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Abstract

Federated learning (FL) has been widely studied recently due
to its property to collaboratively train data from different de-
vices without sharing the raw data. Nevertheless, recent stud-
ies show that an adversary can still be possible to infer private
information about devices’ data, e.g., sensitive attributes such
as income, race, and sexual orientation. To mitigate the at-
tribute inference attacks, various existing privacy-preserving
FL methods can be adopted/adapted. However, all these exist-
ing methods have key limitations: they need to know the FL
task in advance, or have intolerable computational overheads
or utility losses, or do not have provable privacy guarantees.
We address these issues and design a task-agnostic privacy-
preserving presentation learning method for FL (TAPPFL)
against attribute inference attacks. TAPPFL is formulated via
information theory. Specifically, TAPPFL has two mutual in-
formation goals, where one goal learns task-agnostic data rep-
resentations that contain the least information about the pri-
vate attribute in each device’s data, and the other goal ensures
the learnt data representations include as much information
as possible about the device data to maintain FL utility. We
also derive privacy guarantees of TAPPFL against worst-case
attribute inference attacks, as well as the inherent tradeoff be-
tween utility preservation and privacy protection. Extensive
results on multiple datasets and applications validate the ef-
fectiveness of TAPPFL to protect data privacy, maintain the
FL utility, and be efficient as well. Experimental results also
show that TAPPFL outperforms the existing defenses.

Introduction
The emerging collaborative data analysis using federated
learning (FL) (McMahan et al. 2017a) aims to address the
data insufficiency problem, and has a great potential to pro-
tect data privacy as well. In FL, the participating devices
train their data locally, and only share the trained models,
instead of the raw data, with a center server (e.g., cloud).
The server updates its global model by aggregating the re-
ceived device models, and broadcasts the updated global
model to all participating devices such that all devices in-
directly use all data from other devices. FL has been de-
ployed by many companies such as Google (Google Feder-
ated Learning 2022), Microsoft (Microsoft Federated Learn-
ing 2022), IBM (IBM Federated Learning 2022), and Al-
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ibaba (Alibaba Federated Learning 2023), and applied in
various privacy-sensitive applications, including on-device
item ranking (McMahan et al. 2017a), content suggestions
for on-device keyboards (Bonawitz et al. 2019), next word
prediction (Li et al. 2020b), health monitoring (Rieke et al.
2020), and medical imaging (Kaissis et al. 2020). However,
recent works show, though only sharing device models, it
is still possible for an adversary (e.g., an honest-but-curious
server) to perform the attribute inference attack (Jia et al.
2017; Aono et al. 2017; Ganju et al. 2018; Melis et al. 2019;
Dang et al. 2021; Wainakh et al. 2022)—i.e., inferring the
private/sensitive information (e.g., a person’s gender, race,
sexual orientation, income) of device’s data. Hence, design-
ing privacy-preserving FL mechanisms to defend against the
attribute inference attack is important and necessary.

To mitigate the issue, various existing privacy-preserving
FL methods can be adopted/adapted, including multi-party
computation (MPC) (Danner and Jelasity 2015; Mohassel
and Zhang 2017; Bonawitz et al. 2017; Melis et al. 2019),
adversarial training (AT) (Madras et al. 2018; Liu et al.
2019; Li et al. 2020a; Oh, Fritz, and Schiele 2017; Kim et al.
2019), model compression (MC) (Zhu, Liu, and Han 2019),
and differential privacy (DP) (Pathak, Rane, and Raj 2010;
Shokri and Shmatikov 2015; Hamm, Cao, and Belkin 2016;
McMahan et al. 2018; Geyer, Klein, and Nabi 2017). How-
ever, these existing methods have key limitations, thus nar-
rowing their applicability (see Table 1). Specifically, MPC
and AT methods know the FL task in advance. However,
this cannot be achieved in real-world unsupervised learning
applications. MPC methods also have intolerable computa-
tional overheads and AT methods do not have provable pri-
vacy guarantees. MC and DP methods are task-agnostic, but
both of them result in high utility losses (see Figure 3).

In this paper, we aim to design a privacy-preserving
FL mechanism against attribute inference attacks (termed
TAPPFL) that is task-agnostic, efficient, accurate, and have
privacy guarantees as well. Our main idea is to learn fed-
erated privacy-preserving representations based on informa-
tion theory. Specifically, we formulate TAPPFL via two mu-
tual information (MI) goals, where one MI goal learns low-
dimensional representations for device data that contain the
least information about the private attribute in each device’s
data—thus protecting attribute privacy, and the other MI
goal ensures the learnt representations include as much in-



Methods Task-Agnostic Efficient Provable Accurate
MPC ✓ ✓
AT ✓ ✓
MC ✓ ✓
DP ✓ ✓ ✓

TAPPFL ✓ ✓ ✓ ✓

Table 1: Comparisons of the PPFL methods.

