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Abstract
We introduce a new type of characteristic sets of difference polynomials using a 
generalization of the concept of effective order to the case of partial difference poly-
nomials and a partition of the basic set of translations � . Using properties of these 
characteristic sets, we prove the existence and outline a method of computation of a 
multivariate dimension polynomial of a finitely generated difference field extension 
that describes the transcendence degrees of intermediate fields obtained by adjoin-
ing transforms of the generators whose orders with respect to the components of the 
partition of � are bounded by two sequences of natural numbers. We show that such 
dimension polynomials carry essentially more invariants (that is, characteristics of 
the extension that do not depend on the set of its difference generators) than pre-
viously known difference dimension polynomials. In particular, a dimension poly-
nomial of the new type associated with a system of algebraic difference equations 
gives more information about the system than the classical univariate difference 
dimension polynomial.

Keywords  Difference polynomials · Effective order · Characteristic set · Dimension 
polynomial

1  Introduction

Hilbert-type dimension polynomials of difference field extensions, difference mod-
ules and prime difference ideals play the same role in difference algebra as Hilbert 
and Hilbert-Samuel polynomials play in commutative algebra and algebraic geom-
etry. In particular, a system of algebraic difference equations can be characterized by 
its associated difference dimension polynomials; these polynomials are of primary 
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importance for the problem of equivalence of such systems and for the comparative 
analysis of systems of algebraic difference equations arisen from systems of PDEs. 
Univariate difference dimension polynomials introduced in [6] and [7] character-
ize difference modules and difference field extensions in the same way as Hilbert 
polynomials characterize the corresponding structures in commutative algebra and 
algebraic geometry. A similar concept of differential dimension polynomial intro-
duced in [3] plays an important role in the study of finitely generated differential 
field extensions, differential modules and algebras. An important property of dimen-
sion polynomials is the fact that they carry certain invariants of the corresponding 
difference or differential algebraic structure, that is, elements which do not depend 
on the choice of the system of its generators. The above mentioned results were gen-
eralized to the case of an arbitrary partition of the basic set of operators (deriva-
tions or/and translations) and the corresponding multivariate filtrations of difference 
(as well as differential) modules and field extensions, see [10, 11], and [12]. It was 
shown that multivariate dimension polynomials whose existence was proved in these 
papers carry more invariants of the corresponding difference or differential algebraic 
structures than their univariate counterparts. The following theorem proved in [9, 
Section  4.2] presents a multivariate dimension polynomial of a finitely generated 
difference field extension associated with a partition of the basic set of translations.

Theorem  1.1  Let K be a difference field of characteristic zero with a basic set 
� = {�1,… , �m} , that is, a field considered together with the action of elements � as 
mutually commuting endomorphisms of the field (they are called translations). Let 
T be the free commutative semigroup generated by � and let a partition of the set � 
into a disjoint union of its subsets be fixed:

where p ∈ ℕ . Let Card �i = mi and for any � = �
k1
1
… �

km
m ∈ T  , let 

Ni = {j ∣ �j ∈ �i} and ord i� =
∑

j∈Ni
kj ( 1 ≤ i ≤ p ). Furthermore, let 

T(r1,… , rp) = {� ∈ T ∣ ord 1� ≤ r1,… , ord p� ≤ rp} for any r1,… , rp ∈ ℕ.

Let L = K⟨�1,… , �s⟩ be a difference (with respect to � ) field extension of K gen-
erated by a finite set � = {�1,… , �n} . (As a field, L = K({�(�i) ∣ � ∈ T , 1 ≤ i ≤ n}) .) 
Then there exists a polynomial �

�∣K(t1,… , tp) in p variables with rational coeffi-
cients such that

(i)   �
�∣K(r1,… , rp) = trdegKK({��j ∣ � ∈ T(r1,… , rp), 1 ≤ j ≤ n}) for all suf-

ficiently large (r1,… , rp) ∈ ℕp (that is, there exist r(0)
1
,… , r(0)

p
∈ ℕ such that the 

equality holds for all (r1,… , rp) with ri ≥ r
(0)

i
 , 1 ≤ i ≤ p).

(1.1)� = �1 ∪⋯ ∪ �p
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(ii)  degti ��∣K ≤ mi and the polynomial �
�∣K(t1,… , tp) can be represented as

where ai1…ip
∈ ℤ for all i1,… , ip.

(iii)   For any permutation (j1,… , jp) of the set {1,… , p} , let <j1,…,jp
 denote the 

lexicographic order on ℕp such that (r1,… , rp) <j1,…,jp
(s1,… , sp) if and only if 

either rj1 < sj1 or there exists k ∈ ℕ , 1 < k ≤ p , such that rj
�

= sj
�

 for � = 1,… , k − 1 
and rjk < sjk . Let E

�∣K = {(i1,… , ip) ∈ ℕp ∣ 0 ≤ ik ≤ mk for k = 1,… , p and 
ai1…ip

≠ 0} and let E�
�∣K

 denote the set of all e ∈ E
�∣K that are maximal elements of 

E
�∣K with respect to one of the p! orders <j1,…,jp

 . Then d = deg �
�∣K ,    am1…mp

 , 
p-tuples (j1,… , jp) ∈ E�

�∣K
 , the corresponding coefficients aj1…jp

 , and the coefficients 
of the terms of total degree  d  do not depend on the choice of the system of �-gener-
ators � of L over K. Furthermore, am1…mp

= �-tr.deg KL where �-tr.deg KL denoted 
the maximal number of elements �1,… , �k ∈ L such that the set 
{��i ∣ � ∈ T , 1 ≤ i ≤ k} is algebraically independent over K.

The polynomial �
�∣K is called the �-dimension polynomial of L/K associated with 

the set of �-generators � = {�1,… , �n} and partition (1.1). (If p = 1 , the last theorem 
gives a “standard” univariate difference dimension polynomial introduced in [6].) 
Theorem 1.1 allows one to assign dimension polynomials to prime difference ideals 
of finitely generated difference algebras over difference fields (these are dimension 
polynomials of the quotient fields of the corresponding factor rings). Using prop-
erties of difference dimension polynomials, one can efficiently study Krull-type 
dimension of difference rings, local difference algebras, and extensions of difference 
fields (see, for example, [5, Chapter 7], [9, Chapter 4], and [15]). Furthermore, as 
it is shown in [16] and [9, Chapter 7], the dimension polynomial of a differential or 
difference polynomial ideal generated by a system of partial differential or, respec-
tively, difference equations expresses Einstein’s strength of the system, its impor-
tant qualitative characteristic introduced in [2]. (See [9, Section 7.7] for the descrip-
tion of the relationship between difference dimension polynomials and Einstein’s 
strength of systems of equations in finite differences. The discussion of this relation-
ship in the multivariate case associated with a fixed partition of the set of transla-
tions can be found in [8].)

In this paper we introduce a reduction of difference polynomials associated with 
a fixed partition of the set of basic translations. This reduction takes into account 
the effective orders of difference polynomials with respect to the elements of the 
partition (we generalize the concept of the effective order of an ordinary difference 
polynomial defined in [1, Chapter 2, Section 4]). We consider a new type of charac-
teristic sets that are associated with this reduction and use their properties to prove 
the existence of a multivariate dimension polynomial of a finitely generated differ-
ence field extension that describes the transcendence degrees of intermediate fields 

�
�∣K(t1,… , tp) =

m1∑

i1=0

…

mp∑

ip=0

ai1…ip

(
t1 + i1

i1

)
…

(
tp + ip

ip

)
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obtained by adjoining transforms of the generators whose orders with respect to the 
elements of the given partitions lie between two given natural numbers. This dimen-
sion polynomial is a polynomial in 2p variables where p is the number of subsets in 
the partition of the basic set of translations. We determine invariants of such poly-
nomials, that is, numerical characteristics of the extension that are carried by any its 
dimension polynomial and that do not depend on the system of difference generators 
the polynomial is associated with. Furthermore, we show (see Examples 2 and 3 in 
section 4) that the introduced multivariate difference dimension polynomials carry 
essentially more invariants of the corresponding difference field extensions than any 
previously known difference dimension polynomials, including such polynomials 
defined in Theorem 1.1 and bivariate difference dimension polynomials introduced 
in [13] (the corresponding bivariate difference dimension polynomials for finitely 
generated difference modules are defined in [14]). Given a finitely generated differ-
ence field extension, the latter dimension polynomial describes the transcendence 
degrees of intermediate fields obtained by adjoining transforms of the generators 
whose (total) orders lie between two natural numbers. By considering a partition 
of the basic set of translations, generalizing the concept of effective order of a dif-
ference polynomial and developing the corresponding method of characteristic sets, 
we obtain much stronger results than those of [13]. The fact that the multivariate 
difference dimension polynomial introduced in this paper carries extra invariants of 
the corresponding difference field extension allows one to apply our results to the 
equivalence problem for systems of algebraic difference equations. At the end of 
section 4, we give an example where we use the introduced dimension polynomials 
to show that two algebraic difference equations are not equivalent even though their 
invariants carried by the associated univariate and bivariate dimension polynomials 
defined in [13] coincide.

