
i

Long Polynomial Modular Multiplication using
Low-Complexity Number Theoretic Transform

Sin-Wei Chiu, Student Member, IEEE; and Keshab K. Parhi, Fellow, IEEE

I. SCOPE

This tutorial aims to establish connections between poly-
nomial modular multiplication over a ring to circular convo-
lution and discrete Fourier transform (DFT). The main goal is
to extend the well-known theory of DFT in signal processing
(SP) to other applications involving polynomials in a ring such
as homomorphic encryption (HE). HE allows any third party to
operate on the encrypted data without decrypting it in advance.
Since most HE schemes are constructed from the ring-learning
with errors (R-LWE) problem, efficient polynomial modular
multiplication implementation becomes critical. Any improve-
ment in the execution of these building blocks would have
significant consequences for the global performance of HE.
This lecture note describes three approaches to implementing
long polynomial modular multiplication using the number
theoretic transform (NTT): zero-padded convolution, without
zero-padding, also referred to as negative wrapped convolution
(NWC), and low-complexity NWC (LC-NWC).

II. RELEVANCE

Homomorphic encryption (HE) schemes involve two
fundamental operations: homomorphic multiplication and ho-
momorphic addition. Most of the existing HE schemes are
constructed from the R-LWE problem [1]. R-LWE-based HE
schemes rely on polynomial multiplication/addition as the
main building blocks, and the number of polynomial oper-
ations required grows with the multiplicative depth and width
[2] of the desired function that needs to be homomorphically
evaluated. Since the ciphertexts of these schemes are in the
form of polynomials, the addition and multiplication opera-
tions are performed on the polynomials. While the polyno-
mial addition is simple (coefficient-wise modular addition),
the polynomial modular multiplication is complex, especially
when the degree of the polynomial is large and the word
length of the coefficients is long. Therefore, the most time-
and memory-consuming part of an R-LWE-based scheme is
the long polynomial modular multiplication. Since polynomial
multiplication can be viewed as a linear convolution of the
coefficients, the intuitive way to compute the multiplication
of two polynomials is to use the schoolbook algorithm with
the time complexity of O(n2). However, the length of the
polynomials, n, of a homomorphic encryption scheme can
be in the range of thousands [3]. The time complexity of
performing homomorphic multiplication can be reduced to
O(n log n) using the number theoretic transform (NTT).

This research was supported in parts by the Semiconductor Research
Corporation under contract number 2020-HW-2998, and by the National
Science Foundation under grant number CCF-2243053.

In this paper, we provide a comprehensive guide to-
ward efficient NTT-based polynomial modular multiplication.
Three NTT-based approaches are described: zero-padded con-
volution, negative wrapped convolution (NWC), and low-
complexity NWC (LC-NWC). Examples, derivations, and
comparisons are presented. This tutorial is structured to pro-
vide an easy digest of the relatively complex topic.

III. PREREQUISITES

This article assumes only a familiarity with discrete
Fourier transform (DFT), fast Fourier transform (FFT), con-
volution, and basic polynomial operations.

IV. PROBLEM STATEMENT

Most HE schemes based on the R-LWE problem operate
in the ring Rn,q = Zq[x]/(x

n + 1) [3]. Polynomials over a
ring Rn,q = Zq[x]/(x

n + 1) are defined as:

p(x) = a0 + a1x+ · · ·+ an−2x
n−2 + an−1x

n−1 (1)

where n is a power-of-2 number. The coefficients are integers
in S = {0, 1, . . . , q− 1}. It is important to note that n, q have
a relation of q mod 2n ≡ 1. This ensures that the primitive
2n-th root of unity, ψ2n, exists. The primitive 2n-th root of
unity, ψ2n, is also in set S, and ψn

2n ≡ −1 (mod q), ψ2n
2n ≡

1 (mod q). Let ωn be the primitive n-th root of unity in Zq ,
which means ωn

n ≡ 1 (mod q) and ωn = ψ2
2n.

For example, let n = 4, then we have a 3rd order
polynomial p(x). Since we need to make sure q mod 2n ≡ 1,
q = 17 is selected. Next, let’s find the 2n-th root of unity
ψ2n. If we try ψ2n = 2, we need to compute powers of ψ2n

from 1 to 2n = 8. We have [2, 4, 8, 16, 32, 64, 128, 256]. Let’s
compute the modulo q = 17 reduction of the elements in
this vector, we have [2, 4, 8, 16, 15, 13, 9, 1]. ψn

2n should be 16
(−1 (mod q)) and ψ2n

2n should be 1 after modular reduction.
Hence, 2 is the 2n-th root of unity.

Modular polynomial multiplication

In signal processing, the convolution operation is one of
the fundamental operations at the center of many develop-
ments related to the Fourier transform, superposition, impulse
response, etc. It is well known that the convolution of two
sequences a[n] and b[n] can be implemented using DFT.
Remember that with the DFT we can implement both circular
and standard convolutions. For standard convolutions, it is
necessary to zero-pad the two input sequences to ensure proper
computation.

In these notes, we intend to provide a comprehensive
explanation of the connection between polynomial modular

ii

multiplication, convolution, and DFT with polynomial multi-
plication in Zq[x]/(x

n + 1).
For example, a = [1 2] and b = [1 −1]. In MATLAB, the

conv(a,b) commands yields [1 1 − 2]. To calculate the same
results in the transform domain, we define ā = [1 2 0] and b̄ =
[1 − 1 0] as the zero-padded versions of a and b; implement
DFT−1(DFT (a) ⊙ DFT (b)), where ⊙ denotes the point-
wise multiplication. This is the convolution theorem [4] in
action! Similarly, we can use Z-transform and write A(z) =
1+2z−1 and B(z) = 1−1z−1, and compute A(z)B(z) from
which we can get the convolution result.