formation as possible about the training data—thus main-
taining FL utility. Our TAPPFL is task-agnostic as our for-
mulation does not need to know the FL task. However, the
true MI values are challenging to compute, due to that they
deal with high-dimensional random variables and require to
compute an intractable posterior distribution. Inspired by the
MI neural estimators (Belghazi et al. 2018; Chen et al. 2016;
Cheng et al. 2020), we recast calculating intractable exact
MI values into deriving tractable (variational) MI bounds,
where each variational bound is associated with a poste-
rior distribution that can be parameterized via a neural net-
work. Hence, estimating the true MI values reduces to train-
ing the parameterized neural networks. We further propose
an alternative learning algorithm to train these neural net-
works and learn task-agnostic privacy-preserving represen-
tations for device data. We also derive privacy guarantees
of TAPPFL against worst-case attribute inference attacks, as
well as the inherent tradeoff between utility preservation and
attribute privacy protection. Finally, we evaluate TAPPFL on
multiple datasets and applications. Our results validate the
learnt devices’ data representations can be used to achieve
high utility and maintain attribute privacy as well1.

Our key contributions are highlighted as follows:

• Algorithm: We propose the first practical privacy-
preserving FL mechanism (TAPPFL), i.e., task-agnostic,
efficient, and accurate, against attribute inference attacks.

• Theory: TAPPFL has privacy guarantees and shows an
inherent tradeoff between utility and privacy.

• Evaluation: TAPPFL is effective against attribute infer-
ence attacks and shows advantages over the baselines.

Related Work
Privacy-preserving FL against inference attacks. Secure
multi-party computation (Danner and Jelasity 2015; Mo-
hassel and Zhang 2017; Bonawitz et al. 2017; Melis et al.
2019), adversarial training (Oh, Fritz, and Schiele 2017;
Wu et al. 2018; Madras et al. 2018; Pittaluga, Koppal,
and Chakrabarti 2019; Liu et al. 2019; Kim et al. 2019),
model compression (Zhu, Liu, and Han 2019), and differen-
tial privacy (DP) (Pathak, Rane, and Raj 2010; Shokri and
Shmatikov 2015; Hamm, Cao, and Belkin 2016; McMahan
et al. 2018; Geyer, Klein, and Nabi 2017; Wei et al. 2020)
are the four typical privacy-preserving FL methods. For ex-
ample, Bonawitz et al. (2017) design a secure multi-party
aggregation for FL, where devices are required to encrypt
their local models before uploading them to the server. How-
ever, it incurs an intolerable computational overhead and

1Source code and full version: https://github.com/TAPPFL

may need to know the specific FL task in advance. Adver-
sarial training methods are inspired by GAN (Goodfellow
et al. 2014). These methods adopt adversarial learning to
learn obfuscated features from the training data so that their
privacy information cannot be inferred from a learnt model.
However, these methods also need to know the FL task
and lack of formal privacy guarantees. Zhu, Liu, and Han
(2019) apply gradient compression/sparsification to defend
against privacy leakage from shared local models. However,
to achieve a desirable privacy protection, such approaches
require high compression rates, leading to intolerable util-
ity losses. In addition, it does not have formal privacy guar-
antees. Shokri and Shmatikov (2015) propose a collabora-
tive learning method where the sparse vector is adopted to
achieve DP. However, DP methods have high utility losses.
Mutual information for fair representation learning.
Moyer et al. (2018); Song et al. (2019) leverage MI to per-
form fair representation learning. The goal of fair repre-
sentation learning is to encode the input data into a repre-
sentation that aims to mitigate bias, e.g., demographic dis-
parity, towards a private group/attribute. For instance, when
achieving demographic parity, the predicted label should be
independent of the private attribute. For instance, (Moyer
et al. 2018) proposed to use the information bottleneck ob-
jective (Alemi et al. 2017) and train a variational auto-
encoder (Kingma, Welling et al. 2019) to censor a private
attribute by minimizing a variational bound on the MI be-
tween the learnt representations and the private attribute.

Besides the difference of the studied problem (fairness
vs privacy-protection), other key differences are: these fair
methods need to know the learning task in advance, and only
estimate the MI for low-dimensional variables. In contrast,
our method is task-agnostic and designs a novel MI esti-
mator to handle the challenging high-dimensional variables.
Further, these methods do not have theoretical fairness guar-
antees, while ours has formal privacy guarantees.
Mutual information for private representation learning.
The most closely related to our work is DPFE (Osia et al.
2018), which also formulates learning private representa-
tions via MI objectives. However, there are major differ-
ences: i) DPFE knows the primary task, i.e., task-specific,
while ours is task-agnostic; ii) DPFE does not have formal
privacy guarantees, while ours do have; iii) DPFE estimates
MI by making assumptions on distributions of the random
variable, e.g., Gaussian. In contrast, our method derives MI
bounds on random variables whose distributions can be ar-
bitrary, and then trains networks to approximate the true MI.
Mutual information estimation. Accurately estimating MI
between any random variables is challenging (Belghazi et al.
2018). Recent methods (Alemi et al. 2017; Belghazi et al.
2018; Oord, Li, and Vinyals 2018; Poole et al. 2019; Hjelm
et al. 2019; Cheng et al. 2020; Wang et al. 2021) propose
to first derive (upper or lower) MI bounds by introducing
auxiliary variational distributions and then train parameter-
ized neural networks to estimate variational distributions and
approximate true MI. For instance, MINE (Belghazi et al.
2018) views MI as a KL divergence between the joint and
marginal distributions, converts it into the dual representa-
tion, and derives a lower MI bound. Cheng et al. (2020) de-



