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Abstract

We study the locations of complex zeroes of independence polynomials of bounded degree
hypergraphs. For graphs, this is a long-studied subject with applications to statistical physics,
algorithms, and combinatorics. Results on zero-free regions for bounded-degree graphs include
Shearer’s result on the optimal zero-free disk, along with several recent results on other zero-free
regions. Much less is known for hypergraphs. We make some steps towards an understanding
of zero-free regions for bounded-degree hypergaphs by proving that all hypergraphs of maximum
degree A have a zero-free disk almost as large as the optimal disk for graphs of maximum degree
A established by Shearer (of radius ~ 1/(eA)). Up to logarithmic factors in A this is optimal,
even for hypergraphs with all edge-sizes strictly greater than 2. We conjecture that for k£ > 3,
k-uniform linear hypergraphs have a much larger zero-free disk of radius Q(A_ﬁ). We establish
this in the case of linear hypertrees.

1 Introduction

A hypergraph G = (V| E) is a set of vertices V' along with a set of edges E each of which is a subset
of V of size at least 2. A hypergraph is k-uniform if all edges are of size k. A 2-uniform hypergraph
is a graph. The degree of a vertex v € V is the number of edges it appears in; in a hypergraph of
maximum degree A, each vertex appears in at most A edges. An independent set in G is a subset
I C V that contains no edge e € E. Let Z(G) denote the set of all independent sets of G. The
independence polynomial of the hypergraph G is

Za(N) = > AT (1.1)

IE€T(G)

Independence polynomials for graphs arise in numerous contexts in mathematics, physics, and
computer science, including in the study of the Lovasz Local Lemma in probabilistic combina-
torics [58, 57], in the study of the hard-core lattice gas in statistical physics [5, 61, 27], and in
algorithmic problems of approximate counting and sampling [62, 59].

In all of these settings, knowledge of the complex zeroes of Zg (), or more precisely, knowledge of
regions of C uniformly free from zeroes of Zg for some class of graphs, is crucial in understanding the
phenomena of interest. For instance, as Shearer shows [58] (and Scott and Sokal expand upon [57]),
the largest negative zero of Zg(\) provides the optimal bound for the Lovész Local Lemma for a set
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of events with a given dependency graph G; the Yang—Lee theory of phase transitions states that
phase transitions can only occur where complex zeroes condense on the real axis [64]; and regions
free of complex zeros for bounded-degree graphs may determine the computational complexity of the
associated approximate counting problem [32, 49, 13].

For the class of graphs of maximum degree A, much is known about optimal zero-free regions.
The optimal zero-free disk around 0 has radius

A—1 A—1
a(a) = BT (1.2)
that is, for any such G and any A € C with |A| < As(A), Zg(N\) # 0 [58]. Moreover, this result is
tight: for any € > 0 there is a graph of maximum degree A with a zero of Zg(\) of magnitude at most
As(A) + €. In fact, this graph can be taken to be a tree, and even more specifically, a finite-depth
truncation of the infinite A-regular tree. There are also known zero-free regions that are not disks;
for instance, those that extend beyond the optimal zero-free disk in the direction of the positive real
axis [49, 8, 17, 10].
In this paper we turn to the case of bounded-degree hypergraphs with hyperedges of size greater
than 2. Our motivation is threefold.

(i) Statistical physics. In the language of statistical physics, the hard-core model on a graph is
a model with pair interactions, while the hard-core model on a hypergraph with edges of size
> 2 has multi-body interactions. Multi-body interactions are relevant for a range of physical
phenomena, but they are also often more difficult to analyze on both a rigorous and non-
rigorous level. There is a vast body of literature on the convergence properties of the cluster
expansion in models with pair interactions [29, 48, 56, 25, 24, 51, 46], including bounds, like
Shearer’s, that are optimal or near-optimal. The understanding of the convergence of the
cluster expansion in models with multi-body interactions is much more limited, and bounds
are typically non-effective (with respect to, say, graph degree), exclude interactions with a
multi-body hard-core, or require a pairwise hard-core interaction in addition to a multi-body
interaction [28, 44, 20, 53, 50, 54]. See the discussion in [16, 36] on obstacles to proving
convergence of the multibody cluster expansion.

(ii) Algorithms. Zero-free regions of independence polynomials (and graph polynomials and par-
tition functions more generally) are closely linked to the computational complexity of approx-
imate counting and sampling. Barvinok [2] developed an approach to approximate counting
and sampling based on truncating the Taylor series (or cluster expansion) for log Z; the ac-
curacy of this truncation relies on the existence of a zero-free region for Z. Refinements and
applications of this method appear in, e.g., [3, 4, 55, 47, 42, 33, 31, 11]. On the other hand,
computational complexity results for approximate counting can be proved using the existence
of complex zeroes of Z [13, 14, 22, 18, 26].

(iii) Combinatorics. Beyond its application to the Lovasz Local Lemma, the cluster expansion has
been used recently as a tool in asymptotic enumeration, e.g. [39, 1, 38, 21, 40]. The high-level
idea in many of these applications is to interpret defects from an extremal configuration (or a
simple set of configurations) in a combinatorial problem as a statistical physics model with a
pair interaction and then use the cluster expansion to estimate the partition function of this
new model. This approach is effective when typical configurations are very ‘ordered’, with
structure that resembles a well understood extremal example with sparse defects. On the other
hand, a powerful approach to asymptotic enumeration in the opposite regime, when typical
configurations are unstructured, is that of Janson’s inequality and its extensions [37, 63, 60,



45]. In its most commonly applied form, this approach estimates the partition function of a
hypergraph hard-core model: the scaled probability that a p-random subset of a ground set
does not contain any of a specified family of subsets (the ground set is the vertex set and the
family of subsets are the hyperedges of a hypergraph). The estimate for this general problem
in [45] takes the form of an exponential of a sum of terms defined in much the same way the
terms of the cluster expansion are defined. That result, however, does not show convergence of
the infinite series defined by the cluster expansion. If one could prove convergence, one could
extend the results of [60, 45] and deduce additional consequences through control of certain
moment generating functions (as in, e.g., [19, 39] in the case of the graph cluster expansion).
This application is perhaps our primary motivation for understanding zeroes of hypergraph
independence polynomials, and it is the results of [45] that suggest Conjecture 3.