Assume that we have two polynomials a(x) and b(x) over
the ring Rn,q = Zq[x]/(x

n + 1), where

a(x) =
n−1∑
j=0

ajx
j , (2)

b(x) =

n−1∑
j=0

bjx
j . (3)

Remember that the coefficients of a(x) and b(x) have to
be in the range of [0, q − 1]. Let’s assume that we want to
compute the modular polynomial multiplication

p(x) = a(x)× b(x) mod (q, xn + 1) (4)

It is important to point out that the operation mod (xn +
1) can be viewed as the negated mapping of conventional
mod (xn − 1), i.e., the circular convolution [5]. For example,
xn mod xn+1 = −1 instead of 1; xn+1 mod xn+1 = −x
instead of x. In general, xn+i mod xn + 1 = −xi, where i
is an integer from 0 to n− 1.

We can revisit the example of a(x) = 1+2x and b(x) =
1− x. Computing a(x)× b(x) mod (x2 − 1) is the same as
computing the circular convolution. We have

a(x)× b(x) mod (x2 − 1)

= 1 + x− 2x2 mod (x2 − 1)

= −1 + x

Computing a(x) × b(x) mod (x2 + 1) is the same as com-
puting a negated circular convolution, commonly referred as
negative wrapped convolution (NWC). We have

a(x)× b(x) mod (x2 + 1)

= 1 + x− 2x2 mod (x2 + 1)

= 3 + x

The modular polynomial multiplication can be carried out
using the convolution property [4] as:

p̂(x) = INTT2n(NTT2n(zeropadding(a(x))⊙
NTT2n(zeropadding(b(x))), (5)

p(x) = p̂(x) mod (q, xn + 1). (6)

The function zeropadding(a(x)) converts a(x) from a length-
n polynomial to a length-2n polynomial by padding n zeros

at the end.

zeropadding(a(x)) = a(x) +
2n−1∑
k=n

akx
k, ak = 0 ∀ k. (7)

where the NTT [6], a transformation similar to the DFT, is
carried out in a finite ring [7], where the twiddle factors are
powers of an integer root of unity, i.e., ωn

n ≡ 1 (mod q).
Note that the twiddle factors in the DFT are expressed in
terms of the complex exponential, e−j2π/n, i.e., the n-th root
of unity. The main reason that we are using NTT instead
of conventional DFT is that the ciphertext in HE operates
over integer arithmetic. No complex number calculations are
required in NTT, unlike in DFT. Furthermore, DFT will
introduce undesired additional errors in arithmetic operations
due to truncation or rounding; these errors do not occur with
NTT. NTT is defined as:

Ak =
n−1∑
j=0

ajω
kj
n mod q, k ∈ [0, n− 1] (8)

We can represent NTT in a matrix form:

A = Wa (9)

where A and a are n-by-1 vectors, and W is the n-by-n NTT
matrix given by:

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

 mod q (10)

Note that W is a symmetric matrix. Let’s assume we have
n = 4 and q = 17. From the previous example, we know that
ψ2n = 2 and ω = ψ2

2n = 4. For these parameters, the 4-by-4
NTT matrix is given by:

W =


1 1 1 1
1 4 16 13
1 16 1 16
1 13 16 4


Take a = [1 2 3 4]T as an example, the output A from Equa-
tion (8) before modular reduction will be [10 109 100 91]T .
After modular reduction, A will be [10 7 15 6]T . INTT is
defined as:

aj = n−1
n−1∑
k=0

Akω
−kj
n mod q, j ∈ [0, n− 1] (11)

Similar to NTT, we can also represent INTT in a matrix form:

a = W−1A (12)

iii

where W−1 is the inverse matrix of W, and is given by:

W−1 =

n−1


1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 · · · ω−2(n−1)

...
...

...
. . .

...
1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)(n−1)

 mod q

We can again create an example INTT matrix with the same
parameters as above. First, we need to find ω−1 and n−1.
We can do so by finding the inverse of ω and n, i.e.,
ωω−1 mod q ≡ 1 and nn−1 mod q ≡ 1. Therefore, for ω = 4
and n = 4, we have ω−1 = 13 and n−1 = 13. The example
INTT matrix is shown below:

W−1 = 13


1 1 1 1
1 13 16 4
1 16 1 16
1 4 16 13

mod q

=


13 13 13 13
13 16 4 1
13 4 13 4
13 1 4 16


Take A = [10 7 15 6]T from the previous example, the
output a from Equation (12) before modular reduction will
be [494 308 377 293]T . After modular reduction, a will be
[1 2 3 4]T , which is the same as what we started with.
Continuing from Equation (5), we can compute p̂(x), the 2n-
point polynomial multiplication output,

p̂(x) =
2n−1∑
j=0

p̂jx
j , and p̂j =

j∑
i=0

aib(j−i). (13)

The desired reduced product p(x) can be calculated by using
two 2n-point NTT and one 2n-point INTT followed by a
modular polynomial reduction of (q, xn +1). Fig. 1(a) shows
a block diagram of modular polynomial multiplication using
this approach.