2 � Preliminaries

Throughout the paper, ℕ , ℤ , and ℚ denote the sets of all non-negative integers, inte-
gers, and rational numbers, respectively. For any positive integer m, ≤P will denote 
the product order on ℕm , that is, a partial order such that (a1,… , am) ≤P (a�

1
,… , a�

m
) 

if and only if ai ≤ a′
i
 for i = 1,… ,m.

By a ring we always mean an associative ring with unity. Every ring homomor-
phism is unitary (maps unity to unity), every subring of a ring contains the unity of 
the ring, and every algebra over a commutative ring is unitary. Every field consid-
ered in this paper is supposed to have zero characteristic. ℚ[t1,… , tp] will denote the 
ring of polynomials in variables t1,… , tp over ℚ.

By a difference ring we mean a commutative ring R considered together with 
a finite set � = {�1,… , �m} of mutually commuting injective endomorphisms of R 
called translations. The set � is called the basic set of the difference ring R, which is 
also called a �-ring. If R is a field, it is called a difference field or a �-field. (We will 
often use prefix � - instead of the adjective ”difference”.)
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In what follows T denotes the free commutative semigroup generated by the set 
� , that is, the semigroup of all power products � = �

k1
1
… �

km
m  ( ki ∈ ℕ ). Furthermore, 

we fix representation (1.1) of the set � as the union of p disjoint subsets �1,… , �p 
( p ≥ 1 ): where

(m1 +⋯ + mp = m). If   � = �
k1
1
… �

km
m ∈ T  ( ki ∈ ℕ ), then the order of � with respect 

to a set �i ( 1 ≤ i ≤ p ) is defined as 
∑m1+⋯+mi

�=m1+⋯+mi−1+1
k
�
 ; it is denoted by ord i� . (If 

i = 1 , the last sum is replaced by k1 +⋯ + km1
 .) If r1,… , rp ∈ ℕ , we set

A subring (ideal) R0 of a �-ring R is said to be a difference (or � -) subring of R 
(respectively, a difference (or � -) ideal of R) if R0 is closed with respect to the action 
of any operator in � . In this case the restriction of a mapping �i ∈ � to R0 is denoted 
by the same symbol �i . If a prime ideal P of R is closed with respect to the action of 
� , it is called a prime difference (or � -) ideal of R.

If L is a �-field and K a subfield of L which is also a �-subring of L, then K is 
said to be a �-subfield of L; L, in turn, is called a difference (or � -) field exten-
sion or a �-overfield of K (we also say that we have a �-field extension L/K). In 
this case, if S ⊆ L , then the intersection of all �-subfields of L containing K and S 
is the unique �-subfield of L containing K and S and contained in every �-subfield 
of L containing K and S. It is denoted by K⟨S⟩ . If S is finite, S = {�1,… , �n} , then 
we say that L is a finitely generated �-field extension of K with the set of �-gen-
erators {�1,… , �n} and write L = K⟨�1,… , �n⟩ . Clearly, this field coincides with the 
field K({��i ∣ � ∈ T , 1 ≤ i ≤ n} ). (Here and below we often write �� for �(�) where 
� ∈ T  , � ∈ R.)

If R is a �-ring and F ⊆ R , then the intersection of all �-ideals of R containing F 
is, obviously, the smallest �-ideal of R containing F. This ideal is denoted by [F]; 
as an ideal, it is generated by all elements �f  where � ∈ T  , f ∈ F . If the set F is 
finite, F = {f1,… , fk} , we say that the �-ideal I = [F] is finitely generated, write 
I = [f1,… , fk] and call elements of F difference (or � -) generators of I. A �-ideal I of 
R is said to be reflexive if for any � ∈ � , the inclusion �(a) ∈ I implies a ∈ I (there-
fore, for any � ∈ T  , the inclusion �(a) ∈ I implies a ∈ I).

If R is a �-ring, then an expression of the form 
∑

�∈T a�� , where a
�
∈ R for any 

� ∈ T  and only finitely many elements a
�
 are different from 0, is called a �-opera-

tor over R. It is an endomorphism of the additive group of R; if C =
∑

�∈T a�� and 
f ∈ R , then C(f ) =

∑
�∈T a��(f ) . Two �-operators 

∑
�∈T a�� and 

∑
�∈T b�� are con-

sidered to be equal if and only if a
�
= b

�
 for any � ∈ T  . The set of all �-operators 

over R will be denoted by �R . This set, which has a natural structure of an R-mod-
ule generated by T, becomes a ring if one sets �a = �(a)� for any a ∈ R , � ∈ T  and 
extends this rule to the multiplication of any two �-operators by distributivity. The 
resulting ring �R is called the ring of �-operators over R. Clearly, if I is a �-ideal of 
R, I = [f1,… , fk] , then every element of I is of the form 

∑q

i=1
Ci(fi) ( q ∈ ℕ ) where 

C1,… ,Cq ∈ �R.

�1 = {�1,… , �m1
}, … , �p = {�m1+⋯+mp−1+1

,… , �m}

T(r1,… , rp) = {� ∈ T ∣ ord i� ≤ ri for i = 1,… , p}.
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Let R and S be two difference rings with the same basic set � , so that elements 
of � act on each of the rings as pairwise commuting endomorphisms. (More rig-
orously, we assume that there exist injective mappings of � into the sets of endo-
morphisms of the rings R and S such that the images of any two elements of � 
commute. For convenience we will denote these images by the same symbols). A 
ring homomorphism � ∶ R ⟶ S is called a difference (or � -) homomorphism if 
�(�a) = ��(a) for any � ∈ � , a ∈ R . The notions of �-epimorphism, �-monomor-
phism and �-isomorphism are defined accordingly.

If K is a difference ( � -) field and Y = {y1,… , yn} is a finite set of symbols, then 
one can consider a countable set of symbols TY = {�yj ∣ � ∈ T , 1 ≤ j ≤ n} and the 
polynomial ring R = K[{�yj ∣ � ∈ T , 1 ≤ j ≤ n}] in the set of indeterminates TY over 
K. This polynomial ring is naturally viewed as a �-ring where �(��yj) = (���)yj for 
any �, �� ∈ T  , 1 ≤ j ≤ n , and the elements of � act on the coefficients of the polyno-
mials of R as they act in the field K. The ring R is called the ring of difference (or � -) 
polynomials in the set of difference ( � -) indeterminates y1,… , yn over K. This ring 
is denoted by K{y1,… , yn} and its elements are called difference (or � -) polynomi-
als. A �-polynomial is called linear if it is linear as a polynomial in the variables �yi 
( � ∈ T , 1 ≤ i ≤ n).

If f ∈ K{y1,… , yn} and � = (�1,… , �n) is an n-dimensional vector with coordi-
nates in some �-overfield of K, then f (�) (or f (�1,… , �n) ) denotes the result of the 
replacement of every entry �yi in f with ��i ( � ∈ T  , 1 ≤ i ≤ n).

If � ∶ R = K{y1,… , yn} → L = K⟨�1,… , �n⟩ is a natural �-homomorphism 
( �(a) = a for any a ∈ K and yi ↦ �i ), then P = Ker� is a prime reflexive �-ideal of 
R called the defining ideal of the extension L/K. In this case, L is isomorphic to the �
-field qf (R∕P) , the quotient field of R/P ( �i ↔ yi + P).

Let K be a �-field and U a family of elements of some �-overfield of K. 
We say that the family U is �-algebraically dependent over K, if the family 
TU = {�u ∣ � ∈ T , u ∈ U} is algebraically dependent over K (that is, there exist ele-
ments u1,… , uk ∈ TU and a nonzero polynomial f in k variables with coefficients in 
K such that f (u1,… , uk) = 0 ). Otherwise, the family U is said to be �-algebraically 
independent over K.

If L is a �-overfield of a �-field K, then a set B ⊆ L is said to be a �-transcendence 
basis of L over K if B is �-algebraically independent over K and every element a ∈ L 
is �-algebraic over K⟨B⟩ (it means that the set {�a ∣ � ∈ T} is algebraically depend-
ent over the field K⟨B⟩ ). If L is a finitely generated �-field extension of K, then all �
-transcendence bases of L over K are finite and have the same number of elements 
(see [9, Proposition 4.1.6]). This number is called the �-transcendence degree of 
L over K (or the �-transcendence degree of the extension L/K); it is denoted by �
-tr.deg KL.

Multivariate dimension polynomials of subsets of ℕm 

A polynomial in p variables f (t1,… , tp) ∈ ℚ[t1,… , tp] is called numerical if 
f (r1,… , rp) ∈ ℤ for all sufficiently large (r1,… , rp) ∈ ℕp . (It means that there 
exist s1,… , sp ∈ ℕ such that the membership f (r1,… , rp) ∈ ℤ holds for all 
(r1,… , rp) ∈ ℕp with r1 ≥ s1,… , rp ≥ sp.).
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It is clear that every polynomial with integer coefficients is numerical. As an 
example of a numerical polynomial in p variables with non-integer coefficients 
( p ∈ ℕ, p ≥ 1 ) one can consider a polynomial ∏p

i=1

�
ti

mi

�   where m1,… ,mp ∈ ℕ . (As 

usual, 
(
t

k

)
 ( k ∈ ℤ, k ≥ 1 ) denotes the polynomial t(t−1)…(t−k+1)

k!
 in one variable t, (

t

0

)
= 1 , and 

(
t

k

)
= 0 if k is a negative integer.) The following theorem proved in [5, 

Chapter 2] gives the ”canonical” representation of a numerical polynomial in 
several variables.

