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Top-𝑘 frequent items detection is a fundamental task in data stream mining. Many promising solutions are

proposed to improve memory efficiency while still maintaining high accuracy for detecting the Top-𝑘 items.

Despite the memory efficiency concern, the users could suffer from privacy loss if participating in the task

without proper protection, since their contributed local data streams may continually leak sensitive individual

information. However, most existing works solely focus on addressing either the memory-efficiency problem

or the privacy concerns but seldom jointly, which cannot achieve a satisfactory tradeoff between memory

efficiency, privacy protection, and detection accuracy.

In this paper, we present a novel framework HG-LDP to achieve accurate Top-𝑘 item detection at bounded

memory expense, while providing rigorous local differential privacy (LDP) protection. Specifically, we identify

two key challenges naturally arising in the task, which reveal that directly applying existing LDP techniques

will lead to an inferior “accuracy-privacy-memory efficiency” tradeoff. Therefore, we instantiate three advanced

schemes under the framework by designing novel LDP randomization methods, which address the hurdles

caused by the large size of the item domain and by the limited space of the memory. We conduct comprehensive

experiments on both synthetic and real-world datasets to show that the proposed advanced schemes achieve a

superior “accuracy-privacy-memory efficiency” tradeoff, saving 2300× memory over baseline methods when

the item domain size is 41, 270. Our code is anonymously open-sourced via the link.
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1 INTRODUCTION
Detecting Top-𝑘 frequent items in data streams is one of the most fundamental problems in

streaming data analysis [10, 16, 25, 39, 47]. It forms the foundation for a multitude of critical

applications across various domains, such as anomaly detection in data mining [15], click analysis

in web analysis [55], and topic mining in social networks [64]. In the typical decentralized setting

as illustrated in Figure 1, the users send local item counts to the server in a streaming fashion, and

the server continuously finds hot items (i.e., items with high-frequencies, as depicted in Figure 1) in

the item domain based on all users’ local streams. Apparently, the naïve solution to count and store

all items ever appearing in the data streams will incur an overwhelming memory burden for large

domain sizes that are commonly encountered in practice. For example, as of 2023, there are over 1

billion videos uploaded on the Youtube platform, with over 500 hours of videos uploaded every

minute [4]. It becomes evident that maintaining a histogram of the expanding item domain on the

server side for identifying hot items is impractical. Many existing works thus focus on improving

memory efficiency by designing advanced data structures, especially for applications where the

domain size is too large to efficiently fit in the memory [12, 13, 20, 21, 63].

5 3 2

1 4 6 7 8 9

Hot Item:

Cold Item:

Top-3 most frequent items: 5, 3, 2

1, 2, 4, 5, 5, 6, 3, 5… 

7, 5, 2, 5, 3, 8, 3, 9…
…

User side Server side

Submit

Submit

Fig. 1. An example of Top-3 frequent items detection.

Furthermore, users’ submitted streaming data often contain sensitive individual information,

e.g., click analysis may reveal online behavior and topic mining may reveal political opinions. The

privacy of users is under severe threat if they submit local data streams without proper privacy

protection. In particular, the privacy concern has a unique characteristic in the Top-𝑘 detection

problem. That is, the cold items (i.e., items with low frequencies, as depicted in Figure 1) are not

statistical targets, but constitute the majority of the data domain and are particularly sensitive, as

they reveal highly personal information specific to certain user groups. Due to its central role in

streaming data analysis, Top-𝑘 frequent items detection has attracted significant research attention

in recent years. However, most existing works pursue the memory efficiency or privacy protection

goals separately but seldom jointly.

On the memory efficiency side, a series of approaches have been proposed to improve the

memory efficiency with decent accuracy for detecting the Top-𝑘 items [44, 45, 48, 49, 62, 65]. The

key rationale of the memory-saving stems from the fact that most items are cold while only a few

items are hot in practical data streams [19, 53]. Accurately recording the information of massive

cold items not only wastes much memory, but also incurs non-trivial errors in hot item estimation

when the memory is tight. Thus, existing methods seek to design a compact data structure to keep

and guard the items and their frequencies of hot items, while possibly evicting cold items. One of

the most widely adopted and effective data structures addressing this challenge is HeavyGuardian
[62]. It introduces the separate-and-guard-hot design principle, which effectively segregates hot

items from cold items, preserving the accuracy of hot item estimations. HeavyGuardian further

delineates a specific strategy called Exponential Decay (ED) to guard the hot items by exponentially

decreasing the probability that the possible cold items remain in the heavy part of the data structure.

However, despite achieving a promising balance between accuracy and memory efficiency, none of

these methods simultaneously account for privacy concerns.
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On the privacy protection side, Differential Privacy (DP) has been regarded as a de facto standard
by both academia and industry [27, 30]. In the decentralized data analytics setting, Local Differential

Privacy (LDP) is the state-of-the-art approach extended from DP to the local setting, which has been

widely deployed in industry, e.g., Google Chrome browser [31] and Apple personal data collection

[37]. In LDP, each user perturbs his/her data with a local randomization mechanism before sending

it to the server. The server could still derive general statistics from the perturbed submissions

with a certain accuracy decrease. General randomization mechanisms for frequency estimation

such as Generalized Randomized Response (GRR), Optimal Local Hash (OLH) [57], and Hadamard

Response (HR) [6], can be applied to Top-𝑘 items detection as baseline methods. There also exist

many works designed specifically for heavy hitter estimation under LDP, including estimates over

the single-valued data [11, 22, 36, 60], and set-valued data [51, 59]. However, it is noteworthy that

these works neither address the data stream setting nor tackle the issue of memory efficiency.

In this paper, our objective is to bridge the gap between memory-efficient heavy hitter tracking

in data streams and LDP privacy protection. To achieve this, we introduce the HG-LDP framework

designed for tracking the Top-𝑘 heavy hitters within data streams. This framework comprises three

essential modules. First, the randomization module is responsible for randomizing the streaming

data generated by users, ensuring event-level LDP privacy that is more suitable for the streaming

data [28, 50]. Second, the storage module records the incoming data on the server side. To this end,

we integrate the HeavyGuardian data structure, and significantly optimize its implementations, i.e.,

dynamic parameter configuration, and sampling optimization (see details in Appendix A.7 in [46])

to facilitate the heavy hitter tasks and processing of LDP-protected noisy data. Finally, the response
module processes and publishes the statistical results of heavy hitters.

It is worth noting that directly applying existing LDP techniques cannot achieve satisfactory ac-

curacy or would be even functionally infeasible, primarily due to the following two new challenges.

Challenge (1): Incompatibility of Space-Saving Strategy and Large Domain Size for LDP. To highlight
this challenge, we instantiate a basic scheme BGR as a baseline (detailed in Section 3.2), which

directly uses the Generalized Randomized Response (GRR) mechanism [57] in the randomization

module. The large domain size incurs two problems that jointly fail BGR: 1) the noise variance

introduced by the GRR will increase as the data domain increases; 2) the space-saving strategy of

the data structure introduces additional underestimation error to the noise items, which will be

further amplified by the debiasing operation, required by LDP. Although existing mechanisms such

as Optimal Local Hash (OLH) [57] and Hadamard Response (HR) [6] in the LDP field aim to alleviate

the impact of large data domains on randomized results’ accuracy, it is crucial to emphasize that we

still confront a unique and unaddressed challenge. We identified that the core idea of the LDP field

in addressing this problem is to encode the large data domain into a smaller one for randomization.

However, the decoding of randomized data on the server side inevitably produces a multiple of

diverse collision data, which can significantly disrupt the decision-making of the space-saving

strategy.

Challenge (2): Dynamically Changing Hot/Cold Items. Notably, cold items often constitute the

majority of the data domain, and indiscriminately randomizing data across the entire domain can

result in an unnecessary waste of privacy budget. The ability to distinguish between hot items

and cold items during the randomization process is crucial for enhancing the accuracy of hot

item estimation. However, since the labels of hot and cold items may dynamically change as the

data stream evolves, randomizing data based on the previous timestamp’s state may introduce a

huge bias towards the prior state. This poses several new challenges, e.g., how to strike a balance

between reducing unnecessary privacy budget expenditure on cold items, and how to manage

such dynamically emerging bias. Addressing this challenge also mandates novel LDP mechanism

designs.
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Contribution. In this paper, we initiate a baseline method and propose three novel advanced

LDP designs under the hood of a framework HG-LDP to address these hurdles. First, we present a

baseline method that directly combines the GRR mechanism with HeavyGuardian data structure.

Second, we propose a newly designed LDP mechanism. It is based on the observation that the

ED strategy does not need to know the specific item of the incoming data in most cases if it is

not recorded in the data structure. Third, we adjust the noise distribution by dividing the privacy

budget to achieve higher accuracy. Finally, we utilize the light part of HeavyGuardian to elect

current cold items before they become new hot items, which further improves the accuracy of the

estimated result. The main contributions are summarized as follows.

• To our best knowledge, this paper is the first to track the Top-𝑘 frequent items from data

streams in a bounded memory space while providing LDP protection for the sensitive stream-

ing data. We present a general framework called HG-LDP to accommodate any proper LDP

randomization mechanisms on the users’ side into the space-saving data structures on the

server side for the task.

• By investigating the failure of naïvely combining existing LDP techniques with HG-LDP,

we design three new LDP schemes, which achieve a desired tradeoff performance between

accuracy, privacy, and memory efficiency.

• We comprehensively evaluate the proposed schemes on both synthetic and real-world datasets

in terms of accuracy and memory consumption, which shows that the proposed schemes

achieve higher accuracy and higher memory efficiency than baseline methods. For instance,

when the size of the domain size reaches 41, 270, the proposed schemes save about 2300×
size of memory over baselines.

