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Abstract 

Excessive warming is the source of many environmental challenges in urban areas. Finding 

causal interactions between urban ambient temperature and other meteorological variables will 

greatly facilitate our understanding of the underlying mechanisms of urban heat. In this study, we 

use the data of 2-meter air temperature and 500 hPa geopotential height (GPH) in 520 cities in 

the contiguous United States (CONUS), from 2016 to 2022, to detect their local and nonlocal 

causal interactions based on the convergent cross-mapping method. For local (within the same 

city) interactions between temperature and GPH, there are hubs of strong causal interactions in 

the northern Appalachian Mountain and inland southwestern CONUS, whereas the leeward side 

of the southern Rocky Mountains exhibit low causation due to the baroclinic in this area. The 

nonlocal causal networks exhibit potential long-range connections (teleconnections), largely 

attributable to the influence of the upstream and downstream westerly circulations on local 

atmospheric variables. This study can be informative to stakeholders in design sustainable 

countermeasures to mitigate excessive heat in urban areas. 

 

Keywords: Causality; Contiguous United States; Convergent cross mapping; Teleconnection; 

Urban microclimate  
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1.  Introduction 

Urbanization has induced various challenges with complex human-environment 

interactions over built terrains. Examples include excessive heat, air pollution, and degradation 

of ecosystem services, to name a few, of which the phenomenon of urban heat island (UHI) is a 

prominent example (Oke, 1967, 1982). In addition, most cities in U.S. are experiencing a rising 

trend of heat extremes (often known as heatwaves or HWs) (Habeeb et al., 2015) as a 

consequence of global climate changes (IPCC, 2021), and the urban thermal environment is 

further exacerbated due to the synergistic interplay of UHI and HWs (Jiang et al., 2019). The 

efficacy of urban heat mitigation strategies therefore relies on our fundamental understanding of 

the intricate interactions of various meteorological and environmental variables underneath the 

phenomenon of elevated temperature, and their compound impact on urban environment (Wang, 

2021). Up to date, tremendous research effort has been devoted to study the attribution of 

excessive urban heat to landscape characteristics, e.g., the coverage and distribution of urban 

vegetation, thermal properties of pavement materials (especially albedo), urban morphology, etc. 

that are manageable from the perspective of urban planners, practitioners, and policymakers 

(Hou et al., 2023a,b). In contrast, the contribution and attribution of background 

meteorological/climatic conditions to regulating the ambient temperature in cities remains 

relatively underexplored.  

Among many meteorological conditions that affect urban thermal environment, 

atmospheric pressure systems play a critical role in regulating the thermal environment. In 

particular, “blocking” pressure systems strongly regulate the formation of heat and cold 

anomalies (HWs or cold spells) via their dynamic synchronization (Charney & Devore, 1979; 

Perkins, 2015; Chen & Luo, 2017; Wang et al., 2021). Meteorologically, the presence of 
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different pressure surfaces above mean sea-level is usually represented using the geopotential 

height (GPH). For example, GPH plays important roles in regulating the atmospheric circulation, 

including the distributions and movement of subtropical high, polar vortexes, ridges and troughs 

in the westerlies, etc. (Lu et al., 2008; Cao et al., 2020; Savelieva, 2020; Alizadeh & Lin, 2021; 

Tong et al., 2021), which, at the 500 hPa level, could influence the near-surface temperature 

dramatically (Yang et al., 2020).  

Some research has been carried out to study the interactions between the near-surface 

temperature and GPH. It was found that GPH is regulated by surface temperature via the vertical 

profiles of air temperature and humidity (Wallace & Hobbs, 2006; Qin, 2009). On the other 

hand, the distribution of GPH is informative to the presence of ascending motions or descending 

motions and the directions of the air flow that in turn causes temperature anomalies (Rashid et 

al., 2020). The positive anomalies of GPH generally indicate the existence of high-pressure 

systems that lead to the sinking motions of the air parcel and thus increase the temperature of the 

middle and upper troposphere by adiabatic heating (Broccoli, 2012; Nath, 2012; El Kenawy et 

al., 2013; Olmo et al., 2020; Rashid et al., 2020). For example, the North Pacific Ocean 

subtropical high has been identified as a main cause of HWs in subtropical zones like south 

China, and the blocking high in the westerlies could trigger heatwave episodes in north China 

(Luo et al., 2020, 2022). On the contrary, the negative anomalies of GPH are often linked to 

abnormally low temperatures (El Kenawy et al., 2013).  

