list of over 900 stations archived by the National Renewable Energy
Laboratory’s typical meteorological year (TMY3) database. Figure 1 shows the map of all
states, located in nine climate regions, in CONUS (Fig. 1a) and spatial distribution of urban
fractions in our study areas of the selected 520 cities/towns (Fig. 1b). In addition, for each urban
area, we retrieve the dataset for long-term monitoring of CONUS from the National Center for
Atmospheric Research (NCAR) (https://rda.ucar.edu/datasets/ds083.3/). The data is on 0.25° by
0.25° grids with a time interval of 6 hours (00:00, 06:00, 12:00, and 18:00, UTC, every day). The
variables we retrieved include 2-m air temperature, 500 hPa GPH, precipitation, volumetric soil
moisture content (0-0.1m), and 2-m relative humidity from 01/01/2016 to 12/31/2022. The 6-

hourly time series were first aggregated to yield 24-hour (diurnal) mean values.


https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html
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Figure 1. Spatial distributions of (a) the nine climate zones and all 48 states and (b) urban
fractions of 520 urban areas in CONUS. The nine climate zones include Northwest (NW), North
Rockies and Plains (NRP), West (WE), Southwest (SW), South (SO), Southeast (SE), Ohio

Valley (OV), UM (Upper Middle), and NE (Northeast).

In addition, we obtained the anomalies of the “coarse-grained” daily time series, of GPH,
temperature humidity, and soil moisture, by removing the daily means (averaged over all values
of the same date within the study period). For precipitation, instead of anomalies, we calculated

the Standardized Precipitation Index (SPI) of 30 days for each city, given by

SPI:P_P , (1)

%,

where P is the accumulated precipitation of past 30 days, P" is the 30-day average precipitation,
op 1s the standardized deviation of precipitation.

The anomalies and SPI are then used for subsequent causal analysis, as required by the
input data format of the CCM algorithm. Figure 2 shows the mean values of 500 hPa GPH and
2-m temperature of all the 520 cities averaged over the period of 01/01/2016 to 12/31/2022. The
time series of daily anomalies of 500 hPa GPH and 2-m temperature are presented in Fig. 3,

using Phoenix (33.43°N, 112.01°W) as an example.
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Figure 2. Sample plots of mean (a) The average 500 hPa GPH (gpm) and (b) 2-m temperature

(°C) of the 520 CONUS cities averaged over 01/01/2016 to 12/31/2022.
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Figure 3. Sample time series of daily anomalies of 500 hPa GPH and 2-m temperature in

Phoenix from 01/01/2016 to 12/31/2022.

2.2. The CCM method

The CCM method, based on the embedding theory (Takens, 1981), is designed to detect
causality in deterministic nonlinear dynamic systems with weak to moderate couplings and
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nonseparable variables (Sugihara et al., 2012). It adopts simple projection, which is a nearest-
neighbor algorithm that uses the nearby points on the reconstructed manifolds to make kernel
density estimations (Sugihara et al., 2012). Here we use the canonical Lorenz system, shown in
Fig. 4 with three dynamically coupled variables, X, ¥, and Z, as an example of nonlinear
dynamic systems to illustrate the CCM algorithm. To measure the causal effect between the time
series of a pair of variables, e.g. X(¢) on Y(¢), we first build the shadow manifold Mx of th
original time series X(), by constructing a lagged-coordinate vector given by x(¢) = [X(?), X
(t-7), ..., X(t—(E-1) 7)] (Fig. 4b), where 7 is the time delay and E is the embedding dimension.
Likewise, we can construct the shadow manifold My. To determine the value of the time delay z,
we can use the value of the average oscillation period of X(¢). In addition, the correlation integral
and dimension method can be used to determine the value of the embedding dimension E (see
details in Jiang et al., 2016; Yang et al., 2022b). In this study, the values of 7= 1 and £ = 3 for
subsequent analysis; the choice of these values are robust as proved by sensitivity test.

