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Abstract

We introduce a new type of characteristic sets of difference polynomials using a
generalization of the concept of effective order to the case of partial difference poly-
nomials and a partition of the basic set of translations o. Using properties of these
characteristic sets, we prove the existence and outline a method of computation of a
multivariate dimension polynomial of a finitely generated difference field extension
that describes the transcendence degrees of intermediate fields obtained by adjoin-
ing transforms of the generators whose orders with respect to the components of the
partition of o are bounded by two sequences of natural numbers. We show that such
dimension polynomials carry essentially more invariants (that is, characteristics of
the extension that do not depend on the set of its difference generators) than pre-
viously known difference dimension polynomials. In particular, a dimension poly-
nomial of the new type associated with a system of algebraic difference equations
gives more information about the system than the classical univariate difference
dimension polynomial.

Keywords Difference polynomials - Effective order - Characteristic set - Dimension
polynomial

1 Introduction

Hilbert-type dimension polynomials of difference field extensions, difference mod-
ules and prime difference ideals play the same role in difference algebra as Hilbert
and Hilbert-Samuel polynomials play in commutative algebra and algebraic geom-
etry. In particular, a system of algebraic difference equations can be characterized by
its associated difference dimension polynomials; these polynomials are of primary
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32 A. Levin

importance for the problem of equivalence of such systems and for the comparative
analysis of systems of algebraic difference equations arisen from systems of PDEs.
Univariate difference dimension polynomials introduced in [6] and [7] character-
ize difference modules and difference field extensions in the same way as Hilbert
polynomials characterize the corresponding structures in commutative algebra and
algebraic geometry. A similar concept of differential dimension polynomial intro-
duced in [3] plays an important role in the study of finitely generated differential
field extensions, differential modules and algebras. An important property of dimen-
sion polynomials is the fact that they carry certain invariants of the corresponding
difference or differential algebraic structure, that is, elements which do not depend
on the choice of the system of its generators. The above mentioned results were gen-
eralized to the case of an arbitrary partition of the basic set of operators (deriva-
tions or/and translations) and the corresponding multivariate filtrations of difference
(as well as differential) modules and field extensions, see [10, 11], and [12]. It was
shown that multivariate dimension polynomials whose existence was proved in these
papers carry more invariants of the corresponding difference or differential algebraic
structures than their univariate counterparts. The following theorem proved in [9,
Section 4.2] presents a multivariate dimension polynomial of a finitely generated
difference field extension associated with a partition of the basic set of translations.

Theorem 1.1 Let K be a difference field of characteristic zero with a basic set
o= {ay,...,a,}, that is, a field considered together with the action of elements ¢ as
mutually commuting endomorphisms of the field (they are called translations). Let
T be the free commutative semigroup generated by o and let a partition of the set o
into a disjoint union of its subsets be fixed:

O'=(71U--'U0'p (1.1

where p€N. Let Cardo;,=m; and for any 7= a]l(‘ af,;" eT, let
Ni={jles€o;} and odz=3% vk (<i<p). Furthermore, let

I(ry,....,r))={r€T|odt<r,..., OI'de < rp}foranyrl,...,rp e N.

Let L = K(n,, ..., n,) be a difference (with respect to o) field extension of K gen-
erated by a finite setn = {n,,...,n,}. As afield, L=K({t(n) |t €T,1 <i<n}).)
Then there exists a polynomial y, x(t,,...,t,) in p variables with rational coeffi-
cients such that

(i) Xy(rys....r,) = trdeggK({tn; | © € T(ry,...,1,), 1 <j<n}) for all suf-
(10), cees rI(JO) e N such that the

equality holds for all (ry, ... ,r,) withr; > rlfo), 1<i<p).

Sficiently large (ry, ... ,rp) € NP (that is, there exist r
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Generalized characteristic sets and new multivariate. .. 33

(it) deg, x,x < m;and the polynomial y,(t,, ... ,t,) can be represented as
L +1 t,+i
Ty (t1s -0 1) = Z Z ,<1 1> . <p. p>
i;=0 i,=0 lp
where @, i € Zforalliy,...,i,

(iii) For any permutation (jy, ... ,jp) of the set {1,...,p}, let <j11--~,i,, denote the
lexicographic order on NP such that (ry, ...,r,) jroody (s15---,58,) if and only if
either rj, <s; or there exists k € N, 1 < k < p, such that r = sjvforv =1,..., k=1
and T, <s] Let E K = {(11,...,ip) eN | 0<Li,<m for k=1,...,p and
a; . ;é 0} and let E’ denote the set of all e € E,x that are maximal elements of

! —
E,”K wzth respect to one of the p! orders Sy Then d = deg y,k» A, >

p-tuples (j, ..., j,) € E' WK the corresponding coefficients a; and the coefficients

1--dp’

of the terms of total degree d do not depend on the choice of the system of o-gener-

ators n of L over K. Furthermore, a,, ,, = o-tr.deg gL where o-tr.deg xL denoted
o,

the maximal number of elements §&,,...,§ €L such that the set

{t&; | 7 €T,1 <i<k}isalgebraically independent over K.

The polynomial y, x is called the o-dimension polynomial of L/K associated with
the set of o-generators # = {7, ..., #,} and partition (1.1). (If p = 1, the last theorem
gives a “standard” univariate difference dimension polynomial introduced in [6].)
Theorem 1.1 allows one to assign dimension polynomials to prime difference ideals
of finitely generated difference algebras over difference fields (these are dimension
polynomials of the quotient fields of the corresponding factor rings). Using prop-
erties of difference dimension polynomials, one can efficiently study Krull-type
dimension of difference rings, local difference algebras, and extensions of difference
fields (see, for example, [5, Chapter 7], [9, Chapter 4], and [15]). Furthermore, as
it is shown in [16] and [9, Chapter 7], the dimension polynomial of a differential or
difference polynomial ideal generated by a system of partial differential or, respec-
tively, difference equations expresses Einstein’s strength of the system, its impor-
tant qualitative characteristic introduced in [2]. (See [9, Section 7.7] for the descrip-
tion of the relationship between difference dimension polynomials and Einstein’s
strength of systems of equations in finite differences. The discussion of this relation-
ship in the multivariate case associated with a fixed partition of the set of transla-
tions can be found in [8].)

In this paper we introduce a reduction of difference polynomials associated with
a fixed partition of the set of basic translations. This reduction takes into account
the effective orders of difference polynomials with respect to the elements of the
partition (we generalize the concept of the effective order of an ordinary difference
polynomial defined in [1, Chapter 2, Section 4]). We consider a new type of charac-
teristic sets that are associated with this reduction and use their properties to prove
the existence of a multivariate dimension polynomial of a finitely generated differ-
ence field extension that describes the transcendence degrees of intermediate fields
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34 A. Levin

obtained by adjoining transforms of the generators whose orders with respect to the
elements of the given partitions lie between two given natural numbers. This dimen-
sion polynomial is a polynomial in 2p variables where p is the number of subsets in
the partition of the basic set of translations. We determine invariants of such poly-
nomials, that is, numerical characteristics of the extension that are carried by any its
dimension polynomial and that do not depend on the system of difference generators
the polynomial is associated with. Furthermore, we show (see Examples 2 and 3 in
section 4) that the introduced multivariate difference dimension polynomials carry
essentially more invariants of the corresponding difference field extensions than any
previously known difference dimension polynomials, including such polynomials
defined in Theorem 1.1 and bivariate difference dimension polynomials introduced
in [13] (the corresponding bivariate difference dimension polynomials for finitely
generated difference modules are defined in [14]). Given a finitely generated differ-
ence field extension, the latter dimension polynomial describes the transcendence
degrees of intermediate fields obtained by adjoining transforms of the generators
whose (total) orders lie between two natural numbers. By considering a partition
of the basic set of translations, generalizing the concept of effective order of a dif-
ference polynomial and developing the corresponding method of characteristic sets,
we obtain much stronger results than those of [13]. The fact that the multivariate
difference dimension polynomial introduced in this paper carries extra invariants of
the corresponding difference field extension allows one to apply our results to the
equivalence problem for systems of algebraic difference equations. At the end of
section 4, we give an example where we use the introduced dimension polynomials
to show that two algebraic difference equations are not equivalent even though their
invariants carried by the associated univariate and bivariate dimension polynomials
defined in [13] coincide.