To quantify the interactions between GPH and ambient temperatures, linear statistical 

correlation has been a prevailing technique adopted in the literature (Klein & Kline, 1984, 1986; 

Knapp & Yin, 1996). However, linear correlation analysis is prone to spurious couplings which 

are common in nonlinear systems, especially when two or more variables are driven by common 
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forcings (Pearl & Mackenzie, 2018). In contrast, causal inference methods, more sophisticated 

than statistical correlations, have been developed for nonlinear dynamic systems with coupled 

and interacting variables (e.g., the Earth’s climate system), such as the Granger causality (GC) 

(Granger, 1969), convergent cross-mapping (CCM) (Sugihara et al., 2012), and partial cross 

mapping (Runge et al., 2015, 2019) methods. The GC method, however, often suffers from its 

applicability to purely stochastic and nonseparable systems as well as its stringent requirement of 

length of time series (Ancona, 2004; Sugihara et al., 2012).  

The convergent and partial cross mapping methods, on the other hand, are particularly 

suitable for Earth systems (Sugihara et al., 2012; Runge, 2019). In particular, the CCM method 

has been lately applied to earth system sciences for detecting drivers and interactions among 

various variables of complex hydroclimate systems (Yang et al., 2022b, 2023a, b; Yu et al., 

2022). Furthermore, the causal relationship among various environmental and meteorological 

variables in the built environment will facilitate the shift of paradigm from process-based to 

system-based urban environmental studies (Wang, 2022), which entails the use of rich set of 

advanced toolkits of data sciences and complex dynamic systems including, e.g. network 

analysis (Wang & Wang, 2020; Wang et al., 2020a), critical system transitions (Wang et al., 

2020b; Yang et al., 2022a), and machine learning (Li et al., 2022, 2023; Hou et al., 2023b). 

 In this study, we adopt the CCM method (Sugihara et al., 2012), based on Taken’s theory 

of delay-coordinate embedding (Takens, 1981), to quantify the interactions among urban 

temperature and other variables. Our study areas consist of a total number of 520 cities in the 

contiguous United States (CONUS), with long-term urban environmental monitoring from 2016 

to 2022. In particular, we quantify both the local (intra-city) and nonlocal (inter-city) causal 

interactions of near-surface urban temperature and GPH. The findings of this study help to shed 
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new lights on the governing mechanisms underneath the excessive heat in urban areas, and will 

be informative to sustainable urban development in the long run.  

 

2.  Methods 

2.1. Study areas and data processing 

The research areas of this study consist of 520 urban areas with more than 50,000 

population, retrieved from the Topologically Integrated Geographic Encoding and Referencing 

(TIGER) database, developed by U.S. Census Bureau 

(https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html). 

Each selected urban area contains a weather station located within (390) or adjacent to (130) the 

study areas, from the list of over 900 stations archived by the National Renewable Energy 

Laboratory’s typical meteorological year (TMY3) database. Figure 1 shows the map of all 

states, located in nine climate regions, in CONUS (Fig. 1a) and spatial distribution of urban 

fractions in our study areas of the selected 520 cities/towns (Fig. 1b). In addition, for each urban 

area, we retrieve the dataset for long-term monitoring of CONUS from the National Center for 

Atmospheric Research (NCAR) (https://rda.ucar.edu/datasets/ds083.3/). The data is on 0.25° by 

0.25° grids with a time interval of 6 hours (00:00, 06:00, 12:00, and 18:00, UTC, every day). The 

variables we retrieved include 2-m air temperature, 500 hPa GPH, precipitation, volumetric soil 

moisture content (0-0.1m), and 2-m relative humidity from 01/01/2016 to 12/31/2022. The 6-

hourly time series were first aggregated to yield 24-hour (diurnal) mean values.  