Theorem 2.1  Let f (t1,… , tp) be a numerical polynomial in p variables t1,… , tp , and 
let degti f = mi ( 1 ≤ i ≤ p ) where m1,… ,mp ∈ ℕ . Then the polynomial f (t1,… , tp) 
can be represented in the form

with integer coefficients ai1…ip
 ( 0 ≤ ik ≤ mk for k = 1,… , p ) that are uniquely 

defined by the numerical polynomial.

In what follows (until the end of the section), we deal with subsets of the set ℕm 
(m is a positive integer). Furthermore, we fix a partition of the set ℕm = {1,… ,m} 
into p disjoint subsets ( p ≥ 1):

where Δ1 = {1,… ,m1} , Δ2 = {m1 + 1,… ,m1 + m2},… ,Δ
p
= {m1 +⋯ + m

p−1

+1,… ,m} ( mi = CardΔi for i = 1,… , p ; m1 +⋯ + mp = m).
If a = (a1,… , am) ∈ ℕm , we denote the numbers 

∑m1

i=1
ai , 

∑m1+m2

i=m1+1
ai,… , 

∑m

i=m1+⋯+mp−1+1
ai , by ord 1a,… , ord pa , respectively.

In what follows, if A is a subset of ℕm , then VA will denote the set of all 
m-tuples v = (v1,… , vm) ∈ ℕm such that a ≰P v for every a ∈ A (i. e., for any 
a = (a1,… , am) ∈ A , there exists i, 1 ≤ i ≤ m , such that ai > vi ). Furthermore, for 
any r1,… , rp ∈ ℕ , we set A(r1,… , rp) = {a ∈ A ∣ ord ia ≤ ri for i = 1,… , p}.

The following theorem proved in [5, Chapter 2] generalizes the well-known Kol-
chin’s result on the univariate numerical polynomial associated with a subset of ℕm 
(see [4, Chapter 0, Lemma 17]).

Theorem  2.2  Let A be a subset of ℕm and let partition (2.2) of ℕm be fixed 
( m = m1 +⋯ + mp for some nonnegative integers m1,… ,mp , p ≥ 1 ). Then there 
exists a numerical polynomial �A(t1,… , tp) with the following properties:

(i)   �A(r1,… , rp) = Card VA(r1,… , rp) for all sufficiently large p-tuples (r1,… ,

r
p
) ∈ ℕp.

(2.1)f (t1,… tp) =

m1∑

i1=0

…

mp∑

ip=0

ai1…ip

(
t1 + i1

i1

)
…

(
tp + ip

ip

)

(2.2)ℕm = Δ1 ∪ Δ2 ∪…Δp
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(ii)   The total degree of the polynomial �A does not exceed m and degti�A ≤ mi 
for all i = 1,… , p.

(iii)   deg �A = m if and only if A = � . Then �A(t1,… , tp) =
∏p

i=1

�
ti+mi

mi

�
.

(iv)   �A is a zero polynomial if and only if (0,… , 0) ∈ A.

The polynomial �A(t1,… , tp) is called the dimension polynomial of the set 
A ⊆ ℕm associated with the given partition of ℕm . If p = 1 , the corresponding uni-
variate numerical polynomial �A(t) is called the Kolchin polynomial of A.

Note that if A ⊆ ℕm and A∗ is the set of all minimal elements of A with respect to 
the product order on ℕm , then the set A∗ is finite (it follows from [4, Ch. 0, Lemma 
15] that states that for any infinite set A ⊆ ℕm , there exists an infinite sequence of 
elements of A, strictly increasing relative to the product order). The following theo-
rem proved in [5, Chapter 2] gives an explicit formula for the dimension polynomial 
of a finite subset of ℕm associated with a partition of ℕm into the union of p disjoint 
subsets.

Theorem 2.3  Let A = {a1,… , an} be a finite subset of ℕm , where n is a positive inte-
ger, and let partition (2.2) of ℕm be fixed ( m = m1 +⋯ + mp for some nonnegative 
integers m1,… ,mp , p ≥ 1 ). Let ai = (ai1,… , aim)    ( 1 ≤ i ≤ n ) and for any l ∈ ℕ , 
0 ≤ l ≤ n , let Γ(l, n) denote the set of all l-element subsets of ℕn . Furthermore, for 
any � ∈ Γ(l, n) , let ā

𝜎j = max{aij ∣ i ∈ 𝜎} ( 1 ≤ j ≤ m ) and b
𝜎j =

∑
h∈Δj

ā
𝜎h 

( j = 1,… , p ). Then

Remark 2.1  It is well known (see for example [5, Chapter  2]) that the num-
ber of solutions (x1,… xm) ∈ ℕm of the inequality x1 +⋯ + xm ≤ r ( r ∈ ℕ ) 
is 

(
r+m

m

)
 . It follows that if r1,… , rp, s1,… , sp ∈ ℕ , si < ri ( 1 ≤ i ≤ p ), and 

A = {a = (a1,… , am) ∈ ℕm ∣ si ≤ ai ≤ ri for i = 1,… , p} , then

(as before we consider partition (2.2) of ℕm ). We will use this observation in the 
proof of Theorem 4.1.

(2.3)�A(t1,… , tp) =

n∑

l=0

(−1)l
∑

�∈Γ(l,n)

p∏

j=1

(
tj + mj − b

�j

mj

)
.

CardA =

p∏

i=1

[(
ri + mi

mi

)
−

(
si + mi − 1

mi

)]
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3 � Relative effective orders and E‑reduction

Let K be a difference field with a basic set � = {�1,… , �m} and R = K{y1,… , yn} 
the algebra of difference polynomials in �-indeterminates y1,… , yn over 
K. Then R can be viewed as a polynomial ring in the set of indeterminates 
TY = {�yi ∣ � ∈ T , 1 ≤ i ≤ n} whose elements are called terms. As before, we fix 
partition (1.1) of the set � and for every j = 1,… , p , define the order of a term 
u = �yi with respect to �j (denoted by ord ju ) as the corresponding order of � (that 
is, ord j(�yi) = ord j� for any i = 1,… , n, � ∈ T  ). As usual, if �, �� ∈ T  , we say that 
� divides �′ (and write � ∣ �� ) if �� = ��

�� for some element ��� ∈ T  denoted by �
′

�

 . If 
u = �yi and v = �

�yj are two terms in TY, we say that u divides v (and write u ∣ v ) if 
i = j and � ∣ �� . In this case we also say that v is a transform of u and define the ratio 
v

u
 as �

′

�

.
By a ranking on R we mean a well-ordering ≤ of the set of terms TY that satisfies 

the following two conditions: 

	 (i)	 u ≤ �u for any u ∈ TY , � ∈ T . (We denote the order on TY by the usual symbol 
≤ and write u < v if u ≤ v and u ≠ v.)

	 (ii)	 If u, v ∈ TY  and u ≤ v , then �u ≤ �v for any � ∈ T .

If ≤ is a ranking on R and f ∈ R , then the greatest and smallest (with respect to <) 
terms in f are called the leader and coleader of f with respect to the ranking ≤.

Let us consider p total orderings <1,… ,<p of the set of power products T such 
that if � = �

k1
1
… �

km
m , �� = �

l1
1
… �

lm
m ∈ T  , then for any i = 1,… , p , 𝜏 <i 𝜏

′ if and 
only if

( ord i�, ord 1�,… , ord i−1�, ord i+1�,… , ord p�, km1+⋯+mi−1+1
,… , km1+⋯+mi

,

k1,… , km1+⋯+mi−1
, km1+⋯+mi+1

,… , km) is less than the corresponding (m + p)

-tuple for �′ with respect to the lexicographic order on ℕm+p . Furthermore, we 
consider p orders <1,… ,<p on the set of terms TY that correspond to the intro-
duced orders on T. They are defined as follows: 𝜏yj <i 𝜏

′yk if and only if 𝜏 <i 𝜏
′ in 

T or � = �
� and j < k ( 1 ≤ i ≤ p, 1 ≤ j, k ≤ n ). Clearly, these orders are rankings on 

K{y1,… , yn}.
If f ∈ K{y1,… , yn}⧵K and 1 ≤ k ≤ p , then the greatest with respect to <k term 

that appears in f is called the k-leader of the �-polynomial f; it is denoted by u(k)
f

 . The 
smallest with respect to <k term in f is called the k-coleader of f and is denoted by 
v
(k)

f
.

Definition 3.1  Let f ∈ K{y1,… , yn} ⧵ K and let u
(k)

f
= �

k1
1
… �

km
m yi and 

v
(k)

f
= �

l1
1
… �

lm
m yj be the k-leader and k-coleader of f, respectively ( 1 ≤ k ≤ p ). Then 
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for every k = 1,… , p , the nonnegative integer ord ku
(k)

f
− ord kv

(k)

f
 is called the  k th 

effective order of f; it is denoted by Eord kf .

