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1 Introduction

In this paper we study the Diophantine problem in the classical matrix groups
GLn(R), SLn(R), Tn(R), UTn(R), n ≥ 3, over associative unitary rings R. We
show that if Gn(R) is one of these groups then the Diophantine problem in
Gn(R) is polynomial time equivalent (more precisely, Karp equivalent) to the
Diophantine problem in R. Here for SLn(R) we assume that R is commutative.
Similar results hold for PGLn(R) and PSLn(R), provided R has no zero divisors
(for PGLn(R) the ring R is not assumed to be commutative).

Recall that the Diophantine problem (also called the Hilbert’s tenth problem or
the generalized Hilbert’s tenth problem) in a countable algebraic structure A,
denoted D(A), asks whether there exists an algorithm that, given a finite system
S of equations in finitely many variables and coefficients in A, determines if S
has a solution in A or not. In particular, if R is a countable ring then D(R) asks
whether the question if a finite system of polynomial equations with coefficients
in R has a solution in R is decidable or not. It is tacitly assumed that the
ring R comes with a fixed enumeration, i.e., a function ν : N → R, which
enables one to enumerate all polynomials in the ring of all non-commutative
polynomials R〈x1, x2, . . .〉 (in countably many variables x1, x2, . . .), as well as all
finite systems of polynomial equations p(x1, . . . , xn) = 0, where p(x1, . . . , xn) ∈
R〈x1, x2, . . .〉, so one can provide them as inputs to a decision algorithm. If the
ring R is commutative then by tradition only commutative polynomials from
R[x1, x2, . . .] are considered. The original version of this problem was posed by
Hilbert for the ring of integers Z. This was solved in the negative in 1970 by
Matiyasevich [54] building on the work of Davis, Putnam, and Robinson [17].
Subsequently, the Diophantine problem has been studied in a wide variety of
commutative rings R, where it was shown to be undecidable by reducing D(Z)
to D(R). By definition the Diophantine problem in a structure A reduces to
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the Diophantine problem in a structure B, symbolically D(A) ≤ D(B), if there
is an algorithm that for a given finite system of equations S with coefficients in
A constructs a system of equations S∗ with coefficients in B such that S has a
solution in A if and only if S∗ has a solution in B. So if D(Z) ≤ D(R) then D(R)
is undecidable. If the reducing algorithm is polynomial-time then the reduction
is termed polynomial-time (or Karp reduction). Thus, the results above that the
Diophantine problems in Gn(R) and R are polynomial time equivalent mean,
precisely, that D(Gn(R)) and D(R) reduce to each other in polynomial time.
In particular they are either both decidable or both undecidable. A lot of
research has been done on equations in commutative rings. Nevertheless, the
Diophantine problem is still open in Q and fields F which are finite algebraic
extensions of Q. Much more is known on the Diophantine problem in the rings
of algebraic integers O of the fields F . Namely, it was shown that D(Z) reduces
to D(O) for some algebraic number fields O, hence in such O the Diophantine
problem D(O) is undecidable. We refer to [63, 62, 78] for further information on
the Diophantine problem in different rings and fields of number-theoretic flavor.
There are long-standing conjectures (see, for example, [18, 62]) which state that
the Diophantine problems in Q, F , and O, as above, are all undecidable. The
following result is important for our paper. If a commutative unitary ring R is
infinite and finitely generated then, in the case of a positive characteristic, D(R)
is undecidable, and in the case of characteristic zero, D(O) polynomial-time
reduces to D(R) for some ring of algebraic integers O (Kirsten Eisentraeger’s
PhD thesis (Theorem 7.1), which is available on her website, see also [36]).

In the class of non-commutative associative unitary rings it was shown recently
by Kharlampovich and Myasnikov in [43] that the Diophantine problem is un-
decidable in free associative algebras over fields and in the group algebras of a
wide variety of torsion-free groups, including toral relatively hyperbolic groups,
right angled Artin groups, commutative transitive groups, and the fundamental
groups of various graphs of groups. For non-associative rings it was proved that
the Diophantine problem is undecidable in free Lie algebras of rank at least
three with coefficients in an arbitrary integral domain [42]. A general approach
to the Diophantine problem in non-commutative rings (via reductions to the
commutative ones) was developed in [35].

In another direction, coming from model theory, it was shown that the first-
order theory of some classical fields is decidable: Tarski proved it for for complex
numbers C and reals R [79], and Ershov, Ax and Kochen for p-adic numbers
Qp and Zp [28, 1, 2]. The statement that a given finite system of equations
has a solution in R can be represented by a very particular existential formula
(a positive-primitive formula) with coefficients in R, so the Diophantine prob-
lem seems to be a part of the first-order theory of R, but the coefficients are
getting involved, and this complicates the whole picture. In fact, involvement
of constants makes Diophantine problems rather different from the classical
model-theoretic problems of elementary equivalence and decidability of first or-
der theories in the standard languages of groups or rings. We will say more on
this later, specifically for the classical matrix groups.
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Similar to the Diophantine problem in rings if a structure A is countable or
finite then we assume that it comes equipped with an enumeration ν : N→ A,
which enables one to enumerate all terms in the language of A with constants
in A, hence all equations (which in this case are represented by equalities of two
terms), as well as all finite systems of equations over A. On the other hand,
if A is uncountable then, by definition, one has to consider only equations
with constants from a fixed arbitrary countable (or finite) subset C of A. We
denote this form of the Diophantine problem by DC(A). This modification
allows one to consider Diophantine problems over arbitrary structures in a more
precise and also a more uniform way. As we will see below it may happen
that the Diophantine problem DC(A) is decidable for one subset C ⊆ A and
undecidable for another one, even in countable structures A. It is easy to see
that for a countable (or finite) subset C of A the Diophantine problems DC(A)
and D〈C〉(A) reduce to each other, where 〈C〉 is the substructure generated
by C in A (see Section 3). Furthermore, if DC(A) is decidable then 〈C〉 is
computable (recursive, constructible) in the sense of Malcev [52] and Rabin [65].
However, the converse is not necessary true. In Section 7 we study decidability
of the Diophantine problem for the classical uncountable rings C,R,Qp,Zp with
respect to the choice of the constants C. We note that DC(C) is decidable if
and only if the subfield 〈C〉 is computable, while in R, Qp and Zp decidability
of the Diophantine problem depends on the subset C, and is closely related to
computable reals and computable p-adics.

Research on systems of equations and their decidability in groups has a very
long history, it goes back to 1912 to the pioneering works of Dehn on the word
and conjugacy problems in finitely presented groups. Recall that an equation in
a group G is an expression of the type w(x1, . . . , xn, g1, . . . , gm) = 1, where w is
a group word in variables x1, . . . , xn and constants g1, . . . , gm ∈ G. Currently,
there are two main approaches to the Diophantine problems in groups. In the
first approach one given a fixed group G tries to find a commutative unitary
ring A such that the Diophantine problem in A algorithmically reduces to the
Diophantine problem in G. In this case if D(A) is undecidable then D(G) is
also undecidable. The first principle result in this vein is due to Romankov, who
showed that the Diophantine problem is undecidable in any non-abelian free
nilpotent group N of nilpotency class at least 9 (he proved that D(Z) ≤ D(N)
even one considers only single equations in the group N) [75]. Recently, Duchin,
Liang and Shapiro showed in [26] that D(Z) ≤ D(N) for any nonabelian free
nilpotent group N , hence D(N) is undecidable. A far-reaching generalizations
of these were obtained by Garreta, Myasnikov and Ovchinnikov in [34] where
they proved that for any finitely generated non-virtually abelian nilpotent group
G there exists a ring of algebraic integers O (depending on G) interpretable by
equations in G, hence D(O) is Karp reducible to D(G). Furthermore, in [33]
they gave a general sufficient condition for the ring O to be isomorphic to Z, so
in this case the Diophantine problem in G is undecidable. Based on this, they
proved that a random nilpotent group G (given by a random presentation in the
variety Nc of nilpotent groups of class at most c, for any c ≥ 2) has O ' Z, hence
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the undecidable Diophantine problem. These results on nilpotent groups allow
numerous applications to the Diophantine problems in non-nilpotent groups
H either via suitable Diophantine nilpotent subgroups of H or via suitable
Diophantine nilpotent quotients of H [34]. For example, this technique allows
one to show that the Diophantine problem in any finitely generated free solvable
non-abelian group is undecidable.

This line of results changes drastically in the second approach, where one tries to
show that the Diophantine problem in a given group G is decidable by reducing
it to the Diophantine problem in a non-abelian free group F or a free monoid
M (see, for example, Rips and Sela [69], Damani and Guirardel [16], Diekert
and Muschol [24], Casals-Ruiz and Kazachkov [13, 12], and Diekert and Lohrey
[23]). We refer to [41] for further results in this area. The principal results
here are due to Makanin [48, 49] and Razborov [66, 67] who showed that the
Diophantine problems D(M) and D(F ) are decidable and, in the case of the
free group F , further provided a description of the solution sets to arbitrary
finite systems of equations in terms of Makanin-Razborov’s diagrams. Another
description of solutions sets in F in terms of NTQ systems (also termed ω-
residually free towers) was obtained in [40]. NTQ systems give an effective
approach to algebraic geometry and model theory of free groups. Recently, an
entirely different method of solving equations in free groups, free monoids, and
hyperbolic groups was developed in a series of papers [22, 37, 38, 14, 15].

In his now classical paper [51] Malcev studied elementary equivalence of matrix
groups Gn(F ) where Gn ∈ {GLn, SLn, PGLn, PSLn}, n ≥ 3, and F is a field.
Namely, he showed that Gn(F ) ≡ Gm(L) if and only if n = m and F ≡ L.
His proof was based on two principal results. The first one states that for any
integer k ≥ 3 and Gn as above there is a group sentence Φk,G such that for
any n, and a field F , Φk,G holds in Gn(F ) if and only if k = n. The second
one is that F and Gn(F ) are mutually interpretable in each other. More pre-
cisely, Gn(F ) is absolutely interpretable in F (i.e., no use of parameters), while
F is interpretable in Gn(F ) uniformly with respect to some definable subset
of tuples of parameters. This implies that the theories Th(F ) and Th(Gn(F ))
are reducible to each other in polynomial time, hence Th(Gn(F )) is decidable
if and only if Th(F ) is decidable. Later Beidar and Michalev introduced an-
other general approach to elementary equivalence of classical matrix groups [4].
Their proof was based on Keisler-Shelah theorem (two structures are elemen-
tarily equivalent if and only if their ultrapowers over non-principal ultrafilters
are isomorphic) and the description of the abstract isomorphisms of the groups
of the type Gn(F ). Bunina extended their results to unitary linear and Cheval-
ley groups [5, 6, 7, 8, 9]. We reefer to recent book [10] for a comprehensive
description of these and some other results in this area. Note that in all the re-
sults above the first-order theories include only the standard constants from the
languages of groups and rings. The model theory of the group UTn(R), where
n ≥ 3, and R is an arbitrary unitary associative ring, was studied in detail
by Belegradek (see [3]). Here he used heavily that the ring R is interpretable
(with parameters) in UTn(R). The authors studied model theory of groups
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SLn(O),GLn(O), and Tn(O) for fields and rings of algebraic integers in [57, 58].
Their method exploits the mutual interpretability (and also bi-interpretability)
of the group and the ring. In a similar manner Avni, A. Lubotsky, and C. Meiri
studied the first order rigidity of non-uniform higher rank arithmetic groups
[45]. Recently, Segal and Tent showed that for Chevalley groups G(R) of rank
at least 2 over a ring R if G(R) has finite elementary width then G(R) and R
are bi-interpretable. Though related, all the model-theoretic results above do
not shed much light on the Diophantine problem in the corresponding groups.
Because to relate the Diophantine problems in Gn(R) or G(R) and R one needs
to have their mutual interpretability by equations, not by arbitrary first-order
formulas. This is precisely what we do in this paper. Recall that a subset (in
particular a subgroup) H of a group G is Diophantine in G if it is definable in
G by a formula of the type Φ(x) = ∃y1 . . . ∃yn(∧ki=1wi(x, y1, . . . , yn) = 1, where
wi(x, y1, . . . , yn) is a group word on x, y1, . . . , yn. Such formulas are called Dio-
phantine (in number theory) or positive-primitive (in model theory). Following
[34], we say that a structure A is e-interpretable (or interpretable by equations,
or Diophantine interpretable) in a structure B if A is interpretable (see Section
3) in B by Diophantine formulas. The main point of this definition is that if A is
e-interpretable in B then the Diophantine problem in A reduces in polynomial
time (Karp reduces) to the Diophantine problem in B. On the one hand, it
is harder to get e-interpretability than just interpretability, since in the latter
you can use arbitrary formulas not only the Diophantine ones, but on the other
hand, to study first-order equivalence of structures one does not usually use the
constants in the language, while in the Diophantine problems the constants are
allowed.