Although we can correctly obtain the modular polynomial
multiplication output, appending zeros to the original input
polynomials to a length of 2n and using an additional modular
polynomial reduction block at the end are not efficient for
computing the modular multiplication. Furthermore, the use
of an n-point NTT instead of a 2n point NTT is desirable.

V. SOLUTION

We can use a different approach that does not require
the zeropadding() functions and the modular polynomial
multiplication block. This approach is referred to as the
negative wrapped convolution (NWC) [8]. Before we delve
into the concept of NWC, it is crucial to point out that the
conventional circular convolution cannot be applied to solve
this problem since it requires modulo (xn + 1) (negacyclic)
operations instead of modulo (xn − 1) (cyclic) operations.

Fig. 1: Block diagrams of modular polynomial multiplication
(a) Zero-padded convolution theory. (b) NWC. (c) NWC

with low-complexity NTT/INTT.

Negative wrapped convolution

When computing polynomial multiplication a(x) × b(x)
mod (q, xn+1) over the ring Rn,q = Zq[x]/(x

n+1), NWC
can be performed as:

p̃(x) = INTTn(NTTn(ã(x))⊙NTTn(̃b(x))), (14)

p(x) =
n−1∑
j=0

p̃jψ
−j
2n x

j mod q. (15)

where ⊙ denotes point-wise multiplication and

ã(x) =

n−1∑
j=0

ajψ
j
2nx

j mod q, (16)

b̃(x) =
n−1∑
j=0

bjψ
j
2nx

j mod q. (17)

NWC makes sure that no zero-padding is required for the
operation. With NWC, the desired reduced product p(x) can
be calculated by using two n-point NTT operations and one
n-point INTT. Although we are able to reduce the 2n-point
polynomial multiplication to a n-point polynomial multiplica-
tion, there are some tradeoffs. NWC requires pre-processing
before NTT and post-processing after INTT. Equations (16)
and (17) describe the pre-processing step where the input is
multiplied by the 2n-th roots of unity raised to the power of
j, ψj

2n, and Equation (15) represents the post-processing step
where the output coefficients of INTT are multiplied by the
inverse of 2n-th roots of unity raised to the power of j, ψ−j

2n .
By combining the pre-processing and NTT, we have:

Ã = WΨa (18)

where Ψ is a n-by-n diagonal matrix, whose diagonal terms

iv

are ψj
2n: 

1 0 0 · · · 0
0 ψ1

2n 1 · · · 0
0 0 ψ2

2n · · · 0
...

...
...

. . .
...

0 0 0 · · · ψn−1
2n

 mod q (19)

We can also combine the post-processing with INTT:

a = Ψ−1W−1Ã (20)

where Ψ−1 is also a n-by-n diagonal matrix, whose diagonal
terms are ψ−j

2n .

To prove the correctness of NWC, the coefficients of the
NWC NTT outputs are denoted as:

Ãk =
n−1∑
i=0

aiψ
i
2nω

ki
n (21)

B̃k =
n−1∑
j=0

bjψ
j
2nω

kj
n (22)

The point-wise multiplication of two NWC NTT outputs is
given by:

P̃k = ÃkB̃k =
n−1∑
i=0

n−1∑
j=0

aibjψ
(i+j)
2n ωk(i+j)

n (23)

Applying NWC INTT to P̃k, we have:

pl = n−1ψ−l
2n

n−1∑
k=0

n−1∑
i=0

n−1∑
j=0

aibjψ
(i+j)
2n ωk(i+j)

n

ω−lk
n


= n−1ψ−l

2n

n−1∑
i=0

n−1∑
j=0

aibjψ
(i+j)
2n

n−1∑
k=0

ωk(i+j−l)
n (24)

Since
n−1∑
k=0

ωk(i+j−l)
n =

{
n if (i+ j − l) = n or 0
0 otherwise

Equation (24) can be expressed as:

pl = ψ−l
2n

l∑
i=0

aibl−iψ
l
2n + ψ−l

2n

n−1∑
i=l+1

aibn+l−iψ
l+n
2n

=
l∑

i=0

aibl−i +
n−1∑
i=l+1

aibn+l−iψ
n
2n (25)

=
l∑

i=0

aibl−i −
n−1∑
i=l+1

aibn+l−i (26)

Note that subtraction of the second term in Equation
(26) implicitly carries out the polynomial modulo (xn + 1).
The negative term results from the fact that ψn

2n = −1 in
Equation (25). We can also connect Equation (25) to the
circular convolution. If we remove the ψ from the equation,

Equation (26) becomes:
l∑

i=0

aibl−i +
n−1∑
i=l+1

aibn+l−i (27)

It is easy to see that this is exactly a circular convolution. It is
also called positive wrapped convolution because of the plus
term.

Fig. 1(b) shows a block diagram of modular polynomial
multiplication using NWC. The NWC algorithm is described
in Algorithm 1.