1.1 Zero-freeness for hypergraph independence polynomials

Our first main result is that all hypergraphs satisfy a bound close to the Shearer bound for graphs.
Theorem 1. Let G be a hypergraph of maximum degree A. Suppose

AA

[ —
‘)\’ - (A_l_l)AJrl

=X(A+1).

Then Za(\) # 0.

In Theorem 10 in Section 2 we will prove a stronger statement: in the multivariate setting in
which each vertex v receives its own activity Ay, Zg # 0 when |A,| < As(A + 1) for all v.

The best previous bound on zero-free disks for hypergraph independence polynomials is due to
Bencs, Csikvari, and Regts [9, Corollary 6] who proved zero-freeness for |A| < 274,

The bound in Theorem 1 is nearly tight apart from the possible improvement of substituting A
for A+ 1 in the bound (see Remark 11 below on one obstacle to this improvement). The examples
that show this near tightness are graphs (the family of trees that prove tightness of Shearer’s result),
and so one might hope that in a k-uniform hypergraph with k > 2 an improvement is possible.
Thanks to an example (provided to us by Wojciech Samotij), we know that in general no polynomial
improvement in A is possible.

Proposition 2. For each k > 3, there is a family of k-uniform hypergraphs of mazximum degree A
with smallest root A satisfying
log A
Al=0 .
=0 (%)

In Sections 4.1 and 4.2 we give the details of this construction.

Still one might hope that with additional conditions on the hypergraph a significant improvement
might be obtained.

A hypergraph is linear if each pair of edges intersect in at most one vertex (a graph by definition
must be linear). We conjecture that k-uniform, linear hypergraphs of bounded degree have much
larger zero-free disks.

Conjecture 3. For each k > 2, there exists a constant Cy > 0, so that the following is true. If G is
a k-uniform, linear hypergraph of maximum degree A and if

A < CrATFT

then Zg(\) # 0.



The case k = 2 is proved by Shearer’s theorem; for larger k the conjecture posits a polynomial
improvement to the bound of Theorem 1.

We can prove Conjecture 3 in a special case. A linear hypertree is a connected, linear hypergraph
with a unique path between any pair of vertices. We next show that linear hypertrees satisfy the
bound of Conjecture 3.

Theorem 4. For each k > 2 the following is true. If G is a k-uniform, linear hypertree of maximum
degree A and if

A-1
A < (T) (1-a ) A (1.3)
then Zg(X) # 0. In particular,
RNy (1.4)

implies Zg(\) # 0.

The following example shows that one cannot hope for a polynomial improvement in A to this
bound (or to the bound conjectured in Conjecture 3).

Proposition 5. For each even k > 4 there is a family of k-uniform hypergraphs of maximum degree

A with smallest root A satisfying
1
log A -1
Al = .
N=0 (( 52) )

This lower bound is achieved by the k-uniform star with A edges. The details are in Section 4.3.

Finally we make a conjecture about the zero-free locus of independence polynomials of bounded-
degree hypergraphs. Using the notation from, e.g., [17, 22, 7], let Ua denote the maximal simply
connected open set in C containing 0 that is zero-free for independence polynomials of all graphs of
maximum-degree A. Extending this notation, let Ua ; be the same for k-uniform hypergraphs (so
Un = Up2); and Up >, the same for hypergraphs with edge-size at least k. In particular, Theorem 1
shows that Ua >2 contains a disk of radius Ag(A + 1).

Conjecture 6. The zero-free locus of hypergraphs of mazimum degree A is identical to the zero-free
locus of graphs of maximum degree A; that is, Ua >2 = UA.

Conjecture 6 in particular implies that one can replace A;(A 4+ 1) by As(A) in Theorem 1. The
next question asks if in fact increasing k strictly enlarges the zero-free locus.

Question 7. Is it true that for any A > 2, k > 2, we have the strict containment
Unr CUAR+17?

Remark 8. Since the appearance of a preprint of this paper, Zhang [65] has disproved Conjecture 3,
constructing, for each k > 3, a family of k-uniform, linear hypergraphs of mazimum degree A with
log A

)

smallest root O Reconciling this counterexample with the results of [45] is an interesting

direction for future research. Moreover, Bencs and Buys [6] have disproved Conjecture 6, though
they have confirmed it in an asymptotic sense as A — oo and proved that one can replace the bound
of As(A + 1) in Theorem 1 with A\s(A), which is optimal.



1.2 Algorithms

To describe the algorithmic consequences of Theorem 1, we recall some basics of approximate counting
and sampling. A complex number Z is an e-relative approximation to a complex number Z if

’Z—Z‘ <¢Z]. (1.5)

An FPTAS (fully polynomial time approximation scheme) for a complex-valued graph polynomial
Zq is an algorithm that, given G and €, outputs an e-relative approximation to Zg and runs in time
polynomial in |V(G)| and 1/e.

Theorem 9. For the class of hypergraphs G of maximum degree A and mazimum edge size k, there
is an FPTAS for Zg(\) when |[A| < As(A+1).

The algorithm proceeds by truncating the cluster expansion (the Taylor series for log Zg ()
around 0); that is, using Barvinok’s polynomial interpolation method. The fact that the exponential
of the truncation provides a good approximation to Zg follows from the zero-freeness result of
Theorem 1 and Barvinok’s approximation lemma [2, Lemma 2.2.1]. The only additional ingredient is
to show that the coefficients of the cluster expansion can be computed efficiently: we need to compute
the coefficient of \" in time exp(O(r)) where the implied constant in the O(-) may depend on Ak,
and A, since we treat these as constants. For graphs, Patel and Regts [47] showed how to compute
these coefficients efficiently; the extension to hypergraphs was done by Liu, Sinclair, Srivastava [42].
We give the details of the algorithm in Section 5. Note that there is no dependence on k in the
bound on X; the running time of the algorithm, however, grows like nCUegk+logA) 4nq g0 is only
polynomial-time when k and A are constants.

