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Top-k frequent items detection is a fundamental task in data stream mining. Many promising solutions are
proposed to improve memory efficiency while still maintaining high accuracy for detecting the Top-k items.
Despite the memory efficiency concern, the users could suffer from privacy loss if participating in the task
without proper protection, since their contributed local data streams may continually leak sensitive individual
information. However, most existing works solely focus on addressing either the memory-efficiency problem
or the privacy concerns but seldom jointly, which cannot achieve a satisfactory tradeoff between memory
efficiency, privacy protection, and detection accuracy.

In this paper, we present a novel framework HG-LDP to achieve accurate Top-k item detection at bounded
memory expense, while providing rigorous local differential privacy (LDP) protection. Specifically, we identify
two key challenges naturally arising in the task, which reveal that directly applying existing LDP techniques
will lead to an inferior “accuracy-privacy-memory efficiency” tradeoff. Therefore, we instantiate three advanced
schemes under the framework by designing novel LDP randomization methods, which address the hurdles
caused by the large size of the item domain and by the limited space of the memory. We conduct comprehensive
experiments on both synthetic and real-world datasets to show that the proposed advanced schemes achieve a
superior “accuracy-privacy-memory efficiency” tradeoff, saving 2300X memory over baseline methods when
the item domain size is 41, 270. Our code is anonymously open-sourced via the link.!
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1 INTRODUCTION

Detecting Top-k frequent items in data streams is one of the most fundamental problems in
streaming data analysis [10, 16, 25, 39, 47]. It forms the foundation for a multitude of critical
applications across various domains, such as anomaly detection in data mining [15], click analysis
in web analysis [55], and topic mining in social networks [64]. In the typical decentralized setting
as illustrated in Figure 1, the users send local item counts to the server in a streaming fashion, and
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Fig. 1. An example of Top-3 frequent items detection.

Furthermore, users’ submitted streaming data often contain sensitive individual information,
e.g., click analysis may reveal online behavior and topic mining may reveal political opinions. The
privacy of users is under severe threat if they submit local data streams without proper privacy
protection. In particular, the privacy concern has a unique characteristic in the Top-k detection
problem. That is, the cold items (i.e., items with low frequencies, as depicted in Figure 1) are not
statistical targets, but constitute the majority of the data domain and are particularly sensitive, as
they reveal highly personal information specific to certain user groups. Due to its central role in
streaming data analysis, Top-k frequent items detection has attracted significant research attention
in recent years. However, most existing works pursue the memory efficiency or privacy protection
goals separately but seldom jointly.

On the memory efficiency side, a series of approaches have been proposed to improve the
memory efficiency with decent accuracy for detecting the Top-k items [44, 45, 48, 49, 62, 65]. The
key rationale of the memory-saving stems from the fact that most items are cold while only a few
items are hot in practical data streams [19, 53]. Accurately recording the information of massive
cold items not only wastes much memory, but also incurs non-trivial errors in hot item estimation
when the memory is tight. Thus, existing methods seek to design a compact data structure to keep
and guard the items and their frequencies of hot items, while possibly evicting cold items. One of
the most widely adopted and effective data structures addressing this challenge is HeavyGuardian
[62]. It introduces the separate-and-guard-hot design principle, which effectively segregates hot
items from cold items, preserving the accuracy of hot item estimations. HeavyGuardian further
delineates a specific strategy called Exponential Decay (ED) to guard the hot items by exponentially
decreasing the probability that the possible cold items remain in the heavy part of the data structure.
However, despite achieving a promising balance between accuracy and memory efficiency, none of
these methods simultaneously account for privacy concerns.
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On the privacy protection side, Differential Privacy (DP) has been regarded as a de facto standard
by both academia and industry [27, 30]. In the decentralized data analytics setting, Local Differential
Privacy (LDP) is the state-of-the-art approach extended from DP to the local setting, which has been
widely deployed in industry, e.g., Google Chrome browser [31] and Apple personal data collection
[37]. In LDP, each user perturbs his/her data with a local randomization mechanism before sending
it to the server. The server could still derive general statistics from the perturbed submissions
with a certain accuracy decrease. General randomization mechanisms for frequency estimation
such as Generalized Randomized Response (GRR), Optimal Local Hash (OLH) [57], and Hadamard
Response (HR) [6], can be applied to Top-k items detection as baseline methods. There also exist
many works designed specifically for heavy hitter estimation under LDP, including estimates over
the single-valued data [11, 22, 36, 60], and set-valued data [51, 59]. However, it is noteworthy that
these works neither address the data stream setting nor tackle the issue of memory efficiency.

In this paper, our objective is to bridge the gap between memory-efficient heavy hitter tracking
in data streams and LDP privacy protection. To achieve this, we introduce the HG-LDP framework
designed for tracking the Top-k heavy hitters within data streams. This framework comprises three
essential modules. First, the randomization module is responsible for randomizing the streaming
data generated by users, ensuring event-level LDP privacy that is more suitable for the streaming
data [28, 50]. Second, the storage module records the incoming data on the server side. To this end,
we integrate the HeavyGuardian data structure, and significantly optimize its implementations, i.e.,
dynamic parameter configuration, and sampling optimization (see details in Appendix A.7 in [46])
to facilitate the heavy hitter tasks and processing of LDP-protected noisy data. Finally, the response
module processes and publishes the statistical results of heavy hitters.

It is worth noting that directly applying existing LDP techniques cannot achieve satisfactory ac-
curacy or would be even functionally infeasible, primarily due to the following two new challenges.

Challenge (1): Incompatibility of Space-Saving Strategy and Large Domain Size for LDP. To highlight
this challenge, we instantiate a basic scheme BGR as a baseline (detailed in Section 3.2), which
directly uses the Generalized Randomized Response (GRR) mechanism [57] in the randomization
module. The large domain size incurs two problems that jointly fail BGR: 1) the noise variance
introduced by the GRR will increase as the data domain increases; 2) the space-saving strategy of
the data structure introduces additional underestimation error to the noise items, which will be
further amplified by the debiasing operation, required by LDP. Although existing mechanisms such
as Optimal Local Hash (OLH) [57] and Hadamard Response (HR) [6] in the LDP field aim to alleviate
the impact of large data domains on randomized results’ accuracy, it is crucial to emphasize that we
still confront a unique and unaddressed challenge. We identified that the core idea of the LDP field
in addressing this problem is to encode the large data domain into a smaller one for randomization.
However, the decoding of randomized data on the server side inevitably produces a multiple of
diverse collision data, which can significantly disrupt the decision-making of the space-saving
strategy.

Challenge (2): Dynamically Changing Hot/Cold Items. Notably, cold items often constitute the
majority of the data domain, and indiscriminately randomizing data across the entire domain can
result in an unnecessary waste of privacy budget. The ability to distinguish between hot items
and cold items during the randomization process is crucial for enhancing the accuracy of hot
item estimation. However, since the labels of hot and cold items may dynamically change as the
data stream evolves, randomizing data based on the previous timestamp’s state may introduce a
huge bias towards the prior state. This poses several new challenges, e.g., how to strike a balance
between reducing unnecessary privacy budget expenditure on cold items, and how to manage
such dynamically emerging bias. Addressing this challenge also mandates novel LDP mechanism
designs.
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Contribution. In this paper, we initiate a baseline method and propose three novel advanced
LDP designs under the hood of a framework HG-LDP to address these hurdles. First, we present a
baseline method that directly combines the GRR mechanism with HeavyGuardian data structure.
Second, we propose a newly designed LDP mechanism. It is based on the observation that the
ED strategy does not need to know the specific item of the incoming data in most cases if it is
not recorded in the data structure. Third, we adjust the noise distribution by dividing the privacy
budget to achieve higher accuracy. Finally, we utilize the light part of HeavyGuardian to elect
current cold items before they become new hot items, which further improves the accuracy of the
estimated result. The main contributions are summarized as follows.

e To our best knowledge, this paper is the first to track the Top-k frequent items from data
streams in a bounded memory space while providing LDP protection for the sensitive stream-
ing data. We present a general framework called HG-LDP to accommodate any proper LDP
randomization mechanisms on the users’ side into the space-saving data structures on the
server side for the task.