It follows from the last definition that for any f ∈ K{y1,… , yn} and for any 
� ∈ T  , Eord k(�f ) = Eord k(f ) for k = 1,… , p.

Definition 3.2  Let f and g be two �-polynomials in the ring K{y1,… , yn} . We say 
that f has lower rank than g and write rk f < rk g if either f ∈ K , g ∉ K , or

(the comparison of u(1)
f

 and u(1)
g

 in this lexicographic order is made with respect to 
the order <1 on the set of terms TY). If the last two (p + 2)-tuples are equal (or 
f , g ∈ K ) we say that f and g are of the same rank and write rk f = rk g.

Definition 3.3  Let f , g ∈ K{y1,… , yn} and let d = deg
u
(1)
g
g . We say that f is 

E-reduced with respect to g if one of the following two conditions holds. 

	 (i)	   f does not contain any (�u(1)
g
)e ( � ∈ T  ) such that e ≥ d;

	 (ii)	   f contains (�u(1)
g
)e with e ≥ d for some � ∈ T  , but in this case either there 

exists k ∈ ℕp , k ≥ 2 , such that ord k(𝜏u
(k)
g
) > ord k(u

(k)

f
) or there exists j ∈ ℕp 

such that ord j(𝜏v
(j)
g ) < ord j(v

(j)

f
) . (The “or” here is inclusive, that is, the case 

when both conditions hold is included.)

Thus, f is not E-reduced with respect to g if f contains some (�u(1)
g
)e ( � ∈ T  ) with 

e ≥ d = deg
u
(1)
g
g and also ord k(�u

(k)
g
) ≤ ord k(u

(k)

f
) for k = 2,… , p and 

ord j(�v
(j)
g ) ≥ ord j(v

(j)

f
) for j = 1,… p.

Proposition 3.1  If rk f < rk g , then f is E-reduced with respect to g.

Proof  Suppose that f is not E-reduced with respect to g. Then f contains some 
(�u(1)

g
)e ( � ∈ T  ) such that e ≥ d = deg

u
(1)
g
g , ord k(�u

(k)
g
) ≤ ord k(u

(k)

f
) for k = 2,… , p 

and ord j(�v
(j)
g ) ≥ ord j(v

(j)

f
) for j = 1,… p . Then u(1)

f
≥ �u(1)

g
= u(1)

�g
≥ u(1)

g
 , hence 

ord 1u
(1)

f
≥ ord 1(�u

(1)
g
) . Since ord 1(v

(1)

f
) ≤ ord 1(�v

(1)
g
) = ord 1(v

(1)
�g
) , we have 

Eord 1(f ) ≥ Eord 1(�g) = Eord 1(g) . Also, for any k = 2,… , p , 
Eord k(f ) = ord ku

(k)

f
− ord kv

(k)

f
≥ ord (�u(k)

g
) − ord 1(�v

(k)
g
) = Eord k(�g) = Eord kg . 

Therefore, rk f ≥ rk g according to Definition 3.2, so we have arrived at a contradic-
tion. 	�  ◻

Proposition 3.2  Let A = {g1,… , gt} be a finite set of �-polynomials in the ring 
R = K{y1,… , yn} , let u(i)

k
 and v(i)

k
 denote the i-leader and i-coleader of gk , respec-

tively ( 1 ≤ k ≤ t, 1 ≤ i ≤ p ). Let dk = deg
u
(1)

k

gk and Ik denote the coefficient of (u(1)
k
)dk 

(Eord 1(f ),… , Eord p(f ), u
(1)

f
, deg

u
(1)

f

f ) < lex (Eord 1(g),… , Eord p(g), u
(1)
g
, deg

u
(1)
g
g)
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when gk is written as a polynomial in u
(1)

k
 ( 1 ≤ k ≤ t ). Furthermore, let 

I(A) = {B ∈ R ∣ either B = 1 or B is a product of finitely many �-polynomials of the 
form �(Ik) ( � ∈ T , k = 1,… , t)} . Then for any h ∈ R , there exist �-polynomials 
J ∈ I(A) and h∗ ∈ R such that h∗ is E-reduced with respect to A and 
Jh ≡ h∗(mod [A]) (that is, Jh − h∗ ∈ [A]).

Proof  If h is E-reduced with respect to A , the statement is obvious (one can set 
h∗ = h ). Suppose that h is not E-reduced with respect to A . In what follows, if a �
-polynomial f ∈ R is not E-reduced with respect to A , then a term wf  that appears in 
f will be called the A-leader of f if wf  is the greatest (with respect to <1 ) term among 
all terms of the form �u(1)

gk
 ( � ∈ T  , 1 ≤ k ≤ t ) such that f contains (�u(1)

k
)e with e ≥ dk , 

ord i(�u
(i)

k
) ≤ ord iu

(i)

f
 for i = 2,… , p , and ord j(�v

(j)

k
) ≥ ord jv

(j)

f
 for j = 1,… , p . Let 

wh be the A-leader of the element h, d = degwh
h , and ch the coefficient of wd

h
 when h 

is written as a polynomial in wh . Then wh = �u
(1)

k
 for some � ∈ T  and for some k 

( 1 ≤ k ≤ t ) such that d ≥ dk , ord i(�u
(i)

k
) ≤ ord iu

(i)

h
 ( 2 ≤ i ≤ p ), and 

ord j(�v
(j)

k
) ≥ ord jv

(j)

h
 ( 1 ≤ j ≤ p ). Let us choose such k that corresponds to the maxi-

mum (with respect to <1 ) 1-leader u(1)
k

 in the set of all 1-leaders of elements of A , 
and let us consider the �-polynomial h� = �(Ik)h − chw

d−dk
h

(�gk) . Clearly, 
degwh

h′ < degwh
h and h′ does not contain any A-leader ��u(1)

�
 ( �� ∈ T , 1 ≤ � ≤ t ) 

that is greater than wh with respect to <1 (such a term cannot appear in �(Ik)h or �gk ). 
Applying the same procedure to h′ and continuing in the same way, we will arrive at 
a �-polynomial h∗ ∈ R such that h∗ is E-reduced with respect to A and Jh − h∗ ∈ [A] 
for some J ∈ I(A) . 	�  ◻

The process of reduction described in the proof of the last proposition can be 
realized by the following algorithm. (Recall that �R denotes the ring of �-opera-
tors over the �-ring R = K{y1,… , yn}.)

Algorithm 1  (h, t, g1,… , gt; h
∗)

Input: h ∈ R , a positive integer t, A = {g1,… , gt} ⊆ R where gi ≠ 0 for 
i = 1,… , t

Output: Element h∗ ∈ R , elements C1,… ,Ct ∈ �R and J ∈ I(A) such that 
Jh =

∑t

i=1
Ci(gi) + h∗ and h∗ is E-reduced with respect to A

Begin
C1 ∶= 0,… ,Ct ∶= 0, h∗ ∶= h , J:=1

While there exist k, 1 ≤ k ≤ t , and a term w that appears in h∗ with a (nonzero) 

coefficient cw , such that u(1)
gk

∣ w , deg
u
(1)
gk

gk ≤ degw h
∗ , ord i

(
w

u
(1)
gk

u(i)
gk

)
≤ ord iv

(j)

h∗
 for 

i = 2,… , p , and ord j

(
w

u
(1)
gk

v
(j)
gk

)
≥ ord jv

(j)

h∗
 for j = 1,… , p , do

z:= the greatest of the terms w that satisfy the above conditions.
l:= the smallest number k for which u(1)

gk
 is the greatest (with respect to <1 ) 

1-leader of an element of A such that u(1)
gk

∣ z , deg
u
(1)
gk

gk ≤ degz h
∗ , 
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ord i

(
z

u
(1)
gk

u(i)
gk

)
≤ ord iu

(i)

h∗
 for i = 2,… , p , and ord j

(
z

u
(1)
gk

v
(j)
gk

)
≥ ord jv

(j)

h∗
 for 

j = 1,… , p,
� ∶=

z

u
(1)
gl

J ∶= �(Il)J , Cl ∶= Cl + czz
d−dl� where d = degz h

∗ , dl = deg
u
(1)
gl

gl , and cz is the 
coefficient of zd when h∗ is written as a polynomial in z

h∗ ∶= �(Il)h
∗ − czz

d−dl (�gl)

End

Definition 3.4  A set A ⊆ K{y1,… , yn} is said to be E-autoreduced if either it is 
empty or A

⋂
K = � and every element of A is E-reduced with respect to all other 

elements of the set A.

We are going to show that every E-autoreduced sets is finite. The proof of the 
following lemma can be found in [4, Chapter 0, Section 17].

Lemma 3.1  Let A be any infinite subset of the set ℕm × ℕn ( m, n ∈ ℕ , n ≥ 1 ). Then 
there exists an infinite sequence of elements of A, strictly increasing relative to the 
product order, in which every element has the same projection on ℕn.

This lemma immediately implies the following statement that will be used below.

Lemma 3.2  Let S be any infinite set of terms �yj ( � ∈ T , 1 ≤ j ≤ n ) in the ring 
K{y1,… , yn} . Then there exists an index j ( 1 ≤ j ≤ n ) and an infinite sequence of 
terms �1yj, �2yj,… , �kyj,… such that �k ∣ �k+1 for every k = 1, 2,….