2 Preliminaries

Throughout the paper, N, Z, and Q denote the sets of all non-negative integers, inte-
gers, and rational numbers, respectively. For any positive integer m, <p will denote
the product order on N™, that is, a partial order such that (ay, ...,qa,,) <p (@}, ..., a.)
if and only if a; < a;fori =1,...,m.

By a ring we always mean an associative ring with unity. Every ring homomor-
phism is unitary (maps unity to unity), every subring of a ring contains the unity of
the ring, and every algebra over a commutative ring is unitary. Every field consid-
ered in this paper is supposed to have zero characteristic. Q[#y, ..., 7,] will denote the
ring of polynomials in variables 7, ..., 7, over Q.

By a difference ring we mean a commutative ring R considered together with
a finite set ¢ = {a/, ..., @,,} of mutually commuting injective endomorphisms of R
called translations. The set o is called the basic set of the difference ring R, which is
also called a o-ring. If R is a field, it is called a difference field or a o-field. (We will
often use prefix o- instead of the adjective “difference”.)
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Generalized characteristic sets and new multivariate. .. 35

In what follows T denotes the free commutative semigroup generated by the set
o, that is, the semigroup of all power products 7 = allc‘ a,l;"’ (k; € N). Furthermore,

we fix representation (1.1) of the set ¢ as the union of p disjoint subsets o, ..., 0,
(p = 1): where

o, = {al,...,aml}, N {aml+,,,+mp_]+1,...,am}

L a,];{” € T (k; € N), then the order of T with respect
to a set o, (1 <i<p) is defined as ZT;;:mm_, .1 ks it is denoted by ord ;7. (If

i = 1, the last sum is replaced by k| + -+ + km.') Ifr,..., r, € N, we set

(my + - +m, =m).If =0

T(rl,...,rp): {reT | oddir<r, fori=1,...,p}.

A subring (ideal) R, of a o-ring R is said to be a difference (or o-) subring of R
(respectively, a difference (or o-) ideal of R) if R is closed with respect to the action
of any operator in ¢. In this case the restriction of a mapping a; € o to R, is denoted
by the same symbol ¢;. If a prime ideal P of R is closed with respect to the action of
o, itis called a prime difference (or c-) ideal of R.

If L is a o-field and K a subfield of L which is also a o-subring of L, then K is
said to be a o-subfield of L; L, in turn, is called a difference (or o-) field exten-
sion or a c-overfield of K (we also say that we have a o-field extension L/K). In
this case, if S C L, then the intersection of all o-subfields of L containing K and §
is the unique o-subfield of L containing K and S and contained in every o-subfield
of L containing K and S. It is denoted by K(S). If S is finite, S = {#,, ..., #,}, then
we say that L is a finitely generated o-field extension of K with the set of o-gen-
erators {#,, ..., #,} and write L = K(,, ..., n,). Clearly, this field coincides with the
field K({rn; | 7 € T,1 <i < n}). (Here and below we often write 77 for 7() where
treT,n €R)

If R is a o-ring and F C R, then the intersection of all o-ideals of R containing F
is, obviously, the smallest o-ideal of R containing F. This ideal is denoted by [F];
as an ideal, it is generated by all elements zf where ¢ € T, f € F. If the set F is
finite, F = {f},....f;}, we say that the o-ideal I = [F] is finitely generated, write
I =1[f},....fi]and call elements of F difference (or o-) generators of /. A c-ideal I of
R is said to be reflexive if for any @ € o, the inclusion a(a) € I implies a € I (there-
fore, for any 7 € T, the inclusion 7(a) € I implies a € I).

If R is a o-ring, then an expression of the form ) _,a,7, where a, € R for any
7 € T and only finitely many elements a, are different from O, is called a o-opera-
tor over R. It is an endomorphism of the additive group of R; if C =Y, _,a,7 and
f €R, then C(f) = Y . a,7(f). Two c-operators ), _ra,7 and ), _,b_ 7 are con-
sidered to be equal if and only if a, = b, for any 7 € T. The set of all s-operators
over R will be denoted by D,. This set, which has a natural structure of an R-mod-
ule generated by T, becomes a ring if one sets za = 7(a)r for any a € R, 7 € T and
extends this rule to the multiplication of any two c-operators by distributivity. The
resulting ring Dy, is called the ring of o-operators over R. Clearly, if / is a o-ideal of
R, I =1[f,....f;]. then every element of I is of the form Y7 C,(f)) (g € N) where
Cy,....C, € Dp
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36 A. Levin

Let R and S be two difference rings with the same basic set ¢, so that elements
of ¢ act on each of the rings as pairwise commuting endomorphisms. (More rig-
orously, we assume that there exist injective mappings of ¢ into the sets of endo-
morphisms of the rings R and S such that the images of any two elements of o
commute. For convenience we will denote these images by the same symbols). A
ring homomorphism ¢ : R — S is called a difference (or o-) homomorphism if
¢(aa) = ag(a) for any @ € o, a € R. The notions of o-epimorphism, -monomor-
phism and o-isomorphism are defined accordingly.

If K is a difference (c-) field and Y = {y,,...,y,} is a finite set of symbols, then
one can consider a countable set of symbols 7Y = {zy; | r € T, 1 <j < n} and the
polynomial ring R = K[{zy; | = € T, 1 <j < n}]in the set of indeterminates 7Y over
K. This polynomial ring is naturally viewed as a o-ring where (7’ y) = (z7’ )y; for
any 7,7’ € T, 1 <j < n, and the elements of ¢ act on the coefficients of the polyno-
mials of R as they act in the field K. The ring R is called the ring of difference (or o-)
polynomials in the set of difference (o-) indeterminates y,, ...,y, over K. This ring
is denoted by K{y,,...,y,} and its elements are called difference (or o-) polynomi-
als. A o-polynomial is called linear if it is linear as a polynomial in the variables 7y,
(reT,1<i<n).

If feK{y,,....y,} andn =(n,,...,n,) is an n-dimensional vector with coordi-
nates in some c-overfield of K, then f(n) (or f(n,,...,n,) ) denotes the result of the
replacement of every entry zy; in fwith 7y, (r € T,1 < i < n).

If #:R=K{y,,....¥,} > L=K{n,,...,n,) is a natural o-homomorphism
(n(a) = afor any a € K and y; — #;), then P = Ker x is a prime reflexive o-ideal of
R called the defining ideal of the extension L/K. In this case, L is isomorphic to the ¢
-field qf (R/P), the quotient field of R/P (n; < y; + P).

Let K be a o-field and U/ a family of elements of some c-overfield of K.
We say that the family U is o-algebraically dependent over K, if the family
TU={ru | = €T, u € U}is algebraically dependent over K (that is, there exist ele-
ments u,, ..., u;, € TU and a nonzero polynomial fin k variables with coefficients in
K such that f(u, ..., u;) = 0). Otherwise, the family / is said to be o-algebraically
independent over K.