sign a Contrastive Log-ratio Upper Bound of MI, which con-
nects MI with contrastive learning (Oord, Li, and Vinyals
2018), and estimates MI as the difference of conditional
probabilities between positive and negative sample pairs.

Background and Problem Definition
Federated learning (FL). The FL paradigm enables a server
to coordinate the training of multiple local devices through
multiple rounds of global communications, without sharing
the local data. Suppose there are M devices C = {Ci}Mi=1
and a server S participating in FL. Each device Ci has data
samples xi from a distributionDi over the sample space X i.
In each round t, each device Ci first downloads the previous
round’s global model (e.g., Θt−1) from the server, and then
updates its local model (e.g., Θi

t) using the local data {xi}
and global model Θt−1. The server S then randomly collects
a set of (e.g., K) current local models in devices (e.g., CK)
and updates the global model for the next round using an
aggregation algorithm. For example, when using the most
common FedAvg (McMahan et al. 2017b), the server up-
dates the global model as Θt ←

∑
i∈CK

ni∑
i∈Ck

ni
Θi

t, where

ni is the size of the training data of device Ci.
Threat model and problem definition. We assume each
device Ci’s data has its private attribute and denote it as
ui. Each device Ci aims to learn a feature extractor fΘi :
X i → Ri, parameterized by Θi, that maps data samples
from input space X i to the latent representation space Ri;
and we denote the learnt representation for a sample xi

as ri = fΘi(xi). The learnt representations can be used
for downstream tasks, e.g., next-word-prediction on smart
phones (Li et al. 2020b). We assume the server S is honest-
but-curious and it has access to the learnt representations
{ri} of device data. The server’s purpose is to infer any pri-
vate attribute ui through the representations without tamper-
ing the FL training process. Our goal is to learn the feature
extractor fΘi per device such that it protects the private at-
tribute ui from being inferred, as well as preserving the pri-
mary FL task utility. For a general purpose, we assume the
primary FL task is unknown (i.e., task-agnostic) to the de-
fender (i.e., who learns the feature extractor). W.l.o.g, the
protected attribute is different from the primary task label.

Design of TAPPFL
In this section, we will design our task-agnostic privacy-
preserving FL (TAPPFL) method against attribute inference
attacks. Our TAPPFL is inspired by information theory. We
show that our TAPPFL has provable privacy guarantees, as
well as inherent utility-privacy tradeoffs.

Formulating TAPPFL via MI Objectives
For ease of description, we choose a device Ci and show
how to learn its privacy-preserving feature extractor fΘi .
Our goal is to transform the data xi ∼ Di into a representa-
tion ri = fΘi(xi) that satisfies the below two goals:
• Goal 1: Privacy protection. ri contains as less infor-

mation as possible about the private attribute ui. Ideally,
when ri does not include information about ui, it is im-
possible for the server to infer ui from ri.

• Goal 2: Utility preservation. ri includes as much infor-
mation about the raw data xi as possible. Ideally, when ri

retains the most information about xi, the model trained
on ri will have the same performance as the model
trained on the raw xi, thus preserving utility. Note that
this goal does not know the FL task, thus task-agnostic.

We propose to formalize the above two goals via MI objec-
tives. In information theory, MI is a measure of shared in-
formation between two random variables, and offers a met-
ric to quantify the “amount of information” obtained about
one random variable by observing the other random vari-
able. Formally, we quantify the privacy protection and utility
reservation goals using two MI objectives as follows:

Achieving Goal 1: minΘi I(ri;ui);

Achieving Goal 2: maxΘi I(xi; ri|ui). (1)

where I(ri;ui) is the MI between ri and ui, and we mini-
mize such MI to maximally reduce the correlation between
ri and ui. I(xi; ri|ui) is the MI between xi and ri given ui.
We maximize such MI to keep the raw information in xi as
much as possible in ri and remove the information that xi

contains about the private ui to leak into ri.

