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1 Introduction

Rigid solvable groups, in particular, free solvable groups, have rich, interesting
and surprisingly ameanable algebraic geometry and model theory. The algebraic
geometry of these groups was developed in papers [1] - [6], where, among other
results, it was shown that these groups are equationally Noetherian, have finite
Krull dimension, admit a robust Nullstellensatz. The fundamentals of the model
theory were studied in detail in papers [7] - [10]. Among all rigid groups there
аrе so-called divisible rigid groups that play the same part as divisible abelian
groups in the class of torsion-free abelian groups, or the algebraically closed
fields in the class of all fields. Namely, divisible m-rigid groups are precisely
the existentially (algebraically) closed models in the class of all m-rigid groups
(see [8]). Furthermore, the class Dm of all divisible m-rigid groups has a lot
of nice model-theoretic properties: the theory of Dm is complete and has a
natural recursive set of axioms, it admits elimination of quantifiers to boolean
combinations of universal formulas, it is ω-stable, and allows an easy description
of saturated models. In this paper we describe generic elements and generic types
in divisible rigid groups.

Recall that a group G is m-rigid if it has a normal series (termed the rigid
series)

G = ρ1(G) > ρ2(G) > . . . > ρm(G) > ρm+1(G) = 1,

whose factors ρi(G)/ρi+1(G) are abelian and do not have torsion, when viewed
as right modules over Z[G/ρi(G)]. Such a series, if it exists, is unique in the
group, and the number m is equal precisely to the solvability class of G. A
rigid group G is called divisible, if each element of the quotient ρi(G)/ρi+1(G)
is divisible by any non-zero element of the ring Z[G/ρi(G)], i.e., ρi(G)/ρi+1(G)
is a vector space over the ring (skew-field) of right fractions Q(G/ρi(G)) of the
ring Z[G/ρi(G)]. The definition is based on the fact that the ring Z[G/ρi(G)]
is a right (left) Ore domain, so it embeds into its uniquely defined ring of the
right fractions Q(G/ρi(G)) (see Section 2 for details). A divisible rigid group
is determined uniquely, up to isomorphism, by the dimensions αi of the vector
spaces ρi(G)/ρi+1(G), such a group is denoted by M(α1, . . . , αm). It was shown
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(see [1, 2]) that every m-rigid group is embedded independently into a suitable
divisible rigid group M(α1, . . . , αm). The group M(α1, . . . , αm) is countable if
αi ≤ ω, otherwise, its cardinality is equal to the maximal αi. Every saturated
divisible group of cardinality λ is isomorphic to the group M(λ, . . . , λ).

Let G = M(α1, . . . , αm) and a cardinal λ is strictly greater than ω and
each of the αi. Then G is elementarily embedded into the saturated model
G = M(λ, . . . , λ), which is viewed as a monster model for G. It is not hard
to show that G has a unique generic type, i.e., a type p ∈ S1(G) whose Morley
rank is equal to the Morley rank RM(G) of the group G. Respectively, an element
x ∈ G which realizes in G the generic type p is called a generic element. In this
paper we give a pure algebraic description of generic elements x ∈ G in terms
of linear independence in vectors spaces ρi(G)/ρi+1(G) over the ring of right
fractions Q(G/ρi(G)), i = 1, . . . ,m. This also gives an a description in algebraic
terms of the generic types p ∈ S1(G), which is not unlike of the description of the
types of transcendental elements in fields.

2 Preliminaries

In this section we recall some notions and facts about rigid groups. For details we
refer to papers [1, 2, 4, 8, 9].

Let G be a group, ZG the integral group ring of G, and T a right module
over ZG. If a tuple (t1, . . . , tn) of elements from T is linearly dependent over ZG
then t1u1 + . . . , tnun = 0 for some elements ui = ai1g1 + . . .+ aisgs ∈ ZG, where
aij ∈ Z, g1, . . . , gs ∈ G , i = 1, . . . , n, j = 1, . . . , s. We may assume that all the
elements g1, . . . , gs are pair-wise distinct, and the n× s matrix A = (aij) has no
zero columns. In this situation we write

(t1, . . . , tn) · A · (g1, . . . , gs)′ = 0,

(here (g1, . . . , gs)
′ is the transpose of (g1, . . . , gs)) and refer to (t1, . . . , tn) as

linearly dependent over ZG with matrix A.
Recall that if an associative ring R is a right Ore domain (a domain where

for any 0 6= a, b ∈ R there are 0 6= x, y ∈ R such that ax = by) then it has
a unique, up to natural isomorphism, ring of right fractions Q(R), which is a
division ring (skew-field) containing R and where every element is of the form
rs−1 for r, s ∈ R, s 6= 0 (see, for example, [11]). Similar result holds for left Ore
domains. If R is a right, as well as left, Ore domain then Q(R) is both the ring of
right and left fractions of R. It follows from [14, 15] that the integral group ring
ZG of a solvable torsion-free group G, in particular, a rigid group, is a right Ore
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domain. Note that in this case ZG is also a left Ore domain, so its ring of right
fractions, which we denote by Q(G), is also its ring of left fractions. Every finite set
of elements f1, . . . , fn from Q(G) has a right common denominator 0 6= u ∈ ZG,
i.e., each fi can be presented in the form uiu