 

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html
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Figure 1. Spatial distributions of (a) the nine climate zones and all 48 states and (b) urban 

fractions of 520 urban areas in CONUS. The nine climate zones include Northwest (NW), North 

Rockies and Plains (NRP), West (WE), Southwest (SW), South (SO), Southeast (SE), Ohio 

Valley (OV), UM (Upper Middle), and NE (Northeast).  

 

In addition, we obtained the anomalies of the “coarse-grained” daily time series, of GPH, 

temperature humidity, and soil moisture, by removing the daily means (averaged over all values 

of the same date within the study period). For precipitation, instead of anomalies, we calculated 

the Standardized Precipitation Index (SPI) of 30 days for each city, given by 

 
*

SPI
p

P P
σ
−

= ,  (1) 

where P is the accumulated precipitation of past 30 days, P* is the 30-day average precipitation, 

σp is the standardized deviation of precipitation. 

The anomalies and SPI are then used for subsequent causal analysis, as required by the 

input data format of the CCM algorithm. Figure 2 shows the mean values of 500 hPa GPH and 

2-m temperature of all the 520 cities averaged over the period of 01/01/2016 to 12/31/2022. The 

time series of daily anomalies of 500 hPa GPH and 2-m temperature are presented in Fig. 3, 

using Phoenix (33.43°N, 112.01°W) as an example.  
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Figure 2. Sample plots of mean (a) The average 500 hPa GPH (gpm) and (b) 2-m temperature 

(℃) of the 520 CONUS cities averaged over 01/01/2016 to 12/31/2022.  

 

 

Figure 3. Sample time series of daily anomalies of 500 hPa GPH and 2-m temperature in 

Phoenix from 01/01/2016 to 12/31/2022.  

 

2.2. The CCM method 

The CCM method, based on the embedding theory (Takens, 1981), is designed to detect 

causality in deterministic nonlinear dynamic systems with weak to moderate couplings and 
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nonseparable variables (Sugihara et al., 2012). It adopts simple projection, which is a nearest-

neighbor algorithm that uses the nearby points on the reconstructed manifolds to make kernel 

density estimations (Sugihara et al., 2012). Here we use the canonical Lorenz system, shown in 

Fig. 4 with three dynamically coupled variables, X, Y, and Z, as an example of nonlinear 

dynamic systems to illustrate the CCM algorithm. To measure the causal effect between the time 

series of a pair of variables, e.g. X(t) on Y(t), we first build the shadow manifold MX  of th 

original time series X(t), by constructing a lagged-coordinate vector given by x(t) = [X(t), X 

(t−τ), …, X(t−(E−1) τ)] (Fig. 4b), where τ is the time delay and E is the embedding dimension. 

Likewise, we can construct the shadow manifold MY. To determine the value of the time delay τ, 

we can use the value of the average oscillation period of X(t). In addition, the correlation integral 

and dimension method can be used to determine the value of the embedding dimension E (see 

details in Jiang et al., 2016; Yang et al., 2022b). In this study, the values of τ = 1 and E = 3 for 

subsequent analysis; the choice of these values are robust as proved by sensitivity test. 

If there is causal coupling between the variables X and Y, there will be cross-mapping 

correspondence between their corresponding manifolds MX and MY. For the time series X(t), the 

cross-mapping estimate 
^

( ) | YX t M   is determined according to the projection of the E+1 nearest 

neighbors of vector y(t) in the manifold of MY. The reason that E+1 points are requested is that 

E+1 is the minimum number of points needed for a bounded simplex in the E-dimensional space. 

Mathematically, time indices of the E+1 points on MY, y(t1), y(t2), …, y(tE+1), are used to identify 

the corresponding neighbors in X, i.e., X(t1), X(t2), …, X(tE+1), respectively. Thus, the cross-

mapping estimate of 
^

( ) | YX t M  is calculated using the nearby E+1 points, as given by 

 
1^

1
( ) | ( ) ( )

E

Y i i
i

X t M w t X t
+

=

= ∑ , (2) 
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where wi(t) are the weighting coefficients given by 

 
1

1

( )( )
( )

i
i E

i
j

u tw t
u t

+

=

=

∑
, (3) 

with 

 
1

[ ( ), ( )]( ) exp
[ ( ), ( )]

i
i

d y t y tu t
d y t y t

 
= − 

 
, (4) 

where d[y(t), y(ti)] is the Euclidean distance between y(t) and y(ti) in MY.  