2 PRELIMINARIES
2.1 Problem Statement
We consider the setting of finding Top-𝑘 items in data streams under Local Differential Privacy

(LDP). Given 𝑛 users, each user generates a private infinite data stream. Denote 𝑣𝑡𝑖 ∈ Ω as the data

generated by the user 𝑢𝑖 at timestamp 𝑡 . The user only sends data at the timestamp when data is

generated. A server collects values from users at each timestamp 𝑡 . Note that the server can only

maintain a data structure with a length much smaller than the size 𝑑 of data domain Ω due to its

limited memory space. Whenever a query is received, the server needs to publish the Top-𝑘 items

up to the latest timestamp and their counts.

2.2 Privacy Definitions
In this paper, we provide event-level privacy guarantee [14, 17, 28, 50, 58]. Specifically, the event-

level LDP ensures the indistinguishability of any pairs of elements in streams, e.g., every single

transaction remains private in a user’s long-term transactions:

Definition 2.1 (Local Differential Privacy (LDP) [41]). An algorithmM satisfies 𝜖-LDP, where

𝜖 ≥ 0, if and only if for any input 𝑣, 𝑣 ′ ∈ D, and any output 𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒 (M), we have
Pr [M(𝑣) = 𝑦] ≤ 𝑒𝜖 Pr [M(𝑣 ′) = 𝑦] .

The parameter 𝜖 is called the privacy budget, whereby smaller 𝜖 reflects stronger privacy guar-

antees. We sayM satisfies 𝜖-LDP if for different data 𝑣 and 𝑣 ′, the ratio of distribution of output

M(𝑣) and that ofM(𝑣 ′) are not greater than 𝑒𝜖 .
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2.3 LDP Mechanisms
The Randomized Response (RR) mechanism [61] is considered to be the first LDP mechanism that

supports binary response. It allows each user to provide a false answer with a certain probability

so as to provide plausible deniability to users. The Generalized Randomized Response (GRR)

mechanism [57] is an extension of Randomized Response (RR) [61], which supports multi-valued

domain response. Denote 𝑑 as the size of the domain D. Each user with private value 𝑣 ∈ D reports

the true value 𝑣 ′ = 𝑣 with probability 𝑝 and reports a randomly sampled value 𝑣 ′ ∈ D where 𝑣 ′ ≠ 𝑣

with probability 𝑞. The probability 𝑝 and 𝑞 are defined as follows
𝑝 =

𝑒𝜖

𝑒𝜖 + 𝑑 − 1 ,

𝑞 =
1

𝑒𝜖 + 𝑑 − 1 .
(1)

where 𝑑 is the size of the data domain. It is straightforward to prove 𝜖-LDP for GRR, i.e., 𝑝/𝑞 ≤ 𝑒𝜖

[57]. Assuming that each of the 𝑛 users reports one randomized value. Let 𝑐𝑖 be the number of

value 𝑖 occurs in randomized values, the estimation of true number 𝑐𝑖 of value 𝑖 can be computed

with 𝑐𝑖 =
𝑐𝑖−𝑛𝑞
𝑝−𝑞 . The variance of the estimated result 𝑐𝑖 is 𝑉𝑎𝑟 [𝑐𝑖 ] = 𝑛 · 𝑑−2+𝑒𝜖(𝑒𝜖−1)2 .

As shown above, the variance of the estimation result of the GRR mechanism increases linearly

with the increase of 𝑑 . Some other mechanisms, e.g., Optimal Local Hash (OLH) [57] and Hadamard

Response (HR) [6], are proposed to randomize data in a large data domain. Essentially, they map

the data to a smaller domain before randomizing it to avoid the large variance caused by a large

data domain. We defer their details to Appendix A.1 in [46].

2.4 Space-Saving Data Structure
Counter-based data structures [48, 49, 62, 65] and sketches [7, 18, 23, 45] are two kinds of mainstream

memory-efficient data structures. While sketches have been extensively studied as compressed

data structures for frequency estimation, they may not be the optimal choice when it comes to

heavy hitter estimation in data streams, particularly in scenarios characterized by limited storage

space and real-time response requirements. This preference is underpinned by two key reasons:

Firstly, sketches record counts for all items, whereas heavy hitter tasks only concern hot items. This

equally treated recording of all counts results in unnecessary memory consumption. For example,

the Count-Min sketch (CMS) necessitates a minimum of 𝑂 ( 𝑁
𝛼
× log(1/𝛿)) space to guarantee

that the probability of error in the estimated count of each item being less than 𝛼 is no less than

1 − 𝛿 , with 𝑁 representing the total data count [23]. Furthermore, as highlighted by Cormode and

Hadjieleftheriou in [20], sketches require additional storage for finding the counts of hot items. For

instance, 𝑂 ( 𝑁
𝛼
log𝑑 log𝛿) space increase is incurred when using group testing to find hot items, or

a minimum of 𝑂 (𝑑) computational overhead is needed for hot item retrieval.

Thus, in this paper, we choose to employ a counter-based data structure called HeavyGuardian
proposed by Yang et al. [62] as the foundation for our framework. It identifies and records the

high-frequency items in subsequent data streams based on observations of historical streaming

data. The basic version of HeavyGuardian is a hash table with each bucket storing several KV pairs

(⟨𝐼𝐷, 𝑐𝑜𝑢𝑛𝑡⟩) and small counters. Specifically, each bucket is divided into two parts: a heavy part

with a length of 𝜆ℎ (𝜆ℎ > 0) to precisely store counts of hot items, and a light part with a length of 𝜆𝑙
(𝜆𝑙 can be 0) to approximately store counts of cold items. For each incoming item 𝑒 , HeavyGuardian
needs to decide whether and how to insert it into the heavy part of a bucket according to a strategy

called Exponential Decay (ED). There are three cases when inserting an item 𝑒 into the heavy part

of HeavyGuardian.
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Case 1: The KV pair of 𝑒 has been stored in the heavy part, it increments the corresponding 𝑐𝑜𝑢𝑛𝑡

by 1.

Case 2: The KV pair of 𝑒 is not in the heavy part, and there are still empty buckets. It inserts the

KV pair of 𝑒 into the heavy part and sets the 𝑐𝑜𝑢𝑛𝑡 to 1.

Case 3: The KV pair of 𝑒 is not in the heavy part, and there is no empty bucket. It decays 1 from

the current least 𝑐𝑜𝑢𝑛𝑡 in the heavy part with probability P = 𝑏−𝑐 , where 𝑏 is a predefined

constant number (b=1.08 in [62]), and 𝑐 is the 𝑐𝑜𝑢𝑛𝑡 value. After decay, if the 𝑐𝑜𝑢𝑛𝑡 becomes

0, it replaces this KV pair (the weakest KV pair) with 𝑒’s KV pair, and sets the 𝑐𝑜𝑢𝑛𝑡 to 1.

If 𝑒 is not successfully inserted into the heavy part, it is recorded in the light part. Since the heavy

hitter tasks only focus on Top-𝑘 items and their counts, we set the parameters of HeavyGuardian
as the number of buckets𝑤 = 1, the length of the heavy part 𝜆ℎ = 𝑘 , and the length of light part

𝜆𝑙 = 0 (except in one of the proposed scheme CNR). For simplicity of description, we denote the

data structure of HeavyGuardian asHG in the following sections. We useHG[𝑖] to denote the

𝑖th key pair in HG, and use HG[𝑖] .𝐼𝐷 and HG[𝑖] .𝐶 to denote the ID and the count of an item,

respectively.

3 HG-LDP FOR HEAVY HITTERS TRACKING
In this section, we first introduce the HG-LDP framework for tracking heavy hitters in data streams

with boundedmemory space. Then, we instantiate a baseline to highlight key obstacles for achieving

a satisfactory “accuracy-privacy-memory efficiency” tradeoff.

3.1 Overview

Randomization 
Module Data Stream

k g g c c

k: King cell  g: Guardian cell  c: Light countere

h(e)

Storage Module: HeavyGuardian

Response 
Module

User Side

Server Side

ID, count

Heavy Part Light Part

Fig. 2. The overview of HG-LDP.

Figure 2 illustrates the framework for HG-LDP, which contains three modules: randomization
module, storage module, and response module. The randomization module runs on the user side to

randomize the users’ sensitive streaming data. The storage module and the response module run on

the server side, where the storage module utilizes a space-saving data structure.
In this paper, we aim to adapt and optimize the HeavyGuardian (HG) data structure due to its

popularity and simplicity, but expect our LDP designs to be generalizable to more sophisticated

space-saving data structures in the future. The randomized streaming data continuously reported
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by users is stored inHG following the ED strategy, and the statistical results are released by the

response module after debiasing. Specifically, the functions of the three modules can be summarized

as the following three algorithmic components:

• Randomize. It is executed in the randomization module. It takes raw data 𝑣𝑡𝑖 of the 𝑖
th
user at

timestamp 𝑡 as input, and outputs a randomized data 𝑟 𝑡𝑖 that satisfies LDP.

• Insert. It is executed in the storage module. It inserts the randomized data 𝑟 𝑡𝑖 into HG
following the ED strategy, and updates the counts of the KV pairs inHG.
• Response. It is executed in the response module. It obtains the hot items and their correspond-

ing counts fromHG when receiving a request. Then it maps them to a list for publishing

after debiasing all counts.

In the following sections, we first instantiate a baseline scheme, and then propose three advanced

schemes based on this framework by elaborately designing algorithms for the three modules.

3.2 A Baseline Scheme: BGR
We first discuss a baseline scheme BGR (Basic Scheme Combining GRR) that directly integrates an

existing LDP scheme: GRR.

Algorithms. The BGR algorithm is outlined in Algorithm 1. At timestamp 𝑡 , the data 𝑣𝑡𝑖 of a user 𝑢𝑖
is randomized using GRR, and the resulting randomized value 𝑟 𝑡𝑖 is then transmitted to the server.