Estimating MI via Tractable Variational Bounds
The key challenge of solving the above two MI objectives is
that calculating an MI between two arbitrary random vari-
ables is likely to be infeasible (Peng et al. 2018). To address
it, we are inspired by the existing MI neural estimation meth-
ods (Alemi et al. 2017; Belghazi et al. 2018; Oord, Li, and
Vinyals 2018; Poole et al. 2019; Hjelm et al. 2019; Cheng
et al. 2020), which convert the intractable exact MI calcu-
lations to the tractable variational MI bounds. Specifically,
we first obtain a MI upper bound for privacy protection and
a MI lower bound for utility preserving via introducing two
auxiliary posterior distributions, respectively. Then, we pa-
rameterize each auxiliary distribution with a neural network,
and approximate the true posteriors by minimizing the upper
bound and maximizing the lower bound through training the
involved neural networks.
Minimizing upper bound MI for privacy protection. We
propose to adapt the variational upper bound CLUB pro-
posed in (Cheng et al. 2020) to bound I(ri;ui). Specifically,

I(ri;ui) ≤ IvCLUB(r
i;ui) (2)

=Ep(ri,ui)[log qΨi(ui|ri)]− Ep(ri)p(ui)[log qΨi(ui|ri)],
where qΨi(ui|ri) is an auxiliary posterior distribution of
p(ui|ri) needing to satisfy the condition:
KL(p(ri, ui)||qΨi(ri, ui)) ≤ KL(p(ri)p(ui)||qΨi(ri, ui)),

where KL[q(·)||p(·)] is the Kullback-Leibler divergence be-
tween two distributions q(·) and p(·) and is nonnegative. To
achieve this, we thus need to minimize:

min
Ψi

KL(p(ri, ui)||qΨi(r
i, ui))

=min
Ψi

KL(p(ui|ri)||qΨi(u
i|ri))

=min
Ψi

Ep(ri,ui)[log p(u
i|ri)]− Ep(ri,ui)[log qΨi(u

i|ri))]

⇔max
Ψi

Ep(ri,ui)[log qΨi(u
i|ri)], (3)



where we use that the first term Ep(ri,ui)[log p(u
i|ri)] in the

second-to-last Equation is irrelevant to Ψi.
Finally, our Goal 1 for privacy protection is reformulated

as solving the below min-max objective function:

min
Θi

I(ri;ui) = min
Θi

min
Ψi

IvCLUB(r
i;ui)

⇐⇒ min
Θi

max
Ψi

Ep(ri,ui)[log qΨi(ui|ri)]. (4)

Remark. Equation (4) can be interpreted as an adversarial
game between: (1) an adversary qΨi (i.e., attribute inference
classifier) who aims to infer the private attribute ui from ri;
and (2) a defender (i.e., the feature extractor fΘi ) who aims
to protect ui from being inferred from ri.
Maximizing lower bound MI for utility preservation. We
derive the lower bound of the MI I(xi; ri|ui) as follows:

I(xi; ri|ui) = H(xi|ui)−H(xi|ri, ui)

= H(xi|ui) + Ep(xi,ri,u)[log p(x
i|ri, ui))]

= H(xi|ui) + Ep(xi,ri,u)[log qΩi(xi|ri, ui))]

+ Ep(xi,ri,u)[KL(p(·|ri, ui)||qΩi(·|ri, ui))]

≥ H(xi|ui) + Ep(xi,ri,u)[log qΩi(xi|ri, ui))], (5)

where qΩi is an arbitrary auxiliary posterior distribution that
aims to maintain the information in xi, and H(xi|ui) is the
condition entropy that is constant. Hence, our Goal 2 can be
rewritten as the following max-max objective function:

max
Θi

I(xi; ri|ui) ⇐⇒ max
Θi

max
Ωi

E
p(xi,ri,ui)

[
log qΩi [(x

i|ri, ui)
]
.

(6)

Remark. Equation (6) can be interpreted as a cooperative
game between the feature extractor fΘi and qΩi who aim to
preserve the utility collaboratively.
Objective function of TAPPFL. By combining Equations
(4) and (6) and considering all devices, our final objective
function of learning the task-agnostic privacy-preserving
representations in FL is as follows:∑

Ci∈C
max
Θi

(
λi min

Ψi
−Ep(ui,xi)

[
log qΨi(ui|fΘi(xi))

]
+(1− λi)max

Ωi
Ep(xi,ui)

[
log qΩi [(xi|fΘi(xi), ui)

] )
, (7)

where λi ∈ [0, 1] achieves a tradeoff between privacy and
utility for device Ci. That is, a larger λi indicates a stronger
attribute privacy protection for Ci’s data, while a smaller λi

indicates a better utility preservation for Ci’s data.