Previous algorithmic work on hypergraph independent sets has primarily focused on the case
A = 1; that is, approximately counting the number of independent sets in a hypergraph (and sam-
pling approximately uniformly). The algorithmic results here generally fall into two categories:
randomized approximation algorithms (yielding an FPRAS) based on Markov chain Monte Carlo
and deterministic approximation algorithms (yielding an FPTAS) based on the method of correla-
tion decay pioneered by Weitz [62]. Examples of the first type of result include [15, 34, 52]; while the
second set of results include [41, 12]. In [41], Liu and Lu show that there is an FPTAS for counting
independent sets in hypergraphs of maximum degree 5, matching the bound for independent sets in
graphs due to Weitz [62] (like Theorem 1, this says things are no worse for hypergraphs that they
are for graphs). In [12], Bezdkovd, Galanis, Goldberg, and Stefankovi¢ study the case when A = 1
and k > 3; in this case they can surpass the graph bound; e.g., giving an FPTAS for k-uniform
hypergraphs when A < 6 (as opposed to A < 5 for graphs). Moreover they give an FPTAS when
A < k, a large improvement over the graph bound when k is large. Finally, there has been signif-
icant recent interest in a generalization of this counting problem, that of approximately counting
the number of solutions to k-CNF formulas. The case of independent sets in k-uniform hypergraphs
is the special case of counting solutions to monotone k-CNF formulas. Work on this problem in-
cludes [30, 43, 23, 35]. It is an interesting direction to explore the connections between these results
and the results and questions in the current paper.

2 Zero-free regions for bounded-degree hypergraphs

We begin by generalizing the independence polynomial to the multivariate case. Let A = (A, : v € V)
be a collection of (possibly complex) activities on the vertices of G. The multivariate independence

polynomial of G at e is
ZaN) = Y ]
1€T(G) vel



where Z(G) is the set of all independent sets of G. If all A\, have the same value, A say, then Zg(\)
is the independence polynomial defined in Section 1.

The main goal of this section is to prove the following zero-freeness result for the mulitivariate
independence polynomial of bounded-degree hypergraph.

A

Theorem 10. Let G be a hypergraph of mazimum degree A. If |\,| < m for allv eV, then

1 Vi
|1 Za(A)| > <1A—|—1> > 0.

Note that A%/(A 4+ 1)A+D ~ 1/eA as A — oo. As discussed above, this theorem is tight apart
from the possible substitution of A for A 4+ 1 in the bound.

The proof of Theorem 10 follows the broad outline of the proof of Shearer’s theorem in [58, 57].
While the proof for graphs involves the operation of removing vertices from a graph, the extension to
hypergraphs is more involved: the operations we perform include removing vertices from a hypergraph
as well as shrinking edges. To keep track of these operations and to be explicit about edge and vertex
sets, we will use the notation Zy g(A) for Zg(A) where G = (V, E).

For A C V with A # ), we define the following operations on the edge set E, whose utility
will become apparent when we present (2.1) and (2.2), the basic deletion/contraction identities for

Zv,E(A):
Deletion E — A is the set of edges that avoid A, that is,
E—-A={ecE:enA=0}
For v € V we write E — v for £ — {v}.

Contraction F/A is the set of edges of size at least 2 that are created by deleting the elements of
A from all the edges in F, that is,

E/A=(E-A)U{e\A:enA#0, e\ Al >2}.
For v € V we write E /v for E/{v}.

Closure C(A) is the set of vertices outside A that, together with some non-empty subset of A, form
an edge in F; in other words, each of which forms an edge with any (nonempty) subset of A.
In other words, it is the set of edges of size 1 that are created by deleting the elements of A
from all the edges in E. Formally,

C(A) ={v: thereis e € E with e\ A = {v}}.
For v € V' we write C(v) for C({v}).
Edge addition E + A is obtained from E by including also A as an edge, i.e. E+ A= FEU{A}.

We will use two fundamental identities relating the independence polynomial of a hypergraph to
that of some smaller hypergraphs. Note that here (and throughout) we abuse notation somewhat: if
A is a set of weights indexed by a set W, and W’ C W, then we write Zy g/(A) when we actually
mean Zy g (X), with X’ the restriction of the vector A to the index set W'.

Firstly we have that for any v € V,

Zv,E(N) = Zy\ {v},B—v(A) + W 21\ (fo1uc ), B /v (A) - (2.1)

6



The identity follows by first considering those independent sets in G that do not contain v and then
those that do.
Secondly, for all A C V such that there is no e € E with e C A we have

Zvp+A(N) = Zv.e(A) — Zinauciay,saN) [ Ae (2.2)
€A

This identity follow by observing that all independent sets in (V, E) are independent sets in (V, E+ A),
except those that contain all of A; and the extensions of A to an independent set in (V) E) are precisely
the independent sets in V' \ (AU C(A)), E/A. Note that if there is an e € E with e C A then (2.2)
becomes the simpler

Zve+a(X) = Zve(N).

For brevity, in what follows we will write

e G — v for the hypergraph (V \ {v}, E —v), and G — A for (V\ A, E — A)
o G/vfor (V\ ({v}UuC(v), E/v),

e G+ Afor (VE+ A) and

e G/Afor (V\(AUC(A)),E/A).

With this notation, (2.1) and (2.2) become

ZG(A) = Zg—v(A) + Mo Zgu(A) (2.3)
and
Za(A) = ZaraN) + ZayaN) [ Ae- (2.4)
z€A

We define a collection of admissible subhypergraphs of G = (V, E) as follows: G itself is admissible,
and if M = (Vr, Er) is some admissible subhypergraph of G, then so are each of

e M — v and M/v for any v € Vyy,
e M + A and M/A where A C V) is any proper subset of an e € Eg \ E)jy.
We are now ready to present the proof of Theorem 10.