−1 for some ui ∈ ZG, as well as a
left common denominator. It follows that if in a vector space over Q(G) some
non-trivial linear combination v1f1 + . . .+ vnfn = 0 of elements with coefficients
fi ∈ Q(G) is equal to zero, then v1(f1u) + . . .+vn(fnu) = 0 is a non-trivial linear
combination of the same elements with coefficients fiu ∈ ZG which is also equal
to zero.

Let G 6 H be m-rigid groups. Then the rigid series of G can be obtained
from the rigid series of H by intersection of each member with G, i.e., ρi(G) =
ρi(H)∩G. Hence the group G/ρi(G) embeds into the group H/ρi(H), so the ring
Z[G/ρi(G)] embeds into the ring Z[H/ρi(H)], and the module ρi(G)/ρi+1(G)
over the ring Z[G/ρi(G)] embeds into the module ρi(H)/ρi+1(H) over the ring
Z[H/ρi(H)]. Moreover, the field Q(G/ρi(G)) embeds into the field Q(H/ρi(H)).

The following notion is crucial in the study of model theory and algebraic
geometry of rigid groups.

Definition 1. Let G 6 H be m-rigid groups. In the notation above, the subgroup
G is termed independent in H (or the embedding G → H is independent),
if any tuple of elements in ρi(G)/ρi+1(G), linearly independent over the ring
Z[G/ρi(G)], is linearly independent (as a tuple in ρi(H)/ρi+1(H)) over the larger
ring Z[H/ρi(H)].

We mentioned in the introduction that any m-rigid group embeds
independently into a divisible m-rigid group and any divisible rigid groups
is isomorphic to the divisible group G = M(α1, . . . , αm) for some cardinals
α1, . . . , αm. In was shown in [8] that for divisible rigid groups an embedding
is independent if and only if it is elementary.

Now we briefly describe the structure of divisible m-rigid groups
G = M(α1, . . . , αm), where α1, . . . , αm are arbitrary cardinals. We build
M(α1, . . . , αm) by induction on m. For m = 1 the group M(α1) is a direct sum
of α1 copies of the additive group of rational numbers Q+. Assume now that the
group B = M(α1, . . . , αm−1) is already constructed. Embed the integral group
ring ZB in its field of fractions Q(B). Let T be a right vector space over Q(B)
of dimension αm. Put

M(α1, . . . , αm) =

(
B 0
T 1

)
.

The group G = M(α1, . . . , αm) splits into an iterated semidirect product of its
abelian subgroups G = G1 . . . Gm = (. . . (G1 n G2) n . . . n Gm−1) n Gm, such
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that Gi normalises Gj for i < j and ρi(G) = Gi . . . Gm for any i = 1, . . . ,m,
in particular, Gi ' ρi(G)/ρi+1(G). In this case the subgroup Gi is equal to the
centralizer of any its non-trivial element. Furthermore, any other such splitting
of G can be obtained from a given one by a conjugation in G. In this paper we
refer to these splittings as the semidirect splittings (or just splittings) of divisible
groups. Note, that every element x ∈ G has a unique decomposition x = x1 . . . xm
with respect to the splitting G = G1 . . . Gm, where xi ∈ Gi for every i.

The following result is straightforward.

Lemma 1. Let G = G1 . . . Gm be a semidirect splitting of a divisible m-rigid
group. For every i = 1, . . . ,m fix a non-trivial element gi ∈ Gi. Then the subgroup
Gi is definable in G by the equation [x, gi] = 1, and a subgroup G1 . . . Gi is
definable in G by the positive existential formula

∃x1 . . . ∃xi(([x1, g1] = 1) ∧ . . . ∧ ([xi, gi] = 1) ∧ (x = x1 . . . xi)).

3 The main result

Let a group G = M(α1, . . . , αm) be elementary (independently) embedded into
a divisible m-rigid group G = M(λ, . . . , λ), where λ is an uncountable cardinal
greater than all αi. Note that in this case G is a Monster extension of the group
G in the terminology of [12]. Indeed, the theory Tm (for a fixed m) of all divisible
m-rigid groups is ω-stable (and complete), the group G has cardinality λ, is
saturated, and every divisible group of cardinality < λ is elementary embedded
into G (see [9] for these results). Furthermore, any monster model of Tm of
cardinality λ is isomorphic toG. To the rest of this paper we fix such an embedding
G ≺ G.