If L is a o-overfield of a o-field K, then a set B C L is said to be a o-transcendence
basis of L over K if B is o-algebraically independent over K and every elementa € L
is o-algebraic over K(B) (it means that the set {za | = € T} is algebraically depend-
ent over the field K(B)). If L is a finitely generated o-field extension of K, then all ¢
-transcendence bases of L over K are finite and have the same number of elements
(see [9, Proposition 4.1.6]). This number is called the o-transcendence degree of
L over K (or the o-transcendence degree of the extension L/K); it is denoted by ¢
-tr.deg L.

Multivariate dimension polynomials of subsets of N™

A polynomial in p variables f(¢,...,t) € @[tl,...,tp] is called numerical if
f(ry,...,r,) €Z for all sufficiently large (r,...,r,) € N’. (It means that there
exist sy,...,s, €N such that the membership f(r,...,r,) €Z holds for all
(rs....r,) e NPwithr; > 5, ... Ty 2 sp.).
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Generalized characteristic sets and new multivariate. .. 37

It is clear that every polynomial with integer coefficients is numerical. As an
example of a numerical polynomial in p variables with non-integer coefficients
(p € N,p > 1) one can consider a polynomial HI? (ff) where m, ...,m, € N. (As
usual, (;) (k € Z,k > 1) denotes the polynomial W in one variable ¢,
((’)) =1, and ( k) = 0if k is a negative integer.) The following theorem proved in [5,
Chapter 2] gives the ’canonical” representation of a numerical polynomial in
several variables.

Theorem 2.1 Let f(z, ..., tp) be a numerical polynomial in p variablest,, ..., [ and
let deg, f = m; (1 <i < p) where m,, ...,m, € N. Then the polynomial f(t,,...,t,)
can be represented in the form

f@y,...1) = 2 Z a . l<t1+zl> , <t,,frip> 2.1

i;=0 i,=0 lp

with integer coefficients a; O<Li,<my for k=1,...,p) that are uniquely

"'lp

defined by the numerical polynomial.

In what follows (until the end of the section), we deal with subsets of the set N
(m is a positive integer). Furthermore, we fix a partition of the setN,, = {1,...,m}
into p disjoint subsets (p > 1):

N,=4,UAU... A, (2.2)
where Ay ={l,....m}, Ay={m+1,...om+m}, ..., ={m+-+m,_,
+1,...,m}(m; = CardA;fori=1,....,p;m + - +m, = m).

If a=(a,,...,a,) €N", we denote the numbers X" a, 3
Z'." +1 % byord a, ..., ord s respectively.

=nmy+teetm,_

In what follows, if A is a subset of N™, then V, will denote the set of all
m-tuples v = (v,...,v,) € N" such that a £, v for every a € A (i. e., for any
a=(ay,...,a,) €A, there exists i,1 <i < m, such that a; > v;). Furthermore, for
anyry,...,r, € N,weset A(ry,...,r,)={a€A | ord,a<r;fori=1,...,p}

The following theorem proved in [5, Chapter 2] generalizes the well-known Kol-
chin’s result on the univariate numerical polynomial associated with a subset of N
(see [4, Chapter 0, Lemma 17]).

my+m,
i=my+1 v oo

Theorem 2.2 Let A be a subset of N™ and let partition (2.2) of N,, be fixed
(m=my + - +m, for some nonnegative integers my, ...,m,, p > 1). Then there
exists a numerical polynomial w(t,, ... ,1,) with the following properties:

(i) @u(ry,...,r,) = Card Vy(ry, ..., r,) for all sufficiently large p-tuples (ry, ...,
r,) € NP
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38 A. Levin

(it) The total degree of the polynomial w, does not exceed m and deg, w, < m;
foralli=1,...,p.

(iii) deg wy = mif and only if A = §. Then w,(ty, ..., t,) = [T’ (l:rnm)

i=1
(iv) w, is a zero polynomial if and only if (0, ...,0) € A.

The polynomial w,(t, ... ,tp) is called the dimension polynomial of the set
A C N™ associated with the given partition of N,,. If p = 1, the corresponding uni-
variate numerical polynomial w,(¢) is called the Kolchin polynomial of A.

Note that if A C N and A* is the set of all minimal elements of A with respect to
the product order on N, then the set A* is finite (it follows from [4, Ch. 0, Lemma
15] that states that for any infinite set A C N, there exists an infinite sequence of
elements of A, strictly increasing relative to the product order). The following theo-
rem proved in [5, Chapter 2] gives an explicit formula for the dimension polynomial
of a finite subset of N”* associated with a partition of N,, into the union of p disjoint
subsets.

Theorem 2.3 Let A = {ay, ..., a,} be a finite subset of N"', where n is a positive inte-
ger, and let partition (2.2) of N,, be fixed (m = my + --- + m,, for some nonnegative
integers my, ... JM,, P2 1). Let a; = (a;, ... a,, (1 <i<n)and for any [ €N,
0 <1< n,let T'(l,n) denote the set of all I-element subsets of N,,. Furthermore, for
any o €I'(ln), let a,;=max{a; | i€c} (1<j<m) and b, = ZheA, a,,
(j=1,...,p). Then

n )4
Wyt t) = D=1 Y H<lj+”’2._b0’j>. (23)

=0 celin) j=1 j

Remark 2.1 It is well known (see for example [5, Chapter 2]) that the num-
ber of solutions (xi,...x,) € N" of the inequality x; 4+ - +x, <r (reN)
is (7). It follows that if r,...,r,s;,...,5, €N, 5;<r; (1<i<p), and
A={a=(ay,...,a,) EN" | 5;<a;,<rfori=1,...,p}, then

CardA = ﬁ
i=1

r+m\ s;+m; =1
m; m;

(as before we consider partition (2.2) of N,,). We will use this observation in the
proof of Theorem 4.1.
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Generalized characteristic sets and new multivariate. .. 39

3 Relative effective orders and E-reduction

Let K be a difference field with a basic set ¢ = {«ay, ..., a,,} and R=K{y,...,y,}
the algebra of difference polynomials in o-indeterminates y;,...,y, over
K. Then R can be viewed as a polynomial ring in the set of indeterminates
TY = {zy; | 7 € T,1 £i < n} whose elements are called terms. As before, we fix
partition (1.1) of the set ¢ and for every j=1,...,p, define the order of a term
u = ty; with respect to o, (denoted by ord ;u) as the corresponding order of 7 (that
is, ordj(ry,-) = ordjr foranyi=1,...,n,7r €T). As usual, if 7,7’ € T, we say that
7 divides 7’ (and write 7 | /) if 7/ = z¢” for some element 7’/ € T denoted by T?’ If
u=rty,andv=r1 y; are two terms in TY, we say that u divides v (and write u | v) if
i= ] and 7 | 7. In this case we also say that v is a transform of u and define the ratio
Yag &

! By a ranking on R we mean a well-ordering < of the set of terms 7Y that satisfies
the following two conditions:

(1) u<zuforanyu € TY,7 € T. (We denote the order on TY by the usual symbol
<and writeu < vifu <vandu # v.)
(i) Kfu,veTYandu <v,thentu <zvforanyr €7T.

If <is aranking on R and f € R, then the greatest and smallest (with respect to <)
terms in f are called the leader and coleader of f with respect to the ranking <.