A subgroup G ≤ GLn(R) is termed large if it contains the subgroup En(R)
generated in GLn(R) by all transvections tij(α), i 6= j, and α ∈ R. In par-
ticular, the subgroups SLn(R) (when R is commutative) and En(R) are large.
Introducing large subgroups of GLn(R) allows one to unify similar arguments,
otherwise used separately for each of the groups GLn(R), SLn(R) and En(R).
This also emphasize the fact that our method, unlike the one used in Malcev’s
paper [51], is based solely on transvections and nilpotent subgroups. Below by
Tij we denote the one-parametric subgroup {tij(α) | α ∈ R}.
In Section 4 we study Diophantine subgroups of large subgroups G of GLn(R),
in particular, we prove the following key technical result.

Theorem 4.1 Let G be a large subgroup of GLn(R), n ≥ 3. Then for any
1 ≤ k 6= m ≤ n the one-parametric subgroup Tkm is Diophantine in G (defined
with constants from the set {tij(1) | 1 ≤ i 6= j ≤ n}).

As a consequence it is not hard to see that the nilpotent subgroup UTn(R) is
also Diophantine in G. Similar results hold for the large subgroups of PGLn(R)
(these are the images of the large subgroups of GLn(R) under the canonical
projection), provided that the ring R has no zero divisors (see Section 4.3). In
particular, such results hold for PSLn(R), assuming in this case that the ring
R is also commutative.
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A similar approach works for the groups Tn(R) and UTn(R), n ≥ 3, in fact for
any large subgroups of Tn(R). Here we call a subgroup G of Tn(R) large if it
contains UTn(R). The following result is reminiscent of Theorem 4.1. However,
since Tn(R) has only transvections of the type tij with i < j the argument
is a little bit more involved and the result is slightly weaker than in GLn(R).
Though it is sufficient for all our purposes. Below by RG we denote the set (in
fact, a subgroup) of all scalar matrices from GLn(R) that belong to G.

Theorem 5.1 Let G be a large subgroup of Tn(R), n ≥ 3. Then the following
hold:

1) for every 1 ≤ i, j ≤ n with j− i ≥ 2 the subgroup Tij is Diophantine in G;

2) for every 1 ≤ i < n the subgroup RGTi,i+1T1n is Diophantine in G.

Note that in the case of G = UTn(R) our argument follows considerations in
[3].

Now, using Diophantiness of the subgroups Tij in Theorem 4.1 and the sub-
groups Tij and RGTi,i+1T1n in Theorem 5.1, and Malcev’s ideas from [50] one
can interpret the ring R in the large subgroups G of GLn(R) and Tn(R), as
well as the large subgroups of PGLn(R), provided the ring R has no zero divi-
sors (see Theorem 6.1). We do it in Section 6 and summarize in the following
corollary.

Corollary 6.2 For any n ≥ 3, the ring R is e-interpretable in each of groups
GLn(R), SLn(R) (assuming that in this case R is commutative), En(R), Tn(R),
and UTn(R). If in addition R has no zero divisors, then R is e-interpretable in
PGLn(R) and PSLn(R) (as before, R is also commutative in this case).

Corollary 6.2 shows that the Diophantine problem in R is polynomial time
reducible to the Diophantine problem for each of the groups mentioned there.
To show the converse (with exception for En(R)) we need the following result
(see Section 6), which, we believe, is known in folklore.

Proposition 6.4 The groups GLn(R), Tn(R), and UTn(R), are all e-interpretable
in R. If the ring R is commutative then the groups PGLn(R), SLn(R), and
PSLn(R) are all e-interpretable in R.

Combining Corollary 6.2 and Proposition 6.4 one gets that the Diophantine
problem in all the classical matrix groups mentioned above is polynomial time
equivalent to the Diophantine problem in R (with appropriate restrictions on
the ring R). A few comments on the restrictions on the ring R we put in our
results. For SLn(R) we assume that R is commutative only for convenience of
the definition, one can extend the results in this case for non-commutative divi-
sion rings (skew-fields) R by showing that in this case R is still e-interpretable
in SLn(R) when n ≥ 3. However, to show that SLn(R) is e-interpretable in a
skew-field R we need to have the commutant of the multiplicative group R∗ to
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be Diophantine in R∗. The requirement on R to have no zero divisors in the
case of PGLn(R) and PSLn(R) seems to come only from our argument in the
proof. We do not know whether this requirement is really necessary or not to
have R e-interpretable in large subgroups of PGLn(R).

Finally, in Section 7 we study in detail the Diophantine problems in the classical
matrix groups over the fields Q, algebraic number fields, C, R, Qp, as well as the
rings Z, Zp, and the rings of algebraic integers O. We start with the Diophantine
problems in the rings C, R, Qp, and Zp themselves. Despite the fact that the
first-order theories of these rings are well-studied, in particular, proved to be
decidable (see, for example [53, 64]) the corresponding Diophantine problems
with various sets of coefficients were not as well investigated. To this end we
describe (and sometimes prove) the related results even though we believe that
some of them are known in folklore.

Notation: By Gn(R) we denote any of the classical linear groups GLn(R),
SLn(R), Tn(R), UTn(R), PGLn(R), PSLn(R) over a ring R.

We start with the following two results, which clarify the situation when R = Z
or R is an algebraically closed field.

Theorem 7.1 Let n ≥ 3. Then the Diophantine problem in Gn(Z) is Karp
equivalent to the Diophantine problem in Z, in particular, it is undecidable.

Proposition 7.3

Let R be an algebraically closed field. Then the following hold:

1) If A is a computable subfield of R then the first-order theory ThA(R) of R
with constants from A in the language is decidable. In particular, DA(R)
is decidable.

2) Let C be a countable or finite subset of Gn(R) such that the ring 〈C〉
generated by C is computable. Then the Diophantine problem in Gn(R)
with constants from C is decidable.

In Section 7.3 we consider the Diophantine problems in the field R of reals and
in the classical matrix groups over R.

Let A be a countable (or finite) subset of R. In this section we discuss first
when the Diophantine problem in R with constants from A is decidable and
then apply these results to the Diophantine problems in classical matrix groups
over R. Observe first, that by Lemma 3.3 if DA(R) is decidable then the subfield
F (A) generated by A in R is computable. However, the converse is not true.
The following result clarifies the situation.

Proposition 7.3 Let A be a finite or countable subset of R. Then the Diophan-
tine problem in R with coefficients in A is decidable if and only if the ordered
subfield F (A), generated by A, is computable. Furthermore, in this case the
whole first-order theory ThA(R) is decidable.
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Recall that a real a ∈ R is computable if its standard decimal expansion a =
a0.a1a2 . . . is computable, i.e., the integer function n → an is computable. In
other words, a is computable if and only if one can effectively approximate it
by rationals with any precision. The set of all computable reals Rc forms a real
closed subfield of R, in particular Rc is first-order equivalent to R.

In the following Proposition we collect some facts about computable ordered
subfields of R. Statements 1) and 2) were proved in [44], 3) was proven in [46]
(see also [29] (Theorem 4, Ch.6, section 3), and 4) is known in folklore. We are
grateful to Andrey Morozov for helping us with computable ordered fields.

Proposition 7.4 The following holds:

1) Every ordered computable subfield of R is contained in Rc.

2) The ordered subfield Rc ≤ R with the induced order from R is not com-
putable.

3) If F is a computable ordered field, then its real closure is also computable.
In particular, if F is a computable subfield of R then the algebraic closure
F̄ of F in R is a computable ordered field.

4) If a1, . . . , am are computable reals then the ordered subfield Q(a1, . . . , am) ≤
R with the induced order from R is computable.

Now we can provide an example mentioned above. Namely, if a ∈ R is not a
computable real, then F = Q(a) is a computable field, but D{a}(R) is undecid-
able.

Summarizing the discussion above we get the following result.

Corollary 7.5 The following holds:

• The Diophantine problem in R with coefficients in Rc is undecidable;

• The Diophantine problem in R with coefficients in any finite subset of Rc
is decidable;

• The Diophantine problem in R with coefficients in {a}, where a is not
computable, is undecidable.

Now we turn to the Diophantine problem in a classical matrix group over R.

We say that a matrix A ∈ GLn(R) is computable if all entries in A are com-
putable real numbers. Hence the computable matrices in SLn(R) are precisely
the matrices from SLn(Rc).

Theorem 7.7. Let n ≥ 3 and

Gn(R) ∈ {GLn(R), SLn(R), Tn(R), UTn(R), PGLn(R), PSLn(R)}.
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If F is a computable ordered subfield of R then the first-order theory Th(Gn(R))
of the matrix group Gn(R) with constants from Gn(F ) is decidable (here Gn(F )
is the set of all matrices from Gn(R) with entries from F ). In particular, the
Diophantine problem for equations with coefficients from Gn(F ) is decidable in
Gn(R).

The following result complements the theorem above (here by tij we denote the
transvection tij(1)).

Theorem 7.8. Let G be a large subgroup of GLn(R), where n ≥ 3. If a
matrix A ∈ SLn(R) is not computable then the Diophantine problem in G with
coefficients in {tij | i, j = 1, . . . , n} ∪ {A} is undecidable.

The following result is instructive, it shows a big difference between finitely
generated and countable structures with respect to the Diophantine problems
even for rather nice rings and groups.

Theorem 7.9. The following holds:

1) The Diophantine problem in the computable real-closed field Rc with coef-
ficients in Rc is undecidable, but for any finitely generated subfield F of
Rc the Diophantine problem in Rc with coefficients in F is decidable.

2) The Diophantine problem in the computable matrix group Gn(Rc) is un-
decidable, but for any finitely generated subgroup C of Gn(Rc) the Dio-
phantine problem in Gn(Rc) with coefficients in C is decidable.

In Section 7.4 we study the Diophantine problems in rings Zp and Qp and
classical matrix groups over them.

Similarly to computable reals, one can define computable p-adic numbers for
every fixed prime p. Recall, that every p-adic number a ∈ Qp has a unique
presentation in the form a = pmξ, where m ∈ Z and ξ is a unit in the ring Zp.
In its turn, the unit ξ is uniquely determined by a sequence of natural numbers
{ξ(i)}i∈N, where

0 ≤ ξ(i) < pi+1, ξ(i+ 1) = ξ(i)( mod pi+1), (i ∈ N).

The p-adic number a = pmξ is computable if the sequence i → ξ(i) is com-
putable. In this case the sequence {ξ(i)}i∈N gives an effective p-adic approxi-
mation of ξ. It is known (see, for example [55]), that the set Qcp of all computable
p-adic numbers forms a subfield of Qp, such that Qp ≡ Qcp. Observe also that
the ring Zp is Diophantine in Qp. More precisely, if p 6= 2, then Zp is defined
in Qp by formula ∃y(1 + px2 = y2), while if p = 2 then Zp is defined by the
formula ∃y(1 + 2x3 = y3).

The following result was proved in [55].

Theorem 7.10. The following holds:
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1) Th(Zp, a1, . . . , an) is decidable if and only if each of a1, . . . , an is a com-
putable p-adic number.

2) Th(Qp, a1, . . . , an) is decidable if and only if each of a1, . . . , an is a com-
putable p-adic number.

We need a slightly more precise version of the results above in the case when
the theory is undecidable.

Theorem 7.11. The following holds:

1) If a p-adic integer a is not computable then equations with constants from
Q ∪ {a} are undecidable in Zp.

2) If a p-adic number a ∈ Qp is not computable then equations with constants
from Q ∪ {a} are undecidable in Qp.

We say that a matrix A ∈ GLn(Qp) is computable if all entries in A are com-
putable p-adic numbers, i.e., A ∈ GLn(Qcp). Hence the computable matrices in
SLn(Qp) are precisely the matrices from SLn(Qcp).
Theorem 7.12.