Algorithm 1 Negative Wrapped Convolution [8]
Input: a(x), b(x) ∈ Rn,q

Output: p(x) = a(x)× b(x) mod (xn + 1, q)

1: ã(x) =
∑n−1

j=0 ajψ
j
2nx

j mod q

b̃(x) =
∑n−1

j=0 bjψ
j
2nx

j mod q

2: Ã(x) : Ãk =
∑n−1

j=0 ãjω
kj
n mod q, k ∈ [0, n− 1]

B̃(x) : B̃k =
∑n−1

j=0 b̃jω
kj
n mod q, k ∈ [0, n− 1]

3: P̃ (x) = Ã(x)⊙ B̃(x) =
∑n−1

k=0 ÃkB̃kx
k

4: p̃(x) : p̃j = n−1
∑n−1

k=0 P̃kω
−kj
n mod q, j ∈ [0, n− 1]

5: p(x) =
∑n−1

j=0 p̃jψ
−j
2n x

j mod q

Although we can reduce the length-2n polynomial mul-
tiplication to length-n by using NWC, there are still some
tradeoffs. Additional weighted operations are required before
NTT and after INTT. This requires a total of 2n additional
large coefficient modular multiplications compared to classic
NTT/INTT computation. Recent works [9], [10] have pre-
sented a new method to merge the weighted operations into
the butterfly operations. This method is able to merge the pre-
processing portion into the NTT block with low-complexity
NTT and the post-processing portion into the INTT block with
low-complexity INTT. This is illustrated in the block diagram
shown in Fig. 1(c).

Low-complexity NTT for NWC

The low-complexity NTT merges the weighted operation
before NTT in Step 2 of Algorithm 1 by changing the twiddle
factors. In particular, the new NTT operation is re-represented
as Ãk and Ãk+n/2 by using the decimation-in-time (DIT)
method [11] in FFT. This method divides the input sequence
into the sequence of even and odd numbered samples. Thus,
the name “decimation-in-time”.

The NTT equation for NWC is described by:

Ãk =
n−1∑
j=0

ajψ
j
2nω

kj
n mod q, (28)

we can rewrite Equation (28) by splitting the summation into
two groups: one containing the even and the other containing

v

odd coefficients. For k = 0, 1, ..., n− 1:

Ãk =

n/2−1∑
j=0

a2jψ
2j
2nω

2kj
n

+

n/2−1∑
j=0

a(2j+1)ψ
2j+1
2n ωk(2j+1)

n mod q

With the scaling property of twiddle factors, ωk/m
n/m = ωk

n:

Ãk =

n/2−1∑
j=0

a2jψ
j
nω

kj
n/2

+ ψ2nω
k
n

n/2−1∑
j=0

a(2j+1)ψ
j
nω

kj
n/2 mod q

Then we can group them into two parts based on the size
of the index k. For indices k > n/2 − 1, we rewrite them
as k + n/2, where k = 0, 1, ..., n/2 − 1 By applying the
symmetry property of twiddle factors (ω

k+n/2
n = −ωk

n) and
the periodicity property of twiddle factors (ωk+n

n = ωk
n), we

have:

Ãk = a
(0)
k + ψ2nω

k
na

(1)
k mod q,

Ãk+n/2 = a
(0)
k − ψ2nω

k
na

(1)
k mod q,

where k ∈ [0, n2 − 1] and

a
(0)
k =

n/2−1∑
j=0

a2jψ
j
nω

kj
n/2 mod q, (29)

a
(1)
k =

n/2−1∑
j=0

a(2j+1)ψ
j
nω

kj
n/2 mod q. (30)

It is easy to see that a(0)k and a(1)k are essentially same as
Equation (28); the only difference is that they are scaled down
to n/2 points. By recursively applying the decimation process
to a

(0)
k and a

(1)
k to 2-point NTT, we can get the structure

shown in Figure Fig. 2 (upper left). Also, Since ωn = ψ2
2n

mod q, the integers ψ2n and ωk
n can be merged to an integer,

ψ2nω
k
n = ψ

(2k+1)
2n . Thus,

Ãk = a
(0)
k + ψ

(2k+1)
2n a

(1)
k mod q,

Ãk+n/2 = a
(0)
k − ψ

(2k+1)
2n a

(1)
k mod q.

We can further represent this architecture in a matrix
form.

Ã = WΨa

= W̃a (31)

where W̃ is a modified version NTT matrix for NWC:

W̃ =


1 ψ ψ2 · · · ψn−1

1 ψω ψ2ω2 · · · ψn−1ωn−1

1 ψω2 ψ2ω4 · · · ψn−1ω2(n−1)

...
...

...
. . .

...
1 ψω(n−1) ψ2ω2(n−1) · · · ψn−1ω(n−1)(n−1)


Note that the W̃ matrix is not a symmetric matrix like W.

Low-complexity INTT for NWC

The improved INTT algorithm merges not only the
weighted operation but also the multiplication with constant
n−1 into the butterfly operations, as presented in [9].

The low-complexity NWC operation can be described as:

p = Ψ−1W−1P̃

= W̃−1P̃ (32)

and

W̃−1 = (33)

n−1


1 1 · · · 1
ψ−1 ψ−1ω−1 · · · ψ−1ω−(n−1)

ψ−2 ψ−2ω−2 · · · ψ−2ω−2(n−1)

...
...

. . .
...

ψ−(n−1) (ψω)−(n−1) · · · (ψω(n−1))−(n−1)


where W̃−1 is the inverse of W̃. Equation (32) can be
interpreted as the transpose of the low-complexity NTT fol-
lowed by n−1 scaling. We can obtain the low-complexity
INTT structure by first transposing the low-complexity NTT
structure, changing the twiddle factors to its inverse, and
adding multiply by 2−1 at the end of every stage, which is
equivalent to multiplying n−1 (n−1 = (2−1)(log2 n)). Thus,
transposing the NTT structure in Fig. 2 (upper left), replacing
the twiddle factors by their inverse, and inserting 2−1 after
every stage leads to the low-complexity INTT structure in
Fig. 2 (lower left).