Let us consider p total orderings <, ..., <, of the set of power products 7 such
that if 7 = a]](‘ a,]; ,T = ai‘ af,'l” €T, then for any i=1,...,p, v <; v’ if and
only if

(ord;7, ord7,..., ord;_;7, 0rd; 7, ..., 0rd , 7, Ky (i sis e K s

ki,....k et K 15 ,km) is less than the corresponding (m + p)
-tuple for 7/ with respect to the lexicographic order on N7, Furthermore, we
consider p orders <, ..., <, on the set of terms 7Y that correspond to the intro-

duced orders on T. They are defined as follows: zy; <; 7'y, if and only if 7z <; 7’ in
Torr=r1"and j<k( <i<p,1<j,k<n). Clearly, these orders are rankings on
K{yp,.os v, )

If feK{y,....y,}\K and 1 < k < p, then the greatest with respect to <, term
that appears in fis called the k-leader of the o-polynomial f; it is denoted by u(k) The

smallest with respect to <, term in f is called the k-coleader of f and is denoted by
(k)
Vi

Definition 31Let fekK{y,....y,}\K and let ;k) “1' ],f{"y, and
(k)

Ve a a, y] be the k-leader and k-coleader of f, respectively (1 < k < p). Then
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40 A. Levin

for every k = 1, ..., p, the nonnegative integer ord ku;k) — ord kv}k) is called the k th
effective order of f; it is denoted by Eord ,f.

It follows from the last definition that for any f € K{y,,...,y,} and for any
7 € T,Eord ,(zf) = Eord  (f)fork=1,...,p

Definition 3.2 Let f and g be two o-polynomials in the ring K{y,,...,y,}. We say
that f has lower rank than g and write tk f < rk gifeither f € K, g &€ K, or

(Eord ,(f), ..., Eord (), u'", deg, f) <jex (Eord (g), ..., Eord ,(g), ulb, deg,0 8)

(the comparison of u}l) and u((gl) in this lexicographic order is made with respect to

the order <, on the set of terms 77Y). If the last two (p + 2)-tuples are equal (or
f,g € K) we say that fand g are of the same rank and write rkf = rk g.

Definition 3.3 Let f,g € K{y,...,y,} and let d =deg,n g. We say that f is
E-reduced with respect to g if one of the following two conditions holds.

(i)  fdoes not contain any (ru(l))e (r € T) such that e > d;
(ii)  fcontains (Tu(l))e with e > d for some 7 € T, but in this case either there
exists k € N, k > 2, such that ordk('m(")) > ord k(u( )) or there exists j € N,

such that ord j(‘rvg)) < ord j(vy)). (The “or” here is inclusive, that is, the case
when both conditions hold is included.)

Thus, fis not E-reduced with respect to g if f contains some (rug))" (r € T) with
e>d=degng and also ord k(rug‘)) < ordk(u;k)) for k=2,...,p and
- 8 -
ordj(rvi,’)) > ordj(v](,’)) forj=1,...p.

Proposition 3.1 Ifrkf < rk g, then fis E-reduced with respect to g.

Proof Suppose that f is not E-reduced with respect to g. Then f contains some
(zu)y* (z € T) such that e > d = deg, g, ord ,(7ul) < ord k(u;")) fork=2,....p
and ordj(rvg)) > ordj(v}/)) for j=1,...p. Then u}l) > Tu;') = u(Tlg) > ué'), hence
ordluj(rl) > ordl(ruél)). Since ordl(v;l)) < ordl(rvg)) = ordl(vgg)), we have
Eord ;(f) > Eord ;(zg) = Eord (g). Also, for any k=2,...,p,
Eord () = ordku(k) — ord kv(k) > ord (zu) — ord | (rv¥) = Bord (rg) = Bord ¢
Therefore, rk f > rk g accordmg to Deﬁnltlon 3.2, s0 we have arrived at a contradic-
tion. O

Proposition 3.2 Let A= {g,,...,8,} be a finite set of o-polynomials in the ring

R=K{y;,....y,}, let u(’) and v(l) denote the i-leader and i-coleader of g, respec-
tively (1 <k <t,1<i < p). Let dk = deg, g, and I\ denote the coefficient of (Y
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when g, is written as a polynomial in u,(cl) (1 £k <t). Furthermore, let
I(A) = {B € R | either B = 10r B is a product of finitely many c-polynomials of the
form t(l}) (t €T, k=1,...,1)}. Then for any h € R, there exist c-polynomials
JEeI(A) and h* € R such that h* is E-reduced with respect to A and
Jh = h*(mod [ A)) (that is, Jh — h* € [A)).

Proof If h is E-reduced with respect to .4, the statement is obvious (one can set
h* = h). Suppose that % is not E-reduced with respect to .A. In what follows, if a &
-polynomial f € R is not E-reduced with respect to .A, then a term w, that appears in
f will be called the A-leader of fif w, is the greatest (with respect to <) term among
all terms of the form mfgi) (t € T,1 <k < 1) such that f contains (ruf))e with e > d,
ord[(rug)) < ordiu}i) fori=2,...,p, and ordj(rv]((i)) > ordjvj(f) for j=1,...,p. Let
wj, be the A-leader of the element /, d = deg,, h, and ¢, the coefficient of WZ when h
is written as a polynomial in w;,. Then w), = ruj{l) for some 7 € T and for some k
(1<k<t) such that d2>d, ordi(rul(:)) < ordiug) 2<i<p), and
ord_i(rvg)) > ordjvg) (I £j £ p). Let us choose such k that corresponds to the maxi-
mum (with respect to <;) 1-leader uﬁ(l) in the set of all 1-leaders of elements of A,
and let us consider the o-polynomial 4" = 7(l)h— chwz_d"(rgk). Clearly,
deg, h' <deg, h and k' does not contain any A-leader 7'u{l (' € T,1 <v <1)
that is greater than w;, with respect to <, (such a term cannot appear in 7([;)h or tg;).
Applying the same procedure to 4’ and continuing in the same way, we will arrive at
ao-polynomial #* € R such that i* is E-reduced with respect to A and Jh — h* € [A]
for some J € I(A). a

The process of reduction described in the proof of the last proposition can be
realized by the following algorithm. (Recall that D, denotes the ring of o-opera-
tors over the o-ring R = K{y,,...,y,}.)

Algorithm 1 (h,t,g,,...,8,5h")

Input: 7 € R, a positive integer 7, A={g,,...,g} SR where g; #0 for
i=1,...,t

Output: Element h* € R, elements C,...,C, € Dy and J € I(A) such that
Jh = 2;1 Ci(g;) + h* and h* is E-reduced with respect to A

Begin

C, :=0,...,C, :=0,h" :=h,J:=1

While there exist k, 1 < k <, and a term w that appears in #* with a (nonzero)

. 1 w [ ()
coefficient ¢, such that ul) | w, deg, g < deg,, 1", ord, @ug: < ord v, for

“mVg = *
Mgkk J'h

i=2,...,p, andordj< s v(i)> > ord.v(j)forjz 1,...,p,do

z:= the greatest of the terms w that satisfy the above conditions.
I:= the smallest number k for which ug) is the greatest (with respect to <)
k

l-leader of an element of A such that u;)lz, deg,m g < deg_ h*,
: 9 ,
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ord, [ Zu®) < ord.u® for i=2,....,p, and ord.[ Zv? ) > ord ¥ for
AN in I\ u

@ Vg P me
8k

.1= 17"'7p7
. z

T .= -

g

J =1, C, :=C,+ c,z%%r where d = deg, h*, d; = deg g, and c, is the
, 2 g .
coefficient of z¢ when A* is written as a polynomial in z
h* = c(I)h* — ¢,z (rg)
End

Definition 3.4 A set A C K{y,,...,y,} is said to be E-autoreduced if either it is
empty or A () K = fJ and every element of A is E-reduced with respect to all other
elements of the set .A.