Let n ≥ 3. The following holds:

1) Let

Gn(Qp) ∈ {GLn(Qp), SLn(Qp), Tn(Q)p, UTn(Qp), PGLn(Qp), PSLn(Qp)}.

If A1, . . . , Am are computable matrices from Gn(Qp) then the first-order
theory of Gn(Qp) with constants A1, . . . , Am is decidable. In particular,
the Diophantine problem for equations with coefficients A1, . . . , Am is de-
cidable in Gn(Qp).

2) Let

Gn(Zp) ∈ {GLn(Zp), SLn(Zp), Tn(Zp), UTn(Zp), PGLn(Zp), PSLn(Zp)}.

If A1, . . . , Am are computable matrices from Gn(Zp) then the first-order
theory of Gn(Zp) with constants A1, . . . , Am is decidable. In particular,
the Diophantine problem for equations with coefficients A1, . . . , Am is de-
cidable in Gn(Zp).

In the following result tij denotes the transvection tij(1).

Theorem 7.13 If a matrix A ∈ SLn(Zp) (A ∈ SLn(Qp)) is not computable
then Diophantine problem for equations with coefficients in {tij | i, j = 1, . . . , n}∪
{A} is undecidable in SLn(Zp) (SLn(Qp)).
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2 Preliminaries

In this section we fix some notation and recall technical results that are used
throughout the paper.

For a group G and x, y ∈ G we denote by xy the conjugate y−1xy of x by y,
and by [x, y] the commutator x−1y−1xy. For a subset A ⊆ G by CG(A) we
denote the centralizer {x ∈ G | ∀a ∈ A ([x, a] = 1)}, in particular, Z(G) =
{x ∈ G | ∀y ∈ G ([x, y] = 1)} is the center of G. For subsets X,Y ⊆ G by
[X,Y ] we denote the subgroup of G generated by all commutators [x, y], where
x ∈ X, y ∈ Y . Then [G,G] is the derived subgroup G′ of G (the commutant of
G). The lower central series of G is defined as G = γ1(G) ≥ γ2(G) ≥ . . ., where
γi+1(G) = [G, γi(G)].

In the rest of the paper by R we denote an arbitrary associative ring with identity
1. By R× we denote the multiplicative group of invertible (unit) elements of R
and by R+ the additive group of R.

Now we define the groups we study in this paper and list some of their properties
that we use often.

2.1 GLn(R)

Fix n ∈ N. By GLn(R) we denote the group of all invertible n×n matrices over
an associative unitary ring R.

Let eij be an n×n matrix where (i, j)-entry is 1 and every other entry is 0. For
1 ≤ i 6= j ≤ n the matrix tij(α) = In + αeij , where α ∈ R and In is the n × n
identity matrix, is called a transvection. Sometimes we denote the transvection
tij(1) simply by tij . Put Tn = {tij | 1 ≤ i 6= j ≤ n}.
Transvections tij(α), tkl(β), for α, β ∈ R, satisfy the following well-known (Stein-
berg) relations:

1) tij(α)tij(β) = tij(α+ β).

2) [tik(α), tkl(β)] = til(αβ), for i 6= l.

3) [tik(α), tjl(β)] = 1 for i 6= l, j 6= k.

Observe, that 2) implies that [tij(α), tki(β)] = tkj(−αβ), for j 6= k.

Let diag(α1, . . . , αn) be the n × n diagonal matrix with (i, i)-entry αi ∈ R×.
Then diag(α1, . . . , αn) ∈ GLn(R) and the set of all such matrices forms a sub-
group Dn(R) of GLn(R). Note that for any α1, . . . , αn ∈ R×, β ∈ R the
following holds:

diag(α1, . . . , αn)−1tij(β)diag(α1, . . . , αn) = tij(α
−1
i βαj). (1)
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In particular,

[tij(β), diag(α1, . . . , αn)] = tij(α
−1
i βαj − β). (2)

By d(α) we denote the scalar matrix diag(α, . . . , α) = αIn, where α ∈ R×. The
set of all scalar matrices forms a subgroup R×In ≤ Dn(R) which is isomorphic
to R×. It follows from (2) that the subgroup Zn(R) of R×In, which consists of
all scalar matrices d(α), where α is in the center of the group R×, forms the
center of the groups R×In, Dn(R), as well as the group GLn(R).

Now consider the following diagonal matrices for α ∈ R×:

di(α)
def
= diag(1, . . . , α︸︷︷︸

i′th

, . . . , 1).

It is known (see, for example [39]) that if R is a field then there are natural
numbers r and s, which depend only on n, such that every element g ∈ GLn(R)
can be presented as a product of the type

g = x1 . . . xrdn(β)y1 . . . ys (3)

where xi, yj are transvections and β ∈ R×.

2.2 SLn(R) and En(R)

Denote by En(R) the subgroup of GLn(R) generated by all transvections, i.e.,
En(R) = 〈tij(α) | α ∈ R, 1 ≤ i 6= j ≤ n〉.

Definition 2.1. We say that a subgroup G ≤ GLn(R) is large if G contains
En(R).

Throughout the paper we assume n ≥ 3.

If the ring R is commutative then, as usual, the group SLn(R) consists of all
matrices from GLn(R) with determinant 1. One can define SLn(R) for arbitrary
division rings (using the Dieudonne determinant), but we do not consider such
groups here. In every case we mention a group SLn(R) we assume that R is
commutative. Clearly, En(R) is a subgroup of SLn(R), so SLn(R) is a large
subgroup of GLn(R). If R is a field or Euclidean domain then SLn(R) = En(R),
but in general, this is not the case. For fields R one has

[GLn(R), GLn(R)] = SLn(R).

Now (3) implies that

GLn(R) ' SLn(R) o dn(R×) ' GLn(R)′ oR×.

Note also that in this case

[SLn(R), SLn(R)] = SLn(R).
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Following [11] we say that SLn(R) has bounded elementary generation if there
is a natural number w such that every element of SLn(R) is a product of at
most w transvections. Order all pairs of indices (i, j), i, j = 1, . . . , n into a
sequence σ in some arbitrary but fixed way, say σ = (1, 1), . . . , (n, n). Repeat
this sequence consequently w times, obtaining a new sequence σ∗ = σ, σ, . . . , σ =
(i1, j1), . . . , (im, jm), where m = wn2. Then every element g ∈ SLn(R) can be
decomposed into a product

g = ti1j1(α1) . . . timjm(αm)

for some α1, . . . , αm ∈ R (note that we allow here elements αi = 0), which is
uniform in the order of transvections.

For 1 ≤ i 6= j ≤ n denote by Tij the one-parametric subgroup {tij(α) | α ∈
R}. Then the bounded elementary generation of SLn(R) is equivalent to the
statement that there is sequence of pairs (i1, j1), . . . , (im, jm), where 1 ≤ ik 6=
jk ≤ n such that

SLn(R) = Ti1j1 . . . Timjm .

If R is a field then formula (3) implies that SLn(R) has bounded elementary
generation. A much harder argument shows that SLn(O) over a ring of algebraic
integers O has bounded elementary generation [11]. However, this is not the
case even for arbitrary domains. Indeed, it was shown in [81, 21] that if F
is a field of infinite transcendence degree over its prime subfield (for example:
F = C) then for every number c there is a matrix in the group SLn(F [x]) which
cannot be written as a product of c commutators.

2.3 Unitriangular groups UTn(R)

The transvections tij(α), where 1 ≤ i < j ≤ n, α ∈ R, generate the subgroup
UTn(R) of all (upper) unitriangular matrices in GLn(R).

For m = 1, . . . , n denote by UTm(n,R) the subgroup of UTn(R) consisting of
all matrices with m− 1 zero diagonals above the main one. Then

UTn(R) = UT 1
n(R) > UT 2

n(R) > . . . > UTnn (R) = 1. (4)

Furthermore, for any positive r, s ∈ N one has

[UT rn(R), UT sn(R)] = UT r+sn (R).

This implies that the series (4) is the lower central series of UTn(R), in par-
ticular, γk(UTn(R)) = UT kn (R). Direct computations show that any element
g ∈ UTmn (R) can be uniquely written as a product of the following type:

g = tn−m,n(αn−m)tn−m−1,n−1(αn−m−1) . . . t1,1+m(α1)h,

where αi ∈ R and h ∈ UTm+1
n (R). Therefore,

UTmn (R) = Tn−m,nTn−m−1,n−1 . . . T1,1+mUT
m+1
n (R) (5)

This implies that UTn(R) is a finite product of one parametric subgroups Tij .
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2.4 Triangular groups Tn(R)

Recall, that Tn(R) consists of all upper triangular matrices x = (xij) over R
with units on the main diagonal, i.e., xij = 0 for i > j, xij ∈ R for i < j, and
xii ∈ R× for 1 ≤ i ≤ n. Clearly, UTn(R) ≤ Tn(R).

Note that any matrix x ∈ Tn(R) can be represented as a product x = dxux,
where dx = diag(x11, . . . , xnn), and ux ∈ UTn(R), where ux = (yij), with yij =
x−1
ii xij for i < j. Therefore, Tn(R) = Dn(R)UTn(R) and Dn(R)∩UTn(R) = 1.

Furthermore, UTn(R) is a normal subgroup in Tn(R), see (1), hence

Tn(R) ' UTn(R) oDn(R).

Definition 2.2. We call G ≤ Tn(R) a large subgroup of Tn(R) if G contains
UTn(R).

Obviously, UTn(R) is a large subgroup of Tn(R), but it is not a large subgroup
of GLn(R).

2.5 Groups PGLn(R) and PSLn(R)

The projective general and projective special linear groups PGLn(R) and PSLn(R)
are defined as quotients PGLn(R) = GLn(R)/Z(GLn(R)) and PSLn(R) =
SLn(R)/Z(SLn(R)) of the groups by their centers. Note that Z(GLn(R)) is
the subgroup Zn(R) of all the scalar matrices d(α), where α belongs to the
center of the group R×. Respectively, Z(SLn(R)) = Zn(R) ∩ SLn(R).

Definition 2.3. Let φ : GLn(R)→ PGLn(R) be the canonical homomorphism.
We call a subgroup G of PGLn(R) large if it contains φ(En(R)).

3 The Diophantine problem

3.1 Equations, constants and computable structures

Recall, that the Diophantine problem D(A) in an algebraic structure A is the
task to determine whether or not a given finite system of equations with con-
stants in A has a solution in A. D(A) is decidable if there is an algorithm that
given a finite system S of equations with constants in A decides whether or not
S has a solution in A. Here, the structure A is assumed to be countable, more-
over, supposedly it comes equipped with a fixed enumeration A = {a1, a2, . . .},
which is given by a surjective function ν : N → A (the function is not neces-
sary injective). One can use the function ν for enumeration of all finite systems
of equations with coefficients in A in countably many variables x1, x2, . . ., and
then provide them as inputs to a decision algorithm in the Diophantine prob-
lem D(A). The first question to address here is how much decidability of D(A)
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depends on the choice of the enumeration ν : N → A. Decidability of D(A)
does depend on the enumeration ν, so for some ν, D(A) is decidable, and for
others it is not. For example, every non-trivial finite or countable group has an
infinite countable presentation with undecidable word problem, so the Diophan-
tine problem in the group with respect to enumerations related to such infinite
presentations is undecidable. However, researchers are usually interested only
in ”natural” enumerations ν, which come from finite descriptions of the ele-
ments of A that reflect the nature of the structure A. For instance, if A is a
finitely generated group then one may describe elements of A by finite words in
a fixed finite set of generators, and use known effective enumerations of words,
while if A is, say, a group GLn(R) over a ring R, then elements of GLn(R)
can be described by n2-tuples of elements from R, so one can use enumerations
of R to enumerate elements of GLn(R). Here, and in all other places, by an
effective enumeration of words (or polynomials, or any other formulas of finite
signature) we understand such an enumeration µ : n→ wn of words in a given
finite or countable alphabet that for any number n ∈ N one can compute the
word wn and for any word w in the given alphabet one can compute a number
n such that w = wn. If A is a finitely generated associative unitary ring R then
elements of A can be presented as non-commutative polynomials with integer
coefficients in finitely many variables (which can be also viewed as elements of
a free associative unitary ring of finite rank), and then effectively enumerate
such polynomials. Similarly, for commutative rings R the usual commutative
polynomials can be used. There are two ways to make the formulation of the
Diophantine problem a bit more precise, either explicitly fix the enumeration ν
of A in the Diophantine problem (denote it by Dν(A)), or to term that D(A)
is decidable if there exists an enumeration ν of A such that Dν(A) is decidable.
To study which enumerations are “reasonable” in the discourse of Diophantine
problems we need to digress to the theory of computable algebra, or computable
model theory, that stem from pioneering works of Rabin [65] and Malcev [52]
(for details see a book [29] and a more recent survey [31]).