Proof of Theorem 10. The overall plan is to show that as long as the hypothesized condition on A
holds, we have that if M is any non-empty admissible subhypergraph of G and v is any vertex in Vy
then

Zy(A
‘M()' >1—s
Zar—v(X)
where s < 1 may be chosen to be independent M and v. Iterating this over an ordering vy, ve, ..., vy (@)

of the vertices of G then yields, via a telescoping product,

ZG*{U1,...,1}¢71}(>‘)
ZG—{m,...ﬂ)i}()‘)

V@)
1ZuN= 11
i=1

’ > (1— )Y@ > 0. (2.5)

To do this, we will need to control how the independence polynomial changes in going from M to
M —wv. It will turn out that in tandem with this we will also need to control how it changes in going
from M to M + A. To achieve both of these tasks, we will carry out a parallel induction.



To state the induction hypothesis precisely, we introduce some notation. For an admissible
subhypergraph M = (Vi, Epr), and a non-empty subset A C Vyy with |A| = a, we define, for each
positive integer b, the quantity

_ 4 S CVm, SNA=0, |S| =bsuch that
flab = SUT € Ey for some non-empty T'C A

when @ =1 or a > 1 and b > 1. Note that if A = {v} (so a = 1) then ng is simply the number of
edges in M of size b + 1 that include v.
For b =1 and a > 1, we slightly modify this to

— SCVu, SNA=0, |S| =1 such that Al
ol SUT € E) for some non-empty T'C A ’

i.e. ng1 = # (2-edges incident to A) + |A|.

In the notation we suppress the dependence of n,, on M and A.

We are now ready to state the main result of this section precisely. Let R > 0 and s; € (0,1),
j = 1,2,... be constants that satisfy the following conditions for every admissible subhypergraph
M = (Var, Eyr) of G:

e For every A C V) with |A| =1 (i.e., every v € Vjy) we have

R<s [J(—s)m, (2.6)

i>1
e and for every A C M with |A| = j > 2 such that M + A is admissible we have

Rj S Sj H(l — Si)nji. (27)

1>1

Here, finally, is the statement that we will prove. Let A be such that |w,| < R for all z € V. Let
M = (Viy, Epr) be an admissible subhypergraph of G. For v € Vj; we have

| Zp(A)| > (1 = s1)|Zai—o(A)| (vertex deletion identity) (2.8)
while for A C M with |A| = 7 > 2 such that M + A is admissible we have
|Za(N)] > (1= s5)| Za+a(N)] (edge addition identity). (2.9)

Before proving (2.8) and (2.9), we show that it is enough to complete the proof of Theorem 10.
The key observations are that for any admissible M and v € Vj; we have

anb = deg(v) <A
b>1

and for any admissible M and A C M with |A| = a > 2 such that M + A is admissible we have

Z Nap < aA.

Indeed, consider z € A. This is in at most A — 1 edges of M, since M + A is admissible which means
x has degree at most A in M 4+ A. Thus there are at most A — 1 S’s disjoint from A such that
SUT € Ep with T C A and = € T. Since |A| = a, it follows that there are at most a(A — 1) S’s



disjoint from A such that SUT € Ej; with T'C A and T # (). We now add the a vertices of |A|
deleted to get aA as a bound.
It follows that if we let all s;’s have a common value, s say, then (2.6) and (2.7) are implied by

RI < s(1—s)Y2 or R<sYi(1—s)"

for 7 = 1,2,.... Since s € (0,1), all of these are implied by R < s(1 — s)®. We may now take
s = 1/(A + 1), leading to R = A®/(A + 1)®+D. Theorem 10 now follows via the telescoping
product (2.5).

Now, to prove (2.8) and (2.9), we will proceed by induction on |Vj|, showing firstly that an
|M| = n+ 1 instance of (2.8) can be deduced from (2.8) and (2.9) for |M| < n, and secondly that
an |M|=n+ 1 instance of (2.9) can be deduced from (2.8) for [M| < n + 1 and (2.9) for |[M| <n.

As a base case we take M = @, where both (2.8) and (2.9) are vacuously true.

For the first of the induction steps, assume that (2.8) and (2.9) both hold for all admissible M’
with |Vap| < n, and let M = (Vir, Epr) be an admissible subhypergraph of G with |Vi/| = n +1
vertices. Let v be any vertex of M. To show that (2.8) holds, we begin by applying identity (2.3):

ZM()\) = ZM—U()\) + AUZM/U(A)'
Via the reverse triangle inequality and the assumption |A,| < R, this gives
1Zu(N)| 2 1 Za—o(N)] = R[Zpg0(A)]- (2.10)

To extract our desired lower bound on |Zy;(A)| we will use the induction hypotheses (for admissible
subhypergraphs with at most n vertices) to bound |Z;/,(A)] in terms of [Zy;—,(A)]. Observe that
M /v may be obtained from M — v by a sequence of at most A many vertex deletions and edge
additions, and that at each step, we obtain an admissible subhypergraph of G (allowing us to re-
peatedly apply the induction hypotheses). More explicitly, beginning with M — v, we first delete all
2-neighbors of v (that is, vertices u such that {u,v} € Epr_,) to obtain M — ({v} UC(v)), a total of
|C'(v)| (= mn11) many applications of vertex deletion. By (2.8), this gives

1 Zyi—o| = (1= s1)™ | Zar—(foyuc)) |- (2.11)

Then, to obtain M /v from M — ({v} UC(v)), we add a j-edge A for each {v}UA € Ey for all j > 2.
(Since v is not a vertex in M — ({v} U C(v)), each of these edge additions produces an admissible
subhypergraph of G). The number of j-edge additions performed at this step is at most the number
of (j + 1)-edges in M that include v, which recall we have denoted ny;. By (2.9), this gives

1 Zyi—(wyocy| = [T = 50" - 1210 (2.12)

1>2

So combining (2.11) and (2.12), we obtain the following relationship between |Zy;/,(A)| and |Zp . (A)]:

Znrol = T = 5™ - Zaggol (2.13)

1>1

And combining (2.13) with (2.10), we see that

Zu )] > 1 Zar (M) (1 - H->1(1R— )) . (2.14)



Thus our induction hypothesis (2.8) is satisfied for M (and v) as long as the inequality

R
<1 - [Tix(1— Si)"1¢> > (1= s1) (2.15)

is satisfied; but this is equivalent to (2.6).