Subsequently, the server incorporates 𝑟 𝑡𝑖 into the data structure HG following the ED strategy.
Note that the counts stored withinHG are consistently biased noisy values. To mitigate this, the

server debiases all counts in the response module following the standard GRR debiasing approach

[57] before publishing the statistical outcomes.

Algorithm 1 BGR (baseline)

Input: timestamp 𝑡 , data domain Ω with size 𝑑 , data structureHG, number of the received data 𝑛𝑢𝑚.

Output: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡
Randomize

1: Obtain the current raw data 𝑣𝑡
𝑖
;

2: 𝑟𝑡
𝑖
← GRR(𝑣𝑡

𝑖
, 𝜖) ⊲ Randomize data with GRR.

Insert

3: Receive an incoming data 𝑟𝑡
𝑖
;

4: 𝑛𝑢𝑚 ← 𝑛𝑢𝑚 + 1
5: Insert 𝑟𝑡

𝑖
intoHG following ED strategy;

6: if the least countHG[𝑘] .𝐶 ≤ 0 then
7: Replace the weakest KV pair with new KV pair < 𝑟𝑡

𝑖
, 1 >

Response

8: 𝑝 = 𝑒𝜖

𝑒𝜖+𝑑−1 , 𝑞 = 1

𝑒𝜖+𝑑−1
9: if receive a Top-𝑘 query then
10: for eachHG[ 𝑗] ∈ HG do
11: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡 [ 𝑗] .𝐼𝐷 ←HG[ 𝑗] .𝐼𝐷
12: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡 [ 𝑗] .𝐶 ← (HG[ 𝑗] .𝐶 − 𝑛𝑢𝑚 · 𝑞)/(𝑝 − 𝑞)
13: return 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡

Theoretical Analysis. Next, we theoretically analyze the error bound of the frequency estimated

by BGR. Part of the error comes from the exponential decay of the counts on the server when the

coming data is not recorded inHG. Another part of the error comes from the noise introduced by
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Fig. 3. The flowcharts of the randomization and storage modules in BGR (baseline) and three advanced
schemes. Note that each subfigure only shows the procedures of one scheme for a single user. The system
procedures are more complicated since a large number of users would frequently/concurrently submit data to the
server and update the HG (the domain for randomization frequently changes). A debiasing procedure is also
included in the response module of the server. DSR employs a strategy of randomization within a reduced
domain when there are no imminent hot item evictions. BDR mitigates the impact of expansive cold domains
on the accuracy of hot item estimates by splitting the privacy budget, which also eliminates the need for
switching randomization strategies in DSR. CNR fully utilizes the idle privacy budget in BDR and elects new
hot items with more potential to enterHG.

the randomization module to perturb the data with the GRR. We first give the error analysis for the

ED strategy ofHG provided by Yang et al. [62] in Lemma 3.1 below.

Lemma 3.1. Given a stream prefix 𝑆𝑡 with 𝑡 items in Ω, it obeys an arbitrary distribution and
|Ω | = 𝑑 . We assume that there are𝑤 buckets to store the hottest 𝜆 items mapped to them, each item is
mapped to a bucket with the probability of 1

𝑤
. Let 𝑣𝑖 be the 𝑖 th hottest item, 𝑓𝑖 be the real frequency of

𝑣𝑖 , and ˜𝑓𝑖 be the estimated frequency of 𝑣𝑖 . Given a small positive number 𝛼 , we have

𝑃𝑟 [𝑓𝑖 − ˜𝑓𝑖 ≥ 𝛼𝑡] ≤ 1

2𝛼𝑡
(𝑓𝑖 −

√︂
𝑓 2
𝑖
− 4𝑃𝑤𝑒𝑎𝑘𝐸 (𝑉 )

𝑏 − 1 )

where 𝑃𝑤𝑒𝑎𝑘 = 𝑒−(𝑖−1)/𝑤 × ( 𝑖−1
𝑤
)𝑙−1/(𝑙 − 1)!, 𝐸 (𝑉 ) = 1

𝑤

∑𝑑
𝑗=𝑖+1 𝑓𝑗 .

Our theoretical analysis follows the conclusion provided in Lemma 3.1. In fact, Lemma 3.1

only considers the bias caused by exponential decays after the items are recorded as hot items,

ignoring the count loss before items are recorded. However, this count loss is strongly related to the

distribution of the data stream and the order of the data arrival, so it’s difficult to be theoretically

analyzed. Besides, as we mentioned in Section 2.4, we set the number of buckets𝑤 = 1 in this paper

since we only track Top-𝑘 heavy hitters and 𝑘 is a small constant. Therefore, we only use the result

when𝑤 = 1 in Lemma 3.1 and we show the error bound of BGR in Theorem 3.2.

Theorem 3.2. Given a stream prefix 𝑆𝑡 with 𝑡 items randomized by BGR satisfying 𝜖-LDP and there
is a data structureHG to store the Top-𝑘 items. Let 𝑣𝑖 be the 𝑖 th hottest item, 𝑓𝑖 be the real frequency
of 𝑣𝑖 , ˜𝑓𝑖 be the final estimated frequency of 𝑣𝑖 . We have

𝑃𝑟 [𝑓𝑖 − ˜𝑓𝑖 ≤ (
√︁
2𝑡 log(2/𝛽) + 𝛼𝑡) · 𝑒

𝜖 + 𝑑 − 1
𝑒𝜖 − 1 ]

≥ (1 − 𝛽) (1 − 1

2𝛼
(1 −

√︂
1 − 4𝑃𝑤𝑒𝑎𝑘𝐸 (𝑉 )

𝑏 − 1 ))
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where 𝑃𝑤𝑒𝑎𝑘 =
(𝑖−1)!(𝑑−𝑘 )!
(𝑑−1)!(𝑖−𝑘 )! , 𝐸 (𝑉 ) =

∑𝑑
𝑗=𝑖+1 𝑓𝑗 , 𝛼 and 𝛽 are small positive numbers with 𝛼, 𝛽 ∈ (0, 1).

Proof. We assume that
ˆ𝑓𝑖 is the frequency of noisy data recorded inHG according to the ED

strategy. Meanwhile, due to the ED strategy introducing additional errors during the recording

of
ˆ𝑓𝑖 , the frequency used for debiasing by the GRR mechanism before publication is denoted as

¯𝑓𝑖 .

Then the error bound of final debiased frequency
˜𝑓𝑖 compared to 𝑓𝑖 can be obtained by combining

the error bounds of
ˆ𝑓𝑖 − ¯𝑓𝑖 and 𝑓𝑖 −

ˆ𝑓𝑖−𝑡𝑞
𝑝−𝑞 . The detailed proof is deferred to Appendix A.2 in [46]. □

Problems with Existing LDP mechanisms. Theorem 3.2 shows that the error bound of BGR

grows proportionally to the size of the data domain 𝑑 . While BGR is sufficient for solving the task

of finding Top-𝑘 items in streaming data with a small data domain, it can inevitably fall into the

dilemma that the error is too large when dealing with a large data domain. From the proof of

Theorem 3.2, we can find that the excessive error caused by the large data domain mainly comes

from the randomization process of the GRR.

Several LDP mechanisms have been proposed to address data randomization in large data

domains. However, directly integrating these mechanisms with HeavyGuardian is still problematic

in practice. The core concept behind these mechanisms revolves around mapping data from the

large data domain to a smaller data domain using techniques such as hash functions [57], Hadamard

matrix encoding [5, 6], or Bloom filter encoding [32]. Subsequently, data is randomized within this

reduced data domain.

There are several issues with these approaches. Firstly, decoding a single randomized data on the

server side entails an exhaustive scan of the entire data domain, which becomes computationally

expensive for large data domains. Furthermore, this approach implies that the server must store

the entirety of the data domain, which may contradict the requirement for bounded memory

consumption on the server side. Additionally, these mechanisms introduce collisions when decoding

randomized data for analysis. While such collisions are typically manageable in general frequency

estimation tasks due to their uniform distribution, they can render strategies like the ED strategy

and other space-saving techniques unusable. Assuming that data is mapped from a large domain of

size 𝑑 to a smaller data domain of size 𝑔, the average number of collision data generated by decoding

a data point is 𝑑/𝑔. In essence, the arrival density of an item directly impacts its potential to be

recorded within the data structure as a hot item. If decoded data is mixed with 𝑑/𝑔− 1 different data
points, the true hot item may lose its advantage in being recorded withinHG. In scenarios where

the domain size 𝑑 is extremely large, such that 𝑑/𝑔 surpasses the size 𝑘 ofHG, the entire scheme

becomes untenable, and all data points are indiscriminately recorded with equal probability.

Consequently, it is desirable to develop novel LDPmechanisms capable of effectively randomizing

data within large data domains and addressing challenges posed by the dynamically changing

hot/cold items while optimizing the performance of HeavyGuardian.

4 ADVANCED LDP MECHANISM DESIGNS
In this section, we propose three novel advanced schemes to address the aforementioned problem

in BGR by designing new randomization methods, which are outlined in Figure 3.

4.1 DSR (Domain-Shrinkage Randomization)
Tasks involving heavy hitter estimation in streams often assume that the streaming data follows a

Zipf distribution [20, 24, 48]. This assumption aligns well with the distribution observed in various

real-world scenarios, such as purchased goods and popular songs. In these contexts, the data domain

predominantly consists of a few frequently occurring hot items, while most items are relatively
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rare or never appear. However, the GRR mechanism in BGR randomizes a large number of hot

items to these rare items for ensuring LDP, which leads to poor performance of the ED strategy.
Furthermore, the protection of these rare items is critical since they often contain highly sensitive

information. For instance, an individual might not be concerned about others knowing they have

watched popular movies but may be apprehensive about revealing their interest in niche films, as it

could inadvertently expose their personal preferences and hobbies. It is based on these observations

that we have designed our advanced algorithm, DSR.