Recall that a structure A of finite signature is computable with respect to an
enumeration ν : N → A if all the basic operations and predicates (includ-
ing the equality) on A are computable with respect to the enumeration ν. In
particular, a group G is computable with respect to ν if there are two com-
putable functions f(x, y) and h(x, y) such that for any i, j ∈ N the following
holds: ν(i) · ν(j) = ν(f(i, j)) and ν(i) = ν(j) ⇐⇒ h(i, j) = 1. Similarly, a
countable ring R is computable with respect to enumeration ν : N → R if in
addition to the conditions above there is a computable function g(x, y) such
that ν(i) + ν(j) = ν(g(i, j)).

The following observation shows the connection between decidability of Dio-
phantine problems and computable structures.

Lemma 3.1. Let A be a countable structure given with an enumeration ν :
N→ A. If the Diophantine problem Dν(A) is decidable then the structure A is
computable with respect to ν.
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Proof. We give a sketch of the proof in the case of groups. The general case
is quite similar and we leave to the reader. Let A = {a1, a2, . . .}, where ai =
ν(i), i ∈ N. Assuming that the Dν(A) is decidable we need to show that A is
computable, i.e., the following sets are computable

{(i, j) | ai = aj , i, j ∈ N},

{(i, j, k) | ai · aj = ak, i, j, k ∈ N}.

These sets are defined by equations in A, so they are, indeed, computable.

Lemma 3.1 shows that that the only interesting enumerations of A with respect
to the Diophantine problem are those that make A computable, they are called
constructivizations of A. The question whether a given countable structure A
has a constructivization is a fundamental one in computable model theory, so
there are a lot of results in this direction (see [29, 31, 30]) that can be used here.

Let µ and ν be two enumerations ofA. By definition µ reduces to ν (symbolically
µ � ν) if there is a computable function f(x) such that µ = ν ◦ f . µ and ν are
termed equivalent (symbolically µ ∼ ν) if ν � ν and ν � µ.

Lemma 3.2. [29] Let A be a finitely generated structure that have at least
one constructivization. Then all constructivizations of A are equivalent to each
other.

It follows that a finitely generated structure A has a constructivization if and
only if the word problem in A with respect to some (any) finite generating set is
decidable. In this case, any other constructivization is equivalent to the one that
comes as described above from any fixed finite set of generators. This is why
for finitely generated structures the enumerations usually are not mentioned
explicitly.

If A is uncountable then, as we mentioned in Introduction, one has to consider
only equations with constants from a fixed countable (or finite) subset C of
A which comes equipped with a enumeration ν : N → C. This form of the
Diophantine problem is denoted by DC(A). It will be convenient to consider
instead of the set C the substructure 〈C〉 generated by C in A. In this case
one needs to consider enumerations of 〈C〉 that are ”compatible” with the given
enumeration of C. To this end we introduce the following notion from com-
putable model theory (see [29]). Let S be a set with an enumeration ν and
φ : S → S∗ an embedding of sets. We say that an enumeration ν∗ : N → S∗

extends the enumeration ν if there exists a computable function f : N → N
such that φ ◦ ν = ν∗ ◦ f . It is easy to construct an enumeration of 〈C〉 that
extends a given enumeration of the generating set C (see [29], Ch. 6, Section
1, Theorem 1). In the case of the subset C of A we will always, if not said
otherwise, consider enumerations ν∗ of 〈C〉 that extend a given enumeration of
C. Furthermore, we will always assume that for a given n ∈ N one can compute
the term t of the language of the structure A with constants from C which
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represents the element ν∗(n) in the structure 〈C〉. And conversely, for every
such a term T one can compute a number n ∈ N such that ν∗(n) = t. We call
such enumerations ν∗ effective. To construct an effective enumeration of 〈C〉 in
the case when A is a group one needs only effectively enumerate all words in
the alphabet C±1, while in the case when A is a commutative unitary ring one
needs to enumerate all polynomials from Z[C].

The following is useful.

Lemma 3.3. Let A be a structure, C a finite or countable subset of A equipped
with an enumeration ν, and 〈C〉 the substructure generated by C in A with an
effective enumeration that extends ν. Then the following hold:

1) The Diophantine problems DC(A) and D〈C〉(A) are equivalent (reduce to
each other).

2) If DC(A) is decidable then 〈C〉 is computable with respect to any enumer-
ation of 〈C〉 that extends the enumeration ν of the generating set C.

Proof. To prove 1) assume first that DC(A) is decidable. Since ν∗ is an effective
enumeration that extends the enumeration ν one can for every n ∈ N compute
a term t that represents the element ν∗(n) via generators from C. Therefore,
given a finite system of equations S(X) with coefficients in 〈C〉 one can ”rewrite”
every coefficient a in S(X) as a term ta that represents a via generators in C
and adjust the system S(X) accordingly. The system S∗ obtained this way has
only coefficients in C and it has precisely the same set of solutions in A as the
system S. This reduces D〈C〉(A) to DC(A). Conversely, to reduce DC(A) to
D〈C〉(A) one can do the following. First note, that since ν∗ extends ν there
is a computable function f : N → N such that, for every n ∈ N, f(n) gives
the ”number” of the element ν(n) in the enumeration ν∗. This allows one to
algorithmically rewrite a system T with coefficients in C into an equivalent
system T ∗ with coefficients in 〈C〉. This reduces DC(A) to D〈C〉(A).

The proof of 2) is straightforward and we omit it.

From now on we will always assume, without loss of generality, that coefficients
in the Diophantine problem is taken from a countable substructure 〈C〉 rather
then from the set C.

3.2 Diophantine sets and e-interpretability

To prove that D(A) reduces to D(M) for some structures A and M it suffices
to show that A is interpretable by equations (or e-interpretable) in M.

The notion of e-interpretability was introduced in [34, 33, 35]. Here we remind
this notion and state some basic facts we use in the sequel.

In what follows we often use non-cursive boldface letters to denote tuples of
elements: e.g. a = (a1, . . . , an). Furthermore, we always assume that equations
may contain constants from the algebraic structure in which they are considered.
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Definition 3.4. A subset D ⊂ Mm is called Diophantine, or definable by
systems of equations in M, or e-definable in M, if there exists a finite system
of equations, say ΣD(x1, . . . , xm, y1, . . . , yk), in the language of M such that for
any tuple a ∈ Mm, one has that a ∈ D if and only if the system ΣD(a,y) on
variables y has a solution in M. In this case ΣD is said to e-define D in M.

Remark 3.5. Observe that, in the notation above, if D ⊂ Mm is e-definable
then it is definable in M by the formula ∃yΣD(x,y). Such formulas are called
positive primitive, or pp-formulas. Hence, e-definable subsets are sometimes
called pp-definable. On the other hand, in number theory such sets are usually
referred to as Diophantine ones. And yet, in algebraic geometry they can be
described as projections of algebraic sets.

Definition 3.6. An algebraic structure A = (A; f, . . . , r, . . . , c, . . . ) is called e-
interpretable in another algebraic structure M if there exists n ∈ N, a subset
D ⊆Mn and an onto map (called the interpreting map) φ : D � A, such that:

1. D is e-definable in M.

2. For every function f = f(y1, . . . , yk) in the language of A, the preimage
by φ of the graph of f , i.e. the set {(x̄1, . . . , x̄k, x̄k+1) ∈ Dk+1 | φ(x̄k+1) =
f(φ(x̄1), . . . , φ(x̄k))}, where for each 1 ≤ i ≤ k + 1, x̄i = (xi1, . . . , xin), is
e-definable in M.

3. For every relation r in the language of A, and also for the equality relation
= in A, the preimage by φ of the graph of r is e-definable in M.

Let A is e-interpretable in M as in Definition 3.6 above. This interpretation is
completely determined by the map φ and a tuple Γ of the Diophantine formulas
that define the set D from 1), the functions f from 2), and the relations r from
3). By PΓ ⊆ M we denote the finite set of constants (parameters) that occur
in formulas from Γ. E-interpretability is a variation of the classical notion of
the first-order interpretability, where instead of arbitrary first-order formulas
finite systems of equations are used as the interpreting formulas. Note that
in number theory there are notions of Diophantine definition and Diophantine
generation, introduced by Shlapentokh [78], which are specifically designed for
studying the Hilbert’s tenth problem in number fields and play a part similar
to e-interpretability.

The following is a fundamental property of e-interpretability. Intuitively it states
that if A is e-interpretable in M by formulas Γ and an interpreting map φ :
D � A, then any system of equations in A can be effectively ”encoded” by an
equivalent system of equations inM. To explain we need the following notation.
Let C be a finite or countable subset of A equipped with an enumeration ν :
N → C. For every ci = ν(i) ∈ C fix an arbitrary tuple di ∈ φ−1(ci). Denote
by DR the set of all elements in M that occur as components in tuples di from
R. Denote by CΓ the set DR ∪ PΓ. We say that enumeration ν∗ : N → CΓ is
compatible with the enumeration ν (with respect to the set of representatives
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R) if there is an algorithm that for every i ∈ N computes the ν∗-numbers of the
components of the tuple di. For example, one can enumerate first all elements in
PΓ and then for i = 1, 2, . . . enumerate in the natural order all the components
of d1, d2, . . ..

Lemma 3.7. [34] Let A be e-interpretable in M by a set of formulas Γ with an
interpreting map φ : D � A (in the notation of the Definition 3.6). Let C be
a finite or countable subset of A equipped with an enumeration ν. Then there
is a polynomial time algorithm that for every finite system of equations S(x) in
A with coefficients in C constructs a finite system of equations S∗(y, z) in M
with coefficients in CΓ (given via a compatible enumeration ν∗ : N→ CΓ), such
that if (b, c) is a solution to S∗(y, z) in M, then b ∈ D and φ(b) is a solution
to S(x) in A. Moreover, any solution a to S(x) in A arises in this way, i.e.
a = φ(b) for some solution (b, c) to S∗(y, z) in M.

Now we state two key consequences of Lemma 3.7.

Corollary 3.8. Let A be e-interpretable in M by a set of formulas Γ with with
an interpreting map φ : D � A (in the notation of the Definition 3.6). Let
C be a finite or countable subset of A equipped with an enumeration ν. Then
the Diophantine problem in A with coefficients in C is reducible in polynomial
time (Karp reducible) to the Diophantine problem in M with coefficients in CΓ

with respect to any compatible with ν enumeration ν∗. Consequently, if DC(A)
is undecidable, then DCΓ(M) (relative to ν∗) is undecidable as well.

Corollary 3.9. e-interpetability is a transitive relation, i.e., if A1 is e-intepretable
in A2, and A2 is e-interpretable in A3, then A1 is e-interpretable in A3.

4 Diophantine structure in large subgroups of
GLn(R) and PGLn(R)

In this section we show that many important subgroups of the the classical
matrix groups of R are Diophantine. We freely use notation from Preliminaries.

4.1 One-parametric subgroups Tij are Diophantine in large
subgroups of GLn(R)

We start with the following key result.

Theorem 4.1. Let G be a large subgroup of GLn(R), n ≥ 3. Then for any
1 ≤ k 6= m ≤ n the subgroup Tkm is Diophantine in G (defined with constants
from {tij}).

Proof. Let x = (xst) ∈ G and assume that xtij = tijx. without loss of generality
we can assume i < j, then
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

x11 x12 · · · x1i · · · x1j · · · x1n

x21 x22 · · · x2i · · · x2j · · · x2n

...
...

. . .
...

...
...

...
...

xi1 + xj1 xi2 + xj2 · · · xii + xji · · · xij + xjj · · · xin + xjn
...

...
...

...
. . .

...
...

...
xj1 xj2 · · · xji · · · xjj · · · xjn

...
...

...
...

...
...