 

 

Figure 4. The illustration of the correspondence between two shadow manifolds of convergent 

cross mapping: (a) the canonical Lorenz system m consisting of three dynamically coupled 

variable X, Y, and Z, (b) the attractor projected onto the manifold of MX, and (c) the attractor 

projected onto the manifold of MY. 
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Lastly, we calculate the correlation coefficient ρ between the estimated time series 

^
( ) | YX t M  and actual time series X(t) to measure the causality from X to Y. More specifically, the 

correlation coefficient is defined as the CCM causality strength, denoted by | YX Mρ and is 

computed as 

 
( ){ }ˆ

ˆ

ˆ ( ) |
Y

X Y X
X M

X X

X t X t Mµ µ
ρ

σ σ

 − ⋅ −    =
E

, (5) 

where E, µ, and σ are the statistical expectation, average, and standard deviation, respectively. 

We can likewise define the causality | XY Mρ in the reverse direction (from Y to X). A higher value 

of ρ means a stronger causal relationship between a pair of variables.  

Given the network of CONUS cities with N nodes (in our case N = 520), the computation 

of CCM strength will results in an N × N matrix ρ(i, j) (the adjacency matrix, i, j = 1, 2, 3… N) 

for a given pair of variables X and Y, with the diagonal terms representing the local causality 

(time series X and Y are selected in the same city) and off-diagonal entities nonlocal causality. 

For the nonlocal causality, we further define average causal effect (ACE) and average causal 

susceptibility (ACS), by averaging over columns or rows of the adjacency matrix, respectively 

(Runge et al., 2015), as 

 ( ) ( )|
1ACE ,

1 YX Y X M
j i

i i j
N

ρ→
≠

=
− ∑ , (6) 

 ( ) ( )|
1ACS ,

1 YX Y X M
i j

j i j
N

ρ→
≠

=
− ∑ . (7) 

Physically, ACE(i) can be interpretated as the mean capacity of an environmental variable X in a 

given city i to causally affect another variable Y averaged over the other N−1 cities, while ACS 

measures the susceptibility of that given city (to be causally influenced by other cities). 
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2.3. Selection of urban environmental variables 

Out of the five urban environmental variables retrieved, viz. the 500 hPa GPH, 2-m 

temperature, 2-meter relative humidity, volumetric soil moisture content, and precipitation, we 

first prioritize the directional causal inference (effect and susceptibility) using the CCM method. 

The results of pair-wise average strength (over all study areas) of the CCM causality are shown 

in Fig. 5. It is clear that the pair of 500 hPa GPH and 2-m temperature stands out to have 

strongest bi-directional causal inference (with average strength greater than 0.4). The causal 

influence of precipitation on soil moisture manifested as the third highest, with apparent physical 

meaning, whereas the reserve causation (causal influence of soil moisture on precipitation, or 

causal susceptibility of precipitation to soil moisture) is insignificant. In the light of this test, we 

will focus on the causal inference between GPH and air temperature in the subsequent analysis.  

 

Figure 5. The average local CCM causality of the 520 cities between pairs of 5 variables. One 

pair in two directions are in the same color. GPH is 500 hPa geopotential height, T is 2-m 

temperature, SPI is the standardized precipitation index of 30 days, RH is 2-meter relative 

humidity, VSMC is volumetric soil moisture content.  
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3.  Results and Discussion 

3.1. The local temperature-GPH interactions  

It is expected that GPH has a direct causal influence on local ambient temperature in a city 

before it can exert any potential long-range (trans-urban) impact on other cities. So, we first look 

into the bi-directional local causality between 500 hPa GPH and 2-m temperature which is 

mathematically represented by the diagonal terms of the adjacency matrices of | YX Mρ and | XY Mρ , 

where X and Y are GPH and ambient temperature, respectively. The results of local causality are 

shown in Fig. 6.  