Now let us turn to the second part of the induction step, verifying (2.9). Again, let M be any
admissible subhypergraph of G with n+1 vertices, and consider any edge {vy,...,ve—j, &1,...,2;} in
G with z1,...,2; € Vjy and vi,...,v—j € V. (So here we are taking A = {x1,...,x;}; this will be
convenient as we will be dealing with the elements of A one after another.) First we dispense with a

somewhat trivial case: if {z1,...,2;} contains a hyperedge of M then (2.9) is automatically satisfied,
since Znr(A) = Zagy{ay,....0;3(A), and so |Za(A)| > (1 = 85) [ Znr 1 {a,,....2;3(A)| for any s; € (0,1). So
from here on we may assume that no e € E)y is contained in {z1,...,z;}.

We begin by applying identity (2.4) to get
ZuN) = Zpr 1wy} N + Aay o A 2y oy (A
As before, using the reverse triangle inequality and noting that |A\,,| < R for all i, we obtain
PAYION| = VAVER SO N |t VAV T (O Y] (2.16)

To obtain a lower bound on | Zs (M), we will apply our induction hypotheses to bound |Zs) (4, ....c;} (A)]
in terms of [Zysy(s,,....z;,}(A)]. Notice that M/{z1,...,z;} may be obtained from M + {z1,...,z;}

by the following sequence of steps: Starting from M + {x1,...,z;}, we perform the vertex deletion
operation j+|C({z1,...,2;})| (= nj1) many times. Then we add (as edges) all the i-sets {a1,...,a;}
such that ay,...,a; € Vay and {xg,,..., 2k, a1,...,a;} € Ep for some indices ki, ..., k¢; note that

there are nj; such i-sets for each possible i.
Now by (2.8) and (2.9) we have

1 Zati ooy = [0 = 0™ 1 20100, - (2.17)
i>1

(Notice that the first application of (2.8) in this sequence is to delete a vertex from M + {z1,...,z;},
which has n + 1 vertices. This is a valid application, since we are assuming the n + 1 case of (2.8) of
the induction hypothesis.)

Combining (2.17) with (2.16) yields

RJ
ZyN)| > |Z , 1-— .
| M( )| = | M+{:r1,...,.'t]}| < HZZI(]- _ Si)nﬁ>
So we obtain (2.9) for M as long as
RJ
1-— » 2 (]- - S ‘)7
( Tini (1 - si)nﬂ> J
which is equivalent to (2.7). This completes the induction. O

Remark 11. There is a trick that allows one to replace A + 1 by A in the graph case, achieving
the optimal bound: by starting from a vertex of degree A, every vertex edited by the subsequent
application of the deletion-contraction identity has degree strictly less than A. This is no longer
true for hypergraphs. When we start from a verter of degree A, we might keep creating and editing
vertices of total degree (or even worse, graph-degree) A. See, however, the improvement achieved in
the recent preprint [6].
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3 Linear hypertrees

In the special case of linear hypertrees, we improve the bound in Theorem 8 by using the same
inductive argument, but taking into account the special structure of the hypergraphs obtained during
the deletion/contraction operations. By choosing the vertex/edge appropriately at each step, we will
ensure that the resulting hypergraphs have at most one small (few vertices) edge in every connected
component. Since small edges are more ‘costly’ to alter, as we will see below, this will yield the
desired improvement in the final bound. The following is the multivariate extension of Theorem 4.

Theorem 12. For each k > 3, the following holds. For any k-uniform, linear hypertree G = (V, E)
with maximum degree A, if

A—1
| < (AA1> (1-a-) A (3.1)

for allv eV, then
_ 1\
1Za(\)| > (1 ~A H) > 0.

1
Moreover, |\,| < l‘;ngA_m implies (3.1).

Proof. As in the proof of Theorem 10, we will bound |Zg ()| by measuring the effect that removing
a single vertex can have on the independence polynomial (and iterating this procedure until we reach
the empty graph). In this proof we will carefully control which vertices are removed and which sub-
hypergraphs can be produced as a result. We will first give the precise statements (3.4) and (3.5) that
will be proved by induction (which bound the change in the independence polynomial after removing
a vertex or adding an edge), before showing how the theorem follows, and finally establishing (3.4)
and (3.5).

Let M be any admissible subhypergraph of G in which every connected component has at most
one edge of size strictly less than k. Let R > 0 and s1,...,s,_1 € (0,1) be any constants satisfying

R<s1(1—55)(1—sp1)" (3.2)

forall 2 < j <k-—2, and ‘ A .
R < sj(1—s1)7 (1 — sp_1)7 37 (3.3)

for all 2 < j < k—1; and let X satisfy |A,| < R for all v € V.. We will inductively prove the following
two bounds; notice that both bounds are proved only under careful structural assumptions.

e First, let v be any vertex of M contained in an edge of size less than k, or let v be any vertex
in a connected component of M where all edges have size k. Then we show that

1 Zp(N)] = (1= s1) [ Zar—o(N)]. (3.4)
e Second, let 2 < j < k—1, and let x1,...,x; be any vertices of M that are (respectively) in com-
ponents of M where all edges have size k, and that are in some k-edge {v1i,...,v5—j, 21,...,2;}

of G with vy,...,v,_; € V(M). Then we show that

[Za(M] = (1= 55) [ 2014 (A (3.5)