Although we could derive the structure based on intuition,
we could still derive the low-complexity INTT based on
the decimation-in-frequency (DIF) method [11] in FFT. This
method divides the output sequence into the sequence of even
and odd numbered samples. Thus, the name “decimation-in-
frequency”. The INTT equation for negative wrapped convo-
lution is given by:

pk = n−1ψ−k
2n

n−1∑
j=0

P̃jω
−kj
n mod q (34)

we can rewrite Equation (34) by splitting the items in the
summation into two parts according to the size of the index
of P̃j . For k = 0, 1, ..., n− 1:

pk = n−1ψ−k
2n

n/2−1∑
j=0

P̃jω
−kj
n +

n−1∑
j=n/2

P̃jω
−kj
n

 mod q

vi

Fig. 2: The data flow graph of an 8-point low-complexity negative wrapped convolution.

Based on the symmetry property and periodicity property of
twiddle factors, the index of the second sum can be changed
from [n/2, n− 1] to [0, n/2− 1]:

pk = n−1ψ−k
2n

n/2−1∑
j=0

P̃jω
−kj
n

+

n/2−1∑
j=0

P̃(j+n/2)ω
−k(j+n/2)
n

 mod q

= n−1ψ−k
2n

n/2−1∑
j=0

P̃jω
−kj
n

+ (−1)k
n/2−1∑
j=0

P̃(j+n/2)ω
−kj
n

 mod q

According to the parity of k, we can group them into two

parts, where k = 0, 1, ..., n/2− 1:

p2k = n−1ψ−2k
2n

n/2−1∑
j=0

P̃jω
−2kj
n

+ (−1)2k
n/2−1∑
j=0

P̃(j+n/2)ω
−2kj
n

 mod q

p2k+1 = n−1ψ
−(2k+1)
2n

n/2−1∑
j=0

P̃jω
−(2k+1)j
n

+ (−1)(2k+1)

n/2−1∑
j=0

P̃(j+n/2)ω
−(2k+1)j
n

 mod q

With the scaling property of twiddle factors, we can simplify

vii

the equations as:

p2k = (
n

2
)−1ψ−k

n

n/2−1∑
j=0

[
P̃j + P̃(j+n/2)

2

]
ω−kj
n/2 mod q

p2k+1 =

(
n

2
)−1ψ−k

n

n/2−1∑
j=0

{[
P̃j − P̃(j+n/2)

2

]
ψ−1
2n ω

−j
n

}
ω−kj
n/2

mod q

Let

P̃
(0)
j =

P̃j + P̃j+n/2

2
mod q,

P̃
(1)
j =

P̃j − P̃j+n/2

2
ψ−1
2n ω

−j
n mod q.

We have

p2k = (
n

2
)−1ψ−k

n

n/2−1∑
j=0

P̃
(0)
j ω−kj

n/2 mod q, (35)

p2k+1 = (
n

2
)−1ψ−k

n

n/2−1∑
j=0

P̃
(1)
j ω−kj

n/2 mod q. (36)

Similar to NTT, we can easily see that p2k and p2k+1

are essentially the same as Equation (34) except scaled down
to n/2 points. By recursively applying the decimation process
to p2k and p2k+1 to 2-point NTT, we can get the structure
shown in Figure Fig. 2 (lower left). Note that when n = 2,
(n2)

−1 = 1, ψ−k
n = 1, and also ω−kj

n/2 = 1. In addition,
the integers ψ−1

2n and ω−j
n can be merged to an integer,

ψ−1
2n ω

−j
n = ψ

−(2j+1)
2n . The data flow graph of the entire 8-

point low-complexity negative wrapped convolution is shown
in Fig. 2.

Unlike the NTT butterfly architecture, the intermediate
results after the modular addition and modular subtraction
operations in the INTT butterfly need to be multiplied by
2−1 mod q. Although it seems like this will add additional
multipliers to the INTT block, the modular multiplication by
2−1 can be implemented without a modular multiplier.

x

2
mod q =

{
x
2 if x is even
⌊x
2 ⌋+

q+1
2 mod q if x is odd

(37)

If x is even, x× 2−1 can be implemented as a right shift
operation, i.e., x≫ 1. Here, ⌊ ⌋ is the floor function that maps
a number to the closest integer that is smaller than or equal
to the number. The ≫ operation can be implemented easily
in hardware. For example, a right shift by 1 bit operation on
8 (100 in binary) results in 4 (010 in binary).

If x is odd, x× 2−1 can be represented as:

x

2
≡ (2⌊x

2
⌋+ 1)

q + 1

2
mod q (38)

≡ ⌊x
2
⌋(q + 1) +

q + 1

2
mod q

≡ ⌊x
2
⌋+ q + 1

2
mod q (39)

The term (2⌊x
2 ⌋ + 1) in Equation (38) is equivalent to

an odd number x; the term (q+1
2 mod q) is equivalent to

2−1 mod q since (q+1
2 × 2 mod q) ≡ 1 mod q. ⌊x

2 ⌋ can
be implemented as (x ≫ 1), and (q + 1)/2 is a constant.
Hence, no modular multiplications are required. This operation
requires one modular adder and a multiplexer. Here, the
multiplexer is used to select one of the two options in Equation
(37) as output depends on whether the input is even or odd.