Specifically, we refer to the items recorded inHG as the hot items, and the items not inHG as

the cold items. We observe that the ED strategy ofHG does not need to know the specific value

of the cold items in most cases. It only needs to reduce the count of the KV pair with the lowest

frequency in HG by 1 with a certain probability when it receives a cold item. The ED strategy
needs to know the specific value of the cold item to replace the KV pair in HG only when the

weakest KV pair (with the lowest frequency) is going to be evicted. A direct idea is to represent

all cold items as “⊥”, and randomize the data on the domain {HG.𝐶} ∪ {⊥}. When the weakest

KV pair inHG is about to be evicted, it changes back to BGR to randomize the data on the entire

domain. In this way, the size of the data domain can be reduced from 𝑑 to 𝑘 + 1 when there is no

KV pair inHG going to be replaced, which alleviates the low utility caused by a large domain.

Algorithm 2 DSR (Randomize)

Input: timestamp 𝑡 , privacy budget 𝜖 , data domain Ω with size 𝑑 , data structureHG.
Output: 𝑟𝑡

𝑖

1: Obtain the current raw data 𝑣𝑡
𝑖
;

2: if the least countHG[𝑘] .𝐶 ≤ 1 then
3: 𝑟𝑡

𝑖
← GRR(𝑣𝑡

𝑖
, 𝜖) ⊲ Randomize data in Ω with GRR.

4: else
5: Let 𝑏 ← 𝐵𝑒𝑟 ( 𝑒𝜖

𝑒𝜖+𝑘 )
6: if 𝑏 == 1 then ⊲ Randomize data in reduced domain.

7: 𝑟𝑡
𝑖
= 𝑣𝑡

𝑖
8: else
9: 𝑟𝑡

𝑖
= 𝑣 ′, where 𝑣 ′ ∈ {HG.𝐼𝐷} ∪ {⊥} and 𝑣 ′ ≠ 𝑣𝑡

𝑖

10: return 𝑟𝑡
𝑖

Algorithms. The Randomize Algorithm of DSR is presented in Algorithm 2. In the general case,

the user randomizes data on the shrinking domainHG.𝐶∪⊥. If the server receives a "⊥ ", it reduces

the count of the weakest KV pair by 1 with a certain probability. However, this approach poses

a challenge when the count of the weakest KV pair reduces to 0, as it becomes uncertain which

cold item should replace the weakest KV pair. Furthermore, requiring the user to re-randomize the

data across the entire domain can potentially violate 𝜖-Local Differential Privacy (𝜖-LDP). To solve

this problem, DSR requires users to switch to BGR for randomization on the entire data domain

when the count of the weakest KV pair reaches 1 or less. In this case, as long as the count of the

weakest KV pair is reduced by 1, it can be replaced by a new KV pair with a cold item directly.

Users can subsequently switch back to randomizing data on the reduced domain once the new KV

pair stabilizes (i.e., reaches a count > 1).

The Insert and Response algorithms are shown in Algorithms 3 and 4, respectively. Due to

the switch between two mechanisms with different parameters in the Randomize algorithm, a

complex debiasing process is initiated during the insertion and response phases. Each switch

between mechanisms necessitates debiasing of all the counts of KV pairs stored inHG using the
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Algorithm 3 DSR (Insert)

Input: timestamp 𝑡 , privacy budget 𝜖 , data domain Ω with size 𝑑 , reduced domain Ω𝑠 = {HG.𝐼𝐷}∪{⊥}, data
structureHG, number of the received data ∈ Ω 𝑛𝑢𝑚𝑒𝑛𝑡𝑖𝑟𝑒 , number of the received data ∈ Ω𝑠 𝑛𝑢𝑚𝑟𝑒𝑑𝑢𝑐𝑒𝑑 .

Output: UpdatedHG
1: 𝑝1 =

𝑒𝜖

𝑒𝜖+𝑑−1 , 𝑞1 =
1

𝑒𝜖+𝑑−1 , 𝑝2 =
𝑒𝜖

𝑒𝜖+𝑘 , 𝑞2 =
1

𝑒𝜖+𝑘
2: Receive an incoming data 𝑟𝑡

𝑖
;

3: HG ← DSR_Insert(𝑟𝑡
𝑖
,HG, 𝑝1, 𝑞1, 𝑝2, 𝑞2, 𝑛𝑢𝑚𝑒𝑛𝑡𝑖𝑟𝑒 , 𝑛𝑢𝑚𝑟𝑒𝑑𝑢𝑐𝑒𝑑 )

4: return UpdatedHG

Algorithm 4 DSR (Response)

Input: timestamp 𝑡 , privacy budget 𝜖 , data domain Ω with size 𝑑 , data structureHG, number of the received

data 𝑛𝑢𝑚.

Output: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡
1: 𝑝1 =

𝑒𝜖

𝑒𝜖+𝑑−1 , 𝑞1 =
1

𝑒𝜖+𝑑−1 , 𝑝2 =
𝑒𝜖

𝑒𝜖+𝑘 , 𝑞2 =
1

𝑒𝜖+𝑘
2: if receive a Top-𝑘 query then
3: HG ← DSR_FinalDebias(HG, 𝑝1, 𝑞1, 𝑝2, 𝑞2)
4: for eachHG[ 𝑗] ∈ HG do
5: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡 [ 𝑗] .𝐼𝐷 ←HG[ 𝑗] .𝐼𝐷
6: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡 [ 𝑗] .𝐶 ←HG[ 𝑗] .𝐶
7: return 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡

debiasing formula of the current mechanism. To prevent redundant debiasing of cumulative counts,

it is imperative to multiply all the counts by the denominator of the debiasing formula of the new

mechanism. For the sake of readability, the debiasing functions DSR_Insert in the Insert algorithm

and DSR_FinalDebias in the Response algorithm are deferred to Appendix A.5 in [46].

Theoretical Analysis. Theoretical analysis demonstrates that the error bound of DSR in the

worst-case scenario aligns with that of BGR, as illustrated in Theorem 3.2. This can be attributed

to the frequent replacement of the weakest KV pair for certain data distributions, compelling

users to randomize data over the entire data domain for the majority of instances. However,

DSR’s improvement over BGR is expected to be more substantial for datasets exhibiting a more

concentrated data distribution.

4.2 BDR (Budget-Division Randomization)
We present a novel scheme, BDR, that further enhances accuracy beyond DSR. Although DSR

demonstrates improvement over BGR, it still predominantly randomizes data similarly to BGR

when there are frequent changes to the items inHG. Additionally, the complexity of debiasing is

increased due to the transition between two randomization mechanisms with distinct parameters.

Since the current cold value cannot be randomized and sent repeatedly, resulting in the waste of

the privacy budget while awaiting new cold items. To address this problem, we designed a budget-

division-based scheme (BDR) that efficiently avoids switching between different randomization

mechanisms and mixing randomized data from different output data domains. Besides, we observe

that the hot items stored byHG after initialization may not be true hot items. Through adjustments

in the allocation of the privacy budget, BDR reduces the impact of the initialHG on the final result,

with the probability of
𝑘

𝑒𝜖+𝑘 that any other item be randomized to the current "hot items".

We divide the privacy budget into two parts and run three sub-randomization mechanisms

M 𝑗𝑢𝑑𝑔𝑒 ,Mℎ𝑜𝑡 , andM𝑐𝑜𝑙𝑑 . Specifically, theM 𝑗𝑢𝑑𝑔𝑒 mechanism is used to randomize whether the

data is a hot item. If the M 𝑗𝑢𝑑𝑔𝑒 mechanism determines that the data is a hot item, the Mℎ𝑜𝑡

mechanism is used to randomize the data in the data domain covered by items recorded inHG.
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Algorithm 5 BDR (Randomize)

Input: timestamp 𝑡 , privacy budget 𝜖 , data domain Ω with size 𝑑 , data structureHG.
Output: 𝑟𝑡

𝑖
1: Divide 𝜖 into 𝜖1 and 𝜖2, where 𝜖1 + 𝜖2 = 𝜖 ;

2: Obtain the current raw data 𝑣𝑡
𝑖
;

3: 𝐹𝑙𝑎𝑔←M 𝑗𝑢𝑑𝑔𝑒 (𝑣𝑡𝑖 , 𝜖1) ⊲ Determine whether 𝑣𝑡
𝑖
is hot or cold

4: if Flag==1 then ⊲ 𝑣𝑡
𝑖
is determined as hot

5: 𝑟𝑡
𝑖
←Mℎ𝑜𝑡 (𝑣𝑡𝑖 , 𝜖2)

6: else if 𝐹𝑙𝑎𝑔 == 0 andHG[𝑘] .𝐶 ≤ 1 then ⊲ 𝑣𝑡
𝑖
is determined as cold and an item inHG is about to be

evicted

7: 𝑟𝑡
𝑖
←M𝑐𝑜𝑙𝑑 (𝑣𝑡𝑖 , 𝜖2)

8: else
9: 𝑟𝑡

𝑖
= ⊥

10: return 𝑟𝑡
𝑖

Algorithm 6 BDR (Randomize-M 𝑗𝑢𝑑𝑔𝑒 )

Input: raw data 𝑣𝑡
𝑖
, privacy budget 𝜖1, data structureHG

Output: 𝐹𝑙𝑎𝑔

1: Let 𝑏 ← 𝐵𝑒𝑟 ( 𝑒𝜖1
𝑒𝜖1+1 )

2: if 𝑏 == 1 then
3: if 𝑣𝑡

𝑖
∈ HG then

4: 𝐹𝑙𝑎𝑔 = 1

5: else
6: 𝐹𝑙𝑎𝑔 = 0

7: else
8: if 𝑣𝑡

𝑖
∈ HG then

9: 𝐹𝑙𝑎𝑔 = 0

10: else
11: 𝐹𝑙𝑎𝑔 = 1

12: return 𝐹𝑙𝑎𝑔

Algorithm 7 BDR (Randomize-Mℎ𝑜𝑡 )

Input: raw data 𝑣𝑡
𝑖
, 𝐹𝑙𝑎𝑔, privacy budget 𝜖2, data structureHG.