Implementation in Practice
Directly calculating the exact expectation in Equation (7)
is challenging. In practice, Equation (7) can be solved via
training three parameterized neural networks, i.e., the fea-
ture extractor fΘi , the privacy-protection network gΨi as-
sociated with the auxiliary distribution qΨi , and the utility-
preservation network hΩi associated with the auxiliary dis-
tribution qΩi , using sampled data from each device Ci.
Specifically, in each device Ci, we first collect a set of sam-
ples {xi

j} and the associated private attributes {ui
j} from

𝐈𝐧𝐩𝐮𝐭
𝐱𝐢

𝐑𝐞𝐩. 𝐫𝐢

𝐅𝐞𝐚𝐭𝐮𝐫𝐞
𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐨𝐫 𝐟𝚯𝐢

𝐔𝐭𝐢𝐥𝐢𝐭𝐲 𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐡𝛀𝐢

𝐋𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝:
𝐦𝐚𝐱 𝐈(𝐱𝐢; 𝐫𝐢|𝐮𝐢 = 𝟏)

𝐏𝐫𝐢𝐯𝐚𝐜𝐲 𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝒈𝛙𝐢

𝐔𝐩𝐩𝐞𝐫 𝐛𝐨𝐮𝐧𝐝:
𝐦𝐢𝐧 𝐈(𝐫𝐢; 𝐮𝐢)

𝐏𝐫𝐢𝐯𝐚𝐭𝐞
𝐀𝐭𝐭𝐫𝐢𝐛𝐮𝐭𝐞. ui

(a) TAPPFL device training

Figure 1: TAPPFL device training.

Di. Note that, as our TAPPFL is task-agnostic, we do not
know the sample labels for the FL task. With it, we can then
approximate the expectation terms in Equation (7).

Specifically, we approximate the first expectation term as

Ep(ui,xi) log qΨi(u
i|fΘi(x

i)) ≈ −
∑

j
CE(ui

j , gΨi(fΘi(x
i
j))),

where CE(·) means the cross-entropy error function.
Moreover, note that the data x and the representation r are

rather high-dimensional. To address it, we propose to use the
Jensen-Shannon divergence (JSD) (Hjelm et al. 2019) for
high-dimensional MI estimation and approximate the sec-
ond expectation term associated with qΩi as below:

Ep(xi,ui) log qΩi(xi|fΘi(xi), u
i) = I

(JSD)
Θi,Ωi (xi; fΘi(xi), ui)

= E(xi,ui)[−sp(−hΩi(xi, fΘi(xi), ui)]

− E(xi,ui,x̄i)[sp(hΩi(x̄i, fΘ(x
i), ui)],

where sp(z) = log(1+exp(z)) is the softplus function, x̄i is
an independent sample from the same distribution as xi, and
the expectation can be replaced by samples {xi

j , x̄
i
j , u

i
j}.

Figure 1 illustrates our TAPPFL. It needs to simultane-
ously train three neural networks, i.e., the feature extrac-
tor fΘi , the privacy-protection network gΨi , and the utility-
preservation network hΩi , in each device Ci. In particular,
the server first initializes a global model Θ0 and broadcasts
Θ0 to all devices; and the devices initializes {Ψi

0} and {Ωi
0}

locally. Then the training procedure involves two iterative
steps. For example, in the t-th round: In Step I, each device
updates Θi

t using the received Θt−1 from the server, and lo-
cally updates Ψi

t and Ωi
t using Ψi

t−1 and Ωi
t−1 based on its

training data; and the devices send the updated {Θi
t} to the

server. In Step II, the server selects a set of {Θi
t} and updates

the global model Θt by aggregating these models via, e.g.,
Fedvg (McMahan et al. 2017b), and broadcasts Θt to all de-
vices. We repeat the two steps alternately until convergence
or reaching the maximum number of iterations. Algorithm 1
in the full version details the TAPPFL training process.

Theoretical Results
Inherent utility-privacy tradeoff. We consider the attribute
has a binary value and the primary FL task is binary classifi-
cation. We will leave it as a future work to generalize our re-
sults to multi-value attributes and multi-class classification.



CIFAR10 Loans Adult income Adult income
Private attribute: Animal or not (binary) Race (binary) Gender (binary) Marital status (7 values)
λ Test Acc Infer. Acc Gap Test Acc Infer. Acc Gap Test Acc Infer. Acc Gap Test Acc Infer. Acc Gap
0 0.89 0.74 0.24 0.98 0.74 0.24 0.825 0.700 0.20 0.825 0.375 0.232
0.25 0.88 0.64 0.14 0.93 0.72 0.22 0.750 0.550 0.05 0.800 0.275 0.112
0.5 0.76 0.60 0.10 0.88 0.70 0.20 0.750 0.550 0.05 0.800 0.250 0.107
0.75 0.67 0.56 0.06 0.84 0.63 0.13 0.725 0.550 0.05 0.725 0.243 0.043
1 0.58 0.52 0.02 0.82 0.57 0.07 0.700 0.525 0.025 0.700 0.175 0.032

Table 2: Test accuracy (Test Acc.) vs. attribute inference accuracy (Infer. Acc.) on the considered three datasets.