¢ By investigating the failure of naively combining existing LDP techniques with HG-LDP,
we design three new LDP schemes, which achieve a desired tradeoff performance between
accuracy, privacy, and memory efficiency.

e We comprehensively evaluate the proposed schemes on both synthetic and real-world datasets
in terms of accuracy and memory consumption, which shows that the proposed schemes
achieve higher accuracy and higher memory efficiency than baseline methods. For instance,
when the size of the domain size reaches 41, 270, the proposed schemes save about 2300x
size of memory over baselines.

2 PRELIMINARIES
2.1 Problem Statement

We consider the setting of finding Top-k items in data streams under Local Differential Privacy
(LDP). Given n users, each user generates a private infinite data stream. Denote v} € Q as the data
generated by the user u; at timestamp ¢. The user only sends data at the timestamp when data is
generated. A server collects values from users at each timestamp ¢. Note that the server can only
maintain a data structure with a length much smaller than the size d of data domain Q due to its
limited memory space. Whenever a query is received, the server needs to publish the Top-k items
up to the latest timestamp and their counts.

2.2 Privacy Definitions

In this paper, we provide event-level privacy guarantee [14, 17, 28, 50, 58]. Specifically, the event-
level LDP ensures the indistinguishability of any pairs of elements in streams, e.g., every single
transaction remains private in a user’s long-term transactions:

Definition 2.1 (Local Differential Privacy (LDP) [41]). An algorithm M satisfies e-LDP, where
€ > 0, if and only if for any input v,0” € D, and any output y € Range(M), we have

Pr[M(v) =y] < e°Pr(M() =y].

The parameter € is called the privacy budget, whereby smaller € reflects stronger privacy guar-
antees. We say M satisfies e-LDP if for different data v and o', the ratio of distribution of output
M (v) and that of M(0v’) are not greater than e€.
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2.3 LDP Mechanisms

The Randomized Response (RR) mechanism [61] is considered to be the first LDP mechanism that
supports binary response. It allows each user to provide a false answer with a certain probability
so as to provide plausible deniability to users. The Generalized Randomized Response (GRR)
mechanism [57] is an extension of Randomized Response (RR) [61], which supports multi-valued
domain response. Denote d as the size of the domain D. Each user with private value v € D reports
the true value v’ = v with probability p and reports a randomly sampled value v’ € D where v’ # v
with probability g. The probability p and q are defined as follows

€

b= (4
e€+f—1 (1)
1= evd—1

where d is the size of the data domain. It is straightforward to prove e-LDP for GRR, i.e., p/q < €
[57]. Assuming that each of the n users reports one randomized value. Let ¢; be the number of

value i occurs in randomized values, the estimation of true number ¢; of value i can be computed
s

As shown above, the variance of the estimation result of the GRR mechanism increases linearly
with the increase of d. Some other mechanisms, e.g., Optimal Local Hash (OLH) [57] and Hadamard
Response (HR) [6], are proposed to randomize data in a large data domain. Essentially, they map
the data to a smaller domain before randomizing it to avoid the large variance caused by a large

data domain. We defer their details to Appendix A.1 in [46].

with & = “=™ The variance of the estimated result ¢; is Var[é;] = n -

2.4 Space-Saving Data Structure

Counter-based data structures [48, 49, 62, 65] and sketches [7, 18, 23, 45] are two kinds of mainstream
memory-efficient data structures. While sketches have been extensively studied as compressed
data structures for frequency estimation, they may not be the optimal choice when it comes to
heavy hitter estimation in data streams, particularly in scenarios characterized by limited storage
space and real-time response requirements. This preference is underpinned by two key reasons:
Firstly, sketches record counts for all items, whereas heavy hitter tasks only concern hot items. This
equally treated recording of all counts results in unnecessary memory consumption. For example,
the Count-Min sketch (CMS) necessitates a minimum of O(% x log(1/8)) space to guarantee
that the probability of error in the estimated count of each item being less than « is no less than
1 — 8, with N representing the total data count [23]. Furthermore, as highlighted by Cormode and
Hadjieleftheriou in [20], sketches require additional storage for finding the counts of hot items. For
instance, O( % log dlog ) space increase is incurred when using group testing to find hot items, or
a minimum of O(d) computational overhead is needed for hot item retrieval.

Thus, in this paper, we choose to employ a counter-based data structure called HeavyGuardian
proposed by Yang et al. [62] as the foundation for our framework. It identifies and records the
high-frequency items in subsequent data streams based on observations of historical streaming
data. The basic version of HeavyGuardian is a hash table with each bucket storing several KV pairs
({ID, count)) and small counters. Specifically, each bucket is divided into two parts: a heavy part
with a length of Aj, (A, > 0) to precisely store counts of hot items, and a light part with a length of A;
(A7 can be 0) to approximately store counts of cold items. For each incoming item e, HeavyGuardian
needs to decide whether and how to insert it into the heavy part of a bucket according to a strategy
called Exponential Decay (ED). There are three cases when inserting an item e into the heavy part
of HeavyGuardian.
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Case 1: The KV pair of e has been stored in the heavy part, it increments the corresponding count
by 1.

Case 2: The KV pair of e is not in the heavy part, and there are still empty buckets. It inserts the
KV pair of e into the heavy part and sets the count to 1.

Case 3: The KV pair of e is not in the heavy part, and there is no empty bucket. It decays 1 from
the current least count in the heavy part with probability # = b~°, where b is a predefined
constant number (b=1.08 in [62]), and c is the count value. After decay, if the count becomes
0, it replaces this KV pair (the weakest KV pair) with e’s KV pair, and sets the count to 1.

If e is not successfully inserted into the heavy part, it is recorded in the light part. Since the heavy
hitter tasks only focus on Top-k items and their counts, we set the parameters of HeavyGuardian
as the number of buckets w = 1, the length of the heavy part A;, = k, and the length of light part
A1 = 0 (except in one of the proposed scheme CNR). For simplicity of description, we denote the
data structure of HeavyGuardian as HG in the following sections. We use HG[i] to denote the
ih key pair in HG, and use HG|i].ID and HG[i].C to denote the ID and the count of an item,
respectively.

3 HG-LDP FOR HEAVY HITTERS TRACKING

In this section, we first introduce the HG-LDP framework for tracking heavy hitters in data streams
with bounded memory space. Then, we instantiate a baseline to highlight key obstacles for achieving
a satisfactory “accuracy-privacy-memory efficiency” tradeoff.

3.1

User Side

Data Stream

Randomization oeh i iaones
_ noaore:

Module

I k: King cell g: Guardian cell c: Light counter I

- LI
E”Cﬂ\'y Part nn Light Part - Rlasg)d(:?lze .

Storage Module: HeavyGuardian

Fig. 2. The overview of HG-LDP.

Figure 2 illustrates the framework for HG-LDP, which contains three modules: randomization
module, storage module, and response module. The randomization module runs on the user side to
randomize the users’ sensitive streaming data. The storage module and the response module run on
the server side, where the storage module utilizes a space-saving data structure.