Proposition 3.3  Every E-autoreduced set is finite.

Proof  Suppose that there is an infinite E-autoreduced set A . It follows from 
Lemma  3.2 that A contains a sequence of �-polynomials {f1, f2,…} such that 
u
(1)

fi
∣ u

(1)

fi+1
 for i = 1, 2,… . Since the sequence of non-negative integers {deg

u
(1)

fi

fi} can-
not have an infinite decreasing subsequence, without loss of generality we can 
assume that deg

u
(1)

fi

fi ≤ deg
u
(1)

fi+1

fi+1 ( i = 1, 2,…).

Let kij = ord ju
(1)

fi
 , lij = ord ju

(j)

fi
 , nij = ord jv

(j)

fi
 ( 1 ≤ j ≤ p ). Obviously,  lij ≥ kij ≥ nij  

( i = 1, 2,… ;j = 1,… , p),  so {(li1 − ki1 = 0, li2 − ki2,… , lip − kip) ∣ i = 1, 2,…} ⊆ ℕp and 
{(ki1 − ni1, ki2 − ni2,… , kip − nip) ∣ i = 1, 2,…} ⊆ ℕp . By Lemma  3.1, there exists 
an infinite sequence of indices i1 < i2 < … such that

and

(3.1)(li12 − ki12,… , li1p − ki1p) ≤P (li22 − ki22,… , li2p − ki2p) ≤P …
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Then for any j = 2,… , p , we have 

ord j

(
u
(1)

fi2

u
(1)

fi1

u
(j)

fi1

)
= ki2j − ki1j + li1j ≤ ki2j − li2j − ki2j = li2j = ord ju

(j)

fi2
 , so that fi2 con-

tains a term �u(1)
fi1

= u
(1)

fi2
 such that � ≠ 1 and ord j(�u

(j)

fi1
) ≤ ord ju

(j)

fi2
 for j = 2,… , p . 

Similar arguments with the use of (3.2) show that ord j(�v
(j)

fi1
) ≥ ord jv

(j)

fi2
 for 

j = 2,… , p . Thus, the �-polynomial fi2 is not reduced with respect to fi1 that contra-
dicts the fact that A is an E-autoreduced set. 	� ◻

Example 1  Let K be a difference field with a basic set � = {�1, �2} considered with a 
partition � = �1 ∪ �2 where �1 = {�1} and �2 = {�2} . Let A = {g1, g2} ⊆ K{y} (the 
ring of �-polynomials in one �-indeterminate y) where

Then (Eord 1(g1),… , Eord
p
(g1), u

(1)
g1
, deg

u
(1)
g1

g1) = (3 − 2, 3 − 1, 𝛼3
1
𝛼2y, 1) < lex (2, 2

−1, �2
1
�2y, 1) = (Eord 1(g2),… , Eord

p
(g2), u

(1)
g2
, deg

u
(1)
g2

g2) , so rk g1 < rk g2 . By 
Proposition 3.1, g1 is E-reduced with respect to g2 . Since g2 contains no transform of 
u(1)
g1

= �
3
1
�2y , g2 is reduced with respect to g1 , so the set A is E-autoreduced. How-

ever, since the degree of g1 with respect to �1u(1)g2
 is equal to the degree of g2 with 

respect to u(1)
g2

 , the set A is not autoreduced in the usual sense (where one considers 
an orderly ranking of terms in K{y} and f is said to be reduced with respect to g if f 
does not contain any (�ug)e ( � ∈ T  , ug is the leader of g with respect to the given 
ranking) such that e ≥ d = degug g , see [5, Section 3.3]) or [9, Section 2.4]).

In what follows, while considering E-autoreduced sets we always assume that 
their elements are arranged in order of increasing rank.

Definition 3.5  Let A = {g1,… , gs} and B = {h1,… , ht} be two E-autoreduced 
sets in the ring K{y1,… , yn} . Then A is said to have lower rank than B , written as 
rkA < rkB , if one of the following two cases holds:

(1)   rk g1 < rk h1 or there exists k ∈ ℕ such that 1 < k ≤ min{s, t} , rk gi = rk hi 
for i = 1,… , k − 1 and rk gk < rk hk.

(2)  s > t and rk gi = rk hi for i = 1,… , t.
If s = t and rk gi = rk hi for i = 1,… , s , then A is said to have the same rank as 

B ; in this case we write rkA = rkB

(3.2)(ki11 − ni11,… , ki1p − ni1p) ≤P (ki11 − ni11,… , ki2p − ni2p) ≤P … .

g1 = �
3
1
�2y + �

2
1
y + �

3
2
y + y, g2 = �

2
1
�2y + �

2
2
y + 1.
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Proposition 3.4  In every nonempty family of E-autoreduced sets of difference poly-
nomials there exists an E-autoreduced set of lowest rank.

Proof  Let M be a nonempty family of E-autoreduced sets in the ring K{y1,… , yn} . 
Let us inductively define an infinite descending chain of subsets of M as follows: 
M0 = M , M1 = {A ∈ M0 ∣ A contains at least one element and the first element 
of A is of lowest possible rank},… ,Mk = {A ∈ Mk−1 ∣ A contains at least k ele-
ments and the kth element of A is of lowest possible rank},… . It is clear that if A 
and B are any two E-autoreduced sets in Mk and f and g are their lth �-polynomi-
als ( l ≥ k ), then rk f = rk g . Therefore, if all sets Mk are nonempty, then the set 
{ Ak ∣ Ak is the kth element of some E-autoreduced set in Mk } would be an infi-
nite autoreduced set, and this would contradict Proposition 3.3. Thus, there is the 
smallest positive integer k such that Mk = � . Clearly, every element of Mk−1 is an 
E-autoreduced set of lowest rank in the family M . 	�  ◻

Let J be any ideal of the ring K{y1,… , yn} . Since the set of all E-autoreduced 
subsets of J is not empty (if f ∈ J , then {f } is an E-autoreduced subset of J), the last 
statement shows that J contains an E-autoreduced subset of lowest rank. Such an 
E-autoreduced set is called an E-characteristic set of the ideal J.

Proposition 3.5  Let A = {f1,… , fd} be an E-characteristic set of a �-ideal J of the 
ring K{y1,… , yn} . Then an element g ∈ J is E-reduced with respect to the set A if 
and only if g = 0.

Proof  First of all, note that if g ≠ 0 and rk g < rk f1 , then rk {g} < rk A that con-
tradicts the fact that A is a E-characteristic set of the ideal J. Let rk g > rk f1 (if 
rk g = rk f1 , then g is not reduces with respect to f1 , contrary to the assumption 
that g is E-reduced with respect to A ). Let f1,… , fj ( 1 ≤ j ≤ d ) be all elements of A 
whose rank is lower than the rank of g. Then the set A� = {f1,… , fj, g} is E-autore-
duced. Indeed, by the conditions of the theorem, �-polynomials f1,… , fj are reduced 
with respect to each other and g is reduced with respect to the set {f1,… , fj} . Fur-
thermore, each fi ( 1 ≤ i ≤ j ) is reduced with respect to g because rk fi < rk g . Since 
rk A

′
< rk A , A is not an E-characteristic set of J that contradicts the conditions of 

the proposition. Thus, g = 0 . 	�  ◻

Proposition 3.6  Let ≤ be a ranking on the ring R = K{y1,… , yn} and let f1,… , fs 
( s ≥ 2 ) be linear �-polynomials in R. For every i = 1,… , s , let ui and vi denote, 
respectively, the leader and coleader of fi with respect to ≤ , and let u1 > u2 > ⋯ > us 
and v1 > v2 > ⋯ > vs . Suppose that

where 0 ≠ hi ∈ R ( 1 ≤ i ≤ s ) and that g cannot be represented as a linear combina-
tion of any proper subset of {f1,… , fs} with coefficients in R. Then g contains u1 and 
vs.

(3.3)g = h1f1 +⋯ + hsfs
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Proof  Without loss of generality we can assume that the coefficient of u1 
in f1 is 1. Dividing each hi ( 2 ≤ i ≤ s ) by f1 with respect to u1 , we obtain 
that hi = h�

i
f1 + h��

i
 where the �-polynomial h′′

i
 does not contain u1 . Thus, 

g = (h1 + h�
2
+⋯ + h�

s
)f1 + h��

2
f2 +⋯ + h��

s
fs where the �-polynomial 

h��
2
f2 +⋯ + h��

s
fs does not contain u1 . Since h1 + h�

2
+⋯ + h�

s
≠ 0 (otherwise, g is a 

linear combination of f2,… , fs that contradicts our assumption), g contains u1.
Similarly, writing each hj with 1 ≤ j ≤ s − 1 as hj = h∗

j
fs + h∗∗

j
 where h∗∗

j
 does not 

contain vs , we obtain (using the fact that g cannot be written as a linear combination 
of elements of any proper subset of {f1,… , fs} ) that g contains vs . 	�  ◻

Proposition 3.7  Let f be a linear �-polynomial in R = K{y1,… , yn} . Then {f } is an 
E-characteristic set of the �-ideal [f].