If there is causal coupling between the variables X and Y, there will be cross-mapping

correspondence between their corresponding manifolds Mx and My. For the time series X(¢), the

cross-mapping estimate X (¢)| M, is determined according to the projection of the £+1 nearest

neighbors of vector y(#) in the manifold of My. The reason that £+1 points are requested is that
E+1 is the minimum number of points needed for a bounded simplex in the E-dimensional space.
Mathematically, time indices of the £+1 points on My, y(t1), y(t2), ..., y(te+1), are used to identify

the corresponding neighbors in X, i.e., X(#1), X(%2), ..., X(te+1), respectively. Thus, the cross-

mapping estimate of X (¢)| M, is calculated using the nearby £+1 points, as given by

E+1

XM, = > w(0XG). @



where wi(?) are the weighting coefficients given by

w (1) = 3)

D)
j=1
with
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where d[y(¢), y(ti)] is the Euclidean distance between y(¢) and y(#) in My.

@ = pxa, Yo, 20)
80 /
/
60 /
5 .
40 -
20
58> \\ M
B ERNTER S TR
dy dx
(b) x(f) = [X(0), X(t-1), X(1-27)] ©)  w=[¥0), Y(t-t), Y(1-21)]
\ //
. o
My My

Figure 4. The illustration of the correspondence between two shadow manifolds of convergent
cross mapping: (a) the canonical Lorenz system m consisting of three dynamically coupled
variable X, Y, and Z, (b) the attractor projected onto the manifold of Mx, and (c) the attractor

projected onto the manifold of My.



Lastly, we calculate the correlation coefficient p between the estimated time series

X(t)| M, and actual time series X(#) to measure the causality from X to Y. More specifically, the
correlation coefficient is defined as the CCM causality strength, denoted by p,,, and is

computed as

= E{[X(t)—/uX].[X(tﬂMY—,u;(]}’ “

0,0,

where E, 1, and o are the statistical expectation, average, and standard deviation, respectively.

We can likewise define the causality p,,, in the reverse direction (from Y to X). A higher value

of p means a stronger causal relationship between a pair of variables.

Given the network of CONUS cities with N nodes (in our case N = 520), the computation
of CCM strength will results in an N x N matrix p(i, j) (the adjacency matrix, i, j =1, 2, 3... N)
for a given pair of variables X and Y, with the diagonal terms representing the local causality
(time series X and Y are selected in the same city) and off-diagonal entities nonlocal causality.
For the nonlocal causality, we further define average causal effect (ACE) and average causal
susceptibility (ACS), by averaging over columns or rows of the adjacency matrix, respectively

(Runge et al., 2015), as

ACE Ly (1) ==X P, (i]): (©)

J#i

ACS, (j):ﬁszwy (l:J) (7

i#]
Physically, ACE(7) can be interpretated as the mean capacity of an environmental variable X in a
given city i to causally affect another variable Y averaged over the other N—1 cities, while ACS

measures the susceptibility of that given city (to be causally influenced by other cities).

10



2.3. Selection of urban environmental variables

Out of the five urban environmental variables retrieved, viz. the 500 hPa GPH, 2-m
temperature, 2-meter relative humidity, volumetric soil moisture content, and precipitation, we
first prioritize the directional causal inference (effect and susceptibility) using the CCM method.
The results of pair-wise average strength (over all study areas) of the CCM causality are shown
in Fig. 5. It is clear that the pair of 500 hPa GPH and 2-m temperature stands out to have
strongest bi-directional causal inference (with average strength greater than 0.4). The causal
influence of precipitation on soil moisture manifested as the third highest, with apparent physical
meaning, whereas the reserve causation (causal influence of soil moisture on precipitation, or
causal susceptibility of precipitation to soil moisture) is insignificant. In the light of this test, we

will focus on the causal inference between GPH and air temperature in the subsequent analysis.
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Figure 5. The average local CCM causality of the 520 cities between pairs of 5 variables. One
pair in two directions are in the same color. GPH is 500 hPa geopotential height, T is 2-m
temperature, SPI is the standardized precipitation index of 30 days, RH is 2-meter relative

humidity, VSMC is volumetric soil moisture content.
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3. Results and Discussion

3.1. The local temperature-GPH interactions

It is expected that GPH has a direct causal influence on local ambient temperature in a city

before it can exert any potential long-range (trans-urban) impact on other cities. So, we first look

into the bi-directional local causality between 500 hPa GPH and 2-m temperature which is

mathematically represented by the diagonal terms of the adjacency matrices of p,,, and p,,, ,

where X and Y are GPH and ambient temperature, respectively. The results of local causality are

shown in Fig. 6.
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Figure 6. The distributions of the local directional causation between 2-m temperature and 500

hPa GPH: (a) from 500 hPa GPH to 2-m temperature, (b) from 2-m temperature to 500 hPa

GPH.