Alternative Low-complexity INTT for NWC

In addition to the low-complexity INTT structure (LC-
INTT) presented in [9], there is another straightforward way
of constructing an alternative low-complexity INTT structure.
We can merge the two post-processing multipliers n−1 and
ψj
2n into a single equivalent multiplier. The structure is shown

in Fig. 2 (lower right). It is important to point out that,
since n−1ψ0

2n = n−1, the multiplier located at the index 0
position at the output can be implemented either as a multiplier
(denoted as Architecture Alt-LC-INTT1) or log n operations
of multiplications by 2−1 (denoted as Architecture Alt-LC-
INTT2). While the numbers of multipliers in Alt-LC-INTT1
and Alt-LC-INTT2 seem to be larger than the standard LC-
INTT, the obvious advantage of these structures is that no
shifting operations are required in each butterfly unit. More
comparisons are presented in Section VII.

VI. NUMERICAL EXAMPLE

Fig. 3 illustrates an example of length-4 modular polyno-
mial multiplication using zero padding and 8-point NTT/INTT.
The NTT in Fig. 3 corresponds to a DIF NTT redrawn with
inputs in the bit-reversed order and outputs in the normal
order. The INTT in Fig. 3 is a DIF INTT. In this example,
n = 8, q = 17, where q mod 2n ≡ 1 and it is also a
prime, n−1 = 15 (8 × 15 = 120 ≡ 1 mod 17). Since ψn

2n

mod q ≡ −1, we can select ψ16 = 3 (38 = 6561 ≡ −1
mod 17), and ψ−1

16 = 6 (3 × 6 = 18 ≡ 1 mod 17).
Assume that both a(x) and b(x) are x3 + 3x2 + 4x + 2.
To begin the computation, we need to first pad 4 zeros to
the inputs, and then feed the inputs to the NTT block. After
the NTT block, we will perform point-wise multiplications.
Since we assume a(x) and b(x) are the same, the coeffi-
cients of the results of point-wise multiplications P̃j will be
[102, 72, 42, 152, 02, 72, 112, 132] mod 17 that is equivalent to
[15, 15, 16, 4, 0, 15, 2, 16]. Next, we feed those outputs from
point-wise multiplications to the INTT block. The INTT block
is similar to the NTT block with only two differences. One, the
2n-th roots are now replaced with the inverse of 2n-th roots.
Two, additional multipliers are added for multiplying n−1. The
INTT block outputs 8 coefficients. Since we are computing
modular polynomial multiplication mod (x4 + 1, 17), the

viii

Fig. 3: An example of length-4 modular polynomial multiplication using 8-point convolution.

convolution result x6+6x5+11x3+11x2+16x+4 mod (x4+
1, 17) becomes 11x3 + (11 − 1)x2 + (16 − 6)x + (4 − 0)
mod 17 ≡ 11x3 + 10x2 + 10x+ 4.

Fig. 4 illustrates simple examples of NTT and INTT for
negative wrapped convolution. On the left is NWC with classic
NTT/INTT. Let’s consider n = 4, q = 17, and n−1 = 13
(4 × 13 = 52 ≡ 1 mod 17) Since ψn

2n mod q ≡ −1, we
can select ψ8 = 2 (24 = 16 ≡ −1 mod 17), and ψ−1

8 = 9
(2× 9 = 18 ≡ 1 mod 17). Let’s consider the same example
that both a(x) and b(x) are (x3 + 3x2 + 4x + 2). The first
step of NWC is NTT with preprocessing, which correspond
to steps 1 and 2 of Algorithm 1. We multiply each coefficient
of a(x) with the 2n-th root to the power of its exponent; this
gives us the weighted ã(x). After we obtain ã(x), we feed
the weighted input into NTT. Note that twiddle factor ω is the
n-th root of unity, which means ψ2 = ω.

Step 3 of Algorithm 1 takes the outputs of both NTT
blocks and performs point-wise multiplication. Since we as-
sume a(x) and b(x) are the same, the coefficients of the re-
sults of point-wise multiplications P̃j will be [132, 72, 152, 72]
mod q that is equivalent to [16, 15, 4, 15].

Steps 4 and 5 of Algorithm 1 are feeding P̃ (x) into the
weighted INTT block. Note that after the INTT block, there
are weighted operations that multiply each coefficient with
the inverse of 2n-th root to the power of its exponent. The
polynomial we obtain at the output is 11x3+10x2+10x+4.
We can verify this result by computing (x3 + 3x2 + 4x+ 2)2

mod (x4+1, 17) = x6+6x5+17x4+28x3+28x2+16x+4
mod (x4+1, 17), which is equivalent to 11x3+10x2+10x+4.

On the right of Fig. 4 is an example of negative wrapped
convolution with low-complexity NTT/INTT. We consider the
same inputs as in Fig. 4 that both a(x) and b(x) are x3+3x2+
4x + 2. n = 4, q = 17, ψ = 2, ψ−1 = 9 (2 × 9 = 18 ≡ 1
mod 17), and 2−1 = 9 (2 × 9 = 18 ≡ 1 mod 17). For the
low-complexity NTT, the multipliers are now moved before the
butterfly addition and subtraction. The output polynomial is the
same as what we obtained from the previous example. For the
standard low-complexity INTT, additional “multiplication” of
2−1 is required after every butterfly addition and subtraction.

However, no additional multipliers are implemented according
to Equation (39). The output polynomial is 11x3+10x2+10x+
4, the same as what we obtained from the previous example.