. . .
...

xn1 xn2 · · · xni · · · xnj · · · xnn


= tijx =

xtij =



x11 x12 · · · x1i · · · x1i + x1j · · · x1n

x21 x22 · · · x2i · · · x2i + x2j · · · x2n

...
...

. . .
...

...
...

...
...

xi1 xi2 · · · xii · · · xii + xij · · · xin
...

...
...

...
. . .

...
...

...
xj1 xj2 · · · xji · · · xji + xjj · · · xjn

...
...

...
...

...
...

. . .
...

xn1 xn2 · · · xni · · · xni + xnj · · · xnn


Comparing row i and column j of the two matrices we observe that every non-
diagonal entry of the i’th column and j’th row of x has to be zero, and xii = xjj ,
that is,

x ∈ CG(tij)⇔
{
xii = xjj
xst = 0 if s 6= t, and s = j or t = i

(6)

Hence for a fixed k 6= m every tij where i 6= m and j 6= k belongs to CG(tkm).
Put Skm = {tij |i 6= m, j 6= k}.
Consider the following centralizer in G:

CG(Skm) =
⋂

1≤i6=m,j 6=k≤n

CG(tij) (7)

Now assume x ∈ CG(Skm) and consider xij , where i 6= j, and (i, j) 6= (k,m).
If i 6= k and j 6= m, then tji ∈ Skm and xij = 0 by (6). Assume i = k, but
j 6= m. Then tjm ∈ Skm. Again, by (6), xij = 0. The remaining case is similar.
Therefore,

x ∈ CG(Skm)⇒
{
xij = 0 if i 6= j and (i, j) 6= (k,m)
xii = xjj for all 1 ≤ i, j ≤ n

Note that if x ∈ CG(Skm) and x11 = α, xkm = β then x = d(α)tkm(α−1β), so
the scalar matrix d(α) belongs to G. It follows that CG(Skm) = RGTkm, where
RG = R×n ∩G is the subgroup of all scalar matrices from R× that belong to G.
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Observe, that any scalar matrix in G commutes with every transvection of the
type tij , i 6= j. Hence

Tkm = [CG(Skj), tjm]

for any j 6= k,m. The subgroup CG(Skj) is Diophantine as the centralizer of
finite set of transvections, therefore, the set Tkm is also Diophantine.

Corollary 4.2. Let G = GLn(R), n ≥ 3. Then for any 1 ≤ k 6= m ≤ n the
subgroup Tkm is Diophantine in G (with constants tij , 1 ≤ i 6= j ≤ n).

Corollary 4.3. Let R be a commutative ring and G = SLn(R), n ≥ 3. Then
for any 1 ≤ k 6= m ≤ n the subgroup Tkm is Diophantine in G (with constants
tij , 1 ≤ i 6= j ≤ n).

4.2 UTn(R) and Tn(R) are Diophantine in large subgroups
of GLn(R)

We start with a simple lemma, which is used often in the paper.

Lemma 4.4. Let A1, . . . , Ak be Diophantine subsets of a group H. Then their
product A = A1 . . . Ak is also Diophantine in H.

Proof. It suffices to note that x ∈ H belongs to A if and only if the following
condition holds:

∃y1 . . . ∃yk(a = y1 . . . yk ∧ (
k∧
i=1

(yi ∈ Ai))

Since the sets Ai are Diophantine in H the condition above also describes a
Diophantine subset of H.

Proposition 4.5. Let G be a large subgroup of GLn(R), n ≥ 3. Then for
every 1 ≤ m ≤ n− 1 the subgroup UTmn (R) is Diophantine in G. In particular,
UTn(R) is Diophantine in G.

Proof. Fix 1 ≤ m ≤ n− 1, and let UTnn (R) = {1}. By (5) one has that

UTmn (R) = Tn−m,nTn−m−1,n−1 . . . T1,1+mUT
m+1
n (R)

Set
Pm = Tn−m,nTn−m−1,n−1 . . . T1,1+m

Then

UTmn (R) = PmPm+1 . . . Pn−1 (8)

This implies that each subgroup UTmn (R) is a particular finite product of one
parametric subgroups Tij . By Lemma 4.1 every subgroup Tij is Diophantine in
G. Now the result follows from Lemma 4.4.
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Lemma 4.6. Let G be a large subgroup of GLn(R), n ≥ 3. Then the set RG of
all scalar matrices from G is Diophantine in G.

Proof. Observe, that RG is precisely the centralizer of the set of all transvections
{tij | 1 ≤ i 6= j ≤ n}. Hence RG is Diophantine in G.

Proposition 4.7. Let G be a large subgroup of GLn(R), n ≥ 3. If R+ does not
have elements of order 2, then the following hold:

1) G ∩Dn(R) is Diophantine in G.

2) G ∩ Tn(R) is Diophantine in G.

Proof. To show 1) for any 1 ≤ k 6= m ≤ n let dkm = dk(−1)dm(−1), i.e.
dkm = diag(β1, . . . , βn), where βk = −1, βm = −1, and βi = 1 if i 6= k,m. Note
that for x = (xij) ∈ GLn(R) one has

xdkm = dkmx⇐⇒
∧

i6=m,k

[
(−xim = xim)∧(−xmi = xmi)∧(−xik = xik)∧(−xki = xki)

]
Since R+ does not have elements of order 2, as k ranges over all possible choices,
the right-hand side of the relevant equivalences produce that xmi = xim = 0 for
any i 6= m. Hence the system of equations∧

1≤i6=j≤n

xdij = dijx

defines Dn(R) in G.

To prove 2) note first that the group UTn(R) is normal in Tn(R). Hence G ∩
Tn(R) = (G ∩ Dn(R))UTn(R) is a product of two Diophantine subgroups of
G (by the statement 1) above and Proposition 4.5). Therefore, by Lemma 4.4
Tn(R) is Diophantine in G.

4.3 Diophantine subgroups in PGLn(R) and PSLn(R)

Let φ : GLn(R) → PGLn(R) be the canonical epimorphism. The image of
subgroup H of GLn(R) under φ will be denoted by Hφ. We call a subgroup
G of PGLn(R) large if it contains φ(En(R)), i.e., if G = Hφ for some large
subgroup H of GLn(R). We note that for 1 ≤ i 6= j ≤ n, ker(φ) ∩ Tij = {In},
so indeed Tφij

∼= Tij .

Proposition 4.8. Let G be a large subgroup of PGLn(R), where n ≥ 3 and

R has no zero-divisors. Then for any 1 ≤ i 6= j ≤ n, the subgroup Tφij is
Diophantine in G.
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Proof. Let H = φ−1(G), then H is a large subgroup of GLn(R). Consider
the set Skm = {tij |i 6= m, j 6= k}, introduced in proof of Theorem 4.1 in H,

and let Sφkm = {tφij |i 6= m, j 6= k}. We see that for y ∈ G and x ∈ H with

φ(x) = y, ytφij = tφijy if and only if there is z ∈ RH , such that tijx = xtijz, for
x = (xst) ∈ H. Without loss of generality we can assume i < j. Then

x11 x12 · · · x1i · · · x1j · · · x1n

x21 x22 · · · x2i · · · x2j · · · x2n

...
...

. . .
...

...
...

...
...

xi1 + xj1 xi2 + xj2 · · · xii + xji · · · xij + xjj · · · xin + xjn
...

...
...

...
. . .

...
...

...
xj1 xj2 · · · xji · · · xjj · · · xjn

...
...

...
...

...
...

. . .
...

xn1 xn2 · · · xni · · · xnj · · · xnn


= tijx =

xtijz =



αx11 αx12 · · · αx1i · · · α(x1i + x1j) · · · αx1n

αx21 αx22 · · · αx2i · · · α(x2i + x2j) · · · αx2n

...
...

. . .
...

...
...

...
...

αxi1 αxi2 · · · αxii · · · α(xii + xij) · · · αxin
...

...
...

...
. . .

...
...

...
αxj1 αxj2 · · · αxji · · · α(xji + xjj) · · · αxjn

...
...

...
...

...
...

. . .
...

αxn1 αxn2 · · · αxni · · · α(xni + xnj) · · · αxnn


where z = αI, α ∈ R. Consider the column i of both of the matrices, and
compare the same non-diagonal (s, i)-entry, s 6= i, in the i-th column in the
both matrices. Then xsi = αxsi. Hence, either xsi = 0, or α = 1 since R has
no zero-divisors. Suppose α 6= 1. Then xsi = 0 for all s 6= i. Now comparing
the diagonal entries in the i’s columns one has xii + xji = αxii. Since xji = 0
it follows that xii = αxii, so xii = 0. This means that the whole i’s column
in x consists of zeros, which contradicts the condition that x ∈ GLn(R) is an
invertible matrix. Hence α = 1. This shows that the equality tijx = xtijz above
becomes the equality tijx = xtij . Now, following the argument in Theorem 4.1,
one has

[CG(Sφkj), t
φ
jm] = [TkjRH , tjm]φ = Tφkm,

which indeed proves that Tφkm is Diophantine in G.

Corollary 4.9. If G is a large subgroup of PGLn(R), where R has no zero-
divisors, UTφn (R) is Diophantine in G.

Proof. This is a direct corollary of Lemma 4.4 and Proposition 4.8.
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Corollary 4.10. G = PGLn(R) or G = PSLn(R) is which case we assume R
is commutative. If R does not have any zero-divisors, and R+ has no elements
of order 2, then the following hold:

1. G ∩Dφ
n(R) is Diophantine in G

2. G ∩ Tφn (R) is Diophantine in G.

Proof. Similar to the proof of Proposition 4.7, let dij = didj . Note that dφij 6= 1.

Let G1 = CG({dφij |1 ≤ i 6= j ≤ n}, and H1 = CH({dij |1 ≤ i 6= j ≤ n} =

H ∩Dn(R). Let y ∈ G1 and φ(x) = y, x ∈ H. Now if ydφkm = dφkmy, then there
exists z = αI ∈ RH such that∧
i6=k,m

[
(−xim = αxim) ∧ (−xmi = αxmi) ∧ (−xik = αxik) ∧ (−xki = αxki)

]
,

and also −xkk = −αxkk, and −xmm = −αxmm. So (1 − α)xkk = 0. Since R
has no zero divisors, either α = 1 or xkk = 0. Given what we want to prove we
need to introduce a set of positive existential sentences that prevent the latter
case. Without loss of generality we can assume k = 1. Recall that the Tφij are
Diophantine in G. So consider the positive existential sentences

∃ū(
∧

1≤i6=j≤n

((ydφij = dφijy) ∧ (ytφijy
−1 = uij) ∧ (uij ∈ Tφij)).

This means that x has to satisfy xt1m = t1m(βm)xzm for some βm ∈ R and
zm = αmI ∈ RH . Note that βm 6= 0. Now we argue by contradiction that
x11 6= 0. So assume x11 = 0 and for each m 6= 1 apply the corresponding
equation to x. A straightforward matrix calculation and comparing the (1, 1)-
entries of the resulting matrices on the two sides of the equation we get 0 =
βmαmxm1. Hence, for all m, xm1 = 0. That is, the first column of x consists
entirely of zeros, making x non-invertible, which is impossible. This shows that
α = 1, which makes the rest similar to the proof of Proposition 4.7.

5 Diophantine structure in large subgroups of
Tn(R)

The following result is reminiscent of Theorem 4.1 on Diophantiness of one-
parametric subgroups Tij in large subgroups of GLn(R). However, since Tn(R)
has only transvections of the type tij(α) with i < j, the argument is a little
bit more involved and the result is slightly weaker than in GLn(R). Though
it is sufficient for all our purposes. Note that in the case of G = UTn(R) our
argument follows considerations in [3].

Theorem 5.1. Let G be a large subgroup of Tn(R), n ≥ 3. Then the following
hold:

24



1) for every 1 ≤ i, j ≤ n with j− i ≥ 2 the subgroup Tij is Diophantine in G;

2) for every 1 ≤ i < n the subgroup RGTi,i+1T1n is Diophantine in G.

Proof. We recall that for x = (xij) ∈ G

x ∈ CG(tkm)⇔
{
xkk = xmm
xij = 0 if i 6= j, and either j = k or i = m

This implies that for 1 ≤ k < m ≤ n the centralizer of the set

Skm = {tkm, t1i, tjn | i 6= 1, k; j 6= m,n}

in G consists precisely of matrices x = (xij) with xij = 0 if i < j and (i, j) 6∈
{(k,m), (1,m), (k, n), (1, n)} and x11 = . . . = xnn. This set is Diophantine in
G, we denote it by Ckm.