Let A be the set of all binary attribute inference classi-
fiers, i.e., A = {A : ri ∈ Ri → {0, 1}, ∀Ci}. Let Di be
a joint distribution over the input xi, sensitive attribute ui,
and label yi for device Ci. W.l.o.g, we assume the represen-
tation space is bounded, i.e., maxCi∈C maxri∈Ri ∥ri∥ ≤ R.
Moreover, we denote the binary task classifier as c : ri →
{0, 1}, which predicts data labels based on the learnt repre-
sentation. We further define the advantage of the worst-case
adversary with respect to the joint distribution Di as below:

AdvDi(A) = max
A∈A
|PrDi(A(ri) = a|ui = a)

− PrDi(A(ri) = a|ui = 1− a)|, ∀a = {0, 1}. (8)

If AdvDi(A) = 1, this means an adversary can completely
infer the privacy attribute through the learnt representations.
In contrast, AdvDi(A) = 0 means an adversary obtains a
random guessing inference performance. Our goal is thus to
learn the representations such that AdvDi(A) is small. The
proofs are in the full version: https://github.com/TAPPFL.
Theorem 1. Let ri be the representation with a bounded
norm R (i.e., maxri∈Ri ∥ri∥ ≤ R) learnt by the feature ex-
tractor fΘi

for device Ci’s data xi, and A be the set of all
binary attribute inference classifiers. Assume the task clas-
sifier c is CL-Lipschitz, i.e., ∥c∥L ≤ CL. Then, each Ci’s
classification error erri can be bounded as below:

erri ≥ ∆yi|ui − 2R · CL · AdvDi(A), (9)

where ∆yi|ui = |PrDi(yi = 1|ui = 0)− PrDi(yi = 1|ui =
1)| is a device-dependent constant.
Remark. Theorem 1 states that, for a device-dependent con-
stant ∆yi|ui , any primary task classifier using representa-
tions learnt by the feature extractor fΘi has to incurs a clas-
sification error on at least a private attribute—The small-
er/larger the advantage AdvDi(A) is, the larger/smaller the
lower error bound. Note that the lower bound is indepen-
dent of the adversary, meaning it covers the worst-case ad-
versary. Thus, Equation (9) reflects an inherent trade-off be-
tween utility preservation and attribute privacy leakage.
Privacy guarantees against attribute inference. The at-
tribute inference accuracy incurred by the worst-case adver-
sary is bounded in the following theorem:
Theorem 2. Let Θi

∗ (resp. ri∗ ) be the learnt optimal fea-
ture extractor parameters (resp. optimal representations) by
Equation (7) for device Ci’s data. Define Hi

∗ = H(ui|ri∗).
Then, for any attribute inference adversary A = {A : ri →
ui}, Pr(A(ri∗) = ui) ≤ 1− Hi

∗
2 log2(6/H

∗
i )

.

Remark. Theorem 2 shows that when the conditional entropy
Hi

∗ = H(ui|ri∗) is larger, the attribute inference accuracy
induced by any adversary is smaller, i.e., the less attribute
privacy is leaked. From another perspective, as H(ui|ri∗) =
H(ui)− I(ui; ri∗), achieving the largest H(ui|ri∗) indicates
minimizing the mutual information I(ui; ri∗)—This is ex-
actly our Goal 1 aims to achieve.

Experiments
Experimental Setup
Datasets and applications. We evaluate our TAPPFL us-
ing three datasets from different applications. CIFAR-10
(Krizhevsky 2009) is an image dataset. The primary task is
to predict the label of the image, while the private attribute
is a binary attribute indicating if an image belongs to an an-
imal or not. For the Loans dataset (Hardt, Price, and Srebro
2016), the primary task is to predict the affordability of the
person asking for the loan while protecting their race. For the
Adult income dataset (Becker and Kohavi 1996), predicting
whether the income of a person is above $50K or not is the
primary task. The private attributes are the gender and the
marital status. More detailed descriptions of these datasets
and the training/testing sets can be found in the full version.
Parameter settings. We use a total of 100 devices partic-
ipating in FL training. By default, the server randomly se-
lects 10% devices and uses FedAvg (McMahan et al. 2017b)
to aggregate devices’ feature extractor parameters in each
round. In each device, we train the three parameterized neu-
ral networks via the Stochastic Gradient Descent (SGD) al-
gorithm, where we set the local batch size to be 10 and use
10 local epochs, and the learning rate in SGD is 0.01. A
detailed architecture of each neural network can be found
in Table 3 in the full version. Before the learning, we first
pretrain the feature extractor network only to obtain a good
initialization, i.e., high utility. The number of global rounds
is set to be 20. In TAPPFL, for simplicity, we set λi = λ for
all devices and all devices share the same private attribute.
The TAPPFL algorithm is implemented in PyTorch. We use
the Chameleon Cloud platform offered by the NSF (Keahey
et al. 2020) (CentOS7-CUDA 11 with Nvidia Rtx 6000).
Evaluation metrics. We evaluate TAPPFL in terms of both
utility preservation and privacy protection. We use the test-
ing accuracy (i.e., device’s feature extractor + utility network
on the primary task’s test set) to measure utility preserva-
tion; and attribute inference accuracy (i.e., device’s feature
extractor + privacy network on the privacy task’s test set)
to measure the privacy leakage. The larger testing accuracy,



the better utility preservation; the inference accuracy closer
to random guessing, the less attribute privacy leakage.