VII. WHAT WE HAVE LEARNED

Comparisons

Table I compares the number of multipliers imple-
mented in each method. The first method, zero padding
and a polynomial modular reduction, requires n log 2n and
n log 2n + 2n modular multiplications for NTT and INTT,
respectively. The second method, the negative wrapped con-
volution, requires n

2 log n + n and n
2 log n + 2n modular

multiplications for NTT and INTT, respectively. The im-
provement comes from reducing 2n-point NTT/INTT to n-
point NTT/INTT. However, the tradeoffs require adding n
multipliers to both NTT/INTT blocks. Last but not least,
using the low-complexity NTT/INTT, we are able to remove
the additional n multipliers for NTT, and the additional 2n
multipliers for INTT.

Table I includes multipliers that multiply by ψ0
2n = 1.

If we remove those multipliers, the zero-padded convolution
method requires (n log2 n) − n + 1 and (n log2 n) + n + 1
modular multiplications for NTT and INTT, respectively. The
NWC method requires n

2 log n and n
2 log n + n modular

multiplications for NTT and INTT, respectively. The LC-NWC
method requires the same number of modular multiplications
for NTT and further reduces the number of modular multipli-
cations for INTT by n. The comparison after excluding the
multipliers by 1 is shown in Table II.

TABLE I: The comparison of the numbers of multipliers

Multipliers
NTT INTT

Conv. w/ mod n log 2n n log 2n+ 2n

NWC n
2 log n+ n n

2 log n+ 2n

LC-NWC n
2 log n n

2 log n

ix

Fig. 4: An example of 4-point negative wrapped convolution.

TABLE II: The comparison of the numbers of multipliers
excluding multiplication by 1

Multipliers
NTT INTT

Conv. w/ mod (n log2 n)− n+ 1 (n log2 n) + n+ 1

NWC n
2 log n n

2 log n+ n

LC-NWC n
2 log n n

2 log n

Table III illustrates how many modular multipliers can
be saved by implementing the NWC methods compared to
the traditional convolution theory for n = {1024, 2048, 4096}.
Generally, implementing NWC will save about 46% for both
NTT and INTT. If we implement NWC using low-complexity
NTT/INTT, these numbers will go up to about 54% for NTT
and about 60% for INTT.

Table IV illustrates how many modular multipliers can
be saved by implementing the NWC methods compared to
the traditional convolution theory for n = {1024, 2048, 4096},
excluding multiplication by 1. Generally, implementing NWC
will save about 45% and 46% for both NTT and INTT,
respectively. If we implement NWC using low-complexity
NTT/INTT, the percentages saved stay the same for NTT, but
the percentages go up to about 54% for INTT.

Table V shows the comparisons between the standard LC-
INTT and the alternative LC-INTTs. We first compare the
Alt-LC-INTT1 with LC-INTT. Although Alt-LC-INTT1 has
n more multipliers compared to LC-INTT, when excluding
multiplication by 1, Alt-LC-INTT1 only has one more multi-
plier compared to LC-INTT. The main advantage of Alt-LC-
INTT1 is that it doesn’t require operations for multiplication
by 2−1. Alt-LC-INTT2 simply replaces one multiplier in Alt-
LC-INTT1 with log n operations of multiplication by 2−1. The
number of 2−1 operations in LC-INTT in Table V is n

2 log n

TABLE III: Percentage of the number of multipliers saved
compared to the zero-padded convolution method

n
Percentage of # multipliers saved

NWC LC-NWC
NTT INTT NTT INTT

1024 45.5 46.2 54.5 61.5

2048 45.8 46.4 54.2 60.7

4096 46.2 46.7 53.9 60.0

TABLE IV: Percentage of the number of multipliers saved
compared to the zero-padded convolution method excluding

multiplication by 1

n
Percentage of # multipliers saved

NWC LC-NWC
NTT INTT NTT INTT

1024 44.5 45.5 44.5 54.5

2048 45.0 45.8 45.0 54.2

4096 45.5 46.2 45.5 53.8

instead of n log n, because we assume the 2−1 operations
are merged with ψ−j

2n in the bottom outputs of the butterfly
operations. Another property worth comparing is the number
of parameters that need to be stored for multiplications. For
LC-INTT, we need to store the 2n-th roots from ψ1

2n to ψn−1
2n ,

that’s a total of n−1 parameters. For Alt-LC-INTT1, we need
to store the n-th roots from ω1

n to ω(n
2 −1)

n (equivalent to ψ2
2n,

ψ4
2n to ψn−2

2n), and the n merged multipliers, that’s a total of
3n
2 − 1 parameters. For Alt-LC-INTT2, we need to store a

total of 3n
2 −2 parameters. Therefore, Alt-LC-INTT1 and Alt-

LC-INTT2 require n
2 and n

2 −1 more parameters compared to
LC-INTT. The more parameters are used, the more memory

x

TABLE V: Comparisons between standard LC-INTT and alternative LC-INTT

multipliers # multipliers excl.1 # 2−1 operations # parameters

LC-INTT n
2 log n n

2 log n n
2 log n n− 1

Alt-LC-INTT1 n
2 log n+ n n

2 log n+ 1 0 3n
2 − 1

Alt-LC-INTT2 n
2 log n+ n− 1 n

2 log n log n 3n
2 − 2

allocation is required to compute the result.
While there are apparent tradeoffs between LC-INTT and

Alt-LC-INTT based on the word length of the inputs and the
degree of the polynomials, the method of implementation will
define which optimized option is better. Since the implemen-
tations of these methods aren’t usually a one-to-one map-
ping from algorithm to hardware, different implementations
will result in different tradeoffs between the two methods.
Hardware implementations in prior works [9], [10], [12] have
suggested that LC-NWC with LC-NTT and LC-INTT provides
improvements in HE accelerators.