It is convenient in calculations to represent an element x = (xij) ∈ Ckm as the
following product, depending on k,m, and n. If 1 < k < m < n then

x = d(σ)t1m(σ−1α)tkm(σ−1β)tkn(σ−1γ)t1n(σ−1δ),

where x11 = σ, x1m = α, xkm = β, xkn = γ, and x1n = δ. If 1 = k < m < n,
then in the notation above

x = d(σ)t1m(σ−1α)t1n(σ−1δ).

If 1 < k < m = n then

x = d(σ)tkn(σ−1γ)t1n(σ−1δ),

and in the case 1 = k,m = n

x = d(σ)t1n(σ−1δ).

The scalar matrix d(σ) above belongs to G, since G contains x and UTn(R).
Also note that Ckm contains the whole subgroup RG of all scalar matrices in G,
since [RG, tij ] = 1 for any transvection tij . The argument above shows that

Ckm = RGT1mTkmTknT1n.

In particular, for any j > 1 and any i < n

C1j = RGT1jT1n, Cin = RGTinT1n. (9)

It follows then that for j > 2

T1j = [C1,j−1, tj−1,j ],
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hence it is Diophantine in G, because the set C1,j−1 is. Similarly, for i < n− 1
one has

Ti,n = [ti,i+1, Ci+1,n],

hence it is also Diophantine in G.

Suppose now that 1 < i < j < n, j − i ≥ 2. Note that the set [Ci,j−1, tj−1,j ]
consists of all matrices x = (xst) ∈ G such that xst = 0 for all s < t, pro-
vided (s, t) 6∈ {(1, j), (i, j)}. Clearly, this set is Diophantine. Similarly, the set
[ti,i+1, Ci+1,j ] is Diophantine and consists of matrices X = (xst) ∈ G such that
xst = 0, provided s < t and (s, t) 6∈ {(i, j), (i, n)}. Therefore,

Tij = [Ci,j−1, tj−1,j ] ∩ [ti,i+1, Ci+1,j ],

so it is Diophantine as the intersection of two Diophantine sets. This proves 1).

To show 2), note, first, that (9) implies RGT12T1n = C12 and RGTn−1,nT1n =
Cn−1,n, so these sets are Diophantine in G.

Fix 1 < i < n−1. Let x = (xst) ∈ Ci,i+1. Then [x, ti+1,i+2] = t1,i+2(α)ti,i+2(β),
where σ−1x1,i+1 = α and σ−1xi,i+1 = β, where σ = x11. Hence x1,i+1 = 0 if
and only if

[x, ti+1,i+2] = ti,i+2(β) ∈ Ti,i+2.

This condition is Diophantine, since the set Ti,i+2 is Diophantine as shown in 1).
Similarly, for such matrix x one has xin = 0 if and only if [ti−1,i, x] ∈ Ti−1,i+1.
This condition is again Diophantine in G. The intersection of these conditions
is Diophantine as well, and it describes the subgroup RGTi,i+1T1n in G. This
proves 2).

Corollary 5.2. Let G = Tn(R), n ≥ 3. Then the following hold:

1) for every 1 ≤ i, j ≤ n with j− i ≥ 2 the subgroup Tij is Diophantine in G;

2) for every 1 ≤ i < n the subgroup RGTi,i+1T1n is Diophantine in G.

Corollary 5.3. Let G = UTn(R), n ≥ 3. Then the following hold:

1) for every 1 ≤ i, j ≤ n with j− i ≥ 2 the subgroup Tij is Diophantine in G;

2) for every 1 ≤ i < n the subgroup Ti,i+1T1n is Diophantine in G.

Proposition 5.4. Let G be a large subgroup of Tn(R), n ≥ 3. Then:

1) The subgroup RG is e-interpretable in G.

2) The subgroup RGUTn(R) is Diophantine in G.
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Proof. To see 1) observe that RGT1n = RGT12T1n∩RGT23T1n, so it is Diophan-
tine as an intersection of two Diophantine subgroups of G (by Theorem 5.1). The
subgroup T1n is also Diophantine in G. Hence the quotient RGT1n/T1n ' RG
is e-interpretable in G.

The argument for 2) is similar to the one in Proposition 4.5. Indeed, from (8)
UT (n,R) = P1 . . . Pn−1, where Pm = Tn−m,nTn−m−1,n−1 . . . T1,1+m.

By Theorem 5.1 and Lemma 4.4 all products P2, . . . , Pn−1 are Diophantine in
G. Consider a product

P ′1 = (RGTn−1,nT1n)(RGTn−2,n−1T1n) . . . (RGT1,2T1n) = RGP1T1n

By Theorem 5.1 and Lemma 4.4 P ′1 is Diophantine in G. Hence

RGUTn(R) = P ′1P2 . . . Pn−1

is also Diophantine in G. Now 3) comes from 1) and 2), since RG is a normal
Diophantine subgroup of RGUTn(R) and UTn(R) ' RGUTn(R)/RG.

6 The Diophantine problem in classical linear
groups

Theorem 6.1. Let G be a large subgroup of GLn(R), PGLn(R) (assuming
that R has no zero divisors in this case), or Tn(R), n ≥ 3. Then the ring R is
e-interpretable in G.

Proof. There are three cases to consider.

Case 1. G is a large subgroup of GLn(R). By Theorem 4.1 the subgroups T12,
T2n and T1n are Diophantine in G.

We e-interpret R on T1n turning it into a ring 〈T1n;⊕,⊗〉 as follows.

For x, y ∈ T1n define
x⊕ y = x · y (10)

Note that if x = t1n(α), y = t1n(β) then x · y = t1n(α + β), which corresponds
to the addition in R.

To define x ⊗ y for given x, y ∈ T1n we need some notation. Let x1, y1 ∈ G be
such that

x1 ∈ T12 and [x1, t2n] = x, y1 ∈ T2n and [t12, y1] = y. (11)

Note that such x1, y1 always exist and unique, for if x = t1n(α), y = t1n(β) then
x1 = t12(α), y1 = t2n(β). Now define

x⊗ y = [x1, y1].
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Observe, that in this case

[x1, y1] = [t12(α), t2n(β)] = t1n(αβ), (12)

so ⊗ corresponds to the multiplication in R. To finish the proof we need two
claims.

Claim 1. The map α→ t1n(α) gives rise to a ring isomorphism R→ 〈T1n;⊕,⊗〉.
This is clear from the argument above.

Claim 2. The ring 〈T1n;⊕,⊗〉 is e-interpretable in G.

To see this, observe first that, as was mentioned above, T1n is Diophantine in G.
The addition ⊕ defined in (10) is clearly Diophantine in G. Since the subgroups
T12 and T2n are Diophantine in G the conditions (11) are Diophantine in G,
as well as the condition (12). This shows that the multiplication ⊗ is also
Diophantine in G. This proves the case 1.

Case 2. Let G be a large subgroup of PGLn(R). The proof is similar to the one
in Case 1. Only instead of Theorem 4.1 one uses Proposition 4.8.

Case 3. Let G be a large subgroup of Tn(R). To prove that R is e-interpretable
inG we adjust the argument above by making a few changes. Namely, we replace
the subgroup T12 by the Diophantine subgroup T ′12 = RGT12T1n if n > 3. If
n = 3, then we also replace T2n = T23 with T ′23 = RGT23T13. In both cases the
argument works word by word except for in these cases the elements x1 ∈ T ′12

and y1 ∈ T ′23 if n = 3, are not unique. However, this does not matter, since any
such x1 and y1 give the same commutator [x1, y1].

This proves the theorem.

Corollary 6.2. The ring R is e-interpretable in groups GLn(R), SLn(R) (as-
suming that in this case R is commutative), En(R), Tn(R), and UTn(R), where
n ≥ 3. If in addition R has no zero divisors then R is e-interpretable in
PGLn(R) and PSLn(R) (as before, R is also commutative in this case).

Remark 6.3. If n ≥ 3, the ring R is e-interpretable in groups GLn(R), PGLn(R),
En(R) on each of the one parametric subgroups Tij . The same holds for Tn(R)
and UTn(R), if j − i ≥ 2. If in addition R is commutative then it is e-
interpretable in SLn(R) and PSLn(R) on each of the one parametric subgroups
Tij .

Now we prove the converse of Theorem 6.1 (with exception for En(R)). The
result, we believe, is known in folklore.

Proposition 6.4. The groups GLn(R), Tn(R), and UTn(R), are all e-interpretable
in R. If R is commutative then the groups PGLn(R), SLn(R), and PSLn(R)
are all e-interpretable in R.

Proof. We represent an n×n matrix x = (xij) with entries in R by an n2-tuple
x̄ over R, where

x̄ = (x11, . . . , x1n, x21, . . . , xn1, . . . , xnn).
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The matrix multiplication � on tuples from Rn
2

is defined by

x̄� ȳ = z̄ ⇐⇒
n∧

i,j=1

zij = Pij(x̄, ȳ),

where Pij(x̄, ȳ) is integer polynomial Σn
s=1xisysj . The multiplication � is clearly

Diophantine. To finish the description of the interpretations of the groups
GLn(R), SLn(R), Tn(R), and UTn(R) in R it suffices to define the correspond-

ing subsets of Rn
2

by Diophantine formulas. We do it case by case.

The case of GLn(R). A matrix x = (xij) belongs to GLn(R) if it is invertible,
i.e., there exists a matrix y = (yij) such that xy = In. In the language of the
tuples x̄ and ȳ this is expressed as

∃ȳ(x̄� ȳ) = Īn.

This condition is Diophantine, so GLn(R) is e-interpretable in R.

The case of SLn(R). In this case R is a commutative ring. Recall that the
determinant of an n× n-matrix (xij) with entries in a commutative ring R can
be computed as the value of some fixed polynomial Detn(x̄) on the tuple x̄.
Hence the matrix x = (xij) belongs to SLn(R) if and only if Detn(x̄) = 1. This
is a Diophantine equation in R.

The case of PGLn(R) and PSLn(R). Observe that if the ring R is commu-
tative then the subgroup of all scalar matrices in GLn(R) and SLn(R) is Dio-
phantine as the centralizer of the finite set of all transvections tij . Hence the
factor groups PGLn(R) and PSLn(R) are e-interpretable, correspondingly, in
the groups GLn(R) and SLn(R). Now the result follows from the previous two
cases by transitivity of e-interpretability.

The case of Tn(R). By definition x = (xij) ∈ Tn(R) if and only if xij = 0 for
all i < j and there exists y in R such that x11 . . . xnny = 1. All these conditions
are Diophantine, so Tn(R) is e-interpretable in R.

The case of UTn(R) is similar to the one above. This proves the proposition.

Now we can prove the main result of the paper.

Theorem 6.5. Let n ≥ 3. The Diophantine problem in each of the groups
GLn(R), SLn(R) (assuming that in this case R is commutative), Tn(R), and
UTn(R), as well as in the groups PGLn(R) and PSLn(R) (in this case we
additionally assume that the ring R has no zero divisors) is Karp equivalent to
the Diophantine problem in R. In particular, the Diophantine problem in all
these groups is decidable if and only if it is decidable in R.

Proof. The result follows from Corollary 6.2, Proposition 6.4, and properties of
the e-interpretability from Corollary 3.8.
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We are not able to show that En(R) is e-interpretable in R for any associative
ring R. However, the following holds.

Theorem 6.6. If En(R) has bounded elementary generation then En(R) is
e-interpretable in R. In this case the Diophantine problem in En(R) is Karp
equivalent to the Diophantine problem in R.

Corollary 6.7. If n ≥ 3 and En(R) has bounded elementary generation then the
Diophantine problem in En(R) is Karp equivalent to the Diophantine problem
in R.

For arbitrary associative ring R we have the following consequence of Corollary
6.2.

Proposition 6.8. If the Diophantine problem is undecidable in a ring R then
it is also undecidable in the group En(R) for any n ≥ 3.

7 Diophantine problem in matrix groups over
classical rings and fields

In this section we discuss Diophantine problem in the classical matrix groups
over classical rings and fields.