We are going to show that every E-autoreduced sets is finite. The proof of the
following lemma can be found in [4, Chapter 0, Section 17].

Lemma 3.1 Let A be any infinite subset of the set N" XN, (m,n € N, n > 1). Then
there exists an infinite sequence of elements of A, strictly increasing relative to the
product order, in which every element has the same projection on N,

This lemma immediately implies the following statement that will be used below.

Lemma 3.2 Ler S be any infinite set of terms ty; (r € T,1 <j < n) in the ring
K{y,...,y,}. Then there exists an index j (1 <j < n) and an infinite sequence of
1EFMS Ty Y}y TyYjs +ev s TgYjs -+ such that 7 | 7, foreveryk =1,2, ...

Proposition 3.3 Every E-autoreduced set is finite.

Proof Suppose that there is an infinite E-autoreduced set 4. It follows from
Lemma 3.2 that A contains a sequence of o-polynomials {f,,f,... } such that
(1) | u(l) fori=1,2,.... Since the sequence of non-negative integers {deg, » f} can-

not have an infinite decreasing subsequence, without loss of generahty we can
assume that deg, mf < deg, 0 flJrl i=12,..).

Letk; = ord u()l —ordu n. —ordv (I <j < p). Obviously, [; > k; > n;

AR J f > j =" =
(i=12 ..,,_1 D) so{(l,1 k=01, — k 25 e by — ip)|1—1,2,...}gNPand
{(kiy —myykip —npy ook, —my) | i=1,2,... } CNP. By Lemma 3.1, there exists
an infinite sequence of 1ndlces 11 <ip <. such that
Uiy = ki oo by = ki) <p Uip = ki oo s by — ki) <p 3.1
and
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(kiy =115k =y ) Sp (ki =1y sk — 1y ) <p (3.2)

Then for any j=2,...,p, we have

()
i
ordj< : ) kij—ki;+1i; <k lizj—kizi=lizi=ordu so that f; con-

W f:l J f > 53
n
tains a term Tuﬁl) ;1) such that  # 1 and ord (TM(/)) < ordu 9 for j=2,...,p.
i
Similar arguments with the use of (3.2) show that ord (Tv(’)) > ord ) for

J=2,...,p. Thus, the o-polynomial f; is not reduced with respect to f;, that contra-

L

dicts the fact that A is an E-autoreduced set. O

Example 1 Let K be a difference field with a basic set 6 = {a,, @, } considered with a
partition ¢ = o, U 0, where o, = {@,} and 0, = {a,}. Let A = {g,,2,} C K{y} (the
ring of o-polynomials in one o-indeterminate y) where

3 2 3 2 2
gr=qytayy+ay+y g =ajany+ay+l

Then (Eord(gy), ..., Eord ,(g,), u{ degum gl) =(B-23-Lajayl) <, 2.2
—lLalayy, 1) = (Eordl(gz), Eord p(82)s Ul degum 2), so tkg, < rtkg, By
Proposition 3.1, g, is E-reduced with respect to 2. Since g, contains no transform of
ugl) = ajayy, g, is reduced with respect to g, so the set A is E-autoreduced. How-
ever, since the degree of g, with respect to aluélz) is equal to the degree of g, with
respect to ugz), the set A is not autoreduced in the usual sense (where one considers
an orderly ranking of terms in K{y} and fis said to be reduced with respect to g if f

does not contain any (zu,)* (z € T, u, is the leader of g with respect to the given
ranking) such thate > d = degug g, see [5, Section 3.3]) or [9, Section 2.4]).

In what follows, while considering E-autoreduced sets we always assume that
their elements are arranged in order of increasing rank.

Definition 3.5 Let A ={g,....g,} and B={h,...,h} be two E-autoreduced
sets in the ring K{y,,...,y,}. Then A is said to have lower rank than B, written as
tk A < rk B, if one of the following two cases holds:

(1) rkg, < rkh, or there exists kK € N such that 1 < k < min{s, ¢}, rkg; = 1k h;
fori=1,...,k—landrk g, < rkh,.

(2) s>tandrkg, = tkh;fori=1,...,¢t

If s=tandrkg; = tkh,fori=1,...,s, then A is said to have the same rank as
B; in this case we write tk A = tk B
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Proposition 3.4 In every nonempty family of E-autoreduced sets of difference poly-
nomials there exists an E-autoreduced set of lowest rank.

Proof Let M be a nonempty family of E-autoreduced sets in the ring K{y,,...,y,}.
Let us inductively define an infinite descending chain of subsets of M as follows:
My= M, M, ={Ae M, | Acontains at least one element and the first element
of A is of lowest possible rank}, ..., M, = {A € M,_, | A contains at least k ele-
ments and the kth element of A is of lowest possible rank}, .... It is clear that if A
and B are any two E-autoreduced sets in M, and f and g are their /th o-polynomi-
als (I > k), then rkf = rk g. Therefore, if all sets M, are nonempty, then the set
{A; | A; is the kth element of some E-autoreduced set in M, } would be an infi-
nite autoreduced set, and this would contradict Proposition 3.3. Thus, there is the
smallest positive integer k such that M, = @J. Clearly, every element of M,_, is an
E-autoreduced set of lowest rank in the family M. O

Let J be any ideal of the ring K{y,,...,y,}. Since the set of all E-autoreduced
subsets of J is not empty (if f € J, then {f} is an E-autoreduced subset of J), the last
statement shows that J contains an E-autoreduced subset of lowest rank. Such an
E-autoreduced set is called an E-characteristic set of the ideal J.

Proposition 3.5 Let A = {f,....f;} be an E-characteristic set of a o-ideal J of the
ring K{y,,...,y,}. Then an element g € J is E-reduced with respect to the set A if
and only if g = 0.

Proof First of all, note that if g # 0 and rk g < rk f}, then rk {g} < rk A that con-
tradicts the fact that A is a E-characteristic set of the ideal J. Let tk g > 1k f; (if
tk g = 1k f}, then g is not reduces with respect to f}, contrary to the assumption
that g is E-reduced with respect to A). Let fi, ....f; (1 <j < d) be all elements of A
whose rank is lower than the rank of g. Then the set A" = {f, ... .f. g} is E-autore-
duced. Indeed, by the conditions of the theorem, o-polynomials f, ..., ]; are reduced
with respect to each other and g is reduced with respect to the set {f, ..., ];»}. Fur-
thermore, each f; (1 < i <) is reduced with respect to g because rk f; < rk g. Since
k A’ < rk A, A is not an E-characteristic set of J that contradicts the conditions of
the proposition. Thus, g = 0. O

Proposition 3.6 Let < be a ranking on the ring R = K{y,,...,y,} and let fi,....f,
(s > 2) be linear o-polynomials in R. For every i =1,...,s, let u; and v; denote,
respectively, the leader and coleader of f; with respect to <, and let u; > u, > -+ > u
and v, > v, > -+ > v.. Suppose that

g=mhfi+ - +hf (3.3)

where 0 # h; € R (1 <i <s) and that g cannot be represented as a linear combina-
tion of any proper subset of {f}, ... ,f,} with coefficients in R. Then g contains u, and

V.
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Proof Without loss of generality we can assume that the coefficient of u
in f} is 1. Dividing each h; (2<i<s) by f; with respect to u;, we obtain
that h; = hif; +h' where the o-polynomial 4! does not contain u;. Thus,
g =(hy +hy+ -+ h)fy + hfy + - + Hf where the o-polynomial
R)fy + -+ + h!'f, does not contain u,. Since h; + k), + -+ + k!, # 0 (otherwise, g is a
linear combination of f,, ..., f, that contradicts our assumption), g contains u,.
Similarly, writing each h; with1 <j <s—1lash; = hj*fs + hj** where hj** does not
contain v,, we obtain (using the fact that g cannot be written as a linear combination
of elements of any proper subset of {f|, ....f,}) that g contains v,. O

Proposition 3.7 Let f be a linear o-polynomial in R = K{y,,...,y,}. Then {f} is an
E-characteristic set of the o-ideal [f].