In this paper, we aim to adapt and optimize the HeavyGuardian (HG) data structure due to its
popularity and simplicity, but expect our LDP designs to be generalizable to more sophisticated
space-saving data structures in the future. The randomized streaming data continuously reported
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by users is stored in H G following the ED strategy, and the statistical results are released by the
response module after debiasing. Specifically, the functions of the three modules can be summarized
as the following three algorithmic components:

¢ RanpoMmizk. It is executed in the randomization module. It takes raw data o] of the i user at
timestamp ¢ as input, and outputs a randomized data r; that satisfies LDP.

o INSERT. It is executed in the storage module. It inserts the randomized data r! into HG
following the ED strategy, and updates the counts of the KV pairs in HG.

e RESPONSE. It is executed in the response module. It obtains the hot items and their correspond-
ing counts from H G when receiving a request. Then it maps them to a list for publishing
after debiasing all counts.

In the following sections, we first instantiate a baseline scheme, and then propose three advanced
schemes based on this framework by elaborately designing algorithms for the three modules.

3.2 A Baseline Scheme: BGR

We first discuss a baseline scheme BGR (Basic Scheme Combining GRR) that directly integrates an
existing LDP scheme: GRR.

Algorithms. The BGR algorithm is outlined in Algorithm 1. At timestamp ¢, the data o} of a user u;
is randomized using GRR, and the resulting randomized value r} is then transmitted to the server.
Subsequently, the server incorporates r! into the data structure HG following the ED strategy.
Note that the counts stored within G are consistently biased noisy values. To mitigate this, the
server debiases all counts in the response module following the standard GRR debiasing approach
[57] before publishing the statistical outcomes.

Algorithm 1 BGR (baseline)

Input: timestamp ¢, data domain Q with size d, data structure H G, number of the received data num.
Output: ResponseList
RANDOMIZE
1: Obtain the current raw data vf ;
2: rit — GRR(vl.', €) > Randomize data with GRR.
INSERT
: Receive an incoming data rl.t ;
num < num+1
: Insert rit into HG following ED strategy;
. if the least count HG[k].C < 0 then
Replace the weakest KV pair with new KV pair < rl.t ,1>

N e W

RESPONSE

I

_ e _ 1
P = a1 97 v
9: if receive a Top-k query then
10: for each HG[j] € HG do
11: ResponseList[j].ID «— HG[j].ID
12: ResponseList[j].C «— (HG[j].C —num-q)/(p —q)

13: return ResponseList

Theoretical Analysis. Next, we theoretically analyze the error bound of the frequency estimated
by BGR. Part of the error comes from the exponential decay of the counts on the server when the
coming data is not recorded in HG. Another part of the error comes from the noise introduced by
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Fig. 3. The flowcharts of the randomization and storage modules in BGR (baseline) and three advanced
schemes. Note that each subfigure only shows the procedures of one scheme for a single user. The system
procedures are more complicated since a large number of users would frequently/concurrently submit data to the
server and update the HG (the domain for randomization frequently changes). A debiasing procedure is also
included in the response module of the server. DSR employs a strategy of randomization within a reduced
domain when there are no imminent hot item evictions. BDR mitigates the impact of expansive cold domains
on the accuracy of hot item estimates by splitting the privacy budget, which also eliminates the need for
switching randomization strategies in DSR. CNR fully utilizes the idle privacy budget in BDR and elects new
hot items with more potential to enter HG.

the randomization module to perturb the data with the GRR. We first give the error analysis for the
ED strategy of HG provided by Yang et al. [62] in Lemma 3.1 below.

LEmMMA 3.1. Given a stream prefix S; with t items in Q, it obeys an arbitrary distribution and
|Q| = d. We assume that there are w buckets to store the hottest A items mapped to them, each item is
mapped to a bucket with the probability of%. Let v; be the i'" hottest item, f; be the real frequency of

v;, andﬁ be the estimated frequency of v;. Given a small positive number o, we have

Pr[ﬁ—fizm]g%‘lt(ﬁ_ ﬁz_‘llawga—fEl(V)

where Pweak = e—(i—l)/w X (%)1_1/(1 - 1)!: E(V) = vlv Z:?=i+1 f}

)

Our theoretical analysis follows the conclusion provided in Lemma 3.1. In fact, Lemma 3.1
only considers the bias caused by exponential decays after the items are recorded as hot items,
ignoring the count loss before items are recorded. However, this count loss is strongly related to the
distribution of the data stream and the order of the data arrival, so it’s difficult to be theoretically
analyzed. Besides, as we mentioned in Section 2.4, we set the number of buckets w = 1 in this paper
since we only track Top-k heavy hitters and k is a small constant. Therefore, we only use the result
when w = 1 in Lemma 3.1 and we show the error bound of BGR in Theorem 3.2.

THEOREM 3.2. Given a stream prefix S, with t items randomized by BGR satisfying e-LDP and there
is a data structure HG to store the Top-k items. Let v; be the i hottest item, f; be the real frequency
of v;, f; be the final estimated frequency of v;. We have

Prfi - f; < (/2tlog(2/B) + at) - %]

>(1-p)(1- %(1 - \/@))
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where Pear = %, E(V) = ?:mfj: a and f are small positive numbers with a, € (0, 1).

Proor. We assume that ﬁ is the frequency of noisy data recorded in HG according to the ED
strategy. Meanwhile, due to the ED strategy introducing additional errors during the recording
of f;, the frequency used for debiasing by the GRR mechanism before publication is denoted as f;.
Then the error bound of final debiased frequency f; compared to f; can be obtained by combining

the error bounds of fl — fiand f; — ]:;__tqq. The detailed proof is deferred to Appendix A.2in [46]. O

Problems with Existing LDP mechanisms. Theorem 3.2 shows that the error bound of BGR
grows proportionally to the size of the data domain d. While BGR is sufficient for solving the task
of finding Top-k items in streaming data with a small data domain, it can inevitably fall into the
dilemma that the error is too large when dealing with a large data domain. From the proof of
Theorem 3.2, we can find that the excessive error caused by the large data domain mainly comes
from the randomization process of the GRR.

Several LDP mechanisms have been proposed to address data randomization in large data
domains. However, directly integrating these mechanisms with HeavyGuardian is still problematic
in practice. The core concept behind these mechanisms revolves around mapping data from the
large data domain to a smaller data domain using techniques such as hash functions [57], Hadamard
matrix encoding [5, 6], or Bloom filter encoding [32]. Subsequently, data is randomized within this
reduced data domain.

There are several issues with these approaches. Firstly, decoding a single randomized data on the
server side entails an exhaustive scan of the entire data domain, which becomes computationally
expensive for large data domains. Furthermore, this approach implies that the server must store
the entirety of the data domain, which may contradict the requirement for bounded memory
consumption on the server side. Additionally, these mechanisms introduce collisions when decoding
randomized data for analysis. While such collisions are typically manageable in general frequency
estimation tasks due to their uniform distribution, they can render strategies like the ED strategy
and other space-saving techniques unusable. Assuming that data is mapped from a large domain of
size d to a smaller data domain of size g, the average number of collision data generated by decoding
a data point is d/g. In essence, the arrival density of an item directly impacts its potential to be
recorded within the data structure as a hot item. If decoded data is mixed with d/g — 1 different data
points, the true hot item may lose its advantage in being recorded within HG. In scenarios where
the domain size d is extremely large, such that d/g surpasses the size k of HG, the entire scheme
becomes untenable, and all data points are indiscriminately recorded with equal probability.

Consequently, it is desirable to develop novel LDP mechanisms capable of effectively randomizing
data within large data domains and addressing challenges posed by the dynamically changing
hot/cold items while optimizing the performance of HeavyGuardian.

4 ADVANCED LDP MECHANISM DESIGNS

In this section, we propose three novel advanced schemes to address the aforementioned problem
in BGR by designing new randomization methods, which are outlined in Figure 3.