11



Before proving (3.4) and (3.5), we show how an iterative application of (3.4) completes the proof
of Theorem 12. Let A be such that [A\,| < R for all v € V', where R and sy, ..., sp_1 are any constants
satisfying (3.2) and (3.3) above. Taking the vertices of G in any order v1,vs,...,v)y|, We write a
telescoping product:

VI

G—A{v1,... ”'*1}(>\)
Za A o
’ ( )| H ZG_{vl,..-7Ui}(A)

We may then apply (3.4) with M = ZG—{uy,...vi_yy and v = v;; notice that these are indeed valid
choices respecting our structural constraints, since all edges in Zg_y,,, .. ,_,} are of size k. Thus, we
get the bound

Za(N)] = (1= sV,

To establish Theorem 12, it remains only to optimize the choice of R. It would perhaps be
difficult to precisely optimize the choices of sq,. .., sx_1 to make the bounds (3.2) and (3.3) on R as
large as possible. But if we take s; = --+ = sp_o = A™V/*=1) and s, = 1/A, we will be able to

choose R = (%)A_l (1 - A_ﬁ> AT and ensure that (3.2) and (3.3) are satisfied. Indeed, the

constraints are now A
1 1 A—-1
R<A_ﬁ-(1— —m>. = -
‘ (°5)

— A-1
Rt AT -1 (A-]
= 7J A1/ (k=1) A

and

for all 2 < j < k — 1. Note that for 2 < j < k — 2 we have sjl-/j < Afﬁ and thus the strongest of
these constraints is for j =k — 1, i.e.,

1 A—1
1 ART -1 A—-1
R<A k1. .
N AT ( A )

(55 aya

It is now easy to see that the above bound is lower than the one in (3.2), so we may chose R to be
— 1 1
equal to this value. Thus if |\,| < R = (%)A ! (1 — A7ﬁ> A% T for all v € V, then

1Zu(N)] > (1 —s)V = (1 N _ﬁ)\w,

finishing the proof of Theorem 12. Note also that the factor (%)A71 (1 — Afﬁ) is increasing
in A and (%)Af1 (1 — Afﬁ) - k is decreasing in k, so to obtain the conclusion it suffices that

Ao| < I%ngA_ﬁ, since limy_yo0 k(1 — 27/ * 1) = log 2.

We now return to the vertex and edge deletion bounds (3.4) and (3.5), which we will prove by
induction. The base case is M = &, where both (3.4) and (3.5) are vacuously true.

For the induction step, assume that (3.4) and (3.5) hold for all M with |V (M)| < n, and consider
any admissible subhypergraph A of G with n+1 vertices, where A satisfies the assumption that every
connected component has at most one edge of size strictly less than k.

12



We first establish (3.4) for A. To that end, let v be any vertex of A satisfying the hypotheses of
(3.4). To bound |Zx ()|, we begin by applying identity (2.3):

ZA()\) = ZA—U()\) + )\'UZA/'U(A)'
And using the reverse triangle inequality and noting that |\,| < R by assumption, this gives
[ZAN)] 2 1Za—o(N)] = R[Zn /o (N)]- (3.6)

To extract the desired lower bound on |[ZA(A)|, we will use our induction hypotheses to bound
|ZA/o(A)] in terms of |Zx—,(A)]. Observe that A/v may be obtained from A — v by a sequence of at
most A many vertex deletions and j-edge additions (for 2 < j < k — 1). But we must take care to
verify that at each step, all the necessary conditions are satisfied to apply the induction hypotheses.

A—w

A—wv

Figure 2: Obtaining A/v from A if v is not in a 2-edge

First, if v is contained in a 2-edge {v,z} of A, then starting from A —v, we delete x. (Notice that
by assumption, v is contained in at most one such edge.) And we can indeed apply hypothesis (3.4)
(with M = A —v), as A — v has at most one edge of size less than k in each connected component,
and z is in a component of A —v where all edges have size k (the edge {v, z} is excluded from A —v).
So applying (3.4), this gives

Zaol 2 (1= 51) - | Zaos] (3.7)

if v has a graph neighbor z.

Then, regardless of whether v is contained in a 2-edge, to obtain A/v from A —v — Na(v), we add
a j-edge {x1,...,x;} for each {v,z1,...,2;} € E(A), forall 2<j <k -1

The number of j-edge additions performed at this step is at most the number of (j + 1)-edges in
A adjacent to v, which we will denote n1;. Note that most of the numbers ny; will be zero, as v is
adjacent to at most one edge of size less than k.

13



And we may indeed apply induction hypothesis (3.5) for these edge additions: regardless of
the order in which we add these edges, at each step, the corresponding z1,...,x; are in different
components from any edges of size less than k added at previous steps, since the vertex v is no longer
present. And at each step, the hypergraph produced has at most one edge of size less than & in each
connected component. So we may repeatedly apply our second induction hypothesis (3.5) to obtain

| Za—o-np] = [[(1= 5™ | Za 0l (3.8)
i>2

Then combining (3.7) and (3.8), we obtain the following relationship between | Z /,,(A)| and | Zx—y(A)]:

1Za—o| = [T = 5™ - 1240
i>1

(where ny; is the number of graph neighbors of v, which is either 0 or 1). And notice that, since v
is contained in at most one edge of size less than k, and at most A edges total, this bound may be
simplified substantially:

|Za—ol = (1= 55) - (1= 55-1)> - | Zn ol (3.9)

for some 1 < j < k —2. (Note: we may very slightly improve this bound by considering whether
or not v is contained in an edge of size less than k, but this will not substantially change our final
answer. Also, we cannot control which j is used; we must simply take the worst case.)

And combining this with (3.6), we see that

231 2 |2 (1 (25 ) (5 _1k)A) .

for all 1 < j < k — 2. Thus the induction hypothesis (3.4) is guaranteed to be satisfied for A as long

as
—r(t L (3.10)
l—Sj 1—5s1_1 - 51 '

for each 1 < j < k — 2; this is equivalent to condition (3.2) above.