 

Figure 6. The distributions of the local directional causation between 2-m temperature and 500 

hPa GPH: (a) from 500 hPa GPH to 2-m temperature, (b) from 2-m temperature to 500 hPa 

GPH. 

 

First of all, it is noteworthy that, unlike the symmetrical linear statistical correlation, the 

CCM generated causation is asymmetrical. In general, the causal influence from 500 hPa GPH to 

2-m temperature is stronger than the opposite direction for most of the CONUS cities, as shown 

in Fig. 6, indicating that atmospheric pressure strongly regulates the evolution of the thermal 

environment in cities. The spatial distribution of causation in CONUS cities, nevertheless, 

exhibits similar patterns in both directions, with two hubs of strong causations (ρ greater than 
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0.60) in the north Appalachian area (eastern half of OV climate zone) and southwest (i.e., 

Arizona (AZ) and inland southern California (CA)), respectively. In contrast, the southern 

leeward areas of the Rocky Mountains, i.e., Texas (TX) and its surrounding areas is manifested 

as a hub with weakest causal inference between GPH and temperature in CONUS. In addition, 

the NW climate region (Washington (WA) and southern Idaho (ID)) also appears as a local 

“weak” area, surrounded by strong causal influence zones.  

The underlying mechanism of the spatial distributions of the local causation between GPH 

and temperature in CONUS is potentially governed by the lower atmosphere. It has been found 

that areas with less fog and clear sky tend to have strong coupling between the 500 hPa GPH and 

2-m temperature (Kline & Klein, 1986; Knapp & Yin, 1996), which is likely responsible for the 

strong causal hubs in Arizona (AZ) and the inland areas of Southern California (CA). On the 

other hand, the GPH-temperature interactions can be decoupled due to atmospheric baroclinicity 

on the leeward areas of the Rocky Mountains (Klein & Kline, 1984) or the prevalence of heavy 

fog along the northwest coast (Kline & Klein, 1986). Such decoupling mechanisms, in turn, lead 

to the reduction of causal interactions between GPH and ambient temperature in these regions. 

 

3.2. The nonlocal temperature-GPH interactions and potential teleconnection  

We then look into the nonlocal causal interactions between GPH and temperature in 

CONUS cities, to identify, e.g., potential long-range connectivity (teleconnection) among 

CONUS cities, measured by ACE and ACS in Eqs. (6) and (7), respectively. The spatial 

distributions of ACE and ACS between 500hPa GPH and 2-m air temperature in CONUS cities 

are shown in Figs. 7 and 8. Overall, the nonlocal GPH-temperature causal interactions are much 

weaker than the local interactions, as expected. More specifically, Fig. 7 shows that Ohio (OH), 
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Pennsylvania (PA) and the surrounding areas have the strongest nonlocal causal interactions 

from GPH to ambient temperature, followed by the inland Rocky Mountains area (SW climate 

zone, southwestern NRP climate zone, and inland NW and WE climate zone). The presence of 

these nonlocal causal hubs signals that, on average, atmospheric pressure systems (GPH) in cities 

of these areas exert stronger causal influence on (Fig. 7a), and are meanwhile more susceptible 

to (Fig. 7b), changes of thermal environment (temperature) in cities of other regions. In 

comparison, weak nonlocal interactions exist in the eastern leeward areas of the Rocky 

Mountains (eastern half of NRP climate zone and SO climate zone).  

 

 

Figure 7. The distribution of the nonlocal causal interactions from 500 hPa GPH to 2-m air 

temperature in CONUS cities: (a) ACE and (b) ACS. 

 

The spatial distribution of ACE and ACS from 2-m temperature to 500 hPa GPH, as shown 

in Fig. 8, exhibits two hubs of strong nonlocal causations and one hub of weak nonlocal 

causations all shifted southwestward, as compared to their counterparts in Fig. 7. In particular, a 

strong nonlocal causal hub is manifest to the east of the Mississippi River (eastern half of SO 

climate zone, OV climate zone, and SE climate zone), especially the areas surrounding 

Tennessee (TN). These hubs largely coincide with the presence of atmospheric gateways in Ohio 
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Valley (OV climate zone) for trans-regional transport of heat and precipitation, based on the 

causal analysis of long-term temperature and precipitation climatology in CONUS using the 

same CCM method (Yang et al., 2022b, 2023a). In addition, the presence of the causal hubs 

coincides well with “hot nodes” detected by machine-learning-based graphic neural network 

analysis that require most computational skills (Li et al., 2023), regardless the spatial resolution 

or regional aggregation of CONUS states.  