4.1 DSR (Domain-Shrinkage Randomization)

Tasks involving heavy hitter estimation in streams often assume that the streaming data follows a
Zipf distribution [20, 24, 48]. This assumption aligns well with the distribution observed in various
real-world scenarios, such as purchased goods and popular songs. In these contexts, the data domain
predominantly consists of a few frequently occurring hot items, while most items are relatively
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rare or never appear. However, the GRR mechanism in BGR randomizes a large number of hot
items to these rare items for ensuring LDP, which leads to poor performance of the ED strategy.
Furthermore, the protection of these rare items is critical since they often contain highly sensitive
information. For instance, an individual might not be concerned about others knowing they have
watched popular movies but may be apprehensive about revealing their interest in niche films, as it
could inadvertently expose their personal preferences and hobbies. It is based on these observations
that we have designed our advanced algorithm, DSR.

Specifically, we refer to the items recorded in HG as the hot items, and the items not in HG as
the cold items. We observe that the ED strategy of HG does not need to know the specific value
of the cold items in most cases. It only needs to reduce the count of the KV pair with the lowest
frequency in HG by 1 with a certain probability when it receives a cold item. The ED strategy
needs to know the specific value of the cold item to replace the KV pair in G only when the
weakest KV pair (with the lowest frequency) is going to be evicted. A direct idea is to represent
all cold items as “L”, and randomize the data on the domain {HG.C} U {1}. When the weakest
KV pair in HG is about to be evicted, it changes back to BGR to randomize the data on the entire
domain. In this way, the size of the data domain can be reduced from d to k + 1 when there is no
KV pair in HG going to be replaced, which alleviates the low utility caused by a large domain.

Algorithm 2 DSR (RANDOMIZE)

Input: timestamp ¢, privacy budget €, data domain Q with size d, data structure HG.
Output: rl.t

1: Obtain the current raw data vf ;

2: if the least count HG[k].C < 1 then

3: rit — GRR(vit ,€) > Randomize data in Q with GRR.
4: else

5 Let b «— Ber(ﬁ)

6: if b == 1 then > Randomize data in reduced domain.
7 ri=0o!

8 else

9: rl.t =o', where v’ € {HG.ID} U {1} and v’ # vit

10: return rit

Algorithms. The Ranpomize Algorithm of DSR is presented in Algorithm 2. In the general case,
the user randomizes data on the shrinking domain HG.CU L. If the server receivesa " L ", it reduces
the count of the weakest KV pair by 1 with a certain probability. However, this approach poses
a challenge when the count of the weakest KV pair reduces to 0, as it becomes uncertain which
cold item should replace the weakest KV pair. Furthermore, requiring the user to re-randomize the
data across the entire domain can potentially violate e-Local Differential Privacy (e-LDP). To solve
this problem, DSR requires users to switch to BGR for randomization on the entire data domain
when the count of the weakest KV pair reaches 1 or less. In this case, as long as the count of the
weakest KV pair is reduced by 1, it can be replaced by a new KV pair with a cold item directly.
Users can subsequently switch back to randomizing data on the reduced domain once the new KV
pair stabilizes (i.e., reaches a count > 1).

The INSERT and RESPONSE algorithms are shown in Algorithms 3 and 4, respectively. Due to
the switch between two mechanisms with different parameters in the RaANpomIZE algorithm, a
complex debiasing process is initiated during the insertion and response phases. Each switch
between mechanisms necessitates debiasing of all the counts of KV pairs stored in HG using the
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Algorithm 3 DSR (INSERT)

Input: timestamp ¢, privacy budget €, data domain Q with size d, reduced domain Qg = {HG.ID} U{ L}, data
structure H G, number of the received data € Q numeptire, number of the received data € Qg num, .gyced-

Output: Updated HG

1: _ _ e _ 1 _ e _ _1

TPT g N T g1 P2 T ek 2T ek

2: Receive an incoming data rit ;

3 HG « DSR_lnsert(rl.t, HG, p1, q1, P2, G2, MUMentire, MM pedyced)

4: return Updated HG

Algorithm 4 DSR (RESPONSE)

Input: timestamp ¢, privacy budget €, data domain Q with size d, data structure G, number of the received
data num.

Output: ResponseList
€

Lpr = ef-fd—l’ qa = ef+1d—1’p2 = eEeT’ 2= eei—k

2: if receive a Top-k query then

3: HG < DSR_FinalDebias(HG, p1, q1, p2, q2)
4 for each HG[j] € HG do

5: ResponseList[j].ID «— HG[j].ID

6: ResponseList[j].C «— HG|[j].C
7:

return ResponseList

debiasing formula of the current mechanism. To prevent redundant debiasing of cumulative counts,
it is imperative to multiply all the counts by the denominator of the debiasing formula of the new
mechanism. For the sake of readability, the debiasing functions DSR_Insert in the INSERT algorithm
and DSR_FinalDebias in the REsPoNSE algorithm are deferred to Appendix A.5 in [46].

Theoretical Analysis. Theoretical analysis demonstrates that the error bound of DSR in the
worst-case scenario aligns with that of BGR, as illustrated in Theorem 3.2. This can be attributed
to the frequent replacement of the weakest KV pair for certain data distributions, compelling
users to randomize data over the entire data domain for the majority of instances. However,
DSR’s improvement over BGR is expected to be more substantial for datasets exhibiting a more
concentrated data distribution.

4.2 BDR (Budget-Division Randomization)

We present a novel scheme, BDR, that further enhances accuracy beyond DSR. Although DSR
demonstrates improvement over BGR, it still predominantly randomizes data similarly to BGR
when there are frequent changes to the items in HG. Additionally, the complexity of debiasing is
increased due to the transition between two randomization mechanisms with distinct parameters.
Since the current cold value cannot be randomized and sent repeatedly, resulting in the waste of
the privacy budget while awaiting new cold items. To address this problem, we designed a budget-
division-based scheme (BDR) that efficiently avoids switching between different randomization
mechanisms and mixing randomized data from different output data domains. Besides, we observe
that the hot items stored by H G after initialization may not be true hot items. Through adjustments
in the allocation of the privacy budget, BDR reduces the impact of the initial /G on the final result,
with the probability of eelj—k that any other item be randomized to the current "hot items".

We divide the privacy budget into two parts and run three sub-randomization mechanisms
Mudges Mhot» and Mcopq. Specifically, the M, 44 mechanism is used to randomize whether the
data is a hot item. If the M, q5e mechanism determines that the data is a hot item, the M,
mechanism is used to randomize the data in the data domain covered by items recorded in HG.
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Algorithm 5 BDR (RANDOMIZE)

Input: timestamp ¢, privacy budget €, data domain Q with size d, data structure HG.

Output: rl?