We now proceed with the induction step for (3.5), which deals with edge addition. Again, we let
A be any admissible subhypergraph of G with n + 1 vertices satisfying the assumption that every
connected component has at most one edge of size strictly less than k. Let 2 < j < k—1, and consider
any zi,...,x; in A satisfying the hypotheses of (3.5) — that is, that xq,...,z; are (respectively) in
components of A where all edges have size k, and they are in some k-edge {v1,...,vk—j,21,...,2;}
of G with vi,...,vp—; & V(A). Notice that this implies A + {x1,...,2;} is also an admissible
subhypergraph of G, and that each component has at most one edge of size less than k (the setting
of our induction hypotheses).

To bound [Zj 4 {4,,....z;}|; We begin by applying identity (2.4):

ZA(A) = ZA+{x1,...,:1:j}(>‘) + )‘m cee )‘ijA/{xl,...,xj}(A)'

Then as above, by using the reverse triangle inequality and noting that [Az,|,...,|As;| < R, we obtain

1 ZAN] 21 Zat (arc ey N = RO Z s pay ey N (3.11)

To obtain a lower bound on [Z (A)], we will apply our induction hypotheses to bound |Z /(4,.... 2,3 (A)]
in terms of |Z (4, ;3 (A)[. Notice that A/{z1,...,2;} may be obtained from A + {z1,...,2;} by
a sequence of at most jA many operations as follows: first, we delete 21,2, ..., and x;. Note that,
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unlike in the general case, we do not need to delete C(x1,...,x;); by our assumptions, this set is
empty. Then add each (k — 1)-edge {y1,...,yrx—1} where {x;,y1,...,yx—1} is in E(A) for some z;.

delete z1,...,x; Az, ... 25}

Figure 3: Obtaining A/{z1,...,z;} from A+ {x1,...,2,}

In total, starting from A + {z1,...,x;}, we perform the vertex deletion operation j times, and
the (k — 1)-edge addition operation at most j(A — 1) many times — once for each of the < A —1
edges adjacent to x1,...,2; in A+ {x1,...,x;} respectively (excluding the edge {z1,...,2;}). And
again, we must take care to verify that at each step, all the necessary conditions to apply (3.4) and
(3.5) are satisfied.

First, notice that our initial application of (3.4) in this sequence is to delete a vertex from
A+ {x1,...,2;}, which has n 4 1 vertices. We are allowed to do so, since we just established the
n+ 1 case of (3.4) above, and, without loss of generality, we begin by deleting the vertex x1, which is
contained in an edge of size j < kin A+ {x1,...,2;}. We may also delete x, ..., x; next, as vertices
in components where all edges have size k. Furthermore, at each step, regardless of the order in which
we add the (k — 1)-edges {y1,...,yr—1}, the corresponding vy, ..., yx_1 are in different components
from any (k—1)-edges added at previous steps, since 1, ..., x; are no longer present. Finally, at each
step, the hypergraph produced has at most one edge of size less than k in each connected component.

So by (3.4) and (3.5),

| Za o,y = (1= 517 (1= 5517 A 7Y Z0 g0 oyl

Now, combining this inequality with (3.11), we see that

> _pJ .
| ZA(N)| > |ZA+{$17“'7$]'}| (1 R (1 — 81> (1 - 3k1>

So we will obtain (3.5) for A as long as

WERERY 1 -
1—RJ<1_51> <1—5k—1> > 1-s; (3.12)

for each 2 < j < k — 1; this is equivalent to condition (3.3) above.
Therefore, if conditions (3.3) and (3.3) are satisfied, this completes the induction, giving the edge
and vertex deletion bounds (3.4) and (3.5), as desired. O

4 Constructions

In this section we provide the constructions that prove Propositions 2 and 5.
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4.1 An odd construction (due to Wojciech Samotij)

Here we describe, for each odd k£ > 3 a k-uniform hypergraph Hj A with maximum degree A =
(k — 1)s for all large enough positive integers s = s(k) with the following property: the univariate
independence polynomial Zy, ,(A) of Hy A is negative at + = —k(log A)/A. In particular, since
Z, o(A) = 1for A > 0, there must be some A < 0, [A| < k(log A)/A so that Zp, ,(A) = 0. This will
prove Proposition 2.

The vertex set of Hj A consists of a set {x1,...,2;}, together with, for each ¢ = 1,...,k, a
set {yi, ...,y%}, where s will be chosen later to be large enough. For each i = 1,...,k and each
j=1,...,s there is an edge ({z1,...,z;} \ {z:i}) U y;

In other words, we start with a set R of k vertices, and to each (k—1)-subset R’ of R we associate
a cloud C'(R') of s vertices. An edge is formed by taking an R’ together with one element from its
cloud C(R').

Each x; is in k — 1 (k — 1)-subsets of {x1,...,zx}, and each such subset can be extended to an
edge of Hy A in s ways, so the degree of each z; is (k — 1)s. Each y} has degree 1. So the maximum
degree of Hy A is A := (k —1)s.

For each 0 < ¢ < k —1, the total contribution to Zp, , (\) from independent sets that use exactly

¢ vertices from {zy,...,x} is
k
<€> (14 1)k,

Since ¢ < k — 1, an arbitrary subset of the y} can be added to any f-subset of {x1,...,z,} without
saturating an edge of Hya. The total contribution to Zp, ,()\) from independent sets that use
exactly k — 1 vertices from {z1,..., 2} is

EARTL(1 4 A)sk=D)

i
J
an edge, but any subset of the :c;/ for i’ # ¢ can be. Finally, the contribution to Zy, o(A) from

If z; is the one vertex from {z1,...,x¢} not selected, then no z* can be added without saturating

independent sets that use all of {x1,...,z;} is simply M\ (no extra vertices can be added without
saturating an edge).