Proof  Let g ∈ [f ] . Then one can represent g in the form

where 0 ≠ hi ∈ R , �i ∈ T  ( 1 ≤ i ≤ s ), �i ≠ �j whenever i ≠ j , and s is the smallest 
positive integer for which such a representation of g exists. (In particular, g can-
not be written as a linear combination with coefficients in R of elements of any 
proper subset of {�1f ,… , �sf } .) Since the elements �1,… , �s are all distinct, 
for every k = 1,… , p , there exists a permutation �k of the set {1,… , s} such that 
𝜏
𝜋k(s)

<k ⋯ <k 𝜏𝜋k(1)
 . By Proposition 3.6, g contains the k-leader of �

�k(1)
f  and the 

k-coleader of �
�k(s)

f  (clearly, the latter term cannot be smaller than v(k)
g

 with respect 
to <k ). Therefore, g is not E-reduced with respect to {f } and rk g ≥ rk f  . Thus, no 
element of [f] is E-reduced with respect to {f } and f has the smallest rank among all 
�-polynomials in [f]. It follows that {f } is an E-characteristic set of the �-ideal [f]. 	
� ◻

4 � A new type of multivariate difference dimension polynomials

In this section we use properties of E-characteristic sets to obtain the following result 
that generalizes Theorem 1.1 and introduces a new type of multivariate dimension 
polynomials of difference field extensions that carry more invariants than any previ-
ously known difference dimension polynomials. (By an invariant of a finitely gener-
ated difference field extension we mean a numerical characteristic that is carried by 
a difference dimension polynomial of such an extension and that does not depend on 
the choice of the finite set of its difference generators.) As before, K denotes a differ-
ence ( � -) field with a basic set � = {�1,… , �m} considered together with its parti-
tion (1.1) into the union of p disjoint subsets �i , Card �i = mi ( 1 ≤ i ≤ p ). Further-
more, for any two p-tuples (r1,… , rp), (s1,… , sp) ∈ ℕp with si ≤ ri for i = 1,… , p , 
we set

g = h1(�1f ) +⋯ + hs(�sf )
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Theorem  4.1  Let L = K⟨�1,… , �n⟩ be a �-field extension generated by a set 
� = {�1,… , �n} . Then there exists a polynomial �

�∣K(t1,… , t2p) in 2p variables with 
rational coefficients and numbers r(0)

i
, s

(0)

i
, s

(1)

i
∈ ℕ ( 1 ≤ i ≤ p ) with s(0)

i
< r

(0)

i
 and 

s
(1)

i
< r

(0)

i
− s

(0)

i
 such that

for all (r1,… , rp, s1,… , sp) ∈ ℕ2p with ri ≥ r
(0)

i
 , s(1)

i
≤ si ≤ ri − s

(0)

i
 . Furthermore, 

deg�
�∣K ≤ m , degti ��∣K ≤ mi for i = 1,… , p and degtj ��∣K ≤ mj−p for 

j = p + 1,… , 2p.

Proof  Let P ⊆ R = K{y1,… , yn} be the defining �-ideal of the extension L/K and let 
A = {f1,… , fq} be an E-characteristic set of P. Let u(i)

j
 and v(i)

j
 denote the i-leader 

and i-coleader of fj , respectively ( 1 ≤ j ≤ q , 1 ≤ i ≤ p ). For any 
r = (r1,… , rp), s = (s1,… , sp) ∈ ℕp such that s ≤P r (that is, si ≤ ri for i = 1,… , p ), 
let

u is divisible by the 1-leader of some fj ( 1 ≤ j ≤ q ) and whenever u = �u
(1)

j
 for some 

� ∈ T , 1 ≤ j ≤ q , either ord 1(𝜏v
(1)

j
) < s1 or there exist k ∈ {2,… , p} , i ∈ {1,… , p} 

such that ord k(𝜏u
(k)

j
) > rk or ord i(𝜏v

(i)

j
) < si (“or” is inclusive)},

Furthermore, let

We are going to prove that for every r, s ∈ ℕp with s <P r , the set U
�
(r, s) is a tran-

scendence basis of the field K(W
�
(r, s)) over K. First, one can see that this set is 

algebraically independent over K. Indeed, if f (w1(�),… ,wk(�)) = 0 for some ele-
ments w1,… ,wk ∈ U(r, s) , then the �-polynomial f (w1,… ,wk) lies in P and it is 
E-reduced with respect to A . (If f contains a term w = �u

(1)

j
 , 1 ≤ i ≤ q , � ∈ T  , such 

that degw f ≥ deg
u
(1)

j

fj , then w ∈ U��(r, s) , so either ord 1(𝜏v
(1)

j
) < s1 ≤ ord 1v

(1)

f
 or 

there exist k ∈ {2,… , q} , i ∈ {1,… , p} such that ord i(𝜏u
(k)

i
) > rk ≥ ord iu

(i)

f
 or 

T(r1,… , rp;s1,… , sp) = {� ∈ T ∣ si ≤ ord i� ≤ ri for i = 1,… , p}.

�
�∣K(r1,… , rp, s1,… , sp) = tr.deg KK({��j ∣ � ∈ T(r1,… , rp;s1,… , sp), 1 ≤ j ≤ n})

W(r̄, s̄) =
{
w ∈ TY

||si ≤ ord
i
w ≤ r

i
for i = 1,… , p

}
,

W
𝜂
(r̄, s̄) = {w(𝜂)|w ∈ W(r̄, s̄)},

U
�(r̄, s̄) =

{
u ∈ TY

|||si ≤ ord
i
u ≤ r

i
for i = 1,… , p and u

(1)

j
|u(1 ≤ j ≤ q)

}
,

U
�
𝜂
(r̄, s̄) =

{
u(𝜂)||u ∈ U

� (r̄, s̄)
}
,

U
��
𝜂
(r̄, s̄) =

{
u ∈ TY

||si ≤ ord
i
u ≤ r

i
(1 ≤ i ≤ p)

}
,

and U��
�
(r, s) = {u(�) ∣ u ∈ U��(r, s)}.

U(r, s) = U�(r, s) ∪ U��(r, s) and U
�
(r, s) = U�

�
(r, s) ∪ U��

�
(r, s).
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ord i(𝜏v
(i)

k
) < si ≤ ord iv

(i)

f
 (“or” is inclusive). It follows that f is E-reduced with 

respect to A .) By Proposition  3.5, f = 0 , so the set U
�
(r, s) is algebraically inde-

pendent over K.
Now let us prove that if 0 ≤ si ≤ ri − s

(0)

i
 , where s(0)

i
= max{Eord ifj ∣ 1 ≤ j ≤ q} 

( 1 ≤ i ≤ p ), then every element ��k ∈ W
�
(r, s)⧵U

�
(r, s) ( � ∈ T  , 1 ≤ k ≤ n ) is alge-

braic over the field K(U
�
(r, s)) . In this case �yk ∉ U(r, s) , therefore �yk is equal to 

some term of the form ��u(1)
j

 ( 1 ≤ j ≤ q ) where �� ∈ T  , ord 1(�
�u

(i)

j
) ≤ ri for 

i = 2,… , p , and ord l(�
�v

(l)

j
) ≥ sl for l = 1,… , p.

Let us represent fj as a polynomial in u(1)
j

:

where I(j)
0
, I

(i)

j
,… I

(j)

dj
 do not contain u(1)

j
 (therefore, all terms in these �-polynomials 

are lower than u(1)
j

 with respect to <1 ). Since fj ∈ P , fj(�) = 0 , that is,

Note that I(j)
dj
(�) ≠ 0 . Indeed, since rk I(j)

dj
< rk fj , the equality I(j)

dj
(�) = 0 would imply 

that I(j)
dj

∈ P . In this case, the family of all fl with rk fl < rk I
(j)

dj
 and I(j)

dj
 would form an 

E-autoreduced set in P (see Proposition 3.1) whose rank is lower than the rank of A . 
This contradicts the fact that A is an E-characteristic set of P. Since the �-ideal P is 
reflexive, �(I(i)

q
) ∉ P for any � ∈ T  . Therefore, if we apply �′ to both sides of (4.1), 

the resulting equality will show that the element ��u(1)
j
(�) = ��k is algebraic over the 

field K({𝜏𝜂l ∣ si ≤ ord i𝜏 ≤ ri (1 ≤ i ≤ p), 𝜏yl <1 𝜏
�u

(1)

j
}) . Now, the induction on the 

well-ordered (with respect to <1 ) set of terms TY completes the proof of the fact that 
the set U

�
(r, s) is a transcendence basis of the field K(W

�
(r, s)) over K.