First of all, it is noteworthy that, unlike the symmetrical linear statistical correlation, the

CCM generated causation is asymmetrical. In general, the causal influence from 500 hPa GPH to

2-m temperature is stronger than the opposite direction for most of the CONUS cities, as shown

in Fig. 6, indicating that atmospheric pressure strongly regulates the evolution of the thermal

environment in cities. The spatial distribution of causation in CONUS cities, nevertheless,

exhibits similar patterns in both directions, with two hubs of strong causations (p greater than
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0.60) in the north Appalachian area (eastern half of OV climate zone) and southwest (i.e.,
Arizona (AZ) and inland southern California (CA)), respectively. In contrast, the southern
leeward areas of the Rocky Mountains, i.e., Texas (TX) and its surrounding areas is manifested
as a hub with weakest causal inference between GPH and temperature in CONUS. In addition,
the NW climate region (Washington (WA) and southern Idaho (ID)) also appears as a local
“weak” area, surrounded by strong causal influence zones.

The underlying mechanism of the spatial distributions of the local causation between GPH
and temperature in CONUS is potentially governed by the lower atmosphere. It has been found
that areas with less fog and clear sky tend to have strong coupling between the 500 hPa GPH and
2-m temperature (Kline & Klein, 1986; Knapp & Yin, 1996), which is likely responsible for the
strong causal hubs in Arizona (AZ) and the inland areas of Southern California (CA). On the
other hand, the GPH-temperature interactions can be decoupled due to atmospheric baroclinicity
on the leeward areas of the Rocky Mountains (Klein & Kline, 1984) or the prevalence of heavy
fog along the northwest coast (Kline & Klein, 1986). Such decoupling mechanisms, in turn, lead

to the reduction of causal interactions between GPH and ambient temperature in these regions.

3.2. The nonlocal temperature-GPH interactions and potential teleconnection

We then look into the nonlocal causal interactions between GPH and temperature in
CONUS cities, to identify, e.g., potential long-range connectivity (teleconnection) among
CONUS cities, measured by ACE and ACS in Egs. (6) and (7), respectively. The spatial
distributions of ACE and ACS between 500hPa GPH and 2-m air temperature in CONUS cities
are shown in Figs. 7 and 8. Overall, the nonlocal GPH-temperature causal interactions are much

weaker than the local interactions, as expected. More specifically, Fig. 7 shows that Ohio (OH),
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Pennsylvania (PA) and the surrounding areas have the strongest nonlocal causal interactions
from GPH to ambient temperature, followed by the inland Rocky Mountains area (SW climate
zone, southwestern NRP climate zone, and inland NW and WE climate zone). The presence of
these nonlocal causal hubs signals that, on average, atmospheric pressure systems (GPH) in cities
of these areas exert stronger causal influence on (Fig. 7a), and are meanwhile more susceptible
to (Fig. 7b), changes of thermal environment (temperature) in cities of other regions. In
comparison, weak nonlocal interactions exist in the eastern leeward areas of the Rocky

Mountains (eastern half of NRP climate zone and SO climate zone).
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Figure 7. The distribution of the nonlocal causal interactions from 500 hPa GPH to 2-m air

temperature in CONUS cities: (a) ACE and (b) ACS.