Output: 𝑟𝑡
𝑖

1: Let 𝑏 ← 𝐵𝑒𝑟 ( 𝑒𝜖2

𝑒𝜖2+𝑘−1 )
2: if 𝑣𝑡

𝑖
∈ HG then

3: if 𝑏 == 1 then
4: 𝑟𝑡

𝑖
= 𝑣𝑡

𝑖
5: else
6: 𝑟𝑡

𝑖
= 𝑣 ′, where 𝑣 ′ ∈ HG and 𝑣 ′ ≠ 𝑣𝑡

𝑖

7: else
8: 𝑟𝑡

𝑖
= 𝑣 ′, where 𝑣 ′ is uniform random sampled fromHG

9: return 𝑟𝑡
𝑖

TheM𝑐𝑜𝑙𝑑 mechanism randomizes the items determined to be cold by theM 𝑗𝑢𝑑𝑔𝑒 mechanism

when an item inHG is about to be evicted. We show the overall flow of the Randomize algorithm

in Algorithm 5, and theM 𝑗𝑢𝑑𝑔𝑒 ,Mℎ𝑜𝑡 , andM𝑐𝑜𝑙𝑑 mechanisms in Algorithm 6, Algorithm 7, and

Algorithm 8, respectively.
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Algorithm 8 BDR (Randomize-M𝑐𝑜𝑙𝑑 )

Input: raw data 𝑣𝑡
𝑖
, privacy budget 𝜖2, data domain Ω with size 𝑑 , data structureHG.

Output: 𝑟𝑡
𝑖

1: Let 𝑏 ← 𝐵𝑒𝑟 ( 𝑒𝜖2

𝑒𝜖2+𝑑−𝑘−1 )
2: if 𝑣𝑡

𝑖
∉ HG then

3: if 𝑏 == 1 then
4: 𝑟𝑡

𝑖
= 𝑣𝑡

𝑖
5: else
6: 𝑟𝑡

𝑖
= 𝑣 ′, where 𝑣 ′ ∈ Ω/HG and 𝑣 ′ ≠ 𝑣𝑡

𝑖

7: else
8: 𝑟𝑡

𝑖
= 𝑣 ′, where 𝑣 ′ is uniform random sampled from Ω/HG

9: return 𝑟𝑡
𝑖

Algorithms. At timestamp 𝑡 , the user obtains the current raw data 𝑣𝑡𝑖 , which is a hot item or a cold

item. Note that the server can write the currently recorded hot items to a bulletin board in real

time or the users can obtain the set of hot items from the response module at any time. Therefore,

users can always know the current hot items and cold items when randomizing their data. Firstly,

the user randomizes whether 𝑣𝑡𝑖 is a hot item using theM 𝑗𝑢𝑑𝑔𝑒 mechanism, which is a binary flip.

The error introduced by theM 𝑗𝑢𝑑𝑔𝑒 mechanism is independent of the size of the data domain. If

theM 𝑗𝑢𝑑𝑔𝑒 mechanism determines that 𝑣𝑡𝑖 is a hot item, then 𝑣𝑡𝑖 needs to be randomized on the

data domain covered by items recorded inHG with theMℎ𝑜𝑡 mechanism. If 𝑣𝑡𝑖 is a hot item,Mℎ𝑜𝑡

mechanism randomizes it in the data domain covered by items recorded in HG as the general

GRR. If 𝑣𝑡𝑖 is actually a cold item,Mℎ𝑜𝑡 mechanism uniformly and randomly maps it to any item

contained inHG. Otherwise, the user sends “⊥” to the server if theM 𝑗𝑢𝑑𝑔𝑒 mechanism determines

that 𝑣𝑡𝑖 is a cold item.

We consider a special case where theM 𝑗𝑢𝑑𝑔𝑒 mechanism determines that 𝑣𝑡𝑖 is a cold item, but the

count of the weakest KV pair inHG is reduced to 0 by the ED strategy. Then the server would need

this cold value to replace the item inHG. Therefore, we provide theM𝑐𝑜𝑙𝑑 mechanism, similar to

theMℎ𝑜𝑡 mechanism, randomizing the data in the data domain covered by the cold items. When

the user observes that the count of the weakest KV pair inHG is equal to or smaller than 1, the

user usesM𝑐𝑜𝑙𝑑 mechanism to randomize 𝑣𝑡𝑖 and then sends it to the server when 𝑣𝑡𝑖 is determined

to be cold. TheHG has a high probability of replacing the weakest item with a cold item in this

case. Note that the privacy budget consumed byM𝑐𝑜𝑙𝑑 is the remaining budget 𝜖2 at timestamp 𝑡 ,

and the total privacy budget for 𝑣𝑡𝑖 is still limited to 𝜖 . Figure 4 shows an example at 6 timestamps

to illustrate the randomization process.

Next, we discuss how the response module on the server debiases the counts of hot items stored

inHG. Denote 𝑝1 as the probability 𝑒𝜖1

𝑒𝜖1+1 , 𝑞1 as the probability
1

𝑒𝜖1+1 , 𝑝2 as the probability
𝑒𝜖2

𝑒𝜖2+𝑘−1 ,

𝑞2 as the probability
1

𝑒𝜖2+𝑘−1 . Let 𝑛𝑢𝑚 denote the total number of data received by the server from

the beginning of the statistics to the current timestamp, and 𝛾ℎ denote the proportion of hot items.

Let
¯𝑓𝑣 be the noisy recorded count of item 𝑣 , then the debiased estimation result

˜𝑓𝑣 is calculated as

˜𝑓𝑣 =
¯𝑓𝑣 − 𝛾ℎ · 𝑛𝑢𝑚(𝑝1𝑞2 − 𝑞1/𝑘) − 𝑛𝑢𝑚 · 𝑞1/𝑘

𝑝1 (𝑝2 − 𝑞2)
(2)

Here,𝛾ℎ can be obtained from the warm-up round or the prior knowledge of data distribution, which

is discussed in detail in Section 6. We show the details of the Response algorithm in Algorithm 9.

Besides, we omit the details of the Insert algorithm here since it is the same as that of BGR shown

in Algorithm 1.
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Algorithm 9 BDR (Response)

Input: timestamp 𝑡 , privacy budget 𝜖1, 𝜖2, data domain Ω with size 𝑑 , data structure HG, number of the

received data 𝑛𝑢𝑚.

Output: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡
1: 𝑝1 =

𝑒𝜖1
𝑒𝜖1+1 , 𝑝2 =

𝑒𝜖2

𝑒𝜖2+𝑘−1 , 𝑞1 =
1

𝑒𝜖1+1 , 𝑞2 =
1

𝑒𝜖2+𝑘−1
2: if receive a Top-𝑘 query then
3: for eachHG[ 𝑗] ∈ HG do
4: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡 [ 𝑗] .𝐼𝐷 ←HG[ 𝑗] .𝐼𝐷
5: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡 [ 𝑗] .𝐶 ←HG[ 𝑗] .𝐶 − 𝑛𝑢𝑚 · (𝛾ℎ𝑝1𝑞2 + (1 − 𝛾ℎ)𝑞1/𝑘)/(𝑝1 (𝑝2 − 𝑞2))
6: return 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑖𝑠𝑡

Item 1 5 7

Count 20 18 2
Item 2 3 4 6 8 9 10

Heavy Items Cold Items

1 3 1 5 7 9 timev𝑖
𝑡

Outputs
𝑀judge Hot Cold HotHot Cold Cold

𝑀ℎ𝑜𝑡 5 1 1⊥ ⊥ ⊥

𝑀𝑐𝑜𝑙𝑑 8 Replace 𝟕 in 𝑳

Privacy Budget𝜀 𝜀1 𝜀 𝜀 𝜀𝜀1

Fig. 4. An example of BDR.

Theoretical Analysis.We show that BDR satisfies 𝜖-LDP as below.

Theorem 4.1. BDR satisfies 𝜖-LDP.

Proof. Firstly,M 𝑗𝑢𝑑𝑔𝑒 satisfies 𝜖-LDP since 𝑝1/𝑞1 = 𝑒𝜖1 . Secondly,𝑀ℎ𝑜𝑡 satisfies 𝜖2-LDP since

𝑝2𝑘 ≤ 𝑝2/𝑞2 = 𝑒𝜖2 . Similarly, 𝑀𝑐𝑜𝑙𝑑 also satisfies 𝜖2-LDP. Therefore, BDR satisfies (𝜖1 + 𝜖2)-LDP.
The detailed proof is deferred to Appendix A.4 in [46]. □

Then we show the error bound of BDR in Theorem 4.2.