 

Figure 8. The distribution of the nonlocal causal interactions from 2-m air temperature to 500 

hPa GPH in CONUS cities: (a) ACE and (b) ACS. 

 

Furthermore, the spatial distribution of trans-urban interactions highlights the critical role 

played by the Rocky Mountains in modifying atmospheric circulations in CONUS. Located at 

mid-latitudes, the Rocky Mountains divide the westerly into two branches, making the airflow 

deflected and thus forming a ridge in the Rocky Mountains area and a trough in the downstream 

area of it, i.e., the Pacific-North American teleconnection pattern; the influence is more 

prominent in winter (Boyer & Chen, 1987; Xia et al., 2019; Wallace & Gutzler, 1981; Brayshaw 

et al., 2009). In addition, the Rocky Mountains can block the eastward movement of weather 

systems in the westerly (Spensberger et al., 2017). These orographically effects split the CONUS 

atmospheric circulations into two relatively independent subsystems, which has been 
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corroborated by recent studies of CONUS urban climate as complex dynamic systems. For 

example, it was found that the topology of CONUS urban climate networks has two manifest 

sub-clusters, separately located in the east and west CONUS (Wang & Wang, 2020; Wang et al., 

2021), largely overlapped with the east (areas to the east of the Mississippi River) and west (the 

Rocky Mountains areas) hubs of nonlocal causal pressure-temperature interactions.  

The nonlocal causal interactions in a given city measured by ACE and ACS are averaged 

over all other cities. Thus, the high-value hubs in Figs. 7 and 8 may be resulted from strong 

trans-urban interactions among adjacent cities, but not necessarily indicate long-range (trans-

regional) causal connection, despite that our previous work suggested the existence of 

teleconnection (Wang & Wang, 2020; Yang et al., 2022b, 2023a, b). To unravel the potential 

teleconnection of temperature-pressure interactions, we further look into causal connectivity of 

individual cities to all other cities (without averaging). Figure 9 shows the causal susceptibility 

between 2-m temperature and 500 hPa GPH in four selected cities, viz. Chicago, New York, 

Orlando, and San Francisco in the CONUS. The contour plots clearly show that the causal 

susceptibility of an individual cities is indeed mostly contributed by surrounding urban areas, 

with the typical size of a central influence region (as indicated by the bright-colored region 

centering the selected city) covering a few adjacent states. Typically, the causal influence decays 

with distance.  

Nevertheless, teleconnection across different climate regions does emerge in the mapping of 

causal susceptibility of thermal environment (2-m air temperature) in Orlando by pressure 

systems (500 hPa GPH) in other regions (Fig. 9c), as a second (slightly weaker) causal hub 

around the Salt Lake City. The presence of teleconnection can be physically attributed to the 

influence of the upstream and downstream westerly circulations on the local meteorological 
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variables of a city. For example, when the ridge or Alaska blocking high-pressure forms in the 

upstream areas of the CONUS, it will cause the downstream trough to deepen and further 

downstream ridge to occur, thereby facilitating the southward movement of cold air from Canada 

and causing negative temperature anomalies in the CONUS (Kline & Klein, 1986; Carrera et al., 

2004). In addition, when the Greenland blocking high downstream of CONUS moves westward, 

it can also cause abnormal atmospheric circulation patterns and lower anomalies of temperature 

in the CONUS (Kline & Klein, 1986; Chen & Luo, 2017). Therefore, the centers of 

teleconnection could appear both in the upstream and downstream areas in the westerlies. 