Proof Let g € [f]. Then one can represent g in the form
g =h(f)+ -+ h(zf)

where 0 #h, €R, ; €T 1 <i<5s), 1; # T whenever i # j, and s is the smallest
positive integer for which such a representation of g exists. (In particular, g can-
not be written as a linear combination with coefficients in R of elements of any
proper subset of {7,f,...,7f}.) Since the elements 7,,...,7, are all distinct,
for every k =1, ..., p, there exists a permutation z, of the set {1,...,s} such that
Tr(s) <k ** <k Tr,1)- BY Proposition 3.6, g contains the k-leader of 7, ;)f and the
k-coleader of 7, (,f (clearly, the latter term cannot be smaller than vé’” with respect
to <;). Therefore, g is not E-reduced with respect to {f} and rk g > rk f. Thus, no
element of [f] is E-reduced with respect to {f} and f has the smallest rank among all
o-polynomials in [f]. It follows that {f} is an E-characteristic set of the o-ideal [f].

O

4 A new type of multivariate difference dimension polynomials

In this section we use properties of E-characteristic sets to obtain the following result
that generalizes Theorem 1.1 and introduces a new type of multivariate dimension
polynomials of difference field extensions that carry more invariants than any previ-
ously known difference dimension polynomials. (By an invariant of a finitely gener-
ated difference field extension we mean a numerical characteristic that is carried by
a difference dimension polynomial of such an extension and that does not depend on
the choice of the finite set of its difference generators.) As before, K denotes a differ-

ence (o-) field with a basic set o = {a, ..., a,,} considered together with its parti-
tion (1.1) into the union of p disjoint subsets ¢;, Cardo; = m; (1 < i < p). Further-
more, for any two p-tuples (7, ..., rp), (sy5 .- ,s[,) e NP withs;, <r,fori=1,...,p,
we set
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T(ry,.. <

p,sl,...,sp)= {reT |s;<od;r<rfori=1,...,p}L

Theorem 4.1 Let L =K(n,,...,n,) be a o-field extension generated by a set
n=A{ny,....n,}. Then there exists a polynomial ¢, (t,, ... ,1,,) in 2p variables with
rational coefficients and numbers rfo),sgo),sgl) eN 1 <Li<p) with sgo) < rl@ and

sgl) < rgo) ( ) such that

G (ris o7 815 oens5,) = trdeg g K({zm; | T € T(ry, ..., 1380, 08,), 1 S j < n})
Sfor all (r, .. s FpsSpseeesS ) e N with rp> r(O) 51) <s;<r— sﬁo). Furthermore,
deg ¢, x < m, deg, ¢an <m; for i=1,..., and deglj Gk <mi_, for

j=p+1,....2p.

Proof Let P C R = K{y,,...,y,} be the defining o-ideal of the extension L/K and let
A= {fi,....[,} be an E-characteristic set of P. Let u(’) and v(’) denote the i-leader
and i-coleader of f- respectively (1 <j < q, 1 < i<p). For any
r=(ry....,r,),s = (sy,...,5,) € NPsuch thats <, r (thatis, s; < r; fori =1, ..., p),
let

W(#,5) = {w eTY|s;<ordw <rfori=1,... ,p},

W,(7,5) = {(win)lw € W(F5) ),

U'#,35) = {u € TY|sl- <ordu<r;fori=1,...,pand uj(.l)lu(l <j<q },
Uy (7,5) = {u(n)|u € U' (7,5},
U/ (r,5) = {u e TY|s; <ordju <r(1 <i<p)},

u is divisible by the 1-leader of some f; (1 <j < ¢) and whenever u = Tl/t;l) for some
te€T,1 <j<gq, either ordl(rvj(.l)) < s, or there exist k € {2,...,p}, i€ {l,...,p}

such that ord k(fu](.k)) > r, orord ,-(Tv](.i)) < 5; (“or” is inclusive)},
and U)/(7,5) = {u(n) | u€ U"(,5)}.
Furthermore, let
UGFr,s)=U G5 uU"(r,5) and U,(r.s)= U:I(T",E) U U:I’(?,E).

We are going to prove that for every 7,5 € N? with s <p 7, the set U, (7, ) is a tran-
scendence basis of the field K(W,(r,s)) over K. First, one can see that this set is
algebraically independent over K. Indeed, if f(w,(#), ..., w(n)) = 0 for some ele-
ments wy, ..., w, € U(r,s), then the o-polynomial f(w,,...,w,) lies in P and it is
E-reduced Wlth respect to A. (If f contains a term w = fu(l) 1<i<gqg,7€T,such
that deg,, f > deg, (1)f, then w € U"(r,5), so either ord (rv( )y < 5; < ordlvf
there exist k € {2 ....,q}, i€{l,...,p} such that ord (ru( )) > r, > ord u(’) or
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(i)
< ord;v vy

ord (’L’V(l)) <s,
respect to A.) By Proposition 3.5, f =0, so the set U”(7, s) is algebraically inde-
pendent over K.

Now let us prove that if 0 <s; < r; — s whereso) =max{ EBord f; | 1 <j < g}
(1 < i < p), then every element 77, € W (r \U, (r s)(r €T,1<k<n)is alge-
braic over the field K(U,(7,s)). In this case 7y, & U(r,s), therefore 7y, is equal to

or” is inclusive). It follows that f is E-reduced with

i _

some term of the form = u() (1<j<q) where 7" €T, ord (T’u()) <r,; for

i=2,...,p,and ord (7' v()) >sforl=1,.

Let us represent f; as a polynomial in u](.l).

_ 1, (D\d; o, (1) )]
f]-—Idj(uj )/+---+I1 u; +I0

where IO) I(i) I(i) do not contain u(l) (therefore, all terms in these o-polynomials

are lower than u Wlth respect to <;). Since f; € P, f;(n) = 0, that i,
1 ) + -+ 1 () + 17 (n) = 0. @.1)

Note that Ig)(n) # 0. Indeed, since rk Ig? < rkf;, the equality IZ)(n) = 0 would imply

that Ig) € P. In this case, the family of all f; withrkf; < rk Ig) and Ig) would form an
J J J

E-autoreduced set in P (see Proposition 3.1) whose rank is lower than the rank of A.
This contradicts the fact that A is an E-characteristic set of P. Since the o-ideal P is
reflexive, 7(1(’)) ¢ P for any © € T. Therefore, if we apply 7’ to both sides of (4.1),
the resulting equahty will show that the element = uj(l)(n) = 11, is algebraic over the
field K({%n, | s; < ord; 7 <r,(1<i<p),Ty, </ T uJ(.l)}). Now, the induction on the
well-ordered (with respect to <;) set of terms 7Y completes the proof of the fact that
the set U, (7, s) is a transcendence basis of the field K(W, (7, s)) over K.

In order to evaluate the size of U, (r,s) we are going to evaluate the sizes of the
sets U; (r,s) and U:l '(r,s), that is, the sizes of the sets U’ (7, s) and U” (7, 5). For every
k=1,...,n,let

A =1{G, ..., 0,) eN" | ocj1 ...y, is the 1-leader of some element of A}.