: Divide € into €1 and €3, where €1 + €3 = €;

: Obtain the current raw data vf R

: Flag « Mjudge(“f’ €1) > Determine whether Uf is hot or cold

1
2
3
4: if Flag==1 then > v} is determined as hot
5
6

: rit — Mhot(vit, €2)
: else if Flag == 0 and HG[k].C < 1then » vf is determined as cold and an item in H @G is about to be
evicted
7: rit - Mcold(uit: €2)
8: else
9: rl.t =1

10: return rl.[

Algorithm 6 BDR (RANDOMIZE-Mj,q4¢)

Input: raw data 0;.‘ , privacy budget €1, data structure HG
Output: Flag

1: Letb « Ber(efl—il)

2: if b == 1 then

3: if vit € HG then

4: Flag =1

5: else

6: Flag=0

7: else

8: if vit € HG then
9: Flag=0

10: else

11: Flag =1

12: return Flag

Algorithm 7 BDR (RANDOMIZE-Mp,;)

Input: raw data U;L , Flag, privacy budget ey, data structure HG.
Output: rit

1: Letb « Ber(%)
2: if vit € HG then

3: if b == 1 then

bt

4 ri =v;

5 else

6: rl.t =o', where v’ € HG and v’ # vf

7: else

8 rl.t =o', where v’ is uniform random sampled from HG
9: return ri[

The M_o1q mechanism randomizes the items determined to be cold by the M 45, mechanism
when an item in H G is about to be evicted. We show the overall flow of the RaNDOMIZE algorithm
in Algorithm 5, and the M, age, Mpor, and Mo mechanisms in Algorithm 6, Algorithm 7, and
Algorithm 8, respectively.
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Algorithm 8 BDR (RANDOMIZE-M014)

Input: raw data of, privacy budget €;, data domain Q with size d, data structure HG.
Output: rit

1: Letb « Ber(m)

2: if vit ¢ HG then

3: if b == 1 then

t_t
4 r; =0
5 else
6: rl.t =o', where v’ € Q/HG and v” # Uit
7: else
8 ri =o', where v’ is uniform random sampled from Q/HG
9: return ri[

Algorithms. At timestamp ¢, the user obtains the current raw data o/, which is a hot item or a cold
item. Note that the server can write the currently recorded hot items to a bulletin board in real
time or the users can obtain the set of hot items from the response module at any time. Therefore,
users can always know the current hot items and cold items when randomizing their data. Firstly,
the user randomizes whether v} is a hot item using the M, 45 mechanism, which is a binary flip.
The error introduced by the M 45, mechanism is independent of the size of the data domain. If
the M, 45e mechanism determines that v! is a hot item, then o} needs to be randomized on the
data domain covered by items recorded in HG with the My, mechanism. If 0! is a hot item, Mo,
mechanism randomizes it in the data domain covered by items recorded in HG as the general
GRR. If v} is actually a cold item, Mp,; mechanism uniformly and randomly maps it to any item
contained in HG. Otherwise, the user sends “L” to the server if the M 45 mechanism determines
that o! is a cold item.

We consider a special case where the M 45 mechanism determines that 0! is a cold item, but the
count of the weakest KV pair in HG is reduced to 0 by the ED strategy. Then the server would need
this cold value to replace the item in HG. Therefore, we provide the M,y mechanism, similar to
the My, mechanism, randomizing the data in the data domain covered by the cold items. When
the user observes that the count of the weakest KV pair in HG is equal to or smaller than 1, the
user uses M,;4 mechanism to randomize Uit and then sends it to the server when vit is determined
to be cold. The HG has a high probability of replacing the weakest item with a cold item in this
case. Note that the privacy budget consumed by M,,;4 is the remaining budget €; at timestamp ¢,
and the total privacy budget for o! is still limited to e. Figure 4 shows an example at 6 timestamps
to illustrate the randomization process.

Next, we discuss how the response module on the server debiases the counts of hot items stored
in HG. Denote p; as the probability -&— +1, q:1 as the probability —=— eel 7> b2 as the probability —; +k T
q2 as the probability — +k ;- Let num denote the total number of data received by the server from
the beginning of the statistics to the current timestamp, and y;, denote the proportion of hot items.
Let f, be the noisy recorded count of item v, then the debiased estimation result ﬁ, is calculated as

= _ Jo—yn-num(pig; — q1/k) — num - q/k

fo= @)
p1(p2 — q2)

Here, y;, can be obtained from the warm-up round or the prior knowledge of data distribution, which

is discussed in detail in Section 6. We show the details of the REsPONSE algorithm in Algorithm 9.

Besides, we omit the details of the INSERT algorithm here since it is the same as that of BGR shown

in Algorithm 1.
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Algorithm 9 BDR (RESPONSE)

Input: timestamp ¢, privacy budget €, €2, data domain Q with size d, data structure HG, number of the
received data num.
Output: ResponseList

_ el _ _ e __1 _ 1
Lp1=caq P2 = g N1 = et 92 = a1
2: if receive a Top-k query then
3: for each HG[j] € HG do

4 ResponseList[j].ID « HG[j].ID
5: I
6: return |
Heavy Items Cold Items

Item 1 5 7
Item 2 3 4 6 8 9 10
Count 20 | 18 2

vi 13 1 5 7 9 fime
-0

Mjygge Hot ~ Cold  Hot Cold  Hot Cold

Outputs
Mpoe 5 1 1 1 1 1 P
Mcora 8 Replace 7 in L
€ & € & € & Privacy Budget

Fig. 4. An example of BDR.
Theoretical Analysis. We show that BDR satisfies e-LDP as below.

THEOREM 4.1. BDR satisfies e-LDP.

Proor. Firstly, M;,qg. satisfies e-LDP since p;/q; = €. Secondly, My,; satisfies €;-LDP since
p2k < p2/qe = €. Similarly, M_,;4 also satisfies €;,-LDP. Therefore, BDR satisfies (e; + €3)-LDP.
The detailed proof is deferred to Appendix A.4 in [46]. O

Then we show the error bound of BDR in Theorem 4.2.

THEOREM 4.2. Given a stream prefix S, with t items randomized by BDR satisfying e-LDP and there
is a data structure HG to store the Top-k items. Let v; be the i*" hottest item, f; be the real frequency
of v;, f; be the final estimated frequency of v;. We have

~ tlog(3/p5) (er+1)(e®2+k—1)
Prifi—fis G5 *a gy

_ 4PweakE(V)
b-1

> (1-p- (1= )

where P ear = %, E(V) = ;l:iﬂfj, a and f are small positive numbers with a, € (0, 1).

Proor. The approach of the proof is similar to that of Theorem 3.2, the error bound of final

debiased frequency f compared to f; can be obtained by combining the error bounds of f f; and

fi - fi- Nh‘;ﬁ; Et(h;\h,) i3 , where Nj, is the number of hot items and N, < t. The detailed proof is

deferred to Appendix A.3 in [46]. O

The result of Theorem 4.2 shows that BDR significantly reduces the impact of the large data
domain on the accuracy of the statistical results compared to BGR and DSR (Theorem 3.2).
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Algorithm 10 CNR (RANDOMIZE)

Input: timestamp ¢, privacy budget €, data domain Q with size d, data structure HG.
Output: r!

i

1: Divide € into €1 and €3, where €] + €2 = ¢;

2: Obtain the current raw data vf R

3: Flag « Mjudge(“f’ €1) > Determine whether Uf is hot or cold
4: if Flag==1 then > v} is determined as hot
5: rit — Mhot(vit, €2)

6: else > vit is determined as cold
7:

r,'t - Mcold(uits €2)

8: return rl.t

Algorithm 11 CNR (INSERT)

Input: timestamp ¢, data domain Q with size d, data structure G, number of the received data num.
Output: Updated HG

1: Receive an incoming data rl.t ;

2: num < num+1

3: Insert rl.t into Heavy part of HG following ED strategy;

4: if ri[ not in Heavy part of HG then

5 Insert rl.t into Light part of HG following ED strategy;

. if the least count in Heavy part HG[k].C < 0 then

Replace the weakest KV pair in Heavy part with the king KV pair in Light part, where their counts
are set to 1.
8: return Updated HG

N o

4.3 CNR (Cold-Nomination Randomization)

In BDR, we find that the privacy budget ¢, is unexploited when the data is determined to be a
cold item and there is no item in H @G that is about to be evicted, which can be observed in Figure
4. Besides, there is a light part in the original data structure of G used to store the counts of
cold items (see Figure 2). The length of this part 4; is set to 0 in BGR, DSR, and BDR. Driven by
these observations, we propose a new scheme CNR, which uses these two idle resources to further
improve the accuracy over BDR.