Experimental Results
Utility-privacy tradeoff. According to Equation (7), when
λ = 0 the first term of the objective function is disregarded,
meaning that the protection of the private attribute is not
considered. On the contrary, the second term is disappeared
when λ = 1, or in other words, we only consider protecting
the private attribute and utility is not preserved. Our goal is
to achieve a better trade-off by tuning λ within [0, 1], which
allows preserving the FL utility and protecting the attribute
privacy at the same time. Table 2 shows the testing accuracy
and average attribute inference accuracy of all devices in the
considered datasets, where we set five different λ values, i.e.,
0, 0.25, 0.5, 0.75, and 1.0. We also show the gap between
the attribute inference accuracy and the random guessing.
The smaller the gap, the better the privacy protection. Ide-
ally, when there is no gap, the learnt representation by our
TAPPFL does not allow the adversary (i.e., the server) to
infer any information related to the private attribute. Specifi-
cally, we have the following observations: 1) The testing ac-
curacy is the largest when λ = 0, hence the utility is main-
tained the most. However, the attribute inference accuracy
is also the highest, indicating leaking the most attribute pri-
vacy. 2) The attribute inference accuracy is the closest to
random guessing when λ = 1, meaning the attribute privacy
is protected the most. However, the testing accuracy is also
the smallest, indicating the utility is not well maintained. 3)
When 0 < λ < 1, our TAPPFL achieves both reasonable
testing accuracy and attribute inference accuracy—This in-
dicates TAPPFL has a better utility-privacy tradeoff. Note
that our TAPPFL does not know primary task’s labels and
learns the task-agnostic representations for device data dur-
ing the entire training.
Mutual information vs. tradeoff parameter λ. Further, we
analyze our TAPPFL via plotting the two MI scores (i.e., the
CE loss associated with Goal 1 (privacy protection) and
JSD loss associated with Goal 2 (utility preservation)) vs.
λ. Note that the CE and JSD loss are inversely proportional
to the MI in the two goals. Figure 4 in the full version shows
the results. Each point indicates either a CE loss or JSD loss
at a selected λ. The tendency of these scores in function of
λ is presented by a trend line, which is computed using a
least squares polynomial fit of first degree. We observe that:
1) When the trade-off parameter λ is low, the privacy pro-
tection is not carefully considered, which is translated into
a high MI between the learnt representation and the pri-
vate attribute, thus the CE loss is relatively small. On the
other hand, the utility is well-preserved, resulting also into a
high MI between the input data and the learnt representation
conditioned on the private attribute. So the JSD loss is rela-
tively small. 2) Contrarily, for high values of λ, the privacy is
largely protected in exchange for a large utility loss. Specifi-
cally, as λ increases, the CE between the private attribute and
the learnt representation increases, which is translated into a
decrease of their MI, thus better protecting attribute privacy.
Though not easily appreciated in the curves, the JSD loss
tends to increase, thus reducing the utility.

Visualization of the learnt representations. In this experi-
ment, we leverage the t-SNE embedding algorithm (Van der
Maaten and Hinton 2008) to visualize the learnt represen-
tations by our trained feature extractor for the device data,
and those without our feature extractor. λ is chosen in Ta-
ble 2 that achieves the best utility-privacy tradeoff. Figure 2
shows the 2D T-SNE visualization results, where each color
corresponds to a private attribute value. We can observe that
the 2D T-SNE embeddings of the raw input data form some
clusters for the private attributes, meaning the private at-
tributes can be easily inferred, e.g., the t-SNE representa-
tions via training a multi-class classifier. On the contrary, the
2D T-SNE embeddings of the learnt representations by our
TAPPFL for different attribute values are completely mixed,
which thus makes it difficult for a malicious server to infer
the private attributes from the learnt representations.
Comparison with task-agnostic defenses. In this ex-
periment, we compare our TAPPFL with the two task-
agnostic privacy protection methods, i.e., differential pri-
vacy (DP) (Wei et al. 2020) and model compression
(MC) (Zhu, Liu, and Han 2019) (See Table 1). MC prunes
the devices’ feature extractor parameters whose magnitude
are smaller than a threshold, and the devices only share pa-
rameters larger than the threshold to the server. DP ensures
provable privacy guarantees (Wang et al. 2022). Specifically,
DP randomly injects noise into the feature extractor’s pa-
rameters and uploads the noisy parameters to the server. The
server then performs the aggregation using the noisy param-
eters. Here, we consider applying the Gaussian noise and
Laplacian noise to develop two DP baselines (Mohammady
et al. 2020), i.e., DP-Gaussian and DP-Laplace (note that
the DP protection in (Wei et al. 2020) is very weak due
to very high ϵ such as 50 and 100). Thus, we tune the hy-
perparameter, i.e., noise variance in DP and pruning rate in
MC, such that DP and MC have the same attribute inference
accuracy as TAPPFL, and then compare their utility (i.e.,
testing accuracy). Figure 3 shows the comparison results on
CIFAR10, where we set five attribute inference accuracy as
0.55, 0.60, 0.65, 0.70, and 0.75, respectively. We can ob-
serve that TAPPFL is significantly better than them. Note
that we also evaluate DP by injecting noises to the final/in-
put layer (as other existing methods did) and observe that
DP-Gaussian and DP-Laplacian have very close (bad) per-
formance as those injecting noises into the feature extrac-
tor’s parameters. We do not show these results for simplicity.