Theorem 4.2. Given a stream prefix 𝑆𝑡 with 𝑡 items randomized by BDR satisfying 𝜖-LDP and there
is a data structureHG to store the Top-𝑘 items. Let 𝑣𝑖 be the 𝑖 th hottest item, 𝑓𝑖 be the real frequency
of 𝑣𝑖 , ˜𝑓𝑖 be the final estimated frequency of 𝑣𝑖 . We have

𝑃𝑟 [𝑓𝑖 − ˜𝑓𝑖 ≤ (3
√︂

𝑡 log(3/𝛽)
2

+ 𝛼𝑡) · (𝑒
𝜖1 + 1) (𝑒𝜖2 + 𝑘 − 1)

𝑒𝜖1 (𝑒𝜖2 − 1) ]

≥ (1 − 𝛽) (1 − 1

2𝛼
(1 −

√︂
1 − 4𝑃𝑤𝑒𝑎𝑘𝐸 (𝑉 )

𝑏 − 1 ))

where 𝑃𝑤𝑒𝑎𝑘 =
(𝑖−1)!(𝑑−𝑘 )!
(𝑑−1)!(𝑖−𝑘 )! , 𝐸 (𝑉 ) =

∑𝑑
𝑗=𝑖+1 𝑓𝑗 , 𝛼 and 𝛽 are small positive numbers with 𝛼, 𝛽 ∈ (0, 1).

Proof. The approach of the proof is similar to that of Theorem 3.2, the error bound of final

debiased frequency
˜𝑓𝑖 compared to 𝑓𝑖 can be obtained by combining the error bounds of

ˆ𝑓𝑖 − ¯𝑓𝑖 and

𝑓𝑖 −
ˆ𝑓𝑖−𝑁ℎ𝑝1𝑞2−(𝑡−𝑁ℎ ) · 𝑞1𝑘

𝑝1 (𝑝2−𝑞2 ) , where 𝑁ℎ is the number of hot items and 𝑁ℎ ≤ 𝑡 . The detailed proof is

deferred to Appendix A.3 in [46]. □

The result of Theorem 4.2 shows that BDR significantly reduces the impact of the large data

domain on the accuracy of the statistical results compared to BGR and DSR (Theorem 3.2).
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Algorithm 10 CNR (Randomize)

Input: timestamp 𝑡 , privacy budget 𝜖 , data domain Ω with size 𝑑 , data structureHG.
Output: 𝑟𝑡

𝑖
1: Divide 𝜖 into 𝜖1 and 𝜖2, where 𝜖1 + 𝜖2 = 𝜖 ;

2: Obtain the current raw data 𝑣𝑡
𝑖
;

3: 𝐹𝑙𝑎𝑔←M 𝑗𝑢𝑑𝑔𝑒 (𝑣𝑡𝑖 , 𝜖1) ⊲ Determine whether 𝑣𝑡
𝑖
is hot or cold

4: if Flag==1 then ⊲ 𝑣𝑡
𝑖
is determined as hot

5: 𝑟𝑡
𝑖
←Mℎ𝑜𝑡 (𝑣𝑡𝑖 , 𝜖2)

6: else ⊲ 𝑣𝑡
𝑖
is determined as cold

7: 𝑟𝑡
𝑖
←M𝑐𝑜𝑙𝑑 (𝑣𝑡𝑖 , 𝜖2)

8: return 𝑟𝑡
𝑖

Algorithm 11 CNR (Insert)

Input: timestamp 𝑡 , data domain Ω with size 𝑑 , data structureHG, number of the received data 𝑛𝑢𝑚.

Output: UpdatedHG
1: Receive an incoming data 𝑟𝑡

𝑖
;

2: 𝑛𝑢𝑚 ← 𝑛𝑢𝑚 + 1
3: Insert 𝑟𝑡

𝑖
into Heavy part ofHG following ED strategy;

4: if 𝑟𝑡
𝑖
not in Heavy part ofHG then

5: Insert 𝑟𝑡
𝑖
into Light part ofHG following ED strategy;

6: if the least count in Heavy partHG[𝑘] .𝐶 ≤ 0 then
7: Replace the weakest KV pair in Heavy part with the king KV pair in Light part, where their counts

are set to 1.

8: return UpdatedHG

4.3 CNR (Cold-Nomination Randomization)
In BDR, we find that the privacy budget 𝜖2 is unexploited when the data is determined to be a

cold item and there is no item inHG that is about to be evicted, which can be observed in Figure

4. Besides, there is a light part in the original data structure of HG used to store the counts of

cold items (see Figure 2). The length of this part 𝜆𝑙 is set to 0 in BGR, DSR, and BDR. Driven by

these observations, we propose a new scheme CNR, which uses these two idle resources to further

improve the accuracy over BDR.

Algorithms. Algorithm 10 shows the Randomize algorithm of CNR, similar to that of BDR. All

the data determined as cold items byM 𝑗𝑢𝑑𝑔𝑒 mechanism are randomized to specific cold items on

the cold domain usingM𝑐𝑜𝑙𝑑 mechanism, rather than callingM𝑐𝑜𝑙𝑑 mechanism only when there is

a hot item to be evicted. Here,M 𝑗𝑢𝑑𝑔𝑒 ,Mℎ𝑜𝑡 , andM𝑐𝑜𝑙𝑑 are the same as Algorithms 6, 7, and 8

in BDR. When inserting the randomized items into HG, the cold items that cannot be inserted

into the heavy part are inserted into the light part following the ED strategy. Then the light part

helps to provide a more accurate potential hot item to become a new hot item when a value in the

heavy part is about to be evicted. Note that the light part only provides selected cold items, and its

count is set to 1 when a cold item enters the heavy part, just the same as BDR. Thus, the debiasing

formula of the counts in the heavy part is the same as that of the BDR, avoiding debiasing the

randomized counts from different output domains like DSR. We show the Insert in Algorithm 11,

and the Response is the same as Algorithm 9.

Theoretical Analysis. Firstly, CNR still satisfies 𝜖-LDP, and the privacy budget consumed by

randomizing data is 𝜖1 + 𝜖2 = 𝜖 . Then, the error bound of counts recorded in the heavy part is

the same as Theorem 4.2 shown in BDR, since CNR only provides a better cold item to become a
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new hot item when there is an item to be evicted. Note that all theoretical analyses for the error

bound of the counts we provide only consider the error of the recorded counts without considering

whether the items are true hot items. Since the accuracy of the hot items tracked by the scheme is

influenced by both initialHG and data distributions, we evaluate it by conducting a comprehensive

evaluation in Section 5.

Besides, CNR has no specific requirement for the length of the light part 𝜆𝑙 , as long as it satisfies

𝜆𝑙 > 0. The longer light part can provide more accurate new hot items to the heavy part. The

setting of 𝜆ℎ can refer to the original HG [62], or set a small constant according to the specific

requirements. In our experiments, setting 𝜆𝑙 = 5 for finding Top-20 items on a concentrated data

distribution can observe a significant improvement for small 𝜖 . Furthermore, the counters in the

light part ofHG are tailored for cold items, and the counter size is very small, e.g., 4 bits. Therefore,

CNR does not increase too much additional memory consumption compared to the other schemes

and still meets high memory efficiency.

5 EXPERIMENTAL EVALUATION
In this section, we design experiments to evaluate our proposed schemes. The evaluation mainly

includes four aspects: (1) the accuracy of the heavy hitters via the proposed schemes; (2) the

accuracy achieved by the proposed schemes compared with the baselines; (3) the impact of the

key parameters on the accuracy of the proposed schemes; (4) the memory size consumed by the

proposed schemes compared with the baselines. Towards these goals, we conduct experiments

on both synthetic and real-world datasets, and simulate to collect streaming data from users at

continuous timestamps for heavy hitter analysis. Besides, we introduce different metrics to evaluate

the accuracy of the results from three different aspects.

To better guide the application of the schemes in practice, we also conduct supplementary

experiments on more datasets and test the computation and communication overheads. Please refer

to Appendix A.8 in [46] for details.

5.1 Setup
Datasets.We run experiments on the following datasets:

• Several synthetic datasets are generated with two different distributions and three domain

sizes. One kind of datasets are generated by randomly sampling data from a Normal distribu-

tion with variance 𝜎 = 5, and others are generated from an Exponential distribution with

variance 𝜎 = 10. There are 𝑛 = 100, 000 values in each dataset.

• Retail dataset [1] contains the retail market basket data from an anonymous Belgian retail

store with around 0.9 million values and 16𝑘 distinct items.

• Kosarak dataset [3] contains the click streams on a Hungarian website, with around 8 million

values and 42𝑘 URLs.

• Webdocs dataset [2] is constructed from a collection of web HTML documents, which com-

prises around 300 million records, and 5.26 million distinct items.

Metrics. In reality, various applications focus on different aspects of the heavy hitter estimation

results. Therefore, we have to comprehensively evaluate the quality of the results from three aspects:

(1) how accurately thatHG captures the actual heavy hitters; (2) how accurately that the ordering

of the heavy hitters inHG; (3) how accurately thatHG captures the actual counts of heavy hitters.

We use the following three metrics to cover each aspect:
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Precision. It measures the accuracy of the actual heavy hitters captured byHG. It is the number

of actual heavy hitters divided by the number of all items inHG, as given by

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝐴𝑐𝑡𝑢𝑎𝑙 ℎ𝑒𝑎𝑣𝑦 ℎ𝑖𝑡𝑡𝑒𝑟𝑠 𝑖𝑛 HG

#𝐻𝑒𝑎𝑣𝑦 ℎ𝑖𝑡𝑡𝑒𝑟𝑠
.

Normalized Discounted Cumulative Gain (NDCG). It measures the ordering quality of the heavy

hitters captured byHG, which is a common effectiveness in recommendation systems and other

related applications. 𝑁𝐷𝐶𝐺 is between 0 and 1 for all 𝑘 , and the closer it is to 1 means the ordering

quality ofHG is higher. The formulas for calculating NDCG is deferred to Appendix A.6 in [46].

Average Absolute Error (AAE). It measures the error of the counts of the actual Top-𝑘 items with

their estimated counts recorded inHG, which can be calculated as

𝐴𝐴𝐸𝑘 =
1

𝑘

𝑘∑︁
𝑖=1

|𝑓𝑎𝑐𝑡𝑢𝑎𝑙 (𝑣𝑖 ) − 𝑓𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (𝑣𝑖 ) |.