Algorithms. Algorithm 10 shows the RaNpDoMiZE algorithm of CNR, similar to that of BDR. All
the data determined as cold items by M, 45 mechanism are randomized to specific cold items on
the cold domain using M_,;4 mechanism, rather than calling M_,;4 mechanism only when there is
a hot item to be evicted. Here, M;,q4e, Mhpor, and M o1q are the same as Algorithms 6, 7, and 8
in BDR. When inserting the randomized items into 4G, the cold items that cannot be inserted
into the heavy part are inserted into the light part following the ED strategy. Then the light part
helps to provide a more accurate potential hot item to become a new hot item when a value in the
heavy part is about to be evicted. Note that the light part only provides selected cold items, and its
count is set to 1 when a cold item enters the heavy part, just the same as BDR. Thus, the debiasing
formula of the counts in the heavy part is the same as that of the BDR, avoiding debiasing the
randomized counts from different output domains like DSR. We show the INSERT in Algorithm 11,
and the REsPONSE is the same as Algorithm 9.

Theoretical Analysis. Firstly, CNR still satisfies e-LDP, and the privacy budget consumed by
randomizing data is €; + €, = €. Then, the error bound of counts recorded in the heavy part is
the same as Theorem 4.2 shown in BDR, since CNR only provides a better cold item to become a
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new hot item when there is an item to be evicted. Note that all theoretical analyses for the error
bound of the counts we provide only consider the error of the recorded counts without considering
whether the items are true hot items. Since the accuracy of the hot items tracked by the scheme is
influenced by both initial HG and data distributions, we evaluate it by conducting a comprehensive
evaluation in Section 5.

Besides, CNR has no specific requirement for the length of the light part 4;, as long as it satisfies
A1 > 0. The longer light part can provide more accurate new hot items to the heavy part. The
setting of A, can refer to the original HG [62], or set a small constant according to the specific
requirements. In our experiments, setting A; = 5 for finding Top-20 items on a concentrated data
distribution can observe a significant improvement for small e. Furthermore, the counters in the
light part of HG are tailored for cold items, and the counter size is very small, e.g., 4 bits. Therefore,
CNR does not increase too much additional memory consumption compared to the other schemes
and still meets high memory efficiency.

5 EXPERIMENTAL EVALUATION

In this section, we design experiments to evaluate our proposed schemes. The evaluation mainly
includes four aspects: (1) the accuracy of the heavy hitters via the proposed schemes; (2) the
accuracy achieved by the proposed schemes compared with the baselines; (3) the impact of the
key parameters on the accuracy of the proposed schemes; (4) the memory size consumed by the
proposed schemes compared with the baselines. Towards these goals, we conduct experiments
on both synthetic and real-world datasets, and simulate to collect streaming data from users at
continuous timestamps for heavy hitter analysis. Besides, we introduce different metrics to evaluate
the accuracy of the results from three different aspects.

To better guide the application of the schemes in practice, we also conduct supplementary
experiments on more datasets and test the computation and communication overheads. Please refer
to Appendix A.8 in [46] for details.

5.1 Setup

Datasets. We run experiments on the following datasets:

e Several synthetic datasets are generated with two different distributions and three domain
sizes. One kind of datasets are generated by randomly sampling data from a Normal distribu-
tion with variance o = 5, and others are generated from an Exponential distribution with
variance o = 10. There are n = 100, 000 values in each dataset.

e Retail dataset [1] contains the retail market basket data from an anonymous Belgian retail
store with around 0.9 million values and 16k distinct items.

e Kosarak dataset [3] contains the click streams on a Hungarian website, with around 8 million
values and 42k URLs.

e Webdocs dataset [2] is constructed from a collection of web HTML documents, which com-
prises around 300 million records, and 5.26 million distinct items.

Metrics. In reality, various applications focus on different aspects of the heavy hitter estimation
results. Therefore, we have to comprehensively evaluate the quality of the results from three aspects:
(1) how accurately that HG captures the actual heavy hitters; (2) how accurately that the ordering
of the heavy hitters in HG; (3) how accurately that HG captures the actual counts of heavy hitters.
We use the following three metrics to cover each aspect:
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Precision. It measures the accuracy of the actual heavy hitters captured by HG. It is the number
of actual heavy hitters divided by the number of all items in HG, as given by
#Actual heavy hitters in HG
#Heavy hitters

Precision =

Normalized Discounted Cumulative Gain (NDCG). It measures the ordering quality of the heavy
hitters captured by G, which is a common effectiveness in recommendation systems and other
related applications. NDCG is between 0 and 1 for all k, and the closer it is to 1 means the ordering
quality of HG is higher. The formulas for calculating NDCG is deferred to Appendix A.6 in [46].

Average Absolute Error (AAE). It measures the error of the counts of the actual Top-k items with
their estimated counts recorded in H G, which can be calculated as

k
1
AAE, = E Z |factual(vi) - festimated(vi)|~
i=1

If an actual hot item is not recorded by HG, its AAE is calculated by setting the estimated count
as 0. For consistent and fair comparisons, we post-process all counts recorded by HG to 0 when
calculating AAE. All results in experiments are averaged with 20 repeats.

5.2 Implementation Details

We fully implemented our schemes and all baselines in Java to provide unified concrete performance
comparisons. For all schemes, we separately implement the server and the client side, and the
perturb data for communication are serialized to ‘byte[]’. This makes our implementation easier to
be deployed in practice, in which the server and clients would communicate via network channels
using byte strings. In our experiments, focus more on the effectiveness of our schemes so that we
run the server and the client on a single process. All experiments are run on Ubuntu 20.04 with 96
Intel Xeon 2.20 GHz CPU and 256 GB RAM. Our source code is available for public request. Besides,
we have some improvements compared with the original implementation in our re-implementation
for both LDP mechanisms and original HeavyGuardian. More implementation details are deferred
to Appendix A.7 in [46].

5.3 Analysis of Experimental Results

Comparison of Accuracy. We compare the accuracy of the baseline scheme and three advanced
schemes with the non-private HeavyGuardian and two LDP mechanisms: Generalized Randomized
Response (GRR) and Hadamard Response (HR) (HR performs the best in our evaluation, see Figure
11 in Appendix A.7 in [46]). We evaluate all schemes on the Synthetic, Retail, Kosarak, and Webdocs
datasets. The results for three metrics: NDCG, Precision, and AAE are shown in Figure 5, Figure 6,
and Figure 7, respectively. Since running GRR and HR exceeds the computing or storage capabilities
of our server, we only show the results of our schemes on the Webdocs dataset. In each figure,
we vary the privacy budget € within a range of [0.5, 5]. All schemes involve a warm-up stage for
fairness of the comparison.

Firstly, we observe that the accuracy of the proposed schemes BGR, DSR, BDR, and CNR improves
sequentially. The improvement of DSR compared with BGR is more obvious as € increases, and the
advantage of CNR over BDR is more significant as € decreases. We think the reason is that when e
is large, i.e., € > 1, the randomized hot items are still concentrated and there are fewer times to
randomize on the entire domain to provide specific cold items for replacing with the weakest hot
items in HG, thus the improvement achieved by DSR is relatively significant. When € is small,
i.e, € < 1, the distribution of the randomized data is relatively uniform, thus the weakest hot
item in HG always need to be replaced. In this case, the advantage of CNR compared to BDR in
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Fig. 5. Evaluation of NDCG for Top-20 on both synthetic and real-world datasets while taking 1% data for
warm-up stage.
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Fig. 6. Evaluation of Precision for Top-20 on both synthetic and real-world datasets while taking 1% data for
warm-up stage.
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Fig. 7. Evaluation of AAE for Top-20 on both synthetic and real-world datasets while taking 1% data for
warm-up stage.

providing more potential cold items to enter {G can be more obvious. Besides, we find that these
observations are not pronounced on two real-world datasets. The reason is that those real-world
datasets have large data domains and irregular data distributions. Therefore, HG needs to replace
the items frequently even if the € is relatively large. This means that DSR always randomizes the
data on the entire domain in the same way as BGR. In addition, the large data domain can also lead
to low accuracy in the light part of HG. Then the performance of the CNR is similar to BDR in
this case.