In order to evaluate the size of U
�
(r, s) we are going to evaluate the sizes of the 

sets U�
�
(r, s) and U��

�
(r, s) , that is, the sizes of the sets U�(r, s) and U��(r, s) . For every 

k = 1,… , n , let

Applying Theorem  2.1, we obtain that there exists a numerical poly-
nomial �k(t1,… , tp) in p variables with rational coefficients such that 
�k(r1,… , rp) = CardVAk

(r1,… , rp) for all sufficiently large (r1,… , rp) ∈ ℕp . 
It follows that if we set �

�∣K(t1,… , tp) =
∑n

k=1
�k(t1,… , tp) , then there exist 

r
(0)

i
, s

(0)

i
, s

(1)

i
∈ ℕ ( 1 ≤ i ≤ p ) with s(0)

i
< r

(0)

i
 and s(1)

i
< r

(0)

i
− s

(0)

i
 such that for all 

r = (r1,… , rp), s = (s1,… , sp) ∈ ℕp with ri ≥ r
(0)

i
 , s(1)

i
≤ si ≤ ri − s

(0)

i
 , one has

Furthermore, deg�
�∣K ≤ m , and deg�

�∣K = m if and only if at least one of the sets Ak 
( 1 ≤ k ≤ n ) is empty. Note that �

�∣K is the �-dimension polynomial of the extension 

fj = I
(j)

dj
(u

(1)

j
)dj +⋯ + I

(j)

1
u
(1)

j
+ I

(j)

0

(4.1)I
(j)

dj
(�)(u

(1)

j
(�))dj +⋯ + I

(j)

1
(�)u

(1)

j
(�) + I

(j)

0
(�) = 0.

Ak = {(i1,… , im) ∈ ℕ
m ∣ �

i1
1
… �

im
m
yk is the 1-leader of some element of A}.

(4.2)CardU
�
(r, s) = �

�∣K(r1,… , rp) − �
�∣K(s1 − 1,… , sp − 1).
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L/K associated with the set of �-generators � and partition (1.1) of � , as it is shown 
in the proof of Theorem 1.1 given in [9, Section 4.2].

In order to evaluate CardU��(r, s) , note that this set consists of all terms �u(1)
j

 

( � ∈ T , 1 ≤ j ≤ q ) such that si ≤ ord i(�uj) ≤ ri and either ord 1(𝜏v
(1)

j
) < s1 or there 

exist k ∈ {2,… , p} , i ∈ {1,… , p} such that ord k(𝜏u
(k)

j
) > rk or ord i(𝜏v

(i)

j
) < si (“or” 

is inclusive). It follows from Remark 2.1 that for every fixed j, the number Nj of such 
terms satisfying the conditions ord i(𝜏v

(i)

j
) < si for i ∈ {k1,… , kd} ⊆ {1,… , p} , 

ord i(�v
(i)

j
) ≥ si for i ∈ {1,… , p} , i ≠ k

�
 ( 1 ≤ � ≤ d ) and ord i(�u

(i)

j
) ≤ ri for 

i = 1,… , p is equal to

By Remark 2.1, a similar formula holds for the number of terms satisfying the con-
ditions ord i(𝜏u

(i)

j
) > ri for i ∈ {l1,… , le} ⊆ {2,… , p} , ord i(�v

(i)

j
) ≥ si for 

i ∈ {1,… , p} and ord i(�u
(i)

j
) ≤ ri for i ≠ l

�
 ( 1 ≤ � ≤ e).

Applying the principle of inclusion and exclusion (taking into account terms that 
are multiples of more than one 1-leaders), we obtain that CardU��(r, s) is an alternat-
ing sum of polynomials in r1,… , rp, s1,… , sp that are products of k terms of the 
form 

(
ri−ai+mi

m

)
−
(

si−bi+mi

m

)
 with ai, bi ∈ ℕ ( 1 ≤ i < p ) and p − k terms of the form 

either 
(

si−ci+mi

m

)
−
(

si−di+mi

m

)
 or 

(
ri−ci+mi

m

)
−
(

ri−di+mi

m

)
 with ci, di ∈ ℕ , ci < di . Since 

each such a polynomial has total degree at most m − 1 and its degree with respect to 
ri or si ( 1 ≤ i ≤ p ) does not exceed mi , we obtain that 
CardU��(r, s) = �(r1,… , rp, s1,… , sp) where �(t1,… , t2p) is a numerical polyno-
mial in 2p variables such that deg𝜓 < m and degti � ≤ mi , degtj � ≤ mj−p for 
i = 1,… , p , j = p + 1,… , 2p . It follows that the numerical polynomial

satisfies conditions of our theorem. 	� ◻

Definition 4.1  The numerical polynomial �
�∣K(t1,… , t2p) whose existence is estab-

lished by Theorem 2.3 is called the 2p-variate �-dimension polynomial of the �-field 
extension L/K associated with the system of �-generators � and partition (1.1) of the 
set �.

The following theorem describes some invariants of a 2p-variate �-dimension 
polynomial of a finitely generated �-field extension L/K with partition (1.1) of � , 

(4.3)

∏

1≤i≤p,i≠k
�
(1≤�≤d)

[(
ri + mi

mi

)
−

(
si + mi − 1

mi

)]
⋅

d∏

�=1

[(
sk

�

− ord k
�

v
(k

�
)

k
�

− 1 + mk
�

mk
�

)

−

(
sk

�

− ord k
�

u
(1)

k
�

− 1 + mk
�

mk
�

)]
.

�
�∣K(t1,… , t2p) = �

�∣K(t1,… , tp) − �
�∣K(tp+1 − 1,… , t2p − 1) + �(t1,… , t2p)
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that is, characteristics of the extension that do not depend on the set of �-generators 
of L over K. The formulation of the theorem uses the following notation. For any 
permutation (j1,… , j2p) of the set {1,… , 2p} , let <j1,…,j2p

 denote the lexicographic 
order on ℕp such that (k1,… , k2p) <j1,…,j2p

(l1,… , l2p) if and only if either kj1 < lj1 or 
there exists q ∈ ℕ , 2 ≤ q ≤ 2p , such that kj

�

= lj
�

 for 𝜈 < q and kjq < ljq.

Theorem 4.2  With the notation of Theorem 4.1, let �
�∣K(t1,… , t2p) be the 2p-variate 

�-dimension polynomial of the �-field extension L = K⟨�1,… , �n⟩ . Since the degrees 
of �

�∣K with respect to ti and tp+i ( 1 ≤ i ≤ p ) do not exceed mi = Card �i (see parti-
tion (1.1)), Theorem 2.1 shows that this polynomial can be written as

Let E
�
= {(i1,… , i2p) ∈ ℕ2p ∣ 0 ≤ ik, ip+k ≤ mk ( k = 1,… , p ) and ai1…i2p

≠ 0} . 
Then the total degree d of �

�∣K with respect to t1,… , tp and the coefficients of the 
terms of total degree d in �

�∣K do not depend on the choice of the set of �-generators 
� . Furthermore, if (�1,… ,�p) is any permutation of {1,… , p} and (�1,… , �p) is any 
permutation of {p + 1,… , 2p} , then the maximal element of E

�
 with respect to the 

lexicographic order <
𝜇1,…,𝜇p,𝜈1,…,𝜈p

 and the corresponding coefficient a
�1,…,�p,�1,…,�p

 
do not depend on the choice of a finite set of �-generators of L/K either. Finally, 
am1…mp0…0 = a0…0m1…mp

= �-tr.deg KL.

Proof  Suppose that � = {�1,… , �l} is another system of �-generators of L/K, that is, 
L = K⟨�1,… , �n⟩ = K⟨�1,… , �l⟩ . Let

be the 2p-variate dimension polynomial of L/K associated with the system of gen-
erators � . Then there exist h1,… , hp ∈ ℕ such that �i ∈ K(

⋃l

j=1
T(h1,… , hp)�j) and 

�k ∈ K(
⋃n

j=1
T(h1,… , hp)�j) for any i = 1,… , n and k = 1,… , l . (If T ′

⊆ T  , then T ′
�j 

denotes the set {��j ∣ � ∈ T �} .) It follows that there exist numbers r(0)
i
, s

(0)

i
, s

(1)

i
∈ ℕ 

( 1 ≤ i ≤ p ) with s(1)
i

< r
(0)

i
− s

(0)

i
 such that whenever ri ≥ r

(0)

i
 , s(1)

i
≤ si ≤ ri − s

(0)

i
 

( 1 ≤ i ≤ p ), one has

and

Now the statement of the theorem follows from the fact that for any element 
(k1,… , k2p) ∈ E�

�
 , the term 

(
t1+k1
k1

)
…

(
t2p+k2p
k2p

)
 appears in �

�∣K(t1,… , t2p) and 
�
� ∣K(t1,… , t2p) with the same coefficient ak1…k2p

 . The equality of the coefficients of 

�
�∣K =

m1∑

i1=0

…

mp∑

ip=0

m1∑

ip+1=0

…

mp∑

i2p=0

ai1…i2p

(
t1 + i1

i1

)
…

(
t2p + i2p

i2p

)
.

�
� ∣K(t1,… , t2q) =

m1∑

i1=0

⋯

mp∑

ip=0

m1∑

ip+1=0

⋯

mp∑

i2p=0

bi1…i2p

(
t1 + i1

i1

)
…

(
t2p + i2p

i2p

)

�
�∣K(r1,… , r2p) ≤ �

� ∣K(r1 + h1,… , rp + hp, rp+1 − h1,… , r2p − hp)

�
� ∣K(r1,… , r2p) ≤ �

� ∣K(r1 + h1,… , rp + hp, rp+1 − h1,… , r2p − hp).
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the corresponding terms of total degree d = deg�
�∣K = deg�

� ∣K in �
�∣K and �

� ∣K can 
be shown as in the proof of [9, Theorem 3.3.21].