 

 

Figure 9. The causal susceptibility from 2-m temperature to 500 hPa GPH in (a) Chicago, and 

the causal susceptibility from 500 hPa GPH to 2-m temperature in (b) New York, (c) Orlando, 

and (d) San Francisco. 
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3.3. Implications to sustainable urban development 

The exacerbated thermal environment in urban areas in the face of global climate change, 

excessive heat (e.g. the UHI effect) in particular, has been persistently challenging researchers 

and urban planners to seek sustainable solutions. In this study, we unravel the causal interactions 

of urban ambient temperature with distribution of pressure systems using the CCM method. In 

particular, it is found that the 2-m air temperature in a city is strongly regulated by the 500 hPa 

GPH presented in the locality, which in turn is influenced by the local urban thermal 

environment, resulting in effective two-way causal interactions.  

Unlike urban landscape properties (e.g., albedo, pavement materials, urban infrastructure, 

building morphology, etc.), the presence of GPH per se is hardly manageable from the urban 

planning perspective. Nevertheless, its strong and two-way causal interactions with the ambient 

temperature suggest that sustainable urban strategies may be capable of inducing positive 

temperature-pressure feedback loop to facilitate the efficacy of heat mitigation. In particular, the 

identified hubs of strong causal interactions in CONUS implies that these are the core regions 

where the implementation of sustainable urban planning strategies are likely to be more effective 

and/or the efficacy of heat mitigation strategies can be extended to adjacent urban areas 

(periphery) that are causally influenced by these hubs. This is informative to policy makers as 

causal hubs are likely the areas worthy of more investment to promote the efficiency and 

sustainability of urban planning strategies. This implication, in the new light shed by the results 

of the current study, is far-reaching and certainly worth pursuing in future urban environmental 

research as to unraveling underlying mechanistic pathways governing the intricate interplay of 

various environmental/meteorological variables in the complex urban dynamic systems. 
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In addition, the presence of teleconnections in the nonlocal causal interactions, especially 

the susceptibility of urban temperature to long-range influence of dominating atmospheric 

pressure systems (such as blocking highs or lows), highlights the importance of coordinating the 

design, implementation, and evaluation of urban planning strategy adopted by different cities 

within or beyond their climate regions. Such synergy calls for the network approach inclusive of 

all relevant players, instead of isolated practices and/or policy making processes limited to the 

locality. Megacities and regional metropolitans are likely to weigh in more heavily in the 

cooperative processes not only because of their sizes and number of stakeholders, but also 

because they are more likely hubs of regional urban clustering than small or mid-sized towns in 

determining the topology of urban networks (Wang & Wang, 2020; Wang et al., 2020a). 

 

4.  Concluding Remarks  

In this study, we use the CCM method to detect the causal interactions between 500 hPa 

GPH and 2-m temperature in the network of 520 U.S. cities. We identify the hubs of local and 

nonlocal causal interactions in CONUS, and the trans-regional teleconnections due to the 

westerly circulations. The results help to further our understanding of the mechanism of pressure 

distribution in causally mediating the thermal environment in cities and the potential 

temperature-pressure feedback due to their causal interactions. Nevertheless, there are other 

meteorological/environmental variables that can potentially regulate ambient temperatures in 

cities (e.g., radiation, cloud cover, anthropogenic emissions, etc.). This is particularly important 

in regions where temperature-pressure interactions are weak and supplementary forcings need to 

be included that can impact the thermal environment via local or long-range interactions.  
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While the current method can be readily extended to include other environmental variables, 

it is caveated that the causal interactions among multiple variables can be extremely complicated 

(recall one pair of variables generates four asymmetrical and directional complex causal graphs). 

In addition, the pair-wise causal relationship between two time series using CCM method also 

leaves the potential confounding effect among multiple factors rather elusive. Thus the key is to 

devise a novel protocol that can systematically process and evaluate the big amount of data to 

unravel the meaningful underlying causal mechanisms that govern the dynamic evolution of 

urban thermal environment. Recent advances in data science and dynamic systems offer a rich 

toolkit and promising perspective for developing such a novel protocol, by employing techniques 

such as network analysis, critical transitions and early-warning signals in urban climate system, 

and advanced machine learning algorithms (Wang, 2022). The system-based urban-climate 

modeling, with urban heat as a key component, also facilitate to find efficient strategies to 

counteract compound urban environmental impact through, e.g., multi-objective optimization (Li 

et al., 2022) and foster policy making processes. 
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