Applying Theorem 2.1, we obtain that there exists a numerical poly-

nomial . (t,... ,tp) in p variables with rational coefficients such that
@ (1, ..., rp) = Card VAk(rl, ,rp) for all sufficiently large (ry,..., rp) e NP,
It follows that if we set )(,”K(tl,...,t)= ZZ— a)k(tl,...,tp), then there exist
rl(,o) (0) (1) eN (1 £i<p) with s ) < r(O) and s(l) SO) —sf.o) such that for all
r=(r,... ,rp),s = (S, .- ,sp) € NP withr; > rfo), 51) <s;<r— sgo), one has

Card U, (r,s) = xyx(rys - 75) = Xyx(sy — 8, = 1) 4.2)

Furthermore, deg y, x < m, and deg y,x = mif and only if at least one of the sets A,
(I <k < n) is empty. Note that y, x is the o-dimension polynomial of the extension
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L/K associated with the set of o-generators # and partition (1.1) of o, as it is shown
in the proof of Theorem 1.1 given in [9, Section 4.2].
In order to evaluate Card U’ (7,5), note that this set consists of all terms ru](l)

(r €T,1 <£j<q) such that s; < ord (TM) < r; and either ord (rv( )) < s, or there

existk € {2,...,p}.i € {1,...,p} such that ordk(ru; > r, or ordi(fvj(.)) <s; (“o
is inclusive). It follows from Remark 2.1 that for every fixed j, the number N_,- of such

terms satisfying the conditions ordi(rv?)) <s; for i€ {k,....k;} €{1,...,p},
ord,-(rvj(.i)) >s; for i€{l,....,p}, i#k, (1<v<d) and ord (m(”) <r, for
i=1,...,pis equal to 4.3)

d
) )
m; v=1 my

v

1<i<p,i#k, (1<v<d)
s, — ord, ug) - 1+m
mkv '

By Remark 2.1, a similar formula holds for the number of terms satisfying the con-
ditions ord -(ru(.i)) >r for ief{l,....I,} C{2 ....p} ordi(rv;i)) >s, for
ie{l,...,p}and ord, (m“) <rfori#l,(1<v<e).

Applying the prmmple of inclusion and exclusion (taking into account terms that
are multiples of more than one 1-leaders), we obtain that Card U”(7,s) is an alternat-
ing sum of polynomials in ry, ... S5 ..., 8, that are products of k terms of the
form ( r"_i':rm") —( S"_b’;’;rm) with a;,b; e N (1 <i < p) and p — k terms of the form

either ( S"_Cr::'m") - (S"_‘i":m") or (e — r’_‘i::'m‘) with ¢;,d; €N, ¢; < d,. Since

’P’

m i
each such a polynomial has total degree at most m — 1 and its degree with respect to
r, or 5, (1<i<p) does mnot exceed m; we obtain that
Card U"(7,5) = w(ry, ..., 1y, Sy, ... 5 5,) Where y(ty,...,1,) is a numerical polyno-
mial in 2p variables such that degy <m and deg, w <m;, deg,l_y/ <m,_, for

i=1,...,p,j=p+1,...,2p. It follows that the numerical polynomial

¢rl|K(l1’-"’t2p):I;ﬂK(tl?"-s ) I;ﬂK(p-{-] ,...,tzp_1)+l[/(t1,...,t2p)
satisfies conditions of our theorem. O
Definition 4.1 The numerical polynomial ¢, (t, ..., t,,) whose existence is estab-

lished by Theorem 2.3 is called the 2p-variate o-dimension polynomial of the o-field
extension L/K associated with the system of o-generators # and partition (1.1) of the
seto.

The following theorem describes some invariants of a 2p-variate o-dimension
polynomial of a finitely generated o-field extension L/K with partition (1.1) of o,
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that is, characteristics of the extension that do not depend on the set of o-generators

of L over K. The formulation of the theorem uses the following notation. For any

permutation (jy, ..., j,) of the set {1,...,2p}, let <; ; denote the lexicographic
veeeilap

order on N’ such that (ky, ..., ky,) ooy (ly, ..., L,) if and only if either k; <; or

there exists ¢ € N, 2 < g < 2p, such that k = lJ} forv < g and qu < qu.

Theorem 4.2 With the notation of Theorem 4.1, let ¢, (t,, ... , 1,) be the 2p-variate
o-dimension polynomial of the o-field extension L = K(n,, ... ,n,). Since the degrees
of ¢, with respect to t; and 1,.; (1 < i < p) do not exceed m; = Card o, (see parti-
tion (1.1)), Theorem 2.1 shows that this polynomial can be written as

W{_i Z z Z hl)<t1+zl> . <t2p.+i2p>.

i;=0 i,=01i,,,=0 I, = lZp

Let E, = {Gy, ... ,izp) eN? | 0< [ A (k=1,...,p) and 4 i, #0}.
Then the total degree d of ¢, x with respect to 1y, ... 1, and the coefficients of the
terms of total degree d in ¢,k do not depend on the choice of the set of -generators
n. Furthermore, if (u, ..., yp) is any permutation of {1, ... ,p} and (v, ..., v,) is any
permutation of {p + 1,...,2p}, then the maximal element of E, with respect to the

lexicographic order <, HyVireeby and the corresponding coefficient a,, HoVireeoby

do not depend on the choice of a finite set of o-generators of LIK either. Finally,
aml...mp()...o = aO...Om,...mp = O-_tr'deg KL'

Proof Suppose that{ = {{,, ..., ;} is another system of o-generators of L/K, that is,
L=K(n,....n,) =K(,.... ). Let

bt = 33, BB (7)o ()

(=0 i,=0 i,,= ir,=0 lZp

be the 2p-variate dimension polynomial of L/K associated with the system of gen-
erators ¢. Then there exist Ay, ..., h, € N such that n; € K(U;:] T(hy, ..., h,)E) and

Cr EK(U_1 T(hy,....,h )r/)foranyi—l ,nandk=1,...,1. (IfT’ CcT, thenT’C]
) (0) (I)EN

0)

denotes the set {z{; | 7 € T’}.) It follows that there exist numbers r;

(l) (0) (0)
(I <i<p) with s; : 5;
(1 <i<p),one has

such that whenever r; > r(o) (D <s; <1 — s(

G (rys oo 1) SWe(ry +hyy oo sry+ hyr,y —hyy ooy, — hy)
and
¢§|K(r1, ...,rzp) < d),:lK(rl +hy, ... Ty +hp,rerl —hy, ... S Tap —hp).

Now the statement of the theorem follows from the fact that for any element
! t+k ty,+k .
(kys ..o kyp) € E,, the term ( lkl ‘) (zﬂkzpzﬂ) appears in ¢, (t,...,1,) and

b1y, ..., 1p,) with the same coefficient a; ko' The equality of the coefficients of
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the corresponding terms of total degree d = deg ¢, x = deg ¢k in P, and ¢, can
be shown as in the proof of [9, Theorem 3.3.21].