Note that for any semidirect spltting G1 . . . Gm of the group G there exists a
unique "compatible"semidirect splitting G1 . . .Gm of G, in which Gi is completely
determined by Gi as the centralizer in G of the subgroup Gi, or, equivalently, the
centralizer of any fixed non-trivial element gi ∈ Gi. We refer to the splitting
G = G1 . . .Gm as induced by the splitting G = G1 . . . Gm.

Definition 2. Let G ≺ G.

1) Fix a semidirect splitting
G = G1 . . . Gm (1)

of G, and consider the induced splitting G = G1 . . .Gm of G. An element
x ∈ G is termed independent of G relative to the splitting (1) if the induced
decomposition x = x1 . . . xm of x satisfies the following condition (Ind) for
every i:
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(Ind) for any subset A of Gi which is linearly independent over Z[G1 . . . Gi−1]
the set {xi} ∪ A in Gi is linearly independent over Z[G1 . . .Gi−1].

2) An element x ∈ G is termed independent of G if it is independent of G
relative to any semidirect slitting of G.

Recall that, in the notation of Definition 2, the following holds:

Gi
∼= ρi(G)/ρi+1(G), Gi

∼= ρi(G)/ρi+1(G),

ρi(G) = Gi . . . Gm, ρi(G) = Gi . . .Gm,

G1 . . . Gi−1 ∼= G/ρi(G), G1 . . .Gi−1 ∼= G/ρi(G), xi ∈ ρi(G).

Therefore, the condition (Ind) above can be stated as follows:

(Ind′) Let Ei be a maximal linearly independent over Z[G/ρi(G)] set of elements
from ρi(G)/ρi+1(G). Then the set Ei∪{xi · ρi+1(G)} is linearly independent
over Z[G/ρi(G)].

Lemma 2. For the groups G < G the following holds:

1) If an element x ∈ G is independent of G relative to some semidirect splitting
of G then it is independent of G relative to any semidierct splitting of G,
i.e., in this case x is independent of G.

2) If x ∈ G is independent of G and g ∈ G, then the elements xg and gx are
also independent of G.

3) The set of all independent of G elements in G has cardinality λ, which is
cardinality of G.

Proof. 1) Let G = G1 . . . Gm be a semidirect splitting of G and G = G1 . . .Gm

the induced splitting of G. Suppose x ∈ G is independent of G relative to the
splitting above and x = x1 . . . xm is its corresponding decomposition. Assume
now that G = G′1 . . . G

′
m is another semidirect splitting of G, and G = G′1 . . .G′m,

x = x′1 . . . x
′
m are the induced splittings of G and x. As was mentioned above there

exists an element g ∈ G, such that G′i = g−1Gig, hence there are elements zi ∈ Gi

for which x′i = g−1zig for each i. Conjugation by g in the quotient ρi(G)/ρi+1(G)
is precisely the same as the multiplication by the element g · ρi+1(G) in the
right module ρi(G)/ρi+1(G). The element g · ρi+1(G) is invertible in Z[G/ρi(G)],
therefore for any maximal linearly independent over Z[G/ρi(G)] subset Ei of
ρi(G)/ρi+1(G) the set Ei∪{x′i ·ρi+1(G)} is linearly independent over Z[G/ρi(G)]
if and only if the set Ei ∪ {zi · ρi+1(G)} is linearly independent over Z[G/ρi(G)].
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Clearly, gxg−1 = z1 . . . zm is the induced splitting of the element gxg−1 relative
to the splitting G = G1 . . .Gm. Let g = g1 . . . gm be the induced splitting of g
relative to the initial splitting G = G1 . . . Gm, so gi ∈ Gi. Denote xi = x1 . . . xi−1
and gi = g1 . . . gi−1 (here x1 = g1 = 1), i = 1, . . . ,m+ 1. Now put

ui = gix
−1
i gixi+1g

−1
i+1, i = 1, . . . ,m.

Note, first, that ui ∈ Gi, sinceG1, . . . ,Gi normaliseGi. Secondly, after performing
straightforward cancellation, one can see that

u1 . . . um = (g1 . . . gm)(x1 . . . xm)(g1 . . . gm)−1 = gxg−1,

so u1 . . . um = gxg−1 is an induced decomposition of gxg−1 relative to the splitting
G = G1 . . .Gm. From the uniqueness of such decompositions one gets zi = ui, i =
1, . . . ,m.