Conclusions

This lecture note introduced several optimization tech-
niques for NTT-based polynomial modular multiplications.
These methods include: zero-padded convolution, negative
wrapped convolution, and an improved version of NWC with
low-complexity NTT/INTT.

With low-complexity NTT/INTT, there is no additional
polynomial reduction required after the NTT/INTT blocks
and no zero-padding is required for both input polynomials.
Also, compared to the classical NWC, the pre-processing
and post-processing multiplications are eliminated in the low-
complexity NWC.

Like in FFT, several alternate structures for NTT and
INTT for NWC can be derived by twiddle shifting trans-
formations where twiddle factors can be pushed to the next
stage (or pulled to the previous stage). We point out that the
low-complexity NWC structure in Fig. 2 (top) can be derived
from the traditional NWC structure where the polynomial
coefficients are first multiplied by ψj

2n by using twiddle
shifting (pushing). Different alternate structures can also be
derived by using transpose operation.

ACKNOWLEDGEMENT

The authors are grateful to an anonymous reviewer and
Prof. Cagatay Candan, the Associate Editor, for their numerous
constructive comments.

AUTHOR

Sin-Wei Chiu (chiu0091@umn.edu) received his bach-
elor’s degree in electrical engineering from National Central
University, Taiwan, in 2020. He is currently pursuing a Ph.D.
degree in electrical engineering at the University of Minnesota,
Twin Cities. His current research interests include VLSI archi-
tecture design, digital signal processing systems, post-quantum
cryptography, and homomorphic encryption.

Keshab K. Parhi (parhi@umn.edu) received his Ph.D.
degree in electrical engineering and computer sciences from

the University of California, Berkeley, in 1988. He has been
with the University of Minnesota, Minneapolis, Minnesota,
since 1988, where he is currently the Erwin A. Kelen Chair in
Electrical Engineering and a Distinguished McKnight Univer-
sity Professor in the Department of Electrical and Computer
Engineering. He has published more than 700 papers, is
the inventor of 36 patents, and has authored the textbook
VLSI Digital Signal Processing Systems (Wiley, 1999). He
served as the editor-in-chief of IEEE Transactions on Circuits
and Systems, Part I during 2004 and 2005, and currently
serves as the editor-in-Chief of the IEEE Circuits and Systems
Magazine. He is a Fellow of IEEE, ACM, AIMBE, AAAS,
and NAI.

REFERENCES

[1] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual international conference on
the theory and applications of cryptographic techniques. Springer,
2010, pp. 1–23.

[2] E. Crockett, “A low-depth homomorphic circuit for logistic regression
model training,” Cryptology ePrint Archive, Paper 2020/1483, 2020,
https://eprint.iacr.org/2020/1483. [Online]. Available: https://eprint.iacr.
org/2020/1483

[3] C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. Fitzek, and
N. Aaraj, “Survey on fully homomorphic encryption, theory, and ap-
plications,” Proceedings of the IEEE, vol. 110, no. 10, pp. 1572–1609,
2022.

[4] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing.
Pearson Education, 2011. [Online]. Available: https://books.google.
com/books?id=BOVyngEACAAJ

[5] R. E. Blahut, Theory and practice of error control codes. Addison-
Wesley Pub. Co., 1983. [Online]. Available: https://cir.nii.ac.jp/crid/
1130000798027694720

[6] A. Pedrouzo-Ulloa, J. R. Troncoso-Pastoriza, and F. Pérez-González,
“Number theoretic transforms for secure signal processing,” IEEE Trans-
actions on Information Forensics and Security, vol. 12, no. 5, pp. 1125–
1140, 2017.

[7] J. H. McClellan and C. M. Rader, Number Theory in Digital Signal
Processing. Prentice Hall Professional Technical Reference, 1979.

[8] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, “SWIFFT:
A modest proposal for FFT hashing,” in International Workshop on Fast
Software Encryption. Springer, 2008, pp. 54–72.

[9] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly
efficient architecture of NewHope-NIST on FPGA using low-complexity
NTT/INTT,” IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, pp. 49–72, 2020.

[10] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-LWE cryptoprocessor,” in International workshop on
cryptographic hardware and embedded systems. Springer, 2014, pp.
371–391.

[11] P. Duhamel and M. Vetterli, “Fast Fourier transforms: a tutorial review
and a state of the art,” Signal processing, vol. 19, no. 4, pp. 259–299,
1990.

[12] W. Tan, S.-W. Chiu, A. Wang, Y. Lao, and K. K. Parhi, “PaReNTT: Low-
latency parallel residue number system and NTT-based long polynomial
modular multiplication for homomorphic encryption,” IEEE Transac-
tions on Information Forensics and Security, vol. 19, pp. 1646–1659,
2024.

https://eprint.iacr.org/2020/1483
https://eprint.iacr.org/2020/1483
https://eprint.iacr.org/2020/1483
https://books.google.com/books?id=BOVyngEACAAJ
https://books.google.com/books?id=BOVyngEACAAJ
https://cir.nii.ac.jp/crid/1130000798027694720
https://cir.nii.ac.jp/crid/1130000798027694720

	Scope
	Relevance
	Prerequisites
	Problem Statement
	Solution
	Numerical Example
	What we have learned
	References