In order to prove the last part of the theorem, note that the expression (4.3) and a
similar expression corresponding to the condition with ord i(ru](.i)) >r; for
ie{l,....[,} € {2,...,p} (see the proof of Theorem 2.3) have the property that
there total degrees with respect to ry, ..., Ty and s, ..., s, are less than m. It follows
that the coefficients of the terms of total degree m in 7, ... A and terms of total
degree mini,,,, ..., 1, in the polynomial ¢, are equal to the corresponding coeffi-
cients in the polynomials ank(tl s tp) and )(an(tpH s tzp), respectively (see
(4.2)). It follows from Theorem 1.1 thata,, . 0 o0 = do. om,..m, = o-tr.deggL. O

Example 2 Let K be a difference (o-) field with a basic set of endomorphisms
o = {a,,a,, a3} considered together with its partition 6 = {a;} U {a,} U {a;}. Let
L = K(n) be a o-field extension with the defining equation

afalz’n +ain+ agn +ain=0 (4.4)

where a,b,c € N, a > b > ¢ > 0. It means that the defining o-ideal P of the exten-
sion L/K is a linear o-ideal of the ring of o-polynomials K {y} generated by the linear
o-polynomial f = a“aly + aly + aly + aSy.
By Proposition 3.7, {f} is an E-characteristic set of P. Setting 7 = (r|, r,,73) and
s = (51, 5,, 53) and using the notation of the proof of Theorem 4.1, we obtain (apply-
ing (2.3)) that
Card U'(r,5) = Card V,,;,,(ry, 75, 73) = Card Vi, 0,(s; = 1,5, = 1,53 = 1)
=la(ry+ D)(r; + 1)+ b + D(r; + 1)
—ab(r; + 1)] — [as,s3 + bss3 — abs;]
Furthermore,
Card U"(7,5) = Card {a‘lH'k‘ a§+k2a§3 | sy Sa+k <r,s<b+k <rys3<ks<ry and there
are one or more of the inequalities k3 + ¢ > ryork; + ¢ < sjork, + ¢ <s,}.
Applying the combinatorial method of inclusion and exclusion, we obtain that
CardU"(7,5) = c(ry —s; + D(ry — s, + D+ (@a—c)ry — 55 + D(r3 — 53+ 1)
+b=c)ri=s1+ D3 =53+ 1) —cla=c)rp,—s,+ 1)
—cb=o)rp=s1+D—(a-c)b—c)ry—s3+ 1) +cla—c)b—c)
Therefore, the dimension polynomial of the o-field extension of L/K defined by the
equation (4.4) on its o-generator 7, which expresses Card U’(r, s) + Card U" (7,s), is
of the form

G t1s -5 16) = ctity + 2b — o)ty + (2a — o)ty — ctyts — (b — O)tytg — chyty — (@ — Obyte—
(b —o)tsty — (a — Otzts + ctyts + (b — o)yt + (a — O)tstg + terms of degree < 1.
4.5)

Note that the standard (univariate) o-dimension polynomial w, () of the extension
L/K associated with the o-generator 5 (see [6] or [5, Theorem 6.4.1]), which is equal
to the Kolchin polynomial of the set {(a,b)} C N2, is as follows.
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wot) = <H3-3> B <t+3 —2(a+b)

This polynomial carries two invariants of the extension L/K, deg w,x =2 and the
leading coefficient a + b. At the same time, according to Theorem 4.1, the num-
bers ¢, 2b — ¢ and 2a — ¢ are invariants of the dimension polynomial (4.5). Thus,
the dimension polynomial (4.5) gives all three parameters a, b and c of the defining
equation (4.4) while @, k(1) gives just the sum a + b.

In [13], the author introduced a bivariate dimension polynomial
W,k(f1, 1) that describes the transcendence degrees of intermediate fields

K({oc]f1 a,];’”nj | s < Z:’;l k; <r,1 <j<n}) of the extension K(#,,...,n,)/K for
all sufficiently large r,s € N with s < r. The computation of this polynomial in the
case of the o-field extension L = K(#) with the defining equation (4.4) gives the fol-

lowing result (WC use Theorem 4.1 of [13])
<t2 3) <t2 2—(at+ b))]
3 3

Wkt 1) = [(rl ;’3> - <t1 +2—3(a+b))

<t2 + 3) + <12 +2- C) = %(a +b+ 1)tf - %(c + l)t% + terms of total degree at most 1.

> = %(a + b)* + terms of degree < 1.

3 3

By [13, Theorem 4.1], the polynomial ka(tl’fz) carries three invariants of the
extension L/K, degy, x = 2, a + b, and c. We see that this polynomial does not give
all the parameters a, b, ¢ of the equation (4.4) while the polynomial ¢, (7, ..., %)
carries all these parameters.

The univariate difference dimension polynomial and the bivariate difference
dimension polynomial introduced in [13] are defined without using partitions of
the basic sets of translations. The multivariate o-dimension polynomial given by
Theorem 1.1 is associated with such a partition. The following example illustrates
that in this case our 2p-dimension polynomial carries more invariants of the corre-
sponding o-field extension than the p-variate o-dimension polynomial introduced by
Theorem 1.1.

Example 3 Let K be a difference (o-) field with a basic set of endomorphisms
o = {a,, a, } considered together with its partition o = {a; } U {a, }. Let L = K(#) be
a o-field extension with the defining equation

ajin + a;’n +ajn=0 4.6)

where a,b,c € N, a > b > ¢ > 0. Then the computation of the bivariate o-dimension
polynomial y, x(#;,1,) (see Theorem 1.1) using the method of [13] and the computa-
tion of the 4-variate o-dimension polynomial ¢, «(t,, 72,13, 1,) (using the evaluation
of the set Card Un(7, ), as it is done in the proof of Theorem 2.3 and in Example 2)
give the following.

Xnk(ty, 1) = bty +at, + a+b—ab
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and
Gyk(t1, 1y, 13, 14) = 2bty + (a + o)t — bty — aty + b + ¢ — be.

Theorems 1.1 and 4.2 show that the polynomial y, x carries two invariants of the
extension L/K, a and b, while ¢f1|  carries three such invariants, a, b and c, that is, all
three parameters of the equation (4.6) (by Theorem 4.1, the coefficients of ¢, ¢, and
t, are invariants of the extension).

The fact that the 2p-dimension polynomial carry more invariants than all previ-
ously known difference dimension polynomials can be applied to the equivalence
problem for algebraic difference equations. Suppose that we have two systems of
algebraic o-equations in n o-indeterminates over a o-field K (i. e., equations of the
form f =0 where f € K{y,,...,y,}) that are defining equations of finitely gener-
ated o-field extensions L/K and L' /K (that is, the left-hand sides of the systems gen-
erate prime o-ideals P and P’ of the ring R = K{y,, ..., ¥, }, respectively, such that L
and L’ are o-isomorphic to qf (R/P) and qf (R/P’), respectively). These systems are
said to be equivalent if there is a o-isomorphism between L and L’ which is identity
on K. The o-dimension polynomial introduced by Theorem 2.3 allows one to figure
out that two systems of ¢-algebraic equations are not equivalent in the case when the
corresponding o-field extensions have the same univariate o-dimension polynomials
and the same bivariate dimension polynomials defined in [13]. As an example, con-
sider the o-equations

afaé’y +afy+ agy +ay=0 4.7
and
af(x;y + afy +a5y+a;y=0 (4.8)

where a,b,c,d,e eN,a>b>c>0,d>e>c,a+b=d+e,anda #d.

The invariants carried by standard (univariate) o-dimension polynomials associ-
ated with these equations (the equation (4.7) is considered in Example 2) are the
same, 2 and a + b = d + e. The invariants carried by the bivariate dimension poly-
nomials defined in [13] are also the same, 2, a + b = d + e, and ¢ (see Example 2).
At the same time, the 6-variate dimension polynomials for these equations carry
invariants a, b, ¢, and d, e, c, respectively (these 6-variate dimension polynomials
are of the form (4.5)). Thus, the systems (4.7) and (4.8) are not equivalent, even
though the corresponding o-field extensions have the same invariants carried by the
univariate and bivariate (in the sense of [13]) o-dimension polynomials.
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