As before by Gn(R) we denote any of the classical linear groups GLn(R),
SLn(R), Tn(R), UTn(R), PGLn(R), PSLn(R) over a ring R (in the case of
SLn(R), PGLn(R) and PSLn(R) the ring R is assumed to be commutative).
In fact, except for Lemma 7.1, all our rings R in this section will be either
integral domains or fields.

In general, we consider the Diophantine problems of the type DC(Gn(R)), where
C is a countable subset of Gn(R) equipped with an enumeration ν : N → C.
Denote by CR ⊆ R the set of all elements of R that occur in matrices from C.
Note that in the case of PGLn(R) or PSLn(R) we assume that elements from
C (which are cosets of the center of GLn(R) or SLn(R)) are given by some
fixed representatives, i.e., matrices over R. The enumeration ν gives rise to an
enumeration µ : N→ CR, here to construct µ it suffices to enumerate matrices
in C with respect to ν, for each matrix ν(n) enumerate its entries in some fixed
order, and combine all these into an enumeration µ.

Lemma 7.1. Let Gn(R) be a classical matrix group over a ring R and C a
countable subset of Gn(R) equipped with an enumeration ν : N → C. Then
DC(Gn(R)) reduces to DCR

(R).

Proof. By Proposition 6.4, Gn(R) is e-interpretable in R. Via this interpretation
every finite system S of equations in Gn(R) with coefficients in C can be reduced
to a finite system S∗ over R with coefficients in CR, such that the map S → S∗

gives the required reduction.
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This gives decidability of DC(Gn(R)), provided the Diophantine problem DCR
(R)

is decidable. Proving undecidability of DC(Gn(R)) might be more involved (see
Theorem 7.8 below).

7.1 R is a ring of algebraic integers or a number field

By a number field F we mean a finite algebraic extension of Q. The ring of
integers O of a number field F is the subring of F consisting of all roots of
monic polynomials with integer coefficients.

It is a classical result that the Diophantine problem in Z is undecidable [54].
Together with Theorem 6.5 this gives the following result.

Theorem 7.2. Let n ≥ 3. Then the Diophantine problem in the matrix groups
Gn(Z) is Karp equivalent to the Diophantine problem in Z, in particular, it is
undecidable.

The following is one of the major conjectures in number theory.

Conjecture 1. The Diophantine problem in Q, as well as in any number field F ,
or any ring of algebraic integers O, is undecidable.

For Q and any its finite extension F the conjecture above is wide open. However,
for the rings of algebraic integers OF of the fields F there are results where the
undecidability of the Diophantine problem is confirmed. Namely, it is known
that Z is Diophantine in OF if [F : Q] = 2 or F is totally real [19, 20], or
[F : Q] > 3 and F has exactly two nonreal embeddings into the field of complex
numbers [60], or F is an abelian number field [77]. We refer to two surveys and
a book [62, 63, 78] for details on this matter.

If Conjecture 1 holds then the following conjecture also holds.

Conjecture 2. Let n ≥ 3 and R ∈ {Q, F,O}, where F is a number field and
O is a ring of algebraic integers. Then the Diophantine problem in the matrix
groups Gn(R) is undecidable.

7.2 R is an algebraically closed field

The following result is surely known in folklore, but we could not find a proper
reference, so we give a sketch of a proof.

Proposition 7.3. Let R be an algebraically closed field. Then the following
hold:

1) If A is a computable subfield of R then the first-order theory ThA(R) of R
with constants from A in the language is decidable. In particular, DA(R)
is decidable.
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2) Let C be a countable or finite subset of Gn(R) such that the ring RC is
computable. Then the Diophantine problem in Gn(R) with constants from
C is decidable.

Proof. Let ν : N → A be an enumeration of A which makes A computable.
Let Ā be the algebraic closure of A in R, i.e., the smallest algebraically closed
subfield of R containing A. The enumeration ν extends to an enumeration of
µ : N → Ā which makes Ā computable [30]. Since the first-order theory of
algebraically closed fields of a given characteristic admits elimination of quanti-
fiers the whole theory ThA(Ā) reduces to the quantifier-free statements about
Ā, which is decidable since Ā is computable. Moreover, Ā is an elementary
submodel of R, so ThA(Ā) = ThA(R). Hence ThA(R) is decidable, as claimed.

2) follows from Lemma 7.1 and 1).

Now we turn to the case of classical fields with decidable first-order theory, such
as C,R and Qp, for arbitrary prime p. We also pay a special attention to the
ring of p-adic integers Zp, because of its relations with pro-p completions of
groups.

7.3 R is the field of reals

Let R = R be the field of real numbers and A a countable (or finite) subset
of R. In this section we discuss first when the Diophantine problem in R with
constants from A (denoted by DA(R)) is decidable and then apply these results
to the Diophantine problems in classical matrix groups over R.

Observe first, that by Lemma 3.3 if DA(R) is decidable then the subfield F (A)
generated by A in R is computable. However, the converse is not true. For
example, as we mention below, if a ∈ R is not a computable real, then F = Q(a)
is a computable field, but D{a}(R) is undecidable. The following result clarifies
the situation.

Proposition 7.4. Let A be a finite or countable subset of R. Then the Diophan-
tine problem in R with coefficients in A is decidable if and only if the ordered
subfield F (A) is computable. Furthermore, in this case the whole first-order
theory ThA(R) is decidable.

Proof. Suppose A is a finite or countable subset of R with decidable DA(R).
By Lemma 3.3 the subfield F (A) generated by A in R is computable. So it is
suffices to show that the ordering ≤ induced from R on F (A) is computable.
Note, that a ≤ b in R if and only if the equation b − a = y2 has a solution for
y. Hence if DA(R) is decidable then ≤ is computable on F (A).

Let’s prove the converse. Suppose F (A) is computable ordered field. An equa-
tion E(x1, . . . , xn, a1, . . . , am) = 0 in variables x1, . . . , xn and coefficients in
a1, . . . , am ∈ A, has a solution in R if and only if the formula Φ(a1, . . . , am) =
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∃x1 . . . ∃xn(E(x1, . . . , xn, a1, . . . , am) = 0) is true in R. Since R admits quanti-
fier elimination in the language of ordered rings the formula Φ(y1, . . . , ym) in free
variables y1, . . . , ym is equivalent in R to a quantifier-free formula Ψ(y1, . . . , ym),
therefore, Φ(a1, . . . , am) holds in R if and only if Ψ(a1, . . . , am) holds in R. The
latter is algorithmically decidable since the ordered subfield F (A) is computable.

Now we prove the last statement of the proposition. Let Φ(a1, . . . , an) be a
sentence with coefficients from F (A). Via quantifier elimination for real closed
ordered fields we can assume that Φ(a1, . . . , an) is quantifier-free. But then
whether it is true or not in R can be checked algorithmically since the field
F (A) is computable. This shows that ThA(R) is decidable.

Recall that a real a ∈ R is computable if its standard decimal expansion a =
a0.a1a2 . . . is computable, i.e., the integer function n → an is computable. In
other words, a is computable if and only if one can effectively approximate it
by rationals with any precision. The set of all computable reals Rc forms a real
closed subfield of R, in particular Rc is first-order equivalent to R.

In the following Proposition we collect some facts about computable ordered
subfields of R. Statements 1) and 2) were proved in [44], 3) was proved in [46]
(see also [29] (Theorem 4, Ch.6, section 3), and 4) is known in folklore. We are
grateful to Andrey Morozov for helping us with computable ordered fields.

Proposition 7.5. The following holds:

1) Every ordered computable subfield of R is contained in Rc.

2) The ordered subfield Rc ≤ R with the induced order from R is not com-
putable.

3) If F is a computable ordered field, then its real closure is also computable.
In particular, if F is a computable subfield of R then the algebraic closure
F̄ of F in R is a computable ordered field.

4) If a1, . . . , am are computable reals then the ordered subfield Q(a1, . . . , am) ≤
R with the induced order from R is computable.

Proof. 1) and 2) were proved in [44]. Theorem 4 from section 3, chapter 6,
of [29] states that if F0 is an algebraic extension of a computable field F then
a constructivization of F extends to a constructivization of F0 if and only if
the set of polynomials f ∈ F [x] that have a root in F0 is computably enu-
merable. In our case all polynomials f ∈ F [x] that have a root in R have
also a root in F . It suffices to show that the set of polynomials f ∈ F [x]
having a root in R is computably enumerable. For each n ∈ N consider
a polynomial h(x, z0, . . . , zn) = znx

n + zn−1x
n−1 + . . . + z0 and a formula

Φn(z0, . . . , zn) = ∃xh(x, z̄) = 0. By construction for any a0, . . . , an ∈ R the
formula Φn(a0, . . . , an) holds in R if and only if the polynomial anx

n + . . .+ a0

has a root in R. Since R admits elimination of quantifiers (with ≤ in the lan-
guage) for every n one can find a quantifier-free formula Φ′n(z0, . . . , zn) such
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that Φ′n(a0, . . . , an) holds in R if and only if the polynomial anx
n + . . .+ a0 has

a root in R. Now, if a0, . . . , an are in F , since F is computable, one can algorith-
mically check whether or not Φ′n(a0, . . . , an) holds in R. Hence to computably
enumerate all polynomials f ∈ F [x] that have a root in R one can enumerate
all polynomials f1, f2, . . . , in F [x] and check, one-by-one, if fi has a root in R.
This finishes 3).

To prove 4) consider a finite extension Q(t1, . . . , tm, α1, . . . , αk) of the field Q.
We can assume that L = Q(t1, . . . , tm) is a pure transcendental extension, and
F = L(α1, . . . , αk) is algebraic. It is easy to see that the field L is computable
(see, for example, [29, 30]). We show, first, that the restriction of the ordering
≤ from R onto L is computable in L. Note, that viewing the field L as the
field of rational functions in t1, . . . , tn with coefficients in Q, it suffices to show
that for any polynomial f(x̄) = f(x1, . . . , xm) with rational coefficients one can
algorithmically verify whether f(t̄) > 0 or f(t̄) < 0 (here f(t̄) = f(t1, . . . , tm).
Observe, that f(t̄) 6= 0. The elements t1, . . . , tm are computable, so for every s =

1, . . . ,m there are computable sequences of rationals {a(s)
i }i∈N and {b(s)i }i∈N,

such that {a(s)
i }i∈N increases and converges to ts and {b(s)i }i∈N decreases and

converges to ts. Since f(t̄) 6= 0 then in some small neighbourhood of the point
t̄ ∈ Rm the polynomial f(x1, . . . , xm) is either strictly positive, or it is strictly
negative. For i ∈ N consider a formula

Φi = ∃y1 . . . ∃ym

 m∧
j=1

(a
(j)
i ≤ yj ≤ b

(j)
i )

∧
(f(y1, . . . , ym) = 0)

 .

Since the theory Th(R) is decidable, one can algorithmically decide for every
i ∈ N whether or not Φi holds in R. Since f(x̄) does not have zeros in some
small neighborhood of t̄ the formula Φi is not true in R for some i, which can be
found. It follows that f(x̄) is either positive or negative on the neighbourhood

Ui =
m∏
j=1

[a
(j)
i , b

(j)
i ]

Hence, computing the value f(a
(1)
i , . . . , a

(m)
i ) one can find out if f(t̄) > 0 or

f(t̄) < 0, as required.

Now, consider the algebraic extension F = L(α1, . . . , αk). We discuss only the
case of k = 1, the general case can be argued similarly. Let f = anx

n+. . .+a0 be

the minimal polynomial of α = α1 over L, here ai = Pi(t̄)
Qi(t̄)

are rational functions

in t1, . . . , tm with rational coefficients. It is easy to see that F is computable, one
needs only to check that the ordering ≤ is computable on F . Take an arbitray
element b ∈ F . We may assume that b 6= 0 and that it can be (algorithmically)
presented as a non-trivial linear combination

b =
P0(t̄)

Q0(t̄)
· 1 + . . .+

Pn−1(t̄)

Qn−1(t̄)
αn−1
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of the basis 1, . . . , αn−1 of F over L. To check if b > 0 or b < 0 one can consider
a rational function

h(x̄, y) =
P0(x̄)

Q0(x̄)
· 1 + . . .+

Pn−1(x̄)

Qn−1(x̄)
yn−1

Notice that h(t̄, α) 6= 0. Hence in a small neighbourhood of (t̄, α) the function
h(x̄, y) is either strictly positive or strictly negative. The reals t1, . . . , tm, α are
computable so we can repeat the argument above to show that one can verify
if b > 0 or b < 0. This proves 4).