Secondly, compared with the non-private HeavyGuardian and memory-unlimited LDP random-
ization mechanisms, BDR and CNR outperform GRR on all datasets in terms of all metrics when
€ < 3. Moreover, their accuracy on the synthetic dataset is close to HR, and the accuracy on all
datasets is close to non-private HeavyGuardian. In all three datasets, BDR and CNR are set to
€1/€;, = 0.5, and their parameter yj, is calculated during the warm-up stage. We also observe that
the performance of BGR and DSR gradually dominates that of GRR as the size of the data domain
increases when € < 3.5. However, their accuracy is much lower than that of BDR and CNR when
the domain size is extremely large.

Finally, we observe that the NDCG of all schemes is slightly lower than their Precision on all
datasets. The main reason is that NDCG considers the ordering weights of the hit items in addition
to whether the true hot items are hit or not. Besides, the comparison results of all schemes in terms
of AAE on all datasets are consistent with the comparison of NDCG and Precision. The AAE of the
statistical results of BGR, DSR, BDR, and CNR decreases in turn.
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Fig. 8. Accuracy of BDR and CNR vs. different allocations of privacy budget; Conducted on the two synthetic
datasets with Normal distribution and Exponential distribution, where the domain size d = 1000, and taking
1% data for warm-up stage.
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Fig. 9. The impact of parameter y;, on accuracy of BDR and CNR. The evaluation is conducted on the synthetic
dataset with normal distribution, where taking 1% data for warm-up stage and € = 0.6.
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Fig. 10. The impact of the warm-up stage on the accuracy of the proposed schemes for tracking Top-k items
on synthetic dataset with normal distribution, where € = 2.

Impact of Key Parameters on the Accuracy. We evaluate the impact of key parameters on the
accuracy of the proposed schemes by varying them within a certain range. In order to eliminate
the interference of irregular distribution on the evaluation, we conduct experiments on several
synthetic datasets. Due to limited space, we only present the NDCG and Precision of the statistical
results on two synthetic datasets with Normal distribution and Exponential distribution. The results
of all metrics on more synthetic datasets with different domain size are deferred to Appendix A.8
in [46].

Firstly, Figure 8 shows the impact of the allocation method of privacy budget ¢ on the accuracy of
BDR and CNR. We observe that BDR and CNR allocate less privacy budget to ¢; and more privacy
budget to €; can obtain higher accuracy of the statistical results. The improvement of NDCG is
significant when € /€, decreases from 2/1 to 1/9, and the increase slows down after €;/e; is less
than 1/9. We think the reason is that a hot item recorded in G is randomized to a cold item with
a greater probability when € is small, and the number of data that is a hot item is larger than data
that is a cold item, which leads to the items in H G are easier to be evicted. Meanwhile, increasing
€; can improve the correctness of the orders of the items recorded in HG. Therefore, reducing
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Table 1. Comparison of memory size (KB) consumed by schemes on different datasets.

Dataset Synthesize Kosarak Webdocs
Scheme
HeavyGuardian 2.40 2.40 241
GRR 153.33 6154.99 -
HR 153.41 6249.77 -
BGR 2.66 2.66 2.67
DSR 2.73 2.73 2.75
BDR 2.69 2.68 2.70
CNR 3.43 3.09 3.43

€1/€; can increase the probability that the hot items with a small count are replaced by other
cold items, so that the real hot items can occupy the H G faster. This is also consistent with the
experimental results in original HG (Figure 4(a), [62]). The accuracy of the result increases when
the parameter b is reduced to make it easier for the new item to enter H G, but the improvement
becomes no longer obvious when b is reduced to a certain small value. Therefore, we recommend
setting €1 /€2 = 1/9 to get near-optimal accuracy in the actual deployment of BDR and CNR. We
also conduct the evaluations on synthetic datasets with different domain sizes, and obtain the
consistent observations with the above. The results are shown in Figure 12-Figure 17 in Appendix
A.8 in [46]. Moreover, we find that increasing the domain size has some impact on the accuracy of
the schemes, but we can still improve the accuracy by adjusting the privacy budget allocation.

Then Figure 9 shows the impact of the parameter y;, on the accuracy of the BDR and CNR.
We calculate the exact y;, ~ 0.92. As a debiasing parameter, yj, directly affects the counts of the
statistical result, so the impact of yj can be clearly observed from the AAE of the result. However,
the indirect impact on NDCG is not obvious, the lines in the figure are fluctuating. An interesting
phenomenon can be observed from the AAE of the results. More accurate y;, does not necessarily
give more accurate count of the result. The reason is that the ED strategy continuously reduces
the counts of the weakest item with a certain probability, which causes the statistical results to be
underestimated. According to debiasing Equation 2, reducing yj, can cause the debiased result to be
over-estimated, thereby offsetting part of the bias introduced by the ED strategy.

Finally, Figure 10 shows the impact of the warm-up stage on the accuracy of the baseline BGR
and the proposed three schemes. We compared their accuracy using five different datasets for the
warm-up stage. The five datasets include a uniformly random dataset with the size of 50, a dataset
with the size of 50 and distribution skewed from the true normal distribution, and two datasets with
the true normal distribution with sizes of 50 and 500. We can observe that their accuracy increases
as the distribution of the dataset used in the warm-up stage approaches the true distribution and
as the size of the dataset increases. Specifically, BDR and CNR set €; /e, = 0.5, and they are least
affected by the warm-up stage among all schemes. We think the reason is that the current cold
items in BDR and CNR are easier to enter HG to become new hot items, which reduces the impact
of the accuracy of the initial G on the final statistical result. Similar observations can be obtained
on the real-world datasets, and the results are shown in Figure 18 in Appendix A.8 in [46].

Comparison of Memory Consumption. We then evaluate the total memory size consumed
by all schemes when tracking Top-20 heavy hitters on the four different datasets. We present the
results in Table 1. The proposed schemes show a significant advantage in memory consumption
when the data domain is large, such as in the Kosarak and Webdocs datasets. We can observe that
the memory size consumed by the GRR and HR increases linearly as the domain size d increases.
In contrast, the memory consumed by all space-saving schemes is only related to the number of

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 30. Publication date: February 2024.



Local Differentially Private Heavy Hitter Detection in Data Streams with Bounded Memory 30:21

tracked heavy hitters k, and k is usually much smaller than d. Note that the GRR and HR do not
have memory consumption available for the Webdocs dataset since the computation or memory
requirements of these schemes exceeded the capacity of the server used for testing. Additionally,
we conduct tests to evaluate the computation and communication overhead of all schemes. The
detailed results of these tests can be found in Appendix A.8 in [46].

6 DISCUSSION

In this section, we supplementally discuss more details about the practical implementation and the
potential extension of these schemes.

6.1 System Parameters & Implementations

Warm-up Stage. In practice, our framework along with the theoretical designs and analyses are
applied to a steady state where the HG are filled during previous timestamps, rather than dealing
with the cold-start scenario where H G is empty. Therefore, to simulate such a steady state where
HG is properly warm-started, we consider all the proposed schemes include a warm-up round at
the beginning of the statistics. Note that although CNR needs to use the light part in G structure,
only the heavy part should be filled in the warm-up stage like other schemes. The data for the
warm-up stage can be a priori dataset stored on the server or data voluntarily contributed by users
in the first round of the statistics. There is no specific requirement for the number of data in the
warm-up stage. The only requirement is that the data should at least be able to fill the HG. Besides,
the closer the distribution of the priori dataset to the real data distribution, or the larger the number
of data that users voluntarily contribute, the higher the accuracy of G in the subsequent statistics.