The spatial distribution of ACE and ACS from 2-m temperature to 500 hPa GPH, as shown
in Fig. 8, exhibits two hubs of strong nonlocal causations and one hub of weak nonlocal
causations all shifted southwestward, as compared to their counterparts in Fig. 7. In particular, a
strong nonlocal causal hub is manifest to the east of the Mississippi River (eastern half of SO
climate zone, OV climate zone, and SE climate zone), especially the areas surrounding

Tennessee (TN). These hubs largely coincide with the presence of atmospheric gateways in Ohio
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Valley (OV climate zone) for trans-regional transport of heat and precipitation, based on the
causal analysis of long-term temperature and precipitation climatology in CONUS using the
same CCM method (Yang et al., 2022b, 2023a). In addition, the presence of the causal hubs
coincides well with “hot nodes” detected by machine-learning-based graphic neural network
analysis that require most computational skills (Li et al., 2023), regardless the spatial resolution

or regional aggregation of CONUS states.
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Figure 8. The distribution of the nonlocal causal interactions from 2-m air temperature to 500

hPa GPH in CONUS cities: (a) ACE and (b) ACS.

Furthermore, the spatial distribution of trans-urban interactions highlights the critical role
played by the Rocky Mountains in modifying atmospheric circulations in CONUS. Located at
mid-latitudes, the Rocky Mountains divide the westerly into two branches, making the airflow
deflected and thus forming a ridge in the Rocky Mountains area and a trough in the downstream
area of it, i.e., the Pacific-North American teleconnection pattern; the influence is more
prominent in winter (Boyer & Chen, 1987; Xia et al., 2019; Wallace & Gutzler, 1981; Brayshaw
et al., 2009). In addition, the Rocky Mountains can block the eastward movement of weather
systems in the westerly (Spensberger et al., 2017). These orographically effects split the CONUS

atmospheric circulations into two relatively independent subsystems, which has been
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corroborated by recent studies of CONUS urban climate as complex dynamic systems. For
example, it was found that the topology of CONUS urban climate networks has two manifest
sub-clusters, separately located in the east and west CONUS (Wang & Wang, 2020; Wang et al.,
2021), largely overlapped with the east (areas to the east of the Mississippi River) and west (the
Rocky Mountains areas) hubs of nonlocal causal pressure-temperature interactions.

The nonlocal causal interactions in a given city measured by ACE and ACS are averaged
over all other cities. Thus, the high-value hubs in Figs. 7 and 8 may be resulted from strong
trans-urban interactions among adjacent cities, but not necessarily indicate long-range (trans-
regional) causal connection, despite that our previous work suggested the existence of
teleconnection (Wang & Wang, 2020; Yang et al., 2022b, 2023a, b). To unravel the potential
teleconnection of temperature-pressure interactions, we further look into causal connectivity of
individual cities to all other cities (without averaging). Figure 9 shows the causal susceptibility
between 2-m temperature and 500 hPa GPH in four selected cities, viz. Chicago, New York,
Orlando, and San Francisco in the CONUS. The contour plots clearly show that the causal
susceptibility of an individual cities is indeed mostly contributed by surrounding urban areas,
with the typical size of a central influence region (as indicated by the bright-colored region
centering the selected city) covering a few adjacent states. Typically, the causal influence decays
with distance.

Nevertheless, teleconnection across different climate regions does emerge in the mapping of
causal susceptibility of thermal environment (2-m air temperature) in Orlando by pressure
systems (500 hPa GPH) in other regions (Fig. 9¢), as a second (slightly weaker) causal hub
around the Salt Lake City. The presence of teleconnection can be physically attributed to the

influence of the upstream and downstream westerly circulations on the local meteorological
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variables of a city. For example, when the ridge or Alaska blocking high-pressure forms in the
upstream areas of the CONUS, it will cause the downstream trough to deepen and further
downstream ridge to occur, thereby facilitating the southward movement of cold air from Canada
and causing negative temperature anomalies in the CONUS (Kline & Klein, 1986; Carrera et al.,
2004). In addition, when the Greenland blocking high downstream of CONUS moves westward,
it can also cause abnormal atmospheric circulation patterns and lower anomalies of temperature
in the CONUS (Kline & Klein, 1986; Chen & Luo, 2017). Therefore, the centers of

teleconnection could appear both in the upstream and downstream areas in the westerlies.
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Figure 9. The causal susceptibility from 2-m temperature to 500 hPa GPH in (a) Chicago, and
the causal susceptibility from 500 hPa GPH to 2-m temperature in (b) New York, (¢) Orlando,

and (d) San Francisco.
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3.3. Implications to sustainable urban development