In the language of modules the equality zi = gix
−1
i gixi+1g

−1
i+1 can be written

as
zi = gixig

−1
i + xig

−1
i − gig−1i , i = 1, . . . ,m. (2)

Note, that gi is a linear combination with coefficients in the skew-field Q(G/ρi(G))
of some finite subset of elements from Ei. It follows from 2 that zi is a linear
combination with coefficients in the skew-field Q(G/ρi(G)) of some finite subset
of elements from Ei ∪ {xiρi+1(G)}. Since the latter is linearly independent
over Q(G/ρi(G)) the set Ei ∪ {ziρi+1(G)} is also linearly independent over
Q(G/ρi(G)), hence over Z(G/ρi(G)), as claimed.

2) It suffices to note that in the language of modules the i’s component of the
induced decomposition of xg relative to the splitting G = G1 . . .Gm is equal to
xigi + gi, and the i’s component of gx is equal to gixi + xi.

3) Let Ei be a basis of the vector space Gi, over the skew-field Q(G/Gi). The
cardinality of Ei is equal to αi < λi. Since the embedding G into G is independent,
the image of Ei in ρi(G)/ρi+1(G) is linearly independent over Q(G/Gi). The co-
dimension of the subspace Gi over Q(G/Gi) in ρi(G)/ρi+1(G) is equal to λ,
as well as the co-dimension of the subspace Ei · Q(G). Therefore, there are λ
possibilities for any component xi of an independent from G element x ∈ G,
hence λ possibilities for the element x itself. This proves the lemma.

Lemma 3. Let G ≺ G. If x, y ∈ G are such that x is independent of G and y is
not, then there exists an ∃-formula Φ(z) with one free variable z and parameters
from G which holds in G on y but does not hold in G on x.

Proof. Consider a semidirect splitting G = G1 . . . Gm and the induced splitting
G = G1 . . .Gm. Let x = x1 . . . xm, y = y1 . . . ym be the induced decompositions
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of x and y. Since the element y is not independent of G, then for some i in Gi

there exists a linear independent over Z[G1 . . . Gi−1] tuple of elements (e1, . . . , en)
such that for the tuple (e1, . . . , en, yi) there is their linear combination over
Z[G1 . . .Gi−1] with matrix A of size (n + 1) × s. This can be expressed by a
formula:

∃z1 . . . ∃zm∃v1 . . . ∃vs((z1 ∈ G1) ∧ . . . ∧ (zm ∈ Gm) ∧ (z = z1 . . . zm)

∧ (v1 ∈ G1 . . . Gi−1) ∧ . . . ∧ (vs ∈ G1 . . . Gi−1)
∧
i 6=j

(vi 6= vj)

∧ ((e1, . . . , en, zi) · A · (v1, . . . , vs)′ = 0)),

where by Lemma 1 the conditions of the type zi ∈ Gi are expressible by some
∃-formulas with parameters from G. This allows one to construct the required
∃-formula Φ(z). This proves the lemma.

Lemma 4. Let G ≺ G. Any two independent from G elements in G are
conjugated by an G-automorphism of the group G.

Proof. Let x, y ∈ G be independent from G elements of G. Consider a semidirect
splitting G = G1 . . . Gm and the induced splitting G = G1 . . .Gm with the
corresponding decompositions x = x1 . . . xm, y = y1 . . . ym. Recall that Gi can be
viewed as a right vector space over the skew-field over Q(G1 . . . Gi−1). Fix a basis
Ei in this space. Then the sets Ei ∪ {xi} and Ei ∪ {yi} are linearly independent
over Q(G1 . . .Gi−1). There are some sets E ′i and E ′′i that extend the sets above up
to some bases in Gi. The identity map Ei → Ei, an arbitrary bijection E ′i → E ′′i ,
and the map xi → yi give a bijection ϕi : Ei∪{xi}∪E ′i → Ei∪{yi}∪E ′′i . Now the
tuple of maps (ϕ1, . . . , ϕm) gives rise to a uniquely determined G-automorphism
of the group G, which preserves the splitting G = G1 . . .Gm and maps x to y.
This proves the lemma.

Now we can state and prove the main result of the paper.

Theorem 1. An element x ∈ G is generic over G if and only if x is independent
from G.

Proof. It follows from Lemma 4 that any two independent from G elements in
G are conjugated by a G-automorphism, so they have the same types over G.
Consider the action of G on the set of 1-types S1(G) in G by the right (or
left) multiplication of the variable. By Lemma 2 item 2) G stabilizers tp(x/G),
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provided x is independent from G element. In this case by Lemma 7.2.3 from [12]
tp(x/G) is a generic type and x a generic element. On the other hand if x is not
indpendent of G, then by Lemma 3 the type tp(x/G) is not generic, so x is not
a generic element. This proves the theorem.
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