Parameter y;, in BDR and CNR. The debiasing formula for both BDR and CNR contains a
parameter Ay, which is the proportion of data that is the hot item in the stream. The server
actually does not know the specific value of y, but it can be theoretically calculated based on
prior knowledge about the data distribution. If the server has no prior knowledge about the data
distribution, y, can also be statistically obtained from the initial HG after the warm-up stage.
Certainly, y, obtained by the above two methods both inevitably introduce additional errors to the
estimated results, and the impact is evaluated in the experiments. However, the current design of
schemes cannot avoid it, and we leave it for future work.

Privacy Parameters €;, €, in BDR and CNR. Next, we analyze how to split the privacy budget e
into €; and €; in BDR and CNR, based on insights from our theoretical and experimental results.

Our theoretical analysis in Theorem 4.2, provides an error bound for estimating the count of
hot items in BDR, which is equally applicable to CNR. It shows that allocating a larger portion
of the privacy budget to €; leads to a reduced error bound, which is further corroborated by our
experimental results in Figure 8(b)(d)(f)(h). In fact, the count error only focuses on the accuracy
of counts for hot items already identified by the data structure. This calculation excludes errors
coming from the misclassification of hot items due to randomization with ¢;.

However, the estimation is complex when considering the impact of €; and €; on the precision
of the data structure HG in capturing the true hot items. Increasing the privacy budget allocated
to €1 does reduce the probability of determining hot data as cold and simultaneously enhances the
probability that currently recorded items remain within G . Nevertheless, this does not necessarily
get an improved precision in capturing items within HG. The setting of parameter b in HG [62]
faces the same dilemma. Increasing b will reduce the probability of the current cold values entering
HG, and vice versa. Multiple factors collaboratively impact the precision of HG in capturing hot
items. For instance, when the initial HG captures inaccurate hot items, a higher probability of
eviction among recorded items within HG can lead to improved precision; if the true hot items
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are concentrated in the first half of the data stream, a higher probability of retention for items
within H G can result in higher precision. It can also be observed from the experimental results
that the Precision and NDCG of the results on some data streams are not as regular as those of
AAE as €; and €; change, i.e., when hot items are distributed in a more dispersed manner within
the Exponential distribution as opposed to the Normal distribution, the NDCG depicted in Figure 8
emphasize that allocating a smaller fraction of ¢; does not confer any discernible advantage. In
[62], they provide an empirical value, i.e., b = 1.08. Based on our comprehensive evaluations, we
suggest setting €;/€; = 0.5 in most scenarios can achieve promising accuracy.

Guidance on Scheme Selection. In this paper, we introduce three enhanced schemes, each making
distinct trade-offs between accuracy, computational overhead, and memory usage. According to
our theoretical and experimental results, we summarize a table, as detailed in Table 2, including
three advanced designs and a baseline in terms of accuracy, computation overhead, and memory
consumption. From the baseline BGR to DSR, BDR, and CNR, there is a sequential improvement
in the accuracy of the results. Meanwhile, this enhancement comes at the cost of increased com-
putational complexity on the client side or memory consumption on the server side. In practical
deployment, we recommend selecting a scheme based on the specific performance requirements of
the task.

Table 2. Performance comparison of baseline method and proposed schemes.

BGR DSR BDR CNR
Accuracy 4th  3rd 2nd st
Computation Overheads  1st 2nd 3rd  4th
Memory Consumption 1st 1st 1st  2nd

6.2 Extensions

w-Event-Level and User-Level Privacy. While the schemes proposed in this paper offer event-
level privacy guarantees, they possess the flexibility to be extended to offer enhanced privacy
protection, including w-event-level privacy and user-level privacy. Specifically, w-event-level
privacy ensures e-LDP within any sliding window of size w, while user-level privacy guarantees
€-LDP for all streaming data contributed by an individual user.

To achieve w-event-level privacy and user-level privacy for finite data streams, we could distribute
the privacy budget evenly across each timestamp. This entails changing the privacy budget used for
randomizing each streaming data point from € to €/w and €/I, where [ represents the length of the
finite data stream. We have to mention that while there are existing methods that outperform the
average allocation approach [34, 35, 42], applying them to our proposed schemes presents certain
challenges. The primary obstacle lies in the variation of privacy budgets used to randomize each
streaming data, which can impede the server to debias the accumulated counts in the heavy list. This
complication also obstructs the application of the schemes to provide user-level privacy for infinite
data streams. An intuitive approach to address this issue is that the server to independently debias
each incoming streaming data point using the privacy budget transmitted by the user concurrently.
However, this approach may introduce increased computational complexity on the server’s end
and heightened communication complexity for the user. We leave this challenge for future research
and exploration.

Other Tasks. Since the proposed framework HG-LDP focuses on the heavy hitter estimation
task, only CNR involves the Light part of the data structure H@G to store the counts of part of
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cold items. When CNR extends its functionality to store the counts of all cold items in the Light
part as in [62], it can also support other tasks supported in [62], such as frequency estimation
and frequency distribution estimation. It’s essential to note that these tasks, even functionally
supported, encounter a challenge related to accuracy when randomizing within large data domains.
The new LDP randomization mechanisms in this paper are designed by utilizing the characteristics
of the heavy hitter tasks to only ensure the accuracy of hot items. We intend to delve deeper into
this aspect as part of our future research efforts.

7 RELATED WORK
An extended Related Work is in Appendix A.9 in [46].

Differential Private Data Stream Collection The earliest studies in differential privacy for
streaming data collection originate from continuous observation of private data [8, 26, 29, 32, 33].
Recent works on differential private data stream collection mainly focus on Centralized Differential
Privacy (CDP). Some works study how to publish the summation of the streaming data privately
[34, 42, 50, 58]. Some works study the release of correlated streaming data [9, 56] propose a
correlated Gaussian noise mechanism. Some recent works focus on data stream collection with
Local Differential Privacy (LDP) [40, 52, 58].

Tracking Heavy Hitters in Data stream Mining streaming data faces three principal challenges:
volume, velocity, and volatility [43]. The existing heavy hitters estimation algorithms in the data
stream can be divided into three classes: Counter-based algorithms, Quantile algorithms, and Sketch
algorithms [20]. Counter-based algorithms track the subset of items in the stream, and they quickly
determine whether to record and how to record with each new arrival data [48, 49, 62, 65]. The
Quantile algorithms [38, 54] focus on finding the item which is the smallest item that dominates
¢n items from the data stream. Sketch algorithms [7, 18, 23, 45] record items with a data structure,
which can be thought of as a linear projection of the input, hash functions are usually used to define
that. However, the sketch algorithms involve a large number of hash operations, which cannot
meet the timeliness requirements of streaming data. Besides, all items are recorded and additional
information needs to be stored for retrieval, which leads to unnecessary memory consumption
[20]. Our design is based on Counter-based algorithms with an extended setting where streaming
data is protected by LDP.

8 CONCLUSION

In this paper, we proposed a framework HG-LDP for tracking the Top-k heavy hitters on data
streams at bounded memory expense, while providing rigorous LDP protection. A baseline and
three advanced schemes with new LDP randomization mechanisms are designed under the hood
of the framework. We implement all the proposed schemes and evaluate them on both synthetic
and real-world datasets in terms of accuracy and memory consumption. The experimental results
demonstrated that the proposed schemes achieve a satisfactory “accuracy-privacy-memory ef-
ficiency” tradeoff. For future work, we will extend the framework to be compatible with more
diverse selections of memory-efficiency data structures as well as broader types of statistical tasks
to enhance its flexibility.
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