Summarizing the discussion above we get the following result.

Corollary 7.6. The following holds:

• The Diophantine problem in R with coefficients in Rc is undecidable;

• The Diophantine problem in R with coefficients in any finite subset of Rc
is decidable;

• The Diophantine problem in R with coefficients in {a}, where a is not
computable, is undecidable.

Now we turn to the Diophantine problem in the classical matrix group over R.

We say that a matrix A ∈ GLn(R) is computable if all entries in A are com-
putable real numbers. Hence the computable matrices in SLn(R) are precisely
the matrices from SLn(Rc).

Theorem 7.7. Let n ≥ 3 and

Gn(R) ∈ {GLn(R), SLn(R), Tn(R), UTn(R), PGLn(R), PSLn(R)}.

If F is a computable ordered subfield of R then the first-order theory Th(Gn(R))
with constants from Gn(F ) is decidable (here Gn(F ) is the set of all matrices
from Gn(R) with entries from F ). In particular, the Diophantine problem for
equations with coefficients from Gn(F ) is decidable in Gn(R).

Proof. By Proposition 7.4 the theory ThF (R) is decidable. Since the group
Gn(R) is interpretable in the field R with no use of parameters (Theorem 6.4)
the first-order theory of Gn(R) with constants from Gn(F ) is decidable, as
claimed.

The following result complements the theorem above.

Theorem 7.8. Let G be a large subgroup of GLn(R), where n ≥ 3. If a ma-
trix A ∈ SLn(R) is not computable then the Diophantine problem in G with
coefficients in {tij} ∪ {A} is undecidable.
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Proof. Let G and A ∈ SLn(R) be as in the statement of the theorem. Assume
that there exists an algorithm to decide whether a given finite systems of equa-
tions with coefficients in {tij} ∪ {A} has a solution in G. We show that in this
case the matrix A is computable. The group SLn(R) is generated by transvec-
tions. Consider an arbitrary decomposition of A as a product of transvections:

A = ti1j1(α1) . . . timjm(αm). (13)

Consider the set S of all decompositions A = ti1j1(β1) . . . timjm(βm) with the
fixed sequence of pairs of indexes (i1, j1), . . . , (im, jm) and fixed signs of the
reals βk, i.e., sign(βk) = sign(αk), k = 1, . . . ,m. To simplify notation put
xk(β) = tikjk(β). Now we show that there is a particular decomposition

A = x1(β1) . . . xm(βm),

where all reals β1, . . . , βm are computable. For every n ∈ N define rational
numbers r1,n, . . . , rm,n by induction on n. Let rk,0 be the integral part of the
real number |αk|, where αk, k = 1, . . . ,m, are from (13). Suppose rk,n−1,
k = 1, . . . ,m, are already defined. Let (y1,n, . . . , ym,n) be the smallest in the
left-lexicographical order tuple of integers such that:

1) 0 ≤ yk,n ≤ 9, k = 1, . . . ,m,

2) there are reals γ1,n, . . . , γm,n such that A = x1(γ1,n) . . . xm(γm,n),

3) sign(γk,n) = sign(αk), k = 1, . . . ,m, and

4) 0 ≤ |γk,n| − (rk,n−1 +
yk,n

10n ) < 1
10n , k = 1, . . . ,m.

Note that such a tuple (y1,n, . . . , ym,n) exists. Put rk,n = rk,n−1+
yk,n

10n . Observe,
that for every k the sequence {rk,n}n∈N is a Cauchy sequence, hence it converges
to some real number βk. Since 0 ≤ |γk,n|− rk,n < 1

10n , the sequence {|γk,n|}n∈N
also converges to βk, k = 1, . . . ,m. Therefore, {γk,n}n∈N converges to εkβk,
where εk = sign(αk), k = 1, . . . ,m.

Since A = x1(γ1,n) . . . xm(γm,n) then there exist polynomials Pij with integer co-
efficients such that for any n ∈ N the entry aij ofA is equal to Pij(γ1,n, . . . , γm,n).
It follows that for every i, j

aij = lim
n→∞

Pij(γ1,n, . . . , γm,n) = Pij(ε1β1, . . . , εmβm).

Hence every entry aij is computable provided, the reals β1, . . . , βm are com-
putable. To prove that the real βk is computable it suffices to show that the
sequence of numbers {yk,n}n∈N is computable. We prove first that every condi-
tion 1)-4) can be described in the group G by Diophantine formulas. Indeed, 2)
is Diophantine because the one-parametric subgroups Tij are definable by Dio-
phantine formulas with constants from {tij} for each i, j. Note that the field R
is e-interpretable in G by Theorem 6.1 and Remark 6.3 on every one-parametric
subgroup Tij . The predicate x ≤ y in R is Diophantine since it is equivalent
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to the condition ∃z(y − x = z2). Therefore, all the conditions 1), 3), 4) can
also be described by Diophantine formulas. By our assumption there is an al-
gorithm to decide whether a given finite system of equations with coefficients
in {tij} ∪ {A} has a solution in G. This shows that for n = 1, 2, . . . one can
compute y1,n, . . . , ym,n. Hence the reals β1, . . . , βm as well as the matrix A are
computable. This proves the theorem.

Theorem 7.9. The following holds:

1) The Diophantine problem in the computable real-closed field Rc with coef-
ficients in Rc is undecidable, but for any finitely generated subfield F of
Rc the Diophantine problem in Rc with coefficients in F is decidable.

2) The Diophantine problem in the computable matrix group Gn(Rc) is un-
decidable, provided n ≥ 3. However, for any finitely generated subgroup
C of Gn(Rc) the Diophantine problem in Gn(Rc) with coefficients in C is
decidable.

Proof. The ordered field Rc is not computable by Proposition 7.5. Hence by
Proposition 7.4 the Diophantine problem in Rc with coefficients in Rc is unde-
cidable. If F is a finitely generated subfield of Rc then by Proposition 7.5 it is a
computable ordered field. Hence, by Proposition 7.4 the Diophantine problem
in Rc with coefficients in Rc is decidable. This proves 1).

2) Follows from 1), Theorem 7.7 and the main Theorem 6.5.

7.4 Rings of p-adics: Zp and Qp

Similarly, one can define computable p-adic numbers for every fixed prime p.
Recall, that every p-adic number a ∈ Qp has a unique presentation in the form
a = pmξ, where m ∈ Z and ξ is a unit in the ring Zp. In its turn, the unit ξ is
uniquely determined by a sequence of natural numbers {ξ(i)}i∈N, where

0 ≤ ξ(i) < pi+1, ξ(i+ 1) = ξ(i)( mod pi+1), (i ∈ N).

The p-adic number a = pmξ is computable if the sequence i → ξ(i) is com-
putable. In this case the sequence {ξ(i)}i∈N gives an effective p-adic approxi-
mation of ξ. It is known (see, for example [55]), that the set Qcp of all computable
p-adic numbers forms a subfield of Qp, such that Qp ≡ Qcp. Observe also that
the ring Zp is Diophantine in Qp. More precisely, if p 6= 2, then Zp is defined
in Qp by formula ∃y(1 + px2 = y2), while if p = 2 then Zp is defined by the
formula ∃y(1 + 2x3 = y3) (see [29]).

Theorem 7.10. [55] The following holds:
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1) Th(Zp, a1, . . . , an) is decidable if and only if each of a1, . . . , an is a com-
putable p-adic number.

2) Th(Qp, a1, . . . , an) is decidable if and only if each of a1, . . . , an is a com-
putable p-adic number.

We need a slightly more precise version of the results above in the case when
the theory is undecidable.

Theorem 7.11. The following holds:

1) If a p-adic integer a is not computable then equations with constants from
Q ∪ {a} are undecidable in Zp.

2) If a p-adic number a ∈ Qp is not computable then equations with constants
from Q ∪ {a} are undecidable in Qp.

Proof. For 1) we represent a ∈ Qp in the form a = pmξ, where m ∈ Z and ξ is
a unit in Zp. Note that Zp is Diophantine in Qp, hence the argument from 1)
could be adjusted in this case as well.

We say that a matrix A ∈ GLn(Qp) is computable if all entries in A are com-
putable p-adic numbers, i.e., A ∈ GLn(Qcp). Hence the computable matrices in
SLn(Qp) are precisely the matrices from SLn(Qcp).

Theorem 7.12. Let n ≥ 3. The following holds:

1) Let

Gn(Qp) ∈ {GLn(Qp), SLn(Qp), Tn(Q)p, UTn(Qp), PGLn(Qp), PSLn(Qp)}.

If A1, . . . , Am are computable matrices from Gn(Qp) then the first-order
theory of Gn(Qp) with constants A1, . . . , Am is decidable. In particular,
the Diophantine problem for equations with coefficients A1, . . . , Am is de-
cidable in Gn(Qp).

2) Let

Gn(Zp) ∈ {GLn(Zp), SLn(Zp), Tn(Z)p, UTn(Zp), PGLn(Zp), PSLn(Zp)}.

If A1, . . . , Am are computable matrices from Gn(Zp) then the first-order
theory of Gn(Zp) with constants A1, . . . , Am is decidable. In particular,
the Diophantine problem for equations with coefficients A1, . . . , Am is de-
cidable in Gn(Zp).

Proof. It follows from Theorem 7.10 and Proposition 6.3.

Theorem 7.13. If a matrix A ∈ SLn(Zp) (A ∈ SLn(Qp)) is not computable
then Diophantine problem for equations with coefficients in {tij}∪{A} is unde-
cidable in SLn(Zp) (SLn(Qp)).

Proof. Follows from Theorem 7.11 in a fashion similar to Theorem 7.8.
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[22] V. Diekert, A. Jeż, W. Plandowski. Finding all solutions of equations in
free groups and monoids with involution. Inf. Comput., 2016, 251, 263–286.

[23] V. Diekert, M.Lohrey, Word equations over graph products, International
Journal of Algebra and Computation, 18, 3, (2008), 493-533.

[24] V. Diekert, A. Muscholl, Solvability of equations in graph groups is de-
cidable, International Journal of Algebra and Computation, 16, 6, 2006,
1047-1069.

[25] D. L. Dubrovsky, Some subfields of Qp and their non-Standard analogies,
Can. J. Math. 1974. V. 26, No 2. P. 473—491.

[26] M. Duchin, H. Liang, M. Shapiro, Equations in nilpotent groups, Proc.
Amer. Math. Soc., 2015, 143, 11, 4723-4731.

[27] P. C. Eklof, and R. F. Fischer, The elementary theory of abelian groups,
Ann. Math. Logic, 4(2) (1972) 115-171.

[28] Y. Ershov, On elementary theories of local fields, Algebra i Logika, Sem 4,
(1965), 2, 5-30.

[29] Y. Ershov, Decidability problems and constructible models, Moscow,
Nauka, 1980.

[30] Y. Ershov, Algorithmic problems of the theory of fields (positive aspects),
Handbook of Mathematical Logic, 3, 268–353, Nauka, Moscow, 1982.

[31] Y. Ershov and S. S. Goncharov, Constructive models. Siberian School of
Algebra and Logic. Consultants Bureau, New York, 2000.

[32] N. Garcia-Fritz, H. Pasten, Towards Hilbert’s Tenth Problem for rings of
integers through Iwasawa theory and Heegner points, arXiv e-prints, 2019,
arXiv:1909.01434.

40



[33] A. Garreta, A. Miasnikov, D. Ovchinnikov, Full rank presentations and
nilpotent groups: structure, Diophantine problem, and genericity, Journal
of Algebra, Volume 556, 15 August 2020, Pages 1-34.

[34] A. Garreta, A. Miasnikov, D. Ovchinnikov, Diophantine problems in solv-
able groups, Bulletin of Mathematical Sciences, Vol. 10, No. 1 (2020), 27
pages. DOI: 10.1142/S1664360720500058

[35] A. Garreta, A. Miasnikov, D. Ovchinnikov, Diophantine problems in rings
and algebras: undecidability and reductions to rings of algebraic integers,
arXiv:1805.02573 [math.RA]

[36] A. Garreta, A. Miasnikov, D. Ovchinnikov, Diophantine problems in com-
mutative rings, arXiv:2012.09787 [math.NT].
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