In order to prove the last part of the theorem, note that the expression (4.3) and a 
similar expression corresponding to the condition with ord i(𝜏u

(i)

j
) > ri for 

i ∈ {l1,… , le} ⊆ {2,… , p} (see the proof of Theorem  2.3) have the property that 
there total degrees with respect to r1,… , rp and s1,… , sp are less than m. It follows 
that the coefficients of the terms of total degree m in t1,… , tp and terms of total 
degree m in tp+1,… , t2p in the polynomial �

�∣K are equal to the corresponding coeffi-
cients in the polynomials �

�∣K(t1,… , tp) and �
�∣K(tp+1,… , t2p) , respectively (see 

(4.2)). It follows from Theorem 1.1 that am1…mp0…0 = a0…0m1…mp
= �-tr.deg KL . 	� ◻

Example 2  Let K be a difference ( � -) field with a basic set of endomorphisms 
� = {�1, �2, �3} considered together with its partition � = {�1} ∪ {�2} ∪ {�3} . Let 
L = K⟨�⟩ be a �-field extension with the defining equation

where a, b, c ∈ ℕ , a > b > c > 0 . It means that the defining �-ideal P of the exten-
sion L/K is a linear �-ideal of the ring of �-polynomials K{y} generated by the linear 
�-polynomial f = �

a
1
�
b
2
y + �

a
1
y + �

b
2
y + �

c
3
y.

By Proposition 3.7, {f } is an E-characteristic set of P. Setting r = (r1, r2, r3) and 
s = (s1, s2, s3) and using the notation of the proof of Theorem 4.1, we obtain (apply-
ing (2.3)) that

CardU�(r, s) = CardV{a,b,0}(r1, r2, r3) − CardV{a,b,0}(s1 − 1, s2 − 1, s3 − 1)

= [a(r2 + 1)(r3 + 1) + b(r1 + 1)(r3 + 1)

− ab(r3 + 1)] − [as2s3 + bs1s3 − abs3]   . 
Furthermore,

CardU��(r, s) = Card {�
a+k1
1

�
b+k2
2

�

k3

3
∣ s1 ≤ a + k1 ≤ r1, s2 ≤ b + k2 ≤ r2, s3 ≤ k3 ≤ r3

 and there 
are one or more of the inequalities k3 + c > r3 or k1 + c < s1 or k2 + c < s2}.

Applying the combinatorial method of inclusion and exclusion, we obtain that
CardU��(r, s) = c(r1 − s1 + 1)(r2 − s2 + 1) + (a − c)(r2 − s2 + 1)(r3 − s3 + 1)

+ (b − c)(r1 − s1 + 1)(r3 − s3 + 1) − c(a − c)(r2 − s2 + 1)

− c(b − c)(r1 − s1 + 1) − (a − c)(b − c)(r3 − s3 + 1) + c(a − c)(b − c)

.

Therefore, the dimension polynomial of the �-field extension of L/K defined by the 
equation (4.4) on its �-generator � , which expresses CardU�(r, s) + CardU��(r, s) , is 
of the form

Note that the standard (univariate) �-dimension polynomial �
�∣K(t) of the extension 

L/K associated with the �-generator � (see [6] or [5, Theorem 6.4.1]), which is equal 
to the Kolchin polynomial of the set {(a, b)} ⊂ ℕ2 , is as follows.

(4.4)�
a
1
�
b
2
� + �

a
1
� + �

b
2
� + �

c
3
� = 0

(4.5)

�
�∣K(t1,… , t6) = ct1t2 + (2b − c)t1t3 + (2a − c)t2t3 − ct1t5 − (b − c)t1t6 − ct2t4 − (a − c)t2t6−

(b − c)t3t4 − (a − c)t3t5 + ct4t5 + (b − c)t4t6 + (a − c)t5t6 + terms of degree ≤ 1.
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This polynomial carries two invariants of the extension L/K, deg�
�∣K = 2 and the 

leading coefficient a + b . At the same time, according to Theorem  4.1, the num-
bers c, 2b − c and 2a − c are invariants of the dimension polynomial (4.5). Thus, 
the dimension polynomial (4.5) gives all three parameters a, b and c of the defining 
equation (4.4) while �

�∣K(t) gives just the sum a + b.
In [13], the author introduced a bivariate dimension polynomial 

�
�∣K(t1, t2) that describes the transcendence degrees of intermediate fields 

K({�
k1
1
… �

km
m �j ∣ s ≤

∑m

i=1
ki ≤ r, 1 ≤ j ≤ n}) of the extension K⟨�1,… , �n⟩∕K for 

all sufficiently large r, s ∈ ℕ with s < r . The computation of this polynomial in the 
case of the �-field extension L = K⟨�⟩ with the defining equation (4.4) gives the fol-
lowing result (we use Theorem 4.1 of [13]):

By [13, Theorem  4.1], the polynomial �
�∣K(t1, t2) carries three invariants of the 

extension L/K, deg�
�∣K = 2 , a + b , and c. We see that this polynomial does not give 

all the parameters a, b, c of the equation (4.4) while the polynomial �
�∣K(t1,… , t6) 

carries all these parameters.

The univariate difference dimension polynomial and the bivariate difference 
dimension polynomial introduced in [13] are defined without using partitions of 
the basic sets of translations. The multivariate �-dimension polynomial given by 
Theorem 1.1 is associated with such a partition. The following example illustrates 
that in this case our 2p-dimension polynomial carries more invariants of the corre-
sponding �-field extension than the p-variate �-dimension polynomial introduced by 
Theorem  1.1.

Example 3  Let K be a difference ( � -) field with a basic set of endomorphisms 
� = {�1, �2} considered together with its partition � = {�1} ∪ {�2} . Let L = K⟨�⟩ be 
a �-field extension with the defining equation

where a, b, c ∈ ℕ , a > b > c > 0 . Then the computation of the bivariate �-dimension 
polynomial �

�∣K(t1, t2) (see Theorem 1.1) using the method of [13] and the computa-
tion of the 4-variate �-dimension polynomial �

�∣K(t1, t2, t3, t4) (using the evaluation 
of the set CardU

�
(r, s) , as it is done in the proof of Theorem 2.3 and in Example 2) 

give the following.

�
�∣K(t) =

(
t + 3

3

)
−

(
t + 3 − (a + b)

2

)
=

1

2
(a + b)t2 + terms of degree ≤ 1.

�
�∣K (t1, t2) =

[(
t1 + 3

3

)
−

(
t1 + 2 − (a + b)

3

)]
−

[(
t2 + 3

3

)
−

(
t2 + 2 − (a + b)

3

)]
−

(
t2 + 3

3

)
+

(
t2 + 2 − c

3

)
=

1

2
(a + b + 1)t2

1
−

1

2
(c + 1)t2

2
+ terms of total degree at most 1.

(4.6)�
a
1
� + �

b
2
� + �

c
1
� = 0

�
�∣K(t1, t2) = bt1 + at2 + a + b − ab
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and

Theorems 1.1 and 4.2 show that the polynomial �
�∣K carries two invariants of the 

extension L/K, a and b, while �
�∣K carries three such invariants, a, b and c, that is, all 

three parameters of the equation (4.6)  (by Theorem 4.1, the coefficients of t1 , t2 and 
t4 are invariants of the extension).

The fact that the 2p-dimension polynomial carry more invariants than all previ-
ously known difference dimension polynomials can be applied to the equivalence 
problem for algebraic difference equations. Suppose that we have two systems of 
algebraic �-equations in n �-indeterminates over a �-field K (i. e., equations of the 
form f = 0 where f ∈ K{y1,… , yn} ) that are defining equations of finitely gener-
ated �-field extensions L/K and L�∕K (that is, the left-hand sides of the systems gen-
erate prime �-ideals P and P′ of the ring R = K{y1,… , yn} , respectively, such that L 
and L′ are �-isomorphic to qf (R∕P) and qf (R∕P�) , respectively). These systems are 
said to be equivalent if there is a �-isomorphism between L and L′ which is identity 
on K. The �-dimension polynomial introduced by Theorem 2.3 allows one to figure 
out that two systems of �-algebraic equations are not equivalent in the case when the 
corresponding �-field extensions have the same univariate �-dimension polynomials 
and the same bivariate dimension polynomials defined in [13]. As an example, con-
sider the �-equations

and

where a, b, c, d, e ∈ ℕ , a > b > c > 0 , d > e > c , a + b = d + e , and a ≠ d.
The invariants carried by standard (univariate) �-dimension polynomials associ-

ated with these equations (the equation (4.7) is considered in Example  2) are the 
same, 2 and a + b = d + e . The invariants carried by the bivariate dimension poly-
nomials defined in [13] are also the same, 2, a + b = d + e , and c (see Example 2). 
At the same time, the 6-variate dimension polynomials for these equations carry 
invariants a, b, c, and d, e, c, respectively (these 6-variate dimension polynomials 
are of the form (4.5)). Thus, the systems (4.7) and (4.8) are not equivalent, even 
though the corresponding �-field extensions have the same invariants carried by the 
univariate and bivariate (in the sense of [13]) �-dimension polynomials.
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