Discussion
Comparison with task-specific defenses. We also compare
TAPPFL with state-of-the-art task-specific defenses, i.e.,
DPFE (Osia et al. 2018) and adversarial training (AT) (Li
et al. 2020a) and show results on Loans under the same set-
ting. Note that DPFE and AT know the primary task. We
have the following observations: 1) Comparing with DPFE,
with a same test accuracy as 0.84, TAPPFL’s attribute in-
ference accuracy is 0.63, while DPFE’s is 0.77—showing
a much worse protection than TAPPFL. One key reason is
that DPFE estimates MI by assuming random variables to
be Gaussian, which is inaccurate. Instead, TAPPFL does
not have any assumption on the distributions of the random



(a) Adult (G.): Raw input (b) Adult (G.): Learnt rep. (c) Adult (M.): Raw input (d) Adult (M.): Learnt rep.

(e) CIFAR10: Raw input (f) CIFAR10: Learnt rep. (g) Loans: Raw input (h) Loans: Learnt rep.

Figure 2: 2D tSNE of learnt representations by TAPPFL and of the raw input on a random client. Color means attribute value.
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Figure 3: Compared defense results on CIFAR10.

variables, meaning it can handle arbitrary random variable
distributions. 2) Comparing with AT, our TAPPFL’s best-
tradeoff is (test accuracy, inference accuracy) = (0.84, 0.63),
while AT’s is (0.86, 0.63)—slightly better than ours. This is
because both TAPPFL and AT involve adversarial training,
but AT uses primary task labels, while ours does not.
Defending against the state-of-the-art de-censoring rep-
resentation attacks. Song and Shmatikov (2020) designed
a de-censoring representation attack to better infer private
attributes. Here, we test our TAPPFL against this attack on
Loans. Specifically, by applying TAPPFL, when the test ac-
curacy is 0.84, the inference accuracy without Song and

Shmatikov (2020) is 0.63, while with Song and Shmatikov
(2020) is 0.73, showing its better attack effectiveness. We
then enhance privacy protection until the inference accuracy
without Song and Shmatikov (2020) is 0.57. In this case, its
inference accuracy reduces to 0.60. The results show Song
and Shmatikov (2020)’s performance could be largely re-
duced with more privacy protection imposed by TAPPFL.
The fundamental reason is that TAPPFL has privacy guaran-
tees against the (worst-case) inference attack.

Conclusion
We study privacy-preserving federated learning (FL) against
the attribute inference attack, i.e., an honest-but-curious
server infers sensitive information in the device data from
shared device models. To this end, we design a task-agnostic
and provably privacy-preserving representation learning
framework for FL (termed TAPPFL) from the information-
theoretic perspective. TAPPFL is formulated via two mutual
information goals: one goal learns low-dimensional repre-
sentations for device data that contain the least information
about the data’s private attribute, and the other one includes
as much information as possible about the raw data, in or-
der to maintain FL utility. TAPPFL also has upper bounded
privacy leakage of the private attributes. Extensive results
on various datasets from different applications show that
TAPPFL can well protect the attributes (i.e., attribute infer-
ence accuracy is close to random guessing), and obtains a
high utility. TAPPFL is also shown to largely outperform
the state-of-the-art task-agnostic defenses.
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Wainakh, A.; Ventola, F.; Müßig, T.; Keim, J.; Cordero,
C. G.; Zimmer, E.; Grube, T.; Kersting, K.; and Mühlhäuser,
M. 2022. User-Level Label Leakage from Gradients in Fed-
erated Learning. In PTES.

Wang, B.; Guo, J.; Li, A.; Chen, Y.; and Li, H. 2021.
Privacy-Preserving Representation Learning on Graphs: A
Mutual Information Perspective. In KDD.
Wang, H.; Sharma, J.; Feng, S.; Shu, K.; and Hong, Y. 2022.
A Model-Agnostic Approach to Differentially Private Topic
Mining. In KDD.
Wei, K.; Li, J.; Ding, M.; Ma, C.; Yang, H. H.; Farokhi, F.;
Jin, S.; Quek, T. Q.; and Poor, H. V. 2020. Federated learn-
ing with differential privacy: Algorithms and performance
analysis. IEEE TIFS.
Wu, Z.; Wang, Z.; Wang, Z.; and Jin, H. 2018. Towards
privacy-preserving visual recognition via adversarial train-
ing: A pilot study. In ECCV.
Zhu, L.; Liu, Z.; and Han, S. 2019. Deep leakage from gra-
dients. In NeurIPS.