The exacerbated thermal environment in urban areas in the face of global climate change,
excessive heat (e.g. the UHI effect) in particular, has been persistently challenging researchers
and urban planners to seek sustainable solutions. In this study, we unravel the causal interactions
of urban ambient temperature with distribution of pressure systems using the CCM method. In
particular, it is found that the 2-m air temperature in a city is strongly regulated by the 500 hPa
GPH presented in the locality, which in turn is influenced by the local urban thermal
environment, resulting in effective two-way causal interactions.

Unlike urban landscape properties (e.g., albedo, pavement materials, urban infrastructure,
building morphology, etc.), the presence of GPH per se is hardly manageable from the urban
planning perspective. Nevertheless, its strong and two-way causal interactions with the ambient
temperature suggest that sustainable urban strategies may be capable of inducing positive
temperature-pressure feedback loop to facilitate the efficacy of heat mitigation. In particular, the
identified hubs of strong causal interactions in CONUS implies that these are the core regions
where the implementation of sustainable urban planning strategies are likely to be more effective
and/or the efficacy of heat mitigation strategies can be extended to adjacent urban areas
(periphery) that are causally influenced by these hubs. This is informative to policy makers as
causal hubs are likely the areas worthy of more investment to promote the efficiency and
sustainability of urban planning strategies. This implication, in the new light shed by the results
of the current study, is far-reaching and certainly worth pursuing in future urban environmental
research as to unraveling underlying mechanistic pathways governing the intricate interplay of

various environmental/meteorological variables in the complex urban dynamic systems.
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In addition, the presence of teleconnections in the nonlocal causal interactions, especially
the susceptibility of urban temperature to long-range influence of dominating atmospheric
pressure systems (such as blocking highs or lows), highlights the importance of coordinating the
design, implementation, and evaluation of urban planning strategy adopted by different cities
within or beyond their climate regions. Such synergy calls for the network approach inclusive of
all relevant players, instead of isolated practices and/or policy making processes limited to the
locality. Megacities and regional metropolitans are likely to weigh in more heavily in the
cooperative processes not only because of their sizes and number of stakeholders, but also
because they are more likely hubs of regional urban clustering than small or mid-sized towns in

determining the topology of urban networks (Wang & Wang, 2020; Wang et al., 2020a).

4. Concluding Remarks

In this study, we use the CCM method to detect the causal interactions between 500 hPa
GPH and 2-m temperature in the network of 520 U.S. cities. We identify the hubs of local and
nonlocal causal interactions in CONUS, and the trans-regional teleconnections due to the
westerly circulations. The results help to further our understanding of the mechanism of pressure
distribution in causally mediating the thermal environment in cities and the potential
temperature-pressure feedback due to their causal interactions. Nevertheless, there are other
meteorological/environmental variables that can potentially regulate ambient temperatures in
cities (e.g., radiation, cloud cover, anthropogenic emissions, etc.). This is particularly important
in regions where temperature-pressure interactions are weak and supplementary forcings need to

be included that can impact the thermal environment via local or long-range interactions.
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While the current method can be readily extended to include other environmental variables,
it is caveated that the causal interactions among multiple variables can be extremely complicated
(recall one pair of variables generates four asymmetrical and directional complex causal graphs).
In addition, the pair-wise causal relationship between two time series using CCM method also
leaves the potential confounding effect among multiple factors rather elusive. Thus the key is to
devise a novel protocol that can systematically process and evaluate the big amount of data to
unravel the meaningful underlying causal mechanisms that govern the dynamic evolution of
urban thermal environment. Recent advances in data science and dynamic systems offer a rich
toolkit and promising perspective for developing such a novel protocol, by employing techniques
such as network analysis, critical transitions and early-warning signals in urban climate system,
and advanced machine learning algorithms (Wang, 2022). The system-based urban-climate
modeling, with urban heat as a key component, also facilitate to find efficient strategies to
counteract compound urban environmental impact through, e.g., multi-objective optimization (Li

et al., 2022) and foster policy making processes.
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