If an actual hot item is not recorded byHG, its AAE is calculated by setting the estimated count

as 0. For consistent and fair comparisons, we post-process all counts recorded byHG to 0 when

calculating AAE. All results in experiments are averaged with 20 repeats.

5.2 Implementation Details
We fully implemented our schemes and all baselines in Java to provide unified concrete performance

comparisons. For all schemes, we separately implement the server and the client side, and the

perturb data for communication are serialized to ‘byte[]’. This makes our implementation easier to

be deployed in practice, in which the server and clients would communicate via network channels

using byte strings. In our experiments, focus more on the effectiveness of our schemes so that we

run the server and the client on a single process. All experiments are run on Ubuntu 20.04 with 96

Intel Xeon 2.20 GHz CPU and 256 GB RAM. Our source code is available for public request. Besides,

we have some improvements compared with the original implementation in our re-implementation

for both LDP mechanisms and original HeavyGuardian. More implementation details are deferred

to Appendix A.7 in [46].

5.3 Analysis of Experimental Results
Comparison of Accuracy. We compare the accuracy of the baseline scheme and three advanced

schemes with the non-private HeavyGuardian and two LDP mechanisms: Generalized Randomized

Response (GRR) and Hadamard Response (HR) (HR performs the best in our evaluation, see Figure

11 in Appendix A.7 in [46]). We evaluate all schemes on the Synthetic, Retail, Kosarak, and Webdocs

datasets. The results for three metrics: NDCG, Precision, and AAE are shown in Figure 5, Figure 6,

and Figure 7, respectively. Since running GRR and HR exceeds the computing or storage capabilities

of our server, we only show the results of our schemes on the Webdocs dataset. In each figure,

we vary the privacy budget 𝜖 within a range of [0.5, 5]. All schemes involve a warm-up stage for

fairness of the comparison.

Firstly, we observe that the accuracy of the proposed schemes BGR, DSR, BDR, and CNR improves

sequentially. The improvement of DSR compared with BGR is more obvious as 𝜖 increases, and the

advantage of CNR over BDR is more significant as 𝜖 decreases. We think the reason is that when 𝜖

is large, i.e., 𝜖 > 1, the randomized hot items are still concentrated and there are fewer times to

randomize on the entire domain to provide specific cold items for replacing with the weakest hot

items in HG, thus the improvement achieved by DSR is relatively significant. When 𝜖 is small,

i.e., 𝜖 < 1, the distribution of the randomized data is relatively uniform, thus the weakest hot

item inHG always need to be replaced. In this case, the advantage of CNR compared to BDR in

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 30. Publication date: February 2024.



30:18 Xiaochen Li et al.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ε

0.2

0.4

0.6

N
D

C
G

(a) Synthetic

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ε

0.0

0.5

N
D

C
G

(b) Kosarak

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ε

0.0

0.2

0.4

0.6

N
D

C
G

(c) Retail

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ε

0.0

0.2

0.4

N
D

C
G

(d) Webdoc

PD GRR HR BasicLdpPD DirectLdpPD BufferLdpPD AdvLdpPD

Fig. 5. Evaluation of NDCG for Top-20 on both synthetic and real-world datasets while taking 1% data for
warm-up stage.
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Fig. 6. Evaluation of Precision for Top-20 on both synthetic and real-world datasets while taking 1% data for
warm-up stage.
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Fig. 7. Evaluation of AAE for Top-20 on both synthetic and real-world datasets while taking 1% data for
warm-up stage.
providing more potential cold items to enterHG can be more obvious. Besides, we find that these

observations are not pronounced on two real-world datasets. The reason is that those real-world

datasets have large data domains and irregular data distributions. Therefore,HG needs to replace

the items frequently even if the 𝜖 is relatively large. This means that DSR always randomizes the

data on the entire domain in the same way as BGR. In addition, the large data domain can also lead

to low accuracy in the light part ofHG. Then the performance of the CNR is similar to BDR in

this case.

Secondly, compared with the non-private HeavyGuardian and memory-unlimited LDP random-

ization mechanisms, BDR and CNR outperform GRR on all datasets in terms of all metrics when

𝜖 < 3. Moreover, their accuracy on the synthetic dataset is close to HR, and the accuracy on all

datasets is close to non-private HeavyGuardian. In all three datasets, BDR and CNR are set to

𝜖1/𝜖2 = 0.5, and their parameter 𝛾ℎ is calculated during the warm-up stage. We also observe that

the performance of BGR and DSR gradually dominates that of GRR as the size of the data domain

increases when 𝜖 < 3.5. However, their accuracy is much lower than that of BDR and CNR when

the domain size is extremely large.

Finally, we observe that the NDCG of all schemes is slightly lower than their Precision on all

datasets. The main reason is that NDCG considers the ordering weights of the hit items in addition

to whether the true hot items are hit or not. Besides, the comparison results of all schemes in terms

of AAE on all datasets are consistent with the comparison of NDCG and Precision. The AAE of the

statistical results of BGR, DSR, BDR, and CNR decreases in turn.
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Fig. 8. Accuracy of BDR and CNR vs. different allocations of privacy budget; Conducted on the two synthetic
datasets with Normal distribution and Exponential distribution, where the domain size 𝑑 = 1000, and taking
1% data for warm-up stage.
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Fig. 10. The impact of the warm-up stage on the accuracy of the proposed schemes for tracking Top-𝑘 items
on synthetic dataset with normal distribution, where 𝜖 = 2.

Impact of Key Parameters on the Accuracy.We evaluate the impact of key parameters on the

accuracy of the proposed schemes by varying them within a certain range. In order to eliminate

the interference of irregular distribution on the evaluation, we conduct experiments on several

synthetic datasets. Due to limited space, we only present the NDCG and Precision of the statistical

results on two synthetic datasets with Normal distribution and Exponential distribution. The results

of all metrics on more synthetic datasets with different domain size are deferred to Appendix A.8

in [46].

Firstly, Figure 8 shows the impact of the allocation method of privacy budget 𝜖 on the accuracy of

BDR and CNR. We observe that BDR and CNR allocate less privacy budget to 𝜖1 and more privacy

budget to 𝜖2 can obtain higher accuracy of the statistical results. The improvement of NDCG is

significant when 𝜖1/𝜖2 decreases from 2/1 to 1/9, and the increase slows down after 𝜖1/𝜖2 is less
than 1/9. We think the reason is that a hot item recorded inHG is randomized to a cold item with

a greater probability when 𝜖1 is small, and the number of data that is a hot item is larger than data

that is a cold item, which leads to the items inHG are easier to be evicted. Meanwhile, increasing

𝜖2 can improve the correctness of the orders of the items recorded in HG. Therefore, reducing
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Table 1. Comparison of memory size (KB) consumed by schemes on different datasets.

Scheme

Dataset

Synthesize Kosarak Webdocs

HeavyGuardian 2.40 2.40 2.41

GRR 153.33 6154.99 -

HR 153.41 6249.77 -

BGR 2.66 2.66 2.67
DSR 2.73 2.73 2.75
BDR 2.69 2.68 2.70
CNR 3.43 3.09 3.43

𝜖1/𝜖2 can increase the probability that the hot items with a small count are replaced by other

cold items, so that the real hot items can occupy theHG faster. This is also consistent with the

experimental results in originalHG (Figure 4(a), [62]). The accuracy of the result increases when

the parameter 𝑏 is reduced to make it easier for the new item to enterHG, but the improvement

becomes no longer obvious when 𝑏 is reduced to a certain small value. Therefore, we recommend

setting 𝜖1/𝜖2 = 1/9 to get near-optimal accuracy in the actual deployment of BDR and CNR. We

also conduct the evaluations on synthetic datasets with different domain sizes, and obtain the

consistent observations with the above. The results are shown in Figure 12-Figure 17 in Appendix

A.8 in [46]. Moreover, we find that increasing the domain size has some impact on the accuracy of

the schemes, but we can still improve the accuracy by adjusting the privacy budget allocation.

Then Figure 9 shows the impact of the parameter 𝛾ℎ on the accuracy of the BDR and CNR.

We calculate the exact 𝛾ℎ ≃ 0.92. As a debiasing parameter, 𝛾ℎ directly affects the counts of the

statistical result, so the impact of 𝛾ℎ can be clearly observed from the AAE of the result. However,

the indirect impact on NDCG is not obvious, the lines in the figure are fluctuating. An interesting

phenomenon can be observed from the AAE of the results. More accurate 𝛾ℎ does not necessarily

give more accurate count of the result. The reason is that the ED strategy continuously reduces

the counts of the weakest item with a certain probability, which causes the statistical results to be

underestimated. According to debiasing Equation 2, reducing 𝛾ℎ can cause the debiased result to be

over-estimated, thereby offsetting part of the bias introduced by the ED strategy.

Finally, Figure 10 shows the impact of the warm-up stage on the accuracy of the baseline BGR

and the proposed three schemes. We compared their accuracy using five different datasets for the

warm-up stage. The five datasets include a uniformly random dataset with the size of 50, a dataset

with the size of 50 and distribution skewed from the true normal distribution, and two datasets with

the true normal distribution with sizes of 50 and 500. We can observe that their accuracy increases

as the distribution of the dataset used in the warm-up stage approaches the true distribution and

as the size of the dataset increases. Specifically, BDR and CNR set 𝜖1/𝜖2 = 0.5, and they are least

affected by the warm-up stage among all schemes. We think the reason is that the current cold

items in BDR and CNR are easier to enterHG to become new hot items, which reduces the impact

of the accuracy of the initialHG on the final statistical result. Similar observations can be obtained

on the real-world datasets, and the results are shown in Figure 18 in Appendix A.8 in [46].