We now specialize to A = —k(log A)/A. Recalling A = (k — 1)s, where s is large enough so that
A > —1, and using that 0 < 1+¢ < ef for all t > —1, we get that for £ < k — 1,

’(5) (L4 A (log(k — 1)s)*

< clk
< c(k) SH—,ffl
‘mk—lu + /\)5("3_1)‘ < c(k)

and
(log(k — 1)s)"~!
52k—1 )

where c(k) is a constant depending only on k.
On the other hand we have
(log(k —1)s)"
sk
(note that we use here that k is odd). Because k < 2k — 1 and k < £+ k?/(k — 1) for all £ < k — 1,
we have that for all sufficiently large s = s(k),

log(k — 1)s)* log(k —1)s)5=1 &2 (log(k — 1)s)"
M<g{¢>>>4m<(gﬂ%J) +k0(iu£3)>

A = —kF

and so Zp, ,(\) <0 at z = —k(logA)/A, as claimed.

16



4.2 An even construction (due to the anonymous referee)

For even k, consider a hypergraph with A edges that has k—1 common vertices, i.e., let 21, ..., Zp_1,y1,. ..

be the vertex set and {{x1,...,zk_1,y;} for i = 1,..., A} the edge set. Then the independence poly-
nomial is
(1 + /\)A-‘rk’—l + (1 _ (1 + /\)A) Ak_l.

Let A = —(k_l)%, with A taken large enough that A > —1. Then,

Atk-1 A
<1 (k- 1A)logA) + . (1 (k- 1A)logA> < e (k-Dlogd _ A—(k-1)

and for even k we have

(1 - (1 - W>A> <(k_1A)logA)k_l <- (1 _ A—Uf—l)) <(’f—1A)10gA) -l

So we only need that (1 — A_(k_l)) ((k —1)log A)*~1 > 1 to conclude that the independence poly-

nomial has a zero of absolute value at most MTIOM.

4.3 A hypertree construction

We now give a construction to prove Proposition 5 and show that the bound in Theorem 12 cannot
be improved beyond a polylogarithmic factor in A.

Consider the k-uniform star of size A, SK, which consists of A edges (each of size k) that share a
single vertex, so Sk has 1+ (k — 1)A vertices in total. The independence polynomial of S% is

ZSZ ()\) = (1 + )\)(k_l)A + )\((1 + )\)k’—l _ )\k—l)A‘

1/(k-1)
Let k£ be even. We will prove that ZSZ (—C <loiA> > < 0 for a constant C and A large

1/(k=1)
enough, and thus Zg will have a root of magnitude at most C (%) .

Note that the A we choose will clearly satisfy |A| < 1 so it is equivalent to show

LoV A
1+Aa|1- (2= .
+ ( <1+A> ) <0
Let 1%\ = —f(A), so that A = —%. When £ is even, we can rewrite the expression as
k-1 A
1+>\(1+f(A) - ) .

Set f(A) := (log A/A)Y/* =1 "and then the asymptotic behavior of the above expression is

_ (log A/A)Y/6D)
1+ (log A/A)/(=1)

14+ A1 +1logA/A)A ~ 1 A — —o0.

) log A\ 1/ (E=1)
Note that for this f(A), we have |\| = 0O (|f(A)]) =© (%) .

17

y YA



5 Algorithms

Given the zero-freeness result of Theorem 1, we can obtain an FPTAS for Z5 () and prove Theorem 9

following Barvinok’s method of polynomial interpolation: truncating the Taylor series for log Zg(A)

(in fact, the cluster expansion) around 0 after a given number of terms. This approach has been used

in several recent works on approximate counting, including [47, 49, 33, 8, 13, 22] on approximating

the independence polynomial of bounded-degree graphs for (possibly complex) values of A.
Restating Theorem 9, our goal is to prove the following.

Theorem 13. For the class of hypergraphs G of maximum degree A and maximum edge size k, and
for complex \ satisfying |\| < As(A + 1), there is an algorithm running in time (n/e)%a() that
computes an e-relative approzimation to Zg(\).

Given a polynomial Z(\) with Z(0) = 1, let T,(\) be the order-r truncation of the Taylor series

for log Z(\) around 0. That is,
o
B M 3 1og Zg (M)
T(A) = Z T on

7j=1

The connection between zero-freeness and approximation is provided by the following elementary
but powerful lemma of Barvinok.

Lemma 14 (Barvinok [2]). Let Z(\) be a polynomial of degree at most N, and suppose that Z(\) # 0
when |A| < B. Then for || < B,

N(Al/B)*
(r+1)(1=[Al/B)"

|T(N\) —log Z(N\)| < (5.1)

We now prove Theorem 13.

Proof. Since Zg(\) is a polynomial of degree at most n = |V(G)|, if Zg(\) is zero-free in a disk of
radius B around 0 and [A| < (1 — §)B then exp(7,(\)) gives an e-relative approximation to Zg(A)
when r > C'log(n/€), where C' is a constant that depends only on 4.

Thus to prove Theorem 13 given Theorem 1 we are left with the task of computing 7, (\) for
r = ©(log(n/e)) in time polynomial in n/e. Generalizing the approach of Patel and Regts [47] to
hypergraphs, Liu, Sinclair, and Srivastava [42] gave an algorithm to compute the first r coefficients
of the partition function of a 2-spin model on a bounded-degree hypergraph. Since the coefficients
of the Taylor series for log Z are related to the coefficients of Z through a triangular system of linear
equations, this yields an algorithm to compute T,.()\). Specializing their result to the hypergraph
independence polynomial yields the following, which finishes the proof of Theorem 13.

Lemma 15 (Liu, Sinclair, Srivastava [42]). Fiz k, A, and C > 0. Then there is an algorithm
running in time polynomial in n/e that computes T,.(\) for any hypergraph G of mazimum degree A
and mazimum edge size k on n vertices, where r = [C'log(n/e)].
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