Comparison of Memory Consumption. We then evaluate the total memory size consumed

by all schemes when tracking Top-20 heavy hitters on the four different datasets. We present the

results in Table 1. The proposed schemes show a significant advantage in memory consumption

when the data domain is large, such as in the Kosarak and Webdocs datasets. We can observe that

the memory size consumed by the GRR and HR increases linearly as the domain size 𝑑 increases.

In contrast, the memory consumed by all space-saving schemes is only related to the number of
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tracked heavy hitters 𝑘 , and 𝑘 is usually much smaller than 𝑑 . Note that the GRR and HR do not

have memory consumption available for the Webdocs dataset since the computation or memory

requirements of these schemes exceeded the capacity of the server used for testing. Additionally,

we conduct tests to evaluate the computation and communication overhead of all schemes. The

detailed results of these tests can be found in Appendix A.8 in [46].

6 DISCUSSION
In this section, we supplementally discuss more details about the practical implementation and the

potential extension of these schemes.

6.1 System Parameters & Implementations
Warm-up Stage. In practice, our framework along with the theoretical designs and analyses are

applied to a steady state where theHG are filled during previous timestamps, rather than dealing

with the cold-start scenario whereHG is empty. Therefore, to simulate such a steady state where

HG is properly warm-started, we consider all the proposed schemes include a warm-up round at

the beginning of the statistics. Note that although CNR needs to use the light part inHG structure,

only the heavy part should be filled in the warm-up stage like other schemes. The data for the

warm-up stage can be a priori dataset stored on the server or data voluntarily contributed by users

in the first round of the statistics. There is no specific requirement for the number of data in the

warm-up stage. The only requirement is that the data should at least be able to fill theHG. Besides,
the closer the distribution of the priori dataset to the real data distribution, or the larger the number

of data that users voluntarily contribute, the higher the accuracy ofHG in the subsequent statistics.

Parameter 𝛾ℎ in BDR and CNR. The debiasing formula for both BDR and CNR contains a

parameter 𝜆ℎ , which is the proportion of data that is the hot item in the stream. The server

actually does not know the specific value of 𝛾ℎ , but it can be theoretically calculated based on

prior knowledge about the data distribution. If the server has no prior knowledge about the data

distribution, 𝛾ℎ can also be statistically obtained from the initial HG after the warm-up stage.

Certainly, 𝛾ℎ obtained by the above two methods both inevitably introduce additional errors to the

estimated results, and the impact is evaluated in the experiments. However, the current design of

schemes cannot avoid it, and we leave it for future work.

Privacy Parameters 𝜖1, 𝜖2 in BDR and CNR. Next, we analyze how to split the privacy budget 𝜖

into 𝜖1 and 𝜖2 in BDR and CNR, based on insights from our theoretical and experimental results.

Our theoretical analysis in Theorem 4.2, provides an error bound for estimating the count of

hot items in BDR, which is equally applicable to CNR. It shows that allocating a larger portion

of the privacy budget to 𝜖2 leads to a reduced error bound, which is further corroborated by our

experimental results in Figure 8(b)(d)(f)(h). In fact, the count error only focuses on the accuracy

of counts for hot items already identified by the data structure. This calculation excludes errors

coming from the misclassification of hot items due to randomization with 𝜖1.

However, the estimation is complex when considering the impact of 𝜖1 and 𝜖2 on the precision

of the data structureHG in capturing the true hot items. Increasing the privacy budget allocated

to 𝜖1 does reduce the probability of determining hot data as cold and simultaneously enhances the

probability that currently recorded items remain withinHG. Nevertheless, this does not necessarily
get an improved precision in capturing items withinHG. The setting of parameter 𝑏 inHG [62]

faces the same dilemma. Increasing 𝑏 will reduce the probability of the current cold values entering

HG, and vice versa. Multiple factors collaboratively impact the precision ofHG in capturing hot

items. For instance, when the initial HG captures inaccurate hot items, a higher probability of

eviction among recorded items withinHG can lead to improved precision; if the true hot items
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are concentrated in the first half of the data stream, a higher probability of retention for items

withinHG can result in higher precision. It can also be observed from the experimental results

that the Precision and NDCG of the results on some data streams are not as regular as those of

AAE as 𝜖1 and 𝜖2 change, i.e., when hot items are distributed in a more dispersed manner within

the Exponential distribution as opposed to the Normal distribution, the NDCG depicted in Figure 8

emphasize that allocating a smaller fraction of 𝜖1 does not confer any discernible advantage. In

[62], they provide an empirical value, i.e., 𝑏 = 1.08. Based on our comprehensive evaluations, we

suggest setting 𝜖1/𝜖2 = 0.5 in most scenarios can achieve promising accuracy.

Guidance on Scheme Selection. In this paper, we introduce three enhanced schemes, each making

distinct trade-offs between accuracy, computational overhead, and memory usage. According to

our theoretical and experimental results, we summarize a table, as detailed in Table 2, including

three advanced designs and a baseline in terms of accuracy, computation overhead, and memory

consumption. From the baseline BGR to DSR, BDR, and CNR, there is a sequential improvement

in the accuracy of the results. Meanwhile, this enhancement comes at the cost of increased com-

putational complexity on the client side or memory consumption on the server side. In practical

deployment, we recommend selecting a scheme based on the specific performance requirements of

the task.

Table 2. Performance comparison of baseline method and proposed schemes.

BGR DSR BDR CNR

Accuracy 4th 3rd 2nd 1st

Computation Overheads 1st 2nd 3rd 4th

Memory Consumption 1st 1st 1st 2nd

6.2 Extensions
𝑤-Event-Level and User-Level Privacy.While the schemes proposed in this paper offer event-

level privacy guarantees, they possess the flexibility to be extended to offer enhanced privacy

protection, including 𝑤-event-level privacy and user-level privacy. Specifically, 𝑤-event-level

privacy ensures 𝜖-LDP within any sliding window of size𝑤 , while user-level privacy guarantees

𝜖-LDP for all streaming data contributed by an individual user.

To achieve𝑤-event-level privacy and user-level privacy for finite data streams, we could distribute

the privacy budget evenly across each timestamp. This entails changing the privacy budget used for

randomizing each streaming data point from 𝜖 to 𝜖/𝑤 and 𝜖/𝑙 , where 𝑙 represents the length of the

finite data stream. We have to mention that while there are existing methods that outperform the

average allocation approach [34, 35, 42], applying them to our proposed schemes presents certain

challenges. The primary obstacle lies in the variation of privacy budgets used to randomize each

streaming data, which can impede the server to debias the accumulated counts in the heavy list. This

complication also obstructs the application of the schemes to provide user-level privacy for infinite

data streams. An intuitive approach to address this issue is that the server to independently debias

each incoming streaming data point using the privacy budget transmitted by the user concurrently.

However, this approach may introduce increased computational complexity on the server’s end

and heightened communication complexity for the user. We leave this challenge for future research

and exploration.

Other Tasks. Since the proposed framework HG-LDP focuses on the heavy hitter estimation

task, only CNR involves the Light part of the data structure HG to store the counts of part of
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cold items. When CNR extends its functionality to store the counts of all cold items in the Light

part as in [62], it can also support other tasks supported in [62], such as frequency estimation

and frequency distribution estimation. It’s essential to note that these tasks, even functionally

supported, encounter a challenge related to accuracy when randomizing within large data domains.

The new LDP randomization mechanisms in this paper are designed by utilizing the characteristics

of the heavy hitter tasks to only ensure the accuracy of hot items. We intend to delve deeper into

this aspect as part of our future research efforts.

7 RELATED WORK
An extended Related Work is in Appendix A.9 in [46].

Differential Private Data Stream Collection The earliest studies in differential privacy for

streaming data collection originate from continuous observation of private data [8, 26, 29, 32, 33].

Recent works on differential private data stream collection mainly focus on Centralized Differential

Privacy (CDP). Some works study how to publish the summation of the streaming data privately

[34, 42, 50, 58]. Some works study the release of correlated streaming data [9, 56] propose a

correlated Gaussian noise mechanism. Some recent works focus on data stream collection with

Local Differential Privacy (LDP) [40, 52, 58].

Tracking Heavy Hitters in Data stream Mining streaming data faces three principal challenges:

volume, velocity, and volatility [43]. The existing heavy hitters estimation algorithms in the data

stream can be divided into three classes: Counter-based algorithms, Quantile algorithms, and Sketch

algorithms [20]. Counter-based algorithms track the subset of items in the stream, and they quickly

determine whether to record and how to record with each new arrival data [48, 49, 62, 65]. The

Quantile algorithms [38, 54] focus on finding the item which is the smallest item that dominates

𝜙𝑛 items from the data stream. Sketch algorithms [7, 18, 23, 45] record items with a data structure,

which can be thought of as a linear projection of the input, hash functions are usually used to define

that. However, the sketch algorithms involve a large number of hash operations, which cannot

meet the timeliness requirements of streaming data. Besides, all items are recorded and additional

information needs to be stored for retrieval, which leads to unnecessary memory consumption

[20]. Our design is based on Counter-based algorithms with an extended setting where streaming

data is protected by LDP.

8 CONCLUSION
In this paper, we proposed a framework HG-LDP for tracking the Top-𝑘 heavy hitters on data

streams at bounded memory expense, while providing rigorous LDP protection. A baseline and

three advanced schemes with new LDP randomization mechanisms are designed under the hood

of the framework. We implement all the proposed schemes and evaluate them on both synthetic

and real-world datasets in terms of accuracy and memory consumption. The experimental results

demonstrated that the proposed schemes achieve a satisfactory “accuracy-privacy-memory ef-

ficiency” tradeoff. For future work, we will extend the framework to be compatible with more

diverse selections of memory-efficiency data structures as well as broader types of statistical tasks

to enhance